blob: 01df13a7e2e1e51bdd0ea5c8d06e3aad1d65d066 [file] [log] [blame]
Seth Jennings4e2e2772013-07-10 16:04:55 -07001/*
2 * zbud.c
3 *
4 * Copyright (C) 2013, Seth Jennings, IBM
5 *
6 * Concepts based on zcache internal zbud allocator by Dan Magenheimer.
7 *
8 * zbud is an special purpose allocator for storing compressed pages. Contrary
9 * to what its name may suggest, zbud is not a buddy allocator, but rather an
10 * allocator that "buddies" two compressed pages together in a single memory
11 * page.
12 *
13 * While this design limits storage density, it has simple and deterministic
14 * reclaim properties that make it preferable to a higher density approach when
15 * reclaim will be used.
16 *
17 * zbud works by storing compressed pages, or "zpages", together in pairs in a
18 * single memory page called a "zbud page". The first buddy is "left
Jianguo Wueee87e12013-09-11 14:21:42 -070019 * justified" at the beginning of the zbud page, and the last buddy is "right
Seth Jennings4e2e2772013-07-10 16:04:55 -070020 * justified" at the end of the zbud page. The benefit is that if either
21 * buddy is freed, the freed buddy space, coalesced with whatever slack space
22 * that existed between the buddies, results in the largest possible free region
23 * within the zbud page.
24 *
25 * zbud also provides an attractive lower bound on density. The ratio of zpages
26 * to zbud pages can not be less than 1. This ensures that zbud can never "do
27 * harm" by using more pages to store zpages than the uncompressed zpages would
28 * have used on their own.
29 *
30 * zbud pages are divided into "chunks". The size of the chunks is fixed at
31 * compile time and determined by NCHUNKS_ORDER below. Dividing zbud pages
32 * into chunks allows organizing unbuddied zbud pages into a manageable number
33 * of unbuddied lists according to the number of free chunks available in the
34 * zbud page.
35 *
36 * The zbud API differs from that of conventional allocators in that the
37 * allocation function, zbud_alloc(), returns an opaque handle to the user,
38 * not a dereferenceable pointer. The user must map the handle using
39 * zbud_map() in order to get a usable pointer by which to access the
40 * allocation data and unmap the handle with zbud_unmap() when operations
41 * on the allocation data are complete.
42 */
43
44#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
45
46#include <linux/atomic.h>
47#include <linux/list.h>
48#include <linux/mm.h>
49#include <linux/module.h>
50#include <linux/preempt.h>
51#include <linux/slab.h>
52#include <linux/spinlock.h>
53#include <linux/zbud.h>
54
55/*****************
56 * Structures
57*****************/
58/*
59 * NCHUNKS_ORDER determines the internal allocation granularity, effectively
60 * adjusting internal fragmentation. It also determines the number of
61 * freelists maintained in each pool. NCHUNKS_ORDER of 6 means that the
62 * allocation granularity will be in chunks of size PAGE_SIZE/64, and there
63 * will be 64 freelists per pool.
64 */
65#define NCHUNKS_ORDER 6
66
67#define CHUNK_SHIFT (PAGE_SHIFT - NCHUNKS_ORDER)
68#define CHUNK_SIZE (1 << CHUNK_SHIFT)
69#define NCHUNKS (PAGE_SIZE >> CHUNK_SHIFT)
70#define ZHDR_SIZE_ALIGNED CHUNK_SIZE
71
72/**
73 * struct zbud_pool - stores metadata for each zbud pool
74 * @lock: protects all pool fields and first|last_chunk fields of any
75 * zbud page in the pool
76 * @unbuddied: array of lists tracking zbud pages that only contain one buddy;
77 * the lists each zbud page is added to depends on the size of
78 * its free region.
79 * @buddied: list tracking the zbud pages that contain two buddies;
80 * these zbud pages are full
81 * @lru: list tracking the zbud pages in LRU order by most recently
82 * added buddy.
83 * @pages_nr: number of zbud pages in the pool.
84 * @ops: pointer to a structure of user defined operations specified at
85 * pool creation time.
86 *
87 * This structure is allocated at pool creation time and maintains metadata
88 * pertaining to a particular zbud pool.
89 */
90struct zbud_pool {
91 spinlock_t lock;
92 struct list_head unbuddied[NCHUNKS];
93 struct list_head buddied;
94 struct list_head lru;
95 u64 pages_nr;
96 struct zbud_ops *ops;
97};
98
99/*
100 * struct zbud_header - zbud page metadata occupying the first chunk of each
101 * zbud page.
102 * @buddy: links the zbud page into the unbuddied/buddied lists in the pool
103 * @lru: links the zbud page into the lru list in the pool
104 * @first_chunks: the size of the first buddy in chunks, 0 if free
105 * @last_chunks: the size of the last buddy in chunks, 0 if free
106 */
107struct zbud_header {
108 struct list_head buddy;
109 struct list_head lru;
110 unsigned int first_chunks;
111 unsigned int last_chunks;
112 bool under_reclaim;
113};
114
115/*****************
116 * Helpers
117*****************/
118/* Just to make the code easier to read */
119enum buddy {
120 FIRST,
121 LAST
122};
123
124/* Converts an allocation size in bytes to size in zbud chunks */
125static int size_to_chunks(int size)
126{
127 return (size + CHUNK_SIZE - 1) >> CHUNK_SHIFT;
128}
129
130#define for_each_unbuddied_list(_iter, _begin) \
131 for ((_iter) = (_begin); (_iter) < NCHUNKS; (_iter)++)
132
133/* Initializes the zbud header of a newly allocated zbud page */
134static struct zbud_header *init_zbud_page(struct page *page)
135{
136 struct zbud_header *zhdr = page_address(page);
137 zhdr->first_chunks = 0;
138 zhdr->last_chunks = 0;
139 INIT_LIST_HEAD(&zhdr->buddy);
140 INIT_LIST_HEAD(&zhdr->lru);
141 zhdr->under_reclaim = 0;
142 return zhdr;
143}
144
145/* Resets the struct page fields and frees the page */
146static void free_zbud_page(struct zbud_header *zhdr)
147{
148 __free_page(virt_to_page(zhdr));
149}
150
151/*
152 * Encodes the handle of a particular buddy within a zbud page
153 * Pool lock should be held as this function accesses first|last_chunks
154 */
155static unsigned long encode_handle(struct zbud_header *zhdr, enum buddy bud)
156{
157 unsigned long handle;
158
159 /*
160 * For now, the encoded handle is actually just the pointer to the data
161 * but this might not always be the case. A little information hiding.
162 * Add CHUNK_SIZE to the handle if it is the first allocation to jump
163 * over the zbud header in the first chunk.
164 */
165 handle = (unsigned long)zhdr;
166 if (bud == FIRST)
167 /* skip over zbud header */
168 handle += ZHDR_SIZE_ALIGNED;
169 else /* bud == LAST */
170 handle += PAGE_SIZE - (zhdr->last_chunks << CHUNK_SHIFT);
171 return handle;
172}
173
174/* Returns the zbud page where a given handle is stored */
175static struct zbud_header *handle_to_zbud_header(unsigned long handle)
176{
177 return (struct zbud_header *)(handle & PAGE_MASK);
178}
179
180/* Returns the number of free chunks in a zbud page */
181static int num_free_chunks(struct zbud_header *zhdr)
182{
183 /*
184 * Rather than branch for different situations, just use the fact that
185 * free buddies have a length of zero to simplify everything. -1 at the
186 * end for the zbud header.
187 */
188 return NCHUNKS - zhdr->first_chunks - zhdr->last_chunks - 1;
189}
190
191/*****************
192 * API Functions
193*****************/
194/**
195 * zbud_create_pool() - create a new zbud pool
196 * @gfp: gfp flags when allocating the zbud pool structure
197 * @ops: user-defined operations for the zbud pool
198 *
199 * Return: pointer to the new zbud pool or NULL if the metadata allocation
200 * failed.
201 */
202struct zbud_pool *zbud_create_pool(gfp_t gfp, struct zbud_ops *ops)
203{
204 struct zbud_pool *pool;
205 int i;
206
207 pool = kmalloc(sizeof(struct zbud_pool), gfp);
208 if (!pool)
209 return NULL;
210 spin_lock_init(&pool->lock);
211 for_each_unbuddied_list(i, 0)
212 INIT_LIST_HEAD(&pool->unbuddied[i]);
213 INIT_LIST_HEAD(&pool->buddied);
214 INIT_LIST_HEAD(&pool->lru);
215 pool->pages_nr = 0;
216 pool->ops = ops;
217 return pool;
218}
219
220/**
221 * zbud_destroy_pool() - destroys an existing zbud pool
222 * @pool: the zbud pool to be destroyed
223 *
224 * The pool should be emptied before this function is called.
225 */
226void zbud_destroy_pool(struct zbud_pool *pool)
227{
228 kfree(pool);
229}
230
231/**
232 * zbud_alloc() - allocates a region of a given size
233 * @pool: zbud pool from which to allocate
234 * @size: size in bytes of the desired allocation
235 * @gfp: gfp flags used if the pool needs to grow
236 * @handle: handle of the new allocation
237 *
238 * This function will attempt to find a free region in the pool large enough to
239 * satisfy the allocation request. A search of the unbuddied lists is
240 * performed first. If no suitable free region is found, then a new page is
241 * allocated and added to the pool to satisfy the request.
242 *
243 * gfp should not set __GFP_HIGHMEM as highmem pages cannot be used
244 * as zbud pool pages.
245 *
Jianguo Wueee87e12013-09-11 14:21:42 -0700246 * Return: 0 if success and handle is set, otherwise -EINVAL if the size or
Seth Jennings4e2e2772013-07-10 16:04:55 -0700247 * gfp arguments are invalid or -ENOMEM if the pool was unable to allocate
248 * a new page.
249 */
Fabian Frederick50417c52014-06-04 16:11:07 -0700250int zbud_alloc(struct zbud_pool *pool, unsigned int size, gfp_t gfp,
Seth Jennings4e2e2772013-07-10 16:04:55 -0700251 unsigned long *handle)
252{
253 int chunks, i, freechunks;
254 struct zbud_header *zhdr = NULL;
255 enum buddy bud;
256 struct page *page;
257
Fabian Frederick50417c52014-06-04 16:11:07 -0700258 if (!size || (gfp & __GFP_HIGHMEM))
Seth Jennings4e2e2772013-07-10 16:04:55 -0700259 return -EINVAL;
Heesub Shin9d8c5b52013-07-31 13:53:40 -0700260 if (size > PAGE_SIZE - ZHDR_SIZE_ALIGNED - CHUNK_SIZE)
Seth Jennings4e2e2772013-07-10 16:04:55 -0700261 return -ENOSPC;
262 chunks = size_to_chunks(size);
263 spin_lock(&pool->lock);
264
265 /* First, try to find an unbuddied zbud page. */
266 zhdr = NULL;
267 for_each_unbuddied_list(i, chunks) {
268 if (!list_empty(&pool->unbuddied[i])) {
269 zhdr = list_first_entry(&pool->unbuddied[i],
270 struct zbud_header, buddy);
271 list_del(&zhdr->buddy);
272 if (zhdr->first_chunks == 0)
273 bud = FIRST;
274 else
275 bud = LAST;
276 goto found;
277 }
278 }
279
280 /* Couldn't find unbuddied zbud page, create new one */
281 spin_unlock(&pool->lock);
282 page = alloc_page(gfp);
283 if (!page)
284 return -ENOMEM;
285 spin_lock(&pool->lock);
286 pool->pages_nr++;
287 zhdr = init_zbud_page(page);
288 bud = FIRST;
289
290found:
291 if (bud == FIRST)
292 zhdr->first_chunks = chunks;
293 else
294 zhdr->last_chunks = chunks;
295
296 if (zhdr->first_chunks == 0 || zhdr->last_chunks == 0) {
297 /* Add to unbuddied list */
298 freechunks = num_free_chunks(zhdr);
299 list_add(&zhdr->buddy, &pool->unbuddied[freechunks]);
300 } else {
301 /* Add to buddied list */
302 list_add(&zhdr->buddy, &pool->buddied);
303 }
304
305 /* Add/move zbud page to beginning of LRU */
306 if (!list_empty(&zhdr->lru))
307 list_del(&zhdr->lru);
308 list_add(&zhdr->lru, &pool->lru);
309
310 *handle = encode_handle(zhdr, bud);
311 spin_unlock(&pool->lock);
312
313 return 0;
314}
315
316/**
317 * zbud_free() - frees the allocation associated with the given handle
318 * @pool: pool in which the allocation resided
319 * @handle: handle associated with the allocation returned by zbud_alloc()
320 *
321 * In the case that the zbud page in which the allocation resides is under
322 * reclaim, as indicated by the PG_reclaim flag being set, this function
323 * only sets the first|last_chunks to 0. The page is actually freed
324 * once both buddies are evicted (see zbud_reclaim_page() below).
325 */
326void zbud_free(struct zbud_pool *pool, unsigned long handle)
327{
328 struct zbud_header *zhdr;
329 int freechunks;
330
331 spin_lock(&pool->lock);
332 zhdr = handle_to_zbud_header(handle);
333
334 /* If first buddy, handle will be page aligned */
335 if ((handle - ZHDR_SIZE_ALIGNED) & ~PAGE_MASK)
336 zhdr->last_chunks = 0;
337 else
338 zhdr->first_chunks = 0;
339
340 if (zhdr->under_reclaim) {
341 /* zbud page is under reclaim, reclaim will free */
342 spin_unlock(&pool->lock);
343 return;
344 }
345
346 /* Remove from existing buddy list */
347 list_del(&zhdr->buddy);
348
349 if (zhdr->first_chunks == 0 && zhdr->last_chunks == 0) {
350 /* zbud page is empty, free */
351 list_del(&zhdr->lru);
352 free_zbud_page(zhdr);
353 pool->pages_nr--;
354 } else {
355 /* Add to unbuddied list */
356 freechunks = num_free_chunks(zhdr);
357 list_add(&zhdr->buddy, &pool->unbuddied[freechunks]);
358 }
359
360 spin_unlock(&pool->lock);
361}
362
363#define list_tail_entry(ptr, type, member) \
364 list_entry((ptr)->prev, type, member)
365
366/**
367 * zbud_reclaim_page() - evicts allocations from a pool page and frees it
368 * @pool: pool from which a page will attempt to be evicted
369 * @retires: number of pages on the LRU list for which eviction will
370 * be attempted before failing
371 *
372 * zbud reclaim is different from normal system reclaim in that the reclaim is
373 * done from the bottom, up. This is because only the bottom layer, zbud, has
374 * information on how the allocations are organized within each zbud page. This
375 * has the potential to create interesting locking situations between zbud and
376 * the user, however.
377 *
378 * To avoid these, this is how zbud_reclaim_page() should be called:
379
380 * The user detects a page should be reclaimed and calls zbud_reclaim_page().
381 * zbud_reclaim_page() will remove a zbud page from the pool LRU list and call
382 * the user-defined eviction handler with the pool and handle as arguments.
383 *
384 * If the handle can not be evicted, the eviction handler should return
385 * non-zero. zbud_reclaim_page() will add the zbud page back to the
386 * appropriate list and try the next zbud page on the LRU up to
387 * a user defined number of retries.
388 *
389 * If the handle is successfully evicted, the eviction handler should
390 * return 0 _and_ should have called zbud_free() on the handle. zbud_free()
391 * contains logic to delay freeing the page if the page is under reclaim,
392 * as indicated by the setting of the PG_reclaim flag on the underlying page.
393 *
394 * If all buddies in the zbud page are successfully evicted, then the
395 * zbud page can be freed.
396 *
397 * Returns: 0 if page is successfully freed, otherwise -EINVAL if there are
398 * no pages to evict or an eviction handler is not registered, -EAGAIN if
399 * the retry limit was hit.
400 */
401int zbud_reclaim_page(struct zbud_pool *pool, unsigned int retries)
402{
403 int i, ret, freechunks;
404 struct zbud_header *zhdr;
405 unsigned long first_handle = 0, last_handle = 0;
406
407 spin_lock(&pool->lock);
408 if (!pool->ops || !pool->ops->evict || list_empty(&pool->lru) ||
409 retries == 0) {
410 spin_unlock(&pool->lock);
411 return -EINVAL;
412 }
413 for (i = 0; i < retries; i++) {
414 zhdr = list_tail_entry(&pool->lru, struct zbud_header, lru);
415 list_del(&zhdr->lru);
416 list_del(&zhdr->buddy);
417 /* Protect zbud page against free */
418 zhdr->under_reclaim = true;
419 /*
420 * We need encode the handles before unlocking, since we can
421 * race with free that will set (first|last)_chunks to 0
422 */
423 first_handle = 0;
424 last_handle = 0;
425 if (zhdr->first_chunks)
426 first_handle = encode_handle(zhdr, FIRST);
427 if (zhdr->last_chunks)
428 last_handle = encode_handle(zhdr, LAST);
429 spin_unlock(&pool->lock);
430
431 /* Issue the eviction callback(s) */
432 if (first_handle) {
433 ret = pool->ops->evict(pool, first_handle);
434 if (ret)
435 goto next;
436 }
437 if (last_handle) {
438 ret = pool->ops->evict(pool, last_handle);
439 if (ret)
440 goto next;
441 }
442next:
443 spin_lock(&pool->lock);
444 zhdr->under_reclaim = false;
445 if (zhdr->first_chunks == 0 && zhdr->last_chunks == 0) {
446 /*
447 * Both buddies are now free, free the zbud page and
448 * return success.
449 */
450 free_zbud_page(zhdr);
451 pool->pages_nr--;
452 spin_unlock(&pool->lock);
453 return 0;
454 } else if (zhdr->first_chunks == 0 ||
455 zhdr->last_chunks == 0) {
456 /* add to unbuddied list */
457 freechunks = num_free_chunks(zhdr);
458 list_add(&zhdr->buddy, &pool->unbuddied[freechunks]);
459 } else {
460 /* add to buddied list */
461 list_add(&zhdr->buddy, &pool->buddied);
462 }
463
464 /* add to beginning of LRU */
465 list_add(&zhdr->lru, &pool->lru);
466 }
467 spin_unlock(&pool->lock);
468 return -EAGAIN;
469}
470
471/**
472 * zbud_map() - maps the allocation associated with the given handle
473 * @pool: pool in which the allocation resides
474 * @handle: handle associated with the allocation to be mapped
475 *
476 * While trivial for zbud, the mapping functions for others allocators
477 * implementing this allocation API could have more complex information encoded
478 * in the handle and could create temporary mappings to make the data
479 * accessible to the user.
480 *
481 * Returns: a pointer to the mapped allocation
482 */
483void *zbud_map(struct zbud_pool *pool, unsigned long handle)
484{
485 return (void *)(handle);
486}
487
488/**
489 * zbud_unmap() - maps the allocation associated with the given handle
490 * @pool: pool in which the allocation resides
491 * @handle: handle associated with the allocation to be unmapped
492 */
493void zbud_unmap(struct zbud_pool *pool, unsigned long handle)
494{
495}
496
497/**
498 * zbud_get_pool_size() - gets the zbud pool size in pages
499 * @pool: pool whose size is being queried
500 *
501 * Returns: size in pages of the given pool. The pool lock need not be
502 * taken to access pages_nr.
503 */
504u64 zbud_get_pool_size(struct zbud_pool *pool)
505{
506 return pool->pages_nr;
507}
508
509static int __init init_zbud(void)
510{
511 /* Make sure the zbud header will fit in one chunk */
512 BUILD_BUG_ON(sizeof(struct zbud_header) > ZHDR_SIZE_ALIGNED);
513 pr_info("loaded\n");
514 return 0;
515}
516
517static void __exit exit_zbud(void)
518{
519 pr_info("unloaded\n");
520}
521
522module_init(init_zbud);
523module_exit(exit_zbud);
524
525MODULE_LICENSE("GPL");
526MODULE_AUTHOR("Seth Jennings <sjenning@linux.vnet.ibm.com>");
527MODULE_DESCRIPTION("Buddy Allocator for Compressed Pages");