blob: 5e4a59b3ec1bb042f25de860a8489340a7add291 [file] [log] [blame]
Richard Kuoa86a7ce2011-10-31 18:27:45 -05001/*
2 * Bit operations for the Hexagon architecture
3 *
Richard Kuoe1858b22012-09-19 16:22:02 -05004 * Copyright (c) 2010-2011, The Linux Foundation. All rights reserved.
Richard Kuoa86a7ce2011-10-31 18:27:45 -05005 *
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 and
9 * only version 2 as published by the Free Software Foundation.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
19 * 02110-1301, USA.
20 */
21
22#ifndef _ASM_BITOPS_H
23#define _ASM_BITOPS_H
24
25#include <linux/compiler.h>
26#include <asm/byteorder.h>
Richard Kuoa86a7ce2011-10-31 18:27:45 -050027#include <asm/atomic.h>
Peter Zijlstra94cf42f2014-03-13 19:00:36 +010028#include <asm/barrier.h>
Richard Kuoa86a7ce2011-10-31 18:27:45 -050029
30#ifdef __KERNEL__
31
Richard Kuoa86a7ce2011-10-31 18:27:45 -050032/*
33 * The offset calculations for these are based on BITS_PER_LONG == 32
34 * (i.e. I get to shift by #5-2 (32 bits per long, 4 bytes per access),
35 * mask by 0x0000001F)
36 *
37 * Typically, R10 is clobbered for address, R11 bit nr, and R12 is temp
38 */
39
40/**
41 * test_and_clear_bit - clear a bit and return its old value
42 * @nr: bit number to clear
43 * @addr: pointer to memory
44 */
45static inline int test_and_clear_bit(int nr, volatile void *addr)
46{
47 int oldval;
48
49 __asm__ __volatile__ (
50 " {R10 = %1; R11 = asr(%2,#5); }\n"
51 " {R10 += asl(R11,#2); R11 = and(%2,#0x1f)}\n"
52 "1: R12 = memw_locked(R10);\n"
53 " { P0 = tstbit(R12,R11); R12 = clrbit(R12,R11); }\n"
54 " memw_locked(R10,P1) = R12;\n"
55 " {if !P1 jump 1b; %0 = mux(P0,#1,#0);}\n"
56 : "=&r" (oldval)
57 : "r" (addr), "r" (nr)
58 : "r10", "r11", "r12", "p0", "p1", "memory"
59 );
60
61 return oldval;
62}
63
64/**
65 * test_and_set_bit - set a bit and return its old value
66 * @nr: bit number to set
67 * @addr: pointer to memory
68 */
69static inline int test_and_set_bit(int nr, volatile void *addr)
70{
71 int oldval;
72
73 __asm__ __volatile__ (
74 " {R10 = %1; R11 = asr(%2,#5); }\n"
75 " {R10 += asl(R11,#2); R11 = and(%2,#0x1f)}\n"
76 "1: R12 = memw_locked(R10);\n"
77 " { P0 = tstbit(R12,R11); R12 = setbit(R12,R11); }\n"
78 " memw_locked(R10,P1) = R12;\n"
79 " {if !P1 jump 1b; %0 = mux(P0,#1,#0);}\n"
80 : "=&r" (oldval)
81 : "r" (addr), "r" (nr)
82 : "r10", "r11", "r12", "p0", "p1", "memory"
83 );
84
85
86 return oldval;
87
88}
89
90/**
91 * test_and_change_bit - toggle a bit and return its old value
92 * @nr: bit number to set
93 * @addr: pointer to memory
94 */
95static inline int test_and_change_bit(int nr, volatile void *addr)
96{
97 int oldval;
98
99 __asm__ __volatile__ (
100 " {R10 = %1; R11 = asr(%2,#5); }\n"
101 " {R10 += asl(R11,#2); R11 = and(%2,#0x1f)}\n"
102 "1: R12 = memw_locked(R10);\n"
103 " { P0 = tstbit(R12,R11); R12 = togglebit(R12,R11); }\n"
104 " memw_locked(R10,P1) = R12;\n"
105 " {if !P1 jump 1b; %0 = mux(P0,#1,#0);}\n"
106 : "=&r" (oldval)
107 : "r" (addr), "r" (nr)
108 : "r10", "r11", "r12", "p0", "p1", "memory"
109 );
110
111 return oldval;
112
113}
114
115/*
116 * Atomic, but doesn't care about the return value.
117 * Rewrite later to save a cycle or two.
118 */
119
120static inline void clear_bit(int nr, volatile void *addr)
121{
122 test_and_clear_bit(nr, addr);
123}
124
125static inline void set_bit(int nr, volatile void *addr)
126{
127 test_and_set_bit(nr, addr);
128}
129
130static inline void change_bit(int nr, volatile void *addr)
131{
132 test_and_change_bit(nr, addr);
133}
134
135
136/*
137 * These are allowed to be non-atomic. In fact the generic flavors are
138 * in non-atomic.h. Would it be better to use intrinsics for this?
139 *
140 * OK, writes in our architecture do not invalidate LL/SC, so this has to
141 * be atomic, particularly for things like slab_lock and slab_unlock.
142 *
143 */
144static inline void __clear_bit(int nr, volatile unsigned long *addr)
145{
146 test_and_clear_bit(nr, addr);
147}
148
149static inline void __set_bit(int nr, volatile unsigned long *addr)
150{
151 test_and_set_bit(nr, addr);
152}
153
154static inline void __change_bit(int nr, volatile unsigned long *addr)
155{
156 test_and_change_bit(nr, addr);
157}
158
159/* Apparently, at least some of these are allowed to be non-atomic */
160static inline int __test_and_clear_bit(int nr, volatile unsigned long *addr)
161{
162 return test_and_clear_bit(nr, addr);
163}
164
165static inline int __test_and_set_bit(int nr, volatile unsigned long *addr)
166{
167 return test_and_set_bit(nr, addr);
168}
169
170static inline int __test_and_change_bit(int nr, volatile unsigned long *addr)
171{
172 return test_and_change_bit(nr, addr);
173}
174
175static inline int __test_bit(int nr, const volatile unsigned long *addr)
176{
177 int retval;
178
179 asm volatile(
180 "{P0 = tstbit(%1,%2); if (P0.new) %0 = #1; if (!P0.new) %0 = #0;}\n"
181 : "=&r" (retval)
182 : "r" (addr[BIT_WORD(nr)]), "r" (nr % BITS_PER_LONG)
183 : "p0"
184 );
185
186 return retval;
187}
188
189#define test_bit(nr, addr) __test_bit(nr, addr)
190
191/*
192 * ffz - find first zero in word.
193 * @word: The word to search
194 *
195 * Undefined if no zero exists, so code should check against ~0UL first.
196 */
197static inline long ffz(int x)
198{
199 int r;
200
201 asm("%0 = ct1(%1);\n"
202 : "=&r" (r)
203 : "r" (x));
204 return r;
205}
206
207/*
208 * fls - find last (most-significant) bit set
209 * @x: the word to search
210 *
211 * This is defined the same way as ffs.
212 * Note fls(0) = 0, fls(1) = 1, fls(0x80000000) = 32.
213 */
214static inline long fls(int x)
215{
216 int r;
217
218 asm("{ %0 = cl0(%1);}\n"
219 "%0 = sub(#32,%0);\n"
220 : "=&r" (r)
221 : "r" (x)
222 : "p0");
223
224 return r;
225}
226
227/*
228 * ffs - find first bit set
229 * @x: the word to search
230 *
231 * This is defined the same way as
232 * the libc and compiler builtin ffs routines, therefore
233 * differs in spirit from the above ffz (man ffs).
234 */
235static inline long ffs(int x)
236{
237 int r;
238
239 asm("{ P0 = cmp.eq(%1,#0); %0 = ct0(%1);}\n"
240 "{ if P0 %0 = #0; if !P0 %0 = add(%0,#1);}\n"
241 : "=&r" (r)
242 : "r" (x)
243 : "p0");
244
245 return r;
246}
247
248/*
249 * __ffs - find first bit in word.
250 * @word: The word to search
251 *
252 * Undefined if no bit exists, so code should check against 0 first.
253 *
254 * bits_per_long assumed to be 32
255 * numbering starts at 0 I think (instead of 1 like ffs)
256 */
257static inline unsigned long __ffs(unsigned long word)
258{
259 int num;
260
261 asm("%0 = ct0(%1);\n"
262 : "=&r" (num)
263 : "r" (word));
264
265 return num;
266}
267
268/*
269 * __fls - find last (most-significant) set bit in a long word
270 * @word: the word to search
271 *
272 * Undefined if no set bit exists, so code should check against 0 first.
273 * bits_per_long assumed to be 32
274 */
275static inline unsigned long __fls(unsigned long word)
276{
277 int num;
278
279 asm("%0 = cl0(%1);\n"
280 "%0 = sub(#31,%0);\n"
281 : "=&r" (num)
282 : "r" (word));
283
284 return num;
285}
286
287#include <asm-generic/bitops/lock.h>
288#include <asm-generic/bitops/find.h>
289
290#include <asm-generic/bitops/fls64.h>
291#include <asm-generic/bitops/sched.h>
292#include <asm-generic/bitops/hweight.h>
293
294#include <asm-generic/bitops/le.h>
295#include <asm-generic/bitops/ext2-atomic.h>
296
297#endif /* __KERNEL__ */
298#endif