blob: 41032dd3c15ac893f623e19889f2497253570e32 [file] [log] [blame]
David Collins7370f1a2017-01-18 16:21:53 -08001/*
2 * Copyright (c) 2015-2017, The Linux Foundation. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 and
6 * only version 2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
12 */
13
14#define pr_fmt(fmt) "%s: " fmt, __func__
15
16#include <linux/bitops.h>
17#include <linux/debugfs.h>
18#include <linux/err.h>
19#include <linux/init.h>
20#include <linux/interrupt.h>
21#include <linux/io.h>
22#include <linux/kernel.h>
23#include <linux/list.h>
24#include <linux/module.h>
25#include <linux/of.h>
26#include <linux/of_device.h>
27#include <linux/platform_device.h>
28#include <linux/pm_opp.h>
29#include <linux/slab.h>
30#include <linux/string.h>
31#include <linux/uaccess.h>
32#include <linux/regulator/driver.h>
33#include <linux/regulator/machine.h>
34#include <linux/regulator/of_regulator.h>
35
36#include "cpr3-regulator.h"
37
38#define MSM8996_MMSS_FUSE_CORNERS 4
39
40/**
41 * struct cpr3_msm8996_mmss_fuses - MMSS specific fuse data for MSM8996
42 * @init_voltage: Initial (i.e. open-loop) voltage fuse parameter value
43 * for each fuse corner (raw, not converted to a voltage)
44 * @offset_voltage: The closed-loop voltage margin adjustment fuse parameter
45 * value for each fuse corner (raw, not converted to a
46 * voltage)
47 * @speed_bin: Graphics processor speed bin fuse parameter value for
48 * the given chip
49 * @cpr_fusing_rev: CPR fusing revision fuse parameter value
50 * @limitation: CPR limitation select fuse parameter value
51 * @aging_init_quot_diff: Initial quotient difference between CPR aging
52 * min and max sensors measured at time of manufacturing
53 * @force_highest_corner: Flag indicating that all corners must operate
54 * at the voltage of the highest corner. This is
55 * applicable to MSM8998 only.
56 *
57 * This struct holds the values for all of the fuses read from memory.
58 */
59struct cpr3_msm8996_mmss_fuses {
60 u64 init_voltage[MSM8996_MMSS_FUSE_CORNERS];
61 u64 offset_voltage[MSM8996_MMSS_FUSE_CORNERS];
62 u64 speed_bin;
63 u64 cpr_fusing_rev;
64 u64 limitation;
65 u64 aging_init_quot_diff;
66 u64 force_highest_corner;
67};
68
69/* Fuse combos 0 - 7 map to CPR fusing revision 0 - 7 */
70#define CPR3_MSM8996_MMSS_FUSE_COMBO_COUNT 8
71
72/*
73 * Fuse combos 0 - 7 map to CPR fusing revision 0 - 7 with speed bin fuse = 0.
74 * Fuse combos 8 - 15 map to CPR fusing revision 0 - 7 with speed bin fuse = 1.
75 */
76#define CPR3_MSM8996PRO_MMSS_FUSE_COMBO_COUNT 16
77
78/* Fuse combos 0 - 7 map to CPR fusing revision 0 - 7 */
79#define CPR3_MSM8998_MMSS_FUSE_COMBO_COUNT 8
80
81/*
82 * MSM8996 MMSS fuse parameter locations:
83 *
84 * Structs are organized with the following dimensions:
85 * Outer: 0 to 3 for fuse corners from lowest to highest corner
86 * Inner: large enough to hold the longest set of parameter segments which
87 * fully defines a fuse parameter, +1 (for NULL termination).
88 * Each segment corresponds to a contiguous group of bits from a
89 * single fuse row. These segments are concatentated together in
90 * order to form the full fuse parameter value. The segments for
91 * a given parameter may correspond to different fuse rows.
92 */
93static const struct cpr3_fuse_param
94msm8996_mmss_init_voltage_param[MSM8996_MMSS_FUSE_CORNERS][2] = {
95 {{63, 55, 59}, {} },
96 {{63, 50, 54}, {} },
97 {{63, 45, 49}, {} },
98 {{63, 40, 44}, {} },
99};
100
101static const struct cpr3_fuse_param msm8996_cpr_fusing_rev_param[] = {
102 {39, 48, 50},
103 {},
104};
105
106static const struct cpr3_fuse_param msm8996_cpr_limitation_param[] = {
107 {41, 31, 32},
108 {},
109};
110
111static const struct cpr3_fuse_param
112msm8996_mmss_aging_init_quot_diff_param[] = {
113 {68, 26, 31},
114 {},
115};
116
117/* Offset voltages are defined for SVS and Turbo fuse corners only */
118static const struct cpr3_fuse_param
119msm8996_mmss_offset_voltage_param[MSM8996_MMSS_FUSE_CORNERS][2] = {
120 {{} },
121 {{66, 42, 44}, {} },
122 {{} },
123 {{64, 58, 61}, {} },
124};
125
126static const struct cpr3_fuse_param msm8996pro_mmss_speed_bin_param[] = {
127 {39, 60, 61},
128 {},
129};
130
131/* MSM8998 MMSS fuse parameter locations: */
132static const struct cpr3_fuse_param
133msm8998_mmss_init_voltage_param[MSM8996_MMSS_FUSE_CORNERS][2] = {
134 {{65, 39, 43}, {} },
135 {{65, 34, 38}, {} },
136 {{65, 29, 33}, {} },
137 {{65, 24, 28}, {} },
138};
139
140static const struct cpr3_fuse_param msm8998_cpr_fusing_rev_param[] = {
141 {39, 48, 50},
142 {},
143};
144
145static const struct cpr3_fuse_param msm8998_cpr_limitation_param[] = {
146 {41, 46, 47},
147 {},
148};
149
150static const struct cpr3_fuse_param
151msm8998_mmss_aging_init_quot_diff_param[] = {
152 {65, 60, 63},
153 {66, 0, 3},
154 {},
155};
156
157static const struct cpr3_fuse_param
158msm8998_mmss_offset_voltage_param[MSM8996_MMSS_FUSE_CORNERS][2] = {
159 {{65, 56, 59}, {} },
160 {{65, 52, 55}, {} },
161 {{65, 48, 51}, {} },
162 {{65, 44, 47}, {} },
163};
164
165static const struct cpr3_fuse_param
166msm8998_cpr_force_highest_corner_param[] = {
167 {100, 45, 45},
168 {},
169};
170
171#define MSM8996PRO_SOC_ID 4
172#define MSM8998_V1_SOC_ID 5
173#define MSM8998_V2_SOC_ID 6
174
175/*
176 * Some initial msm8996 parts cannot be used in a meaningful way by software.
177 * Other parts can only be used when operating with CPR disabled (i.e. at the
178 * fused open-loop voltage) when no voltage interpolation is applied. A fuse
179 * parameter is provided so that software can properly handle these limitations.
180 */
181enum msm8996_cpr_limitation {
182 MSM8996_CPR_LIMITATION_NONE = 0,
183 MSM8996_CPR_LIMITATION_UNSUPPORTED = 2,
184 MSM8996_CPR_LIMITATION_NO_CPR_OR_INTERPOLATION = 3,
185};
186
187/* Additional MSM8996 specific data: */
188
189/* Open loop voltage fuse reference voltages in microvolts */
190static const int msm8996_mmss_fuse_ref_volt[MSM8996_MMSS_FUSE_CORNERS] = {
191 670000,
192 745000,
193 905000,
194 1015000,
195};
196
197static const int msm8996pro_mmss_fuse_ref_volt[MSM8996_MMSS_FUSE_CORNERS] = {
198 670000,
199 745000,
200 905000,
201 1065000,
202};
203
204static const int msm8998_v1_mmss_fuse_ref_volt[MSM8996_MMSS_FUSE_CORNERS] = {
205 528000,
206 656000,
207 812000,
208 932000,
209};
210
211static const int
212msm8998_v1_rev0_mmss_fuse_ref_volt[MSM8996_MMSS_FUSE_CORNERS] = {
213 632000,
214 768000,
215 896000,
216 1032000,
217};
218
219static const int msm8998_v2_mmss_fuse_ref_volt[MSM8996_MMSS_FUSE_CORNERS] = {
220 516000,
221 628000,
222 752000,
223 924000,
224};
225
226static const int
227msm8998_v2_rev0_mmss_fuse_ref_volt[MSM8996_MMSS_FUSE_CORNERS] = {
228 616000,
229 740000,
230 828000,
231 1024000,
232};
233
234#define MSM8996_MMSS_FUSE_STEP_VOLT 10000
235#define MSM8996_MMSS_OFFSET_FUSE_STEP_VOLT 10000
236#define MSM8996_MMSS_VOLTAGE_FUSE_SIZE 5
237#define MSM8996_MMSS_MIN_VOLTAGE_FUSE_VAL 0x1F
238#define MSM8996_MMSS_AGING_INIT_QUOT_DIFF_SCALE 2
239#define MSM8996_MMSS_AGING_INIT_QUOT_DIFF_SIZE 6
240
241#define MSM8996_MMSS_CPR_SENSOR_COUNT 35
242
243#define MSM8996_MMSS_CPR_CLOCK_RATE 19200000
244
245#define MSM8996_MMSS_AGING_SENSOR_ID 29
246#define MSM8996_MMSS_AGING_BYPASS_MASK0 (GENMASK(23, 0))
247
248#define MSM8998_MMSS_AGING_INIT_QUOT_DIFF_SCALE 1
249#define MSM8998_MMSS_AGING_INIT_QUOT_DIFF_SIZE 8
250
251#define MSM8998_MMSS_CPR_SENSOR_COUNT 35
252
253#define MSM8998_MMSS_AGING_SENSOR_ID 29
254#define MSM8998_MMSS_AGING_BYPASS_MASK0 (GENMASK(23, 0))
255
256#define MSM8998_MMSS_MAX_TEMP_POINTS 3
257#define MSM8998_MMSS_TEMP_SENSOR_ID_START 12
258#define MSM8998_MMSS_TEMP_SENSOR_ID_END 13
259
260/*
261 * Some initial msm8998 parts cannot be operated at low voltages. The
262 * open-loop voltage fuses are reused to identify these parts so that software
263 * can properly handle the limitation. 0xF means that the next higher fuse
264 * corner should be used. 0xE means that the next higher fuse corner which
265 * does not have a voltage limitation should be used.
266 */
267enum msm8998_cpr_partial_binning {
268 MSM8998_CPR_PARTIAL_BINNING_NEXT_CORNER = 0xF,
269 MSM8998_CPR_PARTIAL_BINNING_SAFE_CORNER = 0xE,
270};
271
272/*
273 * The partial binning open-loop voltage fuse values only apply to the lowest
274 * two fuse corners (0 and 1, i.e. MinSVS and SVS).
275 */
276#define MSM8998_CPR_PARTIAL_BINNING_MAX_FUSE_CORNER 1
277
278static inline bool cpr3_ctrl_is_msm8998(const struct cpr3_controller *ctrl)
279{
280 return ctrl->soc_revision == MSM8998_V1_SOC_ID ||
281 ctrl->soc_revision == MSM8998_V2_SOC_ID;
282}
283
284/**
285 * cpr3_msm8996_mmss_read_fuse_data() - load MMSS specific fuse parameter values
286 * @vreg: Pointer to the CPR3 regulator
287 *
288 * This function allocates a cpr3_msm8996_mmss_fuses struct, fills it with
289 * values read out of hardware fuses, and finally copies common fuse values
290 * into the regulator struct.
291 *
292 * Return: 0 on success, errno on failure
293 */
294static int cpr3_msm8996_mmss_read_fuse_data(struct cpr3_regulator *vreg)
295{
296 void __iomem *base = vreg->thread->ctrl->fuse_base;
297 struct cpr3_msm8996_mmss_fuses *fuse;
298 int i, rc, combo_max;
299
300 fuse = devm_kzalloc(vreg->thread->ctrl->dev, sizeof(*fuse), GFP_KERNEL);
301 if (!fuse)
302 return -ENOMEM;
303
304 if (vreg->thread->ctrl->soc_revision == MSM8996PRO_SOC_ID) {
305 rc = cpr3_read_fuse_param(base, msm8996pro_mmss_speed_bin_param,
306 &fuse->speed_bin);
307 if (rc) {
308 cpr3_err(vreg, "Unable to read speed bin fuse, rc=%d\n",
309 rc);
310 return rc;
311 }
312 cpr3_info(vreg, "speed bin = %llu\n", fuse->speed_bin);
313 }
314
315 rc = cpr3_read_fuse_param(base,
316 cpr3_ctrl_is_msm8998(vreg->thread->ctrl)
317 ? msm8998_cpr_fusing_rev_param
318 : msm8996_cpr_fusing_rev_param,
319 &fuse->cpr_fusing_rev);
320 if (rc) {
321 cpr3_err(vreg, "Unable to read CPR fusing revision fuse, rc=%d\n",
322 rc);
323 return rc;
324 }
325 cpr3_info(vreg, "CPR fusing revision = %llu\n", fuse->cpr_fusing_rev);
326
327 rc = cpr3_read_fuse_param(base,
328 cpr3_ctrl_is_msm8998(vreg->thread->ctrl)
329 ? msm8998_cpr_limitation_param
330 : msm8996_cpr_limitation_param,
331 &fuse->limitation);
332 if (rc) {
333 cpr3_err(vreg, "Unable to read CPR limitation fuse, rc=%d\n",
334 rc);
335 return rc;
336 }
337 cpr3_info(vreg, "CPR limitation = %s\n",
338 fuse->limitation == MSM8996_CPR_LIMITATION_UNSUPPORTED
339 ? "unsupported chip" : fuse->limitation
340 == MSM8996_CPR_LIMITATION_NO_CPR_OR_INTERPOLATION
341 ? "CPR disabled and no interpolation" : "none");
342
343 rc = cpr3_read_fuse_param(base,
344 cpr3_ctrl_is_msm8998(vreg->thread->ctrl)
345 ? msm8998_mmss_aging_init_quot_diff_param
346 : msm8996_mmss_aging_init_quot_diff_param,
347 &fuse->aging_init_quot_diff);
348 if (rc) {
349 cpr3_err(vreg, "Unable to read aging initial quotient difference fuse, rc=%d\n",
350 rc);
351 return rc;
352 }
353
354 for (i = 0; i < MSM8996_MMSS_FUSE_CORNERS; i++) {
355 rc = cpr3_read_fuse_param(base,
356 cpr3_ctrl_is_msm8998(vreg->thread->ctrl)
357 ? msm8998_mmss_init_voltage_param[i]
358 : msm8996_mmss_init_voltage_param[i],
359 &fuse->init_voltage[i]);
360 if (rc) {
361 cpr3_err(vreg, "Unable to read fuse-corner %d initial voltage fuse, rc=%d\n",
362 i, rc);
363 return rc;
364 }
365
366 rc = cpr3_read_fuse_param(base,
367 cpr3_ctrl_is_msm8998(vreg->thread->ctrl)
368 ? msm8998_mmss_offset_voltage_param[i]
369 : msm8996_mmss_offset_voltage_param[i],
370 &fuse->offset_voltage[i]);
371 if (rc) {
372 cpr3_err(vreg, "Unable to read fuse-corner %d offset voltage fuse, rc=%d\n",
373 i, rc);
374 return rc;
375 }
376 }
377
378 if (cpr3_ctrl_is_msm8998(vreg->thread->ctrl)) {
379 rc = cpr3_read_fuse_param(base,
380 msm8998_cpr_force_highest_corner_param,
381 &fuse->force_highest_corner);
382 if (rc) {
383 cpr3_err(vreg, "Unable to read CPR force highest corner fuse, rc=%d\n",
384 rc);
385 return rc;
386 }
387 if (fuse->force_highest_corner)
388 cpr3_info(vreg, "Fusing requires all operation at the highest corner\n");
389 }
390
391 if (cpr3_ctrl_is_msm8998(vreg->thread->ctrl)) {
392 combo_max = CPR3_MSM8998_MMSS_FUSE_COMBO_COUNT;
393 vreg->fuse_combo = fuse->cpr_fusing_rev;
394 } else if (vreg->thread->ctrl->soc_revision == MSM8996PRO_SOC_ID) {
395 combo_max = CPR3_MSM8996PRO_MMSS_FUSE_COMBO_COUNT;
396 vreg->fuse_combo = fuse->cpr_fusing_rev + 8 * fuse->speed_bin;
397 } else {
398 combo_max = CPR3_MSM8996_MMSS_FUSE_COMBO_COUNT;
399 vreg->fuse_combo = fuse->cpr_fusing_rev;
400 }
401
402 if (vreg->fuse_combo >= combo_max) {
403 cpr3_err(vreg, "invalid CPR fuse combo = %d found, not in range 0 - %d\n",
404 vreg->fuse_combo, combo_max - 1);
405 return -EINVAL;
406 }
407
408 vreg->speed_bin_fuse = fuse->speed_bin;
409 vreg->cpr_rev_fuse = fuse->cpr_fusing_rev;
410 vreg->fuse_corner_count = MSM8996_MMSS_FUSE_CORNERS;
411 vreg->platform_fuses = fuse;
412
413 return 0;
414}
415
416/**
417 * cpr3_mmss_parse_corner_data() - parse MMSS corner data from device tree
418 * properties of the regulator's device node
419 * @vreg: Pointer to the CPR3 regulator
420 *
421 * Return: 0 on success, errno on failure
422 */
423static int cpr3_mmss_parse_corner_data(struct cpr3_regulator *vreg)
424{
425 int i, rc;
426 u32 *temp;
427
428 rc = cpr3_parse_common_corner_data(vreg);
429 if (rc) {
430 cpr3_err(vreg, "error reading corner data, rc=%d\n", rc);
431 return rc;
432 }
433
434 temp = kcalloc(vreg->corner_count * CPR3_RO_COUNT, sizeof(*temp),
435 GFP_KERNEL);
436 if (!temp)
437 return -ENOMEM;
438
439 rc = cpr3_parse_corner_array_property(vreg, "qcom,cpr-target-quotients",
440 CPR3_RO_COUNT, temp);
441 if (rc) {
442 cpr3_err(vreg, "could not load target quotients, rc=%d\n", rc);
443 goto done;
444 }
445
446 for (i = 0; i < vreg->corner_count; i++)
447 memcpy(vreg->corner[i].target_quot, &temp[i * CPR3_RO_COUNT],
448 sizeof(*temp) * CPR3_RO_COUNT);
449
450done:
451 kfree(temp);
452 return rc;
453}
454
455/**
456 * cpr3_msm8996_mmss_adjust_target_quotients() - adjust the target quotients
457 * for each corner according to device tree values and fuse values
458 * @vreg: Pointer to the CPR3 regulator
459 *
460 * Return: 0 on success, errno on failure
461 */
462static int cpr3_msm8996_mmss_adjust_target_quotients(
463 struct cpr3_regulator *vreg)
464{
465 struct cpr3_msm8996_mmss_fuses *fuse = vreg->platform_fuses;
466 const struct cpr3_fuse_param (*offset_param)[2];
467 int *volt_offset;
468 int i, fuse_len, rc = 0;
469
470 volt_offset = kcalloc(vreg->fuse_corner_count, sizeof(*volt_offset),
471 GFP_KERNEL);
472 if (!volt_offset)
473 return -ENOMEM;
474
475 offset_param = cpr3_ctrl_is_msm8998(vreg->thread->ctrl)
476 ? msm8998_mmss_offset_voltage_param
477 : msm8996_mmss_offset_voltage_param;
478 for (i = 0; i < vreg->fuse_corner_count; i++) {
479 fuse_len = offset_param[i][0].bit_end + 1
480 - offset_param[i][0].bit_start;
481 volt_offset[i] = cpr3_convert_open_loop_voltage_fuse(
482 0, MSM8996_MMSS_OFFSET_FUSE_STEP_VOLT,
483 fuse->offset_voltage[i], fuse_len);
484 if (volt_offset[i])
485 cpr3_info(vreg, "fuse_corner[%d] offset=%7d uV\n",
486 i, volt_offset[i]);
487 }
488
489 rc = cpr3_adjust_target_quotients(vreg, volt_offset);
490 if (rc)
491 cpr3_err(vreg, "adjust target quotients failed, rc=%d\n", rc);
492
493 kfree(volt_offset);
494 return rc;
495}
496
497/**
498 * cpr3_msm8996_mmss_calculate_open_loop_voltages() - calculate the open-loop
499 * voltage for each corner of a CPR3 regulator
500 * @vreg: Pointer to the CPR3 regulator
501 *
502 * If open-loop voltage interpolation is allowed in both device tree and in
503 * hardware fuses, then this function calculates the open-loop voltage for a
504 * given corner using linear interpolation. This interpolation is performed
505 * using the processor frequencies of the lower and higher Fmax corners along
506 * with their fused open-loop voltages.
507 *
508 * If open-loop voltage interpolation is not allowed, then this function uses
509 * the Fmax fused open-loop voltage for all of the corners associated with a
510 * given fuse corner.
511 *
512 * Return: 0 on success, errno on failure
513 */
514static int cpr3_msm8996_mmss_calculate_open_loop_voltages(
515 struct cpr3_regulator *vreg)
516{
517 struct device_node *node = vreg->of_node;
518 struct cpr3_msm8996_mmss_fuses *fuse = vreg->platform_fuses;
519 bool is_msm8998 = cpr3_ctrl_is_msm8998(vreg->thread->ctrl);
520 int rc = 0;
521 bool allow_interpolation;
522 u64 freq_low, volt_low, freq_high, volt_high, volt_init;
523 int i, j;
524 const int *ref_volt;
525 int *fuse_volt;
526 int *fmax_corner;
527
528 fuse_volt = kcalloc(vreg->fuse_corner_count, sizeof(*fuse_volt),
529 GFP_KERNEL);
530 fmax_corner = kcalloc(vreg->fuse_corner_count, sizeof(*fmax_corner),
531 GFP_KERNEL);
532 if (!fuse_volt || !fmax_corner) {
533 rc = -ENOMEM;
534 goto done;
535 }
536
537 if (vreg->thread->ctrl->soc_revision == MSM8998_V2_SOC_ID
538 && fuse->cpr_fusing_rev == 0)
539 ref_volt = msm8998_v2_rev0_mmss_fuse_ref_volt;
540 else if (vreg->thread->ctrl->soc_revision == MSM8998_V2_SOC_ID)
541 ref_volt = msm8998_v2_mmss_fuse_ref_volt;
542 else if (vreg->thread->ctrl->soc_revision == MSM8998_V1_SOC_ID
543 && fuse->cpr_fusing_rev == 0)
544 ref_volt = msm8998_v1_rev0_mmss_fuse_ref_volt;
545 else if (vreg->thread->ctrl->soc_revision == MSM8998_V1_SOC_ID)
546 ref_volt = msm8998_v1_mmss_fuse_ref_volt;
547 else if (vreg->thread->ctrl->soc_revision == MSM8996PRO_SOC_ID)
548 ref_volt = msm8996pro_mmss_fuse_ref_volt;
549 else
550 ref_volt = msm8996_mmss_fuse_ref_volt;
551
552 for (i = 0; i < vreg->fuse_corner_count; i++) {
553 volt_init = fuse->init_voltage[i];
554 /*
555 * Handle partial binning on MSM8998 where the initial voltage
556 * fuse is reused as a flag for partial binning needs. Set the
557 * open-loop voltage to the minimum possible value so that it
558 * does not result in higher fuse corners getting forced to
559 * higher open-loop voltages after monotonicity enforcement.
560 */
561 if (is_msm8998 &&
562 (volt_init == MSM8998_CPR_PARTIAL_BINNING_NEXT_CORNER ||
563 volt_init == MSM8998_CPR_PARTIAL_BINNING_SAFE_CORNER) &&
564 i <= MSM8998_CPR_PARTIAL_BINNING_MAX_FUSE_CORNER)
565 volt_init = MSM8996_MMSS_MIN_VOLTAGE_FUSE_VAL;
566
567 fuse_volt[i] = cpr3_convert_open_loop_voltage_fuse(ref_volt[i],
568 MSM8996_MMSS_FUSE_STEP_VOLT, volt_init,
569 MSM8996_MMSS_VOLTAGE_FUSE_SIZE);
570 cpr3_info(vreg, "fuse_corner[%d] open-loop=%7d uV\n",
571 i, fuse_volt[i]);
572 }
573
574 rc = cpr3_adjust_fused_open_loop_voltages(vreg, fuse_volt);
575 if (rc) {
576 cpr3_err(vreg, "fused open-loop voltage adjustment failed, rc=%d\n",
577 rc);
578 goto done;
579 }
580
581 allow_interpolation = of_property_read_bool(node,
582 "qcom,allow-voltage-interpolation");
583
584 for (i = 1; i < vreg->fuse_corner_count; i++) {
585 if (fuse_volt[i] < fuse_volt[i - 1]) {
586 cpr3_debug(vreg, "fuse corner %d voltage=%d uV < fuse corner %d voltage=%d uV; overriding: fuse corner %d voltage=%d\n",
587 i, fuse_volt[i], i - 1, fuse_volt[i - 1],
588 i, fuse_volt[i - 1]);
589 fuse_volt[i] = fuse_volt[i - 1];
590 }
591 }
592
593 if (fuse->limitation == MSM8996_CPR_LIMITATION_NO_CPR_OR_INTERPOLATION)
594 allow_interpolation = false;
595
596 if (!allow_interpolation) {
597 /* Use fused open-loop voltage for lower frequencies. */
598 for (i = 0; i < vreg->corner_count; i++)
599 vreg->corner[i].open_loop_volt
600 = fuse_volt[vreg->corner[i].cpr_fuse_corner];
601 goto done;
602 }
603
604 /* Determine highest corner mapped to each fuse corner */
605 j = vreg->fuse_corner_count - 1;
606 for (i = vreg->corner_count - 1; i >= 0; i--) {
607 if (vreg->corner[i].cpr_fuse_corner == j) {
608 fmax_corner[j] = i;
609 j--;
610 }
611 }
612 if (j >= 0) {
613 cpr3_err(vreg, "invalid fuse corner mapping\n");
614 rc = -EINVAL;
615 goto done;
616 }
617
618 /*
619 * Interpolation is not possible for corners mapped to the lowest fuse
620 * corner so use the fuse corner value directly.
621 */
622 for (i = 0; i <= fmax_corner[0]; i++)
623 vreg->corner[i].open_loop_volt = fuse_volt[0];
624
625 /* Interpolate voltages for the higher fuse corners. */
626 for (i = 1; i < vreg->fuse_corner_count; i++) {
627 freq_low = vreg->corner[fmax_corner[i - 1]].proc_freq;
628 volt_low = fuse_volt[i - 1];
629 freq_high = vreg->corner[fmax_corner[i]].proc_freq;
630 volt_high = fuse_volt[i];
631
632 for (j = fmax_corner[i - 1] + 1; j <= fmax_corner[i]; j++)
633 vreg->corner[j].open_loop_volt = cpr3_interpolate(
634 freq_low, volt_low, freq_high, volt_high,
635 vreg->corner[j].proc_freq);
636 }
637
638done:
639 if (rc == 0) {
640 cpr3_debug(vreg, "unadjusted per-corner open-loop voltages:\n");
641 for (i = 0; i < vreg->corner_count; i++)
642 cpr3_debug(vreg, "open-loop[%2d] = %d uV\n", i,
643 vreg->corner[i].open_loop_volt);
644
645 rc = cpr3_adjust_open_loop_voltages(vreg);
646 if (rc)
647 cpr3_err(vreg, "open-loop voltage adjustment failed, rc=%d\n",
648 rc);
649 }
650
651 kfree(fuse_volt);
652 kfree(fmax_corner);
653 return rc;
654}
655
656/**
657 * cpr3_msm8998_partial_binning_override() - override the voltage and quotient
658 * settings for low corners based upon the special partial binning
659 * open-loop voltage fuse values
660 * @vreg: Pointer to the CPR3 regulator
661 *
662 * Some parts are not able to operate at low voltages. The partial binning
663 * open-loop voltage fuse values specify if a given part has such limitations.
664 *
665 * Return: 0 on success, errno on failure
666 */
667static int cpr3_msm8998_partial_binning_override(struct cpr3_regulator *vreg)
668{
669 struct cpr3_msm8996_mmss_fuses *fuse = vreg->platform_fuses;
670 u64 next = MSM8998_CPR_PARTIAL_BINNING_NEXT_CORNER;
671 u64 safe = MSM8998_CPR_PARTIAL_BINNING_SAFE_CORNER;
672 u32 proc_freq;
673 struct cpr3_corner *corner;
674 struct cpr3_corner *safe_corner;
675 int i, j, low, high, safe_fuse_corner, max_fuse_corner;
676
677 if (!cpr3_ctrl_is_msm8998(vreg->thread->ctrl))
678 return 0;
679
680 /* Handle the force highest corner fuse. */
681 if (fuse->force_highest_corner) {
682 cpr3_info(vreg, "overriding CPR parameters for corners 0 to %d with quotients and voltages of corner %d\n",
683 vreg->corner_count - 2, vreg->corner_count - 1);
684 corner = &vreg->corner[vreg->corner_count - 1];
685 for (i = 0; i < vreg->corner_count - 1; i++) {
686 proc_freq = vreg->corner[i].proc_freq;
687 vreg->corner[i] = *corner;
688 vreg->corner[i].proc_freq = proc_freq;
689 }
690
691 /*
692 * Return since the potential partial binning fuse values are
693 * superceded by the force highest corner fuse value.
694 */
695 return 0;
696 }
697
698 /*
699 * Allow up to the max corner which can be fused with partial
700 * binning values.
701 */
702 max_fuse_corner = min(MSM8998_CPR_PARTIAL_BINNING_MAX_FUSE_CORNER,
703 vreg->fuse_corner_count - 2);
704
705 for (i = 0; i <= max_fuse_corner; i++) {
706 /* Determine which higher corners to override with (if any). */
707 if (fuse->init_voltage[i] != next
708 && fuse->init_voltage[i] != safe)
709 continue;
710
711 for (j = i + 1; j <= max_fuse_corner; j++)
712 if (fuse->init_voltage[j] != next
713 && fuse->init_voltage[j] != safe)
714 break;
715 safe_fuse_corner = j;
716
717 j = fuse->init_voltage[i] == next ? i + 1 : safe_fuse_corner;
718
719 low = i > 0 ? vreg->fuse_corner_map[i] : 0;
720 high = vreg->fuse_corner_map[i + 1] - 1;
721
722 cpr3_info(vreg, "overriding CPR parameters for corners %d to %d with quotients of corner %d and voltages of corner %d\n",
723 low, high, vreg->fuse_corner_map[j],
724 vreg->fuse_corner_map[safe_fuse_corner]);
725
726 corner = &vreg->corner[vreg->fuse_corner_map[j]];
727 safe_corner
728 = &vreg->corner[vreg->fuse_corner_map[safe_fuse_corner]];
729
730 for (j = low; j <= high; j++) {
731 proc_freq = vreg->corner[j].proc_freq;
732 vreg->corner[j] = *corner;
733 vreg->corner[j].proc_freq = proc_freq;
734
735 vreg->corner[j].floor_volt
736 = safe_corner->floor_volt;
737 vreg->corner[j].ceiling_volt
738 = safe_corner->ceiling_volt;
739 vreg->corner[j].open_loop_volt
740 = safe_corner->open_loop_volt;
741 vreg->corner[j].abs_ceiling_volt
742 = safe_corner->abs_ceiling_volt;
743 }
744 }
745
746 return 0;
747}
748
749/**
750 * cpr3_mmss_print_settings() - print out MMSS CPR configuration settings into
751 * the kernel log for debugging purposes
752 * @vreg: Pointer to the CPR3 regulator
753 */
754static void cpr3_mmss_print_settings(struct cpr3_regulator *vreg)
755{
756 struct cpr3_corner *corner;
757 int i;
758
759 cpr3_debug(vreg, "Corner: Frequency (Hz), Fuse Corner, Floor (uV), Open-Loop (uV), Ceiling (uV)\n");
760 for (i = 0; i < vreg->corner_count; i++) {
761 corner = &vreg->corner[i];
762 cpr3_debug(vreg, "%3d: %10u, %2d, %7d, %7d, %7d\n",
763 i, corner->proc_freq, corner->cpr_fuse_corner,
764 corner->floor_volt, corner->open_loop_volt,
765 corner->ceiling_volt);
766 }
767}
768
769/**
770 * cpr3_mmss_init_aging() - perform MMSS CPR3 controller specific
771 * aging initializations
772 * @ctrl: Pointer to the CPR3 controller
773 *
774 * Return: 0 on success, errno on failure
775 */
776static int cpr3_mmss_init_aging(struct cpr3_controller *ctrl)
777{
778 struct cpr3_msm8996_mmss_fuses *fuse;
779 struct cpr3_regulator *vreg;
780 u32 aging_ro_scale;
781 int rc;
782
783 vreg = &ctrl->thread[0].vreg[0];
784
785 ctrl->aging_required = vreg->aging_allowed;
786 fuse = vreg->platform_fuses;
787
788 if (!ctrl->aging_required || !fuse)
789 return 0;
790
791 rc = cpr3_parse_array_property(vreg, "qcom,cpr-aging-ro-scaling-factor",
792 1, &aging_ro_scale);
793 if (rc)
794 return rc;
795
796 if (aging_ro_scale == 0) {
797 cpr3_err(ctrl, "aging RO scaling factor is invalid: %u\n",
798 aging_ro_scale);
799 return -EINVAL;
800 }
801
802 ctrl->aging_vdd_mode = REGULATOR_MODE_NORMAL;
803 ctrl->aging_complete_vdd_mode = REGULATOR_MODE_IDLE;
804
805 ctrl->aging_sensor_count = 1;
806 ctrl->aging_sensor = kzalloc(sizeof(*ctrl->aging_sensor), GFP_KERNEL);
807 if (!ctrl->aging_sensor)
808 return -ENOMEM;
809
810 ctrl->aging_sensor->ro_scale = aging_ro_scale;
811
812 if (cpr3_ctrl_is_msm8998(ctrl)) {
813 ctrl->aging_sensor->sensor_id = MSM8998_MMSS_AGING_SENSOR_ID;
814 ctrl->aging_sensor->bypass_mask[0]
815 = MSM8998_MMSS_AGING_BYPASS_MASK0;
816 ctrl->aging_sensor->init_quot_diff
817 = cpr3_convert_open_loop_voltage_fuse(0,
818 MSM8998_MMSS_AGING_INIT_QUOT_DIFF_SCALE,
819 fuse->aging_init_quot_diff,
820 MSM8998_MMSS_AGING_INIT_QUOT_DIFF_SIZE);
821 } else {
822 ctrl->aging_sensor->sensor_id = MSM8996_MMSS_AGING_SENSOR_ID;
823 ctrl->aging_sensor->bypass_mask[0]
824 = MSM8996_MMSS_AGING_BYPASS_MASK0;
825 ctrl->aging_sensor->init_quot_diff
826 = cpr3_convert_open_loop_voltage_fuse(0,
827 MSM8996_MMSS_AGING_INIT_QUOT_DIFF_SCALE,
828 fuse->aging_init_quot_diff,
829 MSM8996_MMSS_AGING_INIT_QUOT_DIFF_SIZE);
830 }
831
832 cpr3_debug(ctrl, "sensor %u aging init quotient diff = %d, aging RO scale = %u QUOT/V\n",
833 ctrl->aging_sensor->sensor_id,
834 ctrl->aging_sensor->init_quot_diff,
835 ctrl->aging_sensor->ro_scale);
836
837 return 0;
838}
839
840/**
841 * cpr3_mmss_init_thread() - perform all steps necessary to initialize the
842 * configuration data for a CPR3 thread
843 * @thread: Pointer to the CPR3 thread
844 *
845 * Return: 0 on success, errno on failure
846 */
847static int cpr3_mmss_init_thread(struct cpr3_thread *thread)
848{
849 struct cpr3_regulator *vreg = &thread->vreg[0];
850 struct cpr3_msm8996_mmss_fuses *fuse;
851 int rc;
852
853 rc = cpr3_parse_common_thread_data(thread);
854 if (rc) {
855 cpr3_err(vreg, "unable to read CPR thread data from device tree, rc=%d\n",
856 rc);
857 return rc;
858 }
859
860 rc = cpr3_msm8996_mmss_read_fuse_data(vreg);
861 if (rc) {
862 cpr3_err(vreg, "unable to read CPR fuse data, rc=%d\n", rc);
863 return rc;
864 }
865
866 fuse = vreg->platform_fuses;
867 if (fuse->limitation == MSM8996_CPR_LIMITATION_UNSUPPORTED) {
868 cpr3_err(vreg, "this chip requires an unsupported voltage\n");
869 return -EPERM;
870 } else if (fuse->limitation
871 == MSM8996_CPR_LIMITATION_NO_CPR_OR_INTERPOLATION) {
872 thread->ctrl->cpr_allowed_hw = false;
873 }
874
875 rc = cpr3_mmss_parse_corner_data(vreg);
876 if (rc) {
877 cpr3_err(vreg, "unable to read CPR corner data from device tree, rc=%d\n",
878 rc);
879 return rc;
880 }
881
882 rc = cpr3_msm8996_mmss_adjust_target_quotients(vreg);
883 if (rc) {
884 cpr3_err(vreg, "unable to adjust target quotients, rc=%d\n",
885 rc);
886 return rc;
887 }
888
889 rc = cpr3_msm8996_mmss_calculate_open_loop_voltages(vreg);
890 if (rc) {
891 cpr3_err(vreg, "unable to calculate open-loop voltages, rc=%d\n",
892 rc);
893 return rc;
894 }
895
896 rc = cpr3_limit_open_loop_voltages(vreg);
897 if (rc) {
898 cpr3_err(vreg, "unable to limit open-loop voltages, rc=%d\n",
899 rc);
900 return rc;
901 }
902
903 cpr3_open_loop_voltage_as_ceiling(vreg);
904
905 rc = cpr3_limit_floor_voltages(vreg);
906 if (rc) {
907 cpr3_err(vreg, "unable to limit floor voltages, rc=%d\n", rc);
908 return rc;
909 }
910
911 if (cpr3_ctrl_is_msm8998(thread->ctrl)) {
912 rc = cpr4_parse_core_count_temp_voltage_adj(vreg, false);
913 if (rc) {
914 cpr3_err(vreg, "unable to parse temperature based voltage adjustments, rc=%d\n",
915 rc);
916 return rc;
917 }
918 }
919
920 rc = cpr3_msm8998_partial_binning_override(vreg);
921 if (rc) {
922 cpr3_err(vreg, "unable to override CPR parameters based on partial binning fuse values, rc=%d\n",
923 rc);
924 return rc;
925 }
926
927 cpr3_mmss_print_settings(vreg);
928
929 return 0;
930}
931
932/**
933 * cpr4_mmss_parse_temp_adj_properties() - parse temperature based
934 * adjustment properties from device tree
935 * @ctrl: Pointer to the CPR3 controller
936 *
937 * Return: 0 on success, errno on failure
938 */
939static int cpr4_mmss_parse_temp_adj_properties(struct cpr3_controller *ctrl)
940{
941 struct device_node *of_node = ctrl->dev->of_node;
942 int rc, len, temp_point_count;
943
944 if (!of_find_property(of_node, "qcom,cpr-temp-point-map", &len))
945 return 0;
946
947 temp_point_count = len / sizeof(u32);
948 if (temp_point_count <= 0
949 || temp_point_count > MSM8998_MMSS_MAX_TEMP_POINTS) {
950 cpr3_err(ctrl, "invalid number of temperature points %d > %d (max)\n",
951 temp_point_count, MSM8998_MMSS_MAX_TEMP_POINTS);
952 return -EINVAL;
953 }
954
955 ctrl->temp_points = devm_kcalloc(ctrl->dev, temp_point_count,
956 sizeof(*ctrl->temp_points), GFP_KERNEL);
957 if (!ctrl->temp_points)
958 return -ENOMEM;
959
960 rc = of_property_read_u32_array(of_node, "qcom,cpr-temp-point-map",
961 ctrl->temp_points, temp_point_count);
962 if (rc) {
963 cpr3_err(ctrl, "error reading property qcom,cpr-temp-point-map, rc=%d\n",
964 rc);
965 return rc;
966 }
967
968 /*
969 * If t1, t2, and t3 are the temperature points, then the temperature
970 * bands are: (-inf, t1], (t1, t2], (t2, t3], and (t3, inf).
971 */
972 ctrl->temp_band_count = temp_point_count + 1;
973
974 rc = of_property_read_u32(of_node, "qcom,cpr-initial-temp-band",
975 &ctrl->initial_temp_band);
976 if (rc) {
977 cpr3_err(ctrl, "error reading qcom,cpr-initial-temp-band, rc=%d\n",
978 rc);
979 return rc;
980 }
981
982 if (ctrl->initial_temp_band >= ctrl->temp_band_count) {
983 cpr3_err(ctrl, "Initial temperature band value %d should be in range [0 - %d]\n",
984 ctrl->initial_temp_band, ctrl->temp_band_count - 1);
985 return -EINVAL;
986 }
987
988 ctrl->temp_sensor_id_start = MSM8998_MMSS_TEMP_SENSOR_ID_START;
989 ctrl->temp_sensor_id_end = MSM8998_MMSS_TEMP_SENSOR_ID_END;
990 ctrl->allow_temp_adj = true;
991
992 return rc;
993}
994
995/**
996 * cpr3_mmss_init_controller() - perform MMSS CPR3 controller specific
997 * initializations
998 * @ctrl: Pointer to the CPR3 controller
999 *
1000 * Return: 0 on success, errno on failure
1001 */
1002static int cpr3_mmss_init_controller(struct cpr3_controller *ctrl)
1003{
1004 int rc;
1005
1006 rc = cpr3_parse_common_ctrl_data(ctrl);
1007 if (rc) {
1008 if (rc != -EPROBE_DEFER)
1009 cpr3_err(ctrl, "unable to parse common controller data, rc=%d\n",
1010 rc);
1011 return rc;
1012 }
1013
1014 if (cpr3_ctrl_is_msm8998(ctrl)) {
1015 rc = cpr4_mmss_parse_temp_adj_properties(ctrl);
1016 if (rc)
1017 return rc;
1018 }
1019
1020 ctrl->sensor_count = cpr3_ctrl_is_msm8998(ctrl)
1021 ? MSM8998_MMSS_CPR_SENSOR_COUNT
1022 : MSM8996_MMSS_CPR_SENSOR_COUNT;
1023
1024 /*
1025 * MMSS only has one thread (0) so the zeroed array does not need
1026 * further modification.
1027 */
1028 ctrl->sensor_owner = devm_kcalloc(ctrl->dev, ctrl->sensor_count,
1029 sizeof(*ctrl->sensor_owner), GFP_KERNEL);
1030 if (!ctrl->sensor_owner)
1031 return -ENOMEM;
1032
1033 ctrl->cpr_clock_rate = MSM8996_MMSS_CPR_CLOCK_RATE;
1034 ctrl->ctrl_type = cpr3_ctrl_is_msm8998(ctrl)
1035 ? CPR_CTRL_TYPE_CPR4 : CPR_CTRL_TYPE_CPR3;
1036
1037 if (ctrl->ctrl_type == CPR_CTRL_TYPE_CPR4) {
1038 /*
1039 * Use fixed step quotient if specified otherwise use dynamic
1040 * calculated per RO step quotient
1041 */
1042 of_property_read_u32(ctrl->dev->of_node,
1043 "qcom,cpr-step-quot-fixed",
1044 &ctrl->step_quot_fixed);
1045 ctrl->use_dynamic_step_quot = !ctrl->step_quot_fixed;
1046 }
1047
1048 ctrl->iface_clk = devm_clk_get(ctrl->dev, "iface_clk");
1049 if (IS_ERR(ctrl->iface_clk)) {
1050 rc = PTR_ERR(ctrl->iface_clk);
1051 if (cpr3_ctrl_is_msm8998(ctrl)) {
1052 /* iface_clk is optional for msm8998 */
1053 ctrl->iface_clk = NULL;
1054 } else if (rc == -EPROBE_DEFER) {
1055 return rc;
1056 } else {
1057 cpr3_err(ctrl, "unable to request interface clock, rc=%d\n",
1058 rc);
1059 return rc;
1060 }
1061 }
1062
1063 ctrl->bus_clk = devm_clk_get(ctrl->dev, "bus_clk");
1064 if (IS_ERR(ctrl->bus_clk)) {
1065 rc = PTR_ERR(ctrl->bus_clk);
1066 if (rc != -EPROBE_DEFER)
1067 cpr3_err(ctrl, "unable request bus clock, rc=%d\n",
1068 rc);
1069 return rc;
1070 }
1071
1072 return 0;
1073}
1074
1075static int cpr3_mmss_regulator_suspend(struct platform_device *pdev,
1076 pm_message_t state)
1077{
1078 struct cpr3_controller *ctrl = platform_get_drvdata(pdev);
1079
1080 return cpr3_regulator_suspend(ctrl);
1081}
1082
1083static int cpr3_mmss_regulator_resume(struct platform_device *pdev)
1084{
1085 struct cpr3_controller *ctrl = platform_get_drvdata(pdev);
1086
1087 return cpr3_regulator_resume(ctrl);
1088}
1089
1090/* Data corresponds to the SoC revision */
1091static const struct of_device_id cpr_regulator_match_table[] = {
1092 {
1093 .compatible = "qcom,cpr3-msm8996-v1-mmss-regulator",
1094 .data = (void *)(uintptr_t)1,
1095 },
1096 {
1097 .compatible = "qcom,cpr3-msm8996-v2-mmss-regulator",
1098 .data = (void *)(uintptr_t)2,
1099 },
1100 {
1101 .compatible = "qcom,cpr3-msm8996-v3-mmss-regulator",
1102 .data = (void *)(uintptr_t)3,
1103 },
1104 {
1105 .compatible = "qcom,cpr3-msm8996-mmss-regulator",
1106 .data = (void *)(uintptr_t)3,
1107 },
1108 {
1109 .compatible = "qcom,cpr3-msm8996pro-mmss-regulator",
1110 .data = (void *)(uintptr_t)MSM8996PRO_SOC_ID,
1111 },
1112 {
1113 .compatible = "qcom,cpr4-msm8998-v1-mmss-regulator",
1114 .data = (void *)(uintptr_t)MSM8998_V1_SOC_ID,
1115 },
1116 {
1117 .compatible = "qcom,cpr4-msm8998-v2-mmss-regulator",
1118 .data = (void *)(uintptr_t)MSM8998_V2_SOC_ID,
1119 },
1120 {
1121 .compatible = "qcom,cpr4-msm8998-mmss-regulator",
1122 .data = (void *)(uintptr_t)MSM8998_V2_SOC_ID,
1123 },
1124 {}
1125};
1126
1127static int cpr3_mmss_regulator_probe(struct platform_device *pdev)
1128{
1129 struct device *dev = &pdev->dev;
1130 const struct of_device_id *match;
1131 struct cpr3_controller *ctrl;
1132 int rc;
1133
1134 if (!dev->of_node) {
1135 dev_err(dev, "Device tree node is missing\n");
1136 return -EINVAL;
1137 }
1138
1139 ctrl = devm_kzalloc(dev, sizeof(*ctrl), GFP_KERNEL);
1140 if (!ctrl)
1141 return -ENOMEM;
1142
1143 ctrl->dev = dev;
1144 /* Set to false later if anything precludes CPR operation. */
1145 ctrl->cpr_allowed_hw = true;
1146
1147 rc = of_property_read_string(dev->of_node, "qcom,cpr-ctrl-name",
1148 &ctrl->name);
1149 if (rc) {
1150 cpr3_err(ctrl, "unable to read qcom,cpr-ctrl-name, rc=%d\n",
1151 rc);
1152 return rc;
1153 }
1154
1155 match = of_match_node(cpr_regulator_match_table, dev->of_node);
1156 if (match)
1157 ctrl->soc_revision = (uintptr_t)match->data;
1158 else
1159 cpr3_err(ctrl, "could not find compatible string match\n");
1160
1161 rc = cpr3_map_fuse_base(ctrl, pdev);
1162 if (rc) {
1163 cpr3_err(ctrl, "could not map fuse base address\n");
1164 return rc;
1165 }
1166
1167 rc = cpr3_allocate_threads(ctrl, 0, 0);
1168 if (rc) {
1169 cpr3_err(ctrl, "failed to allocate CPR thread array, rc=%d\n",
1170 rc);
1171 return rc;
1172 }
1173
1174 if (ctrl->thread_count != 1) {
1175 cpr3_err(ctrl, "expected 1 thread but found %d\n",
1176 ctrl->thread_count);
1177 return -EINVAL;
1178 } else if (ctrl->thread[0].vreg_count != 1) {
1179 cpr3_err(ctrl, "expected 1 regulator but found %d\n",
1180 ctrl->thread[0].vreg_count);
1181 return -EINVAL;
1182 }
1183
1184 rc = cpr3_mmss_init_controller(ctrl);
1185 if (rc) {
1186 if (rc != -EPROBE_DEFER)
1187 cpr3_err(ctrl, "failed to initialize CPR controller parameters, rc=%d\n",
1188 rc);
1189 return rc;
1190 }
1191
1192 rc = cpr3_mmss_init_thread(&ctrl->thread[0]);
1193 if (rc) {
1194 cpr3_err(&ctrl->thread[0].vreg[0], "thread initialization failed, rc=%d\n",
1195 rc);
1196 return rc;
1197 }
1198
1199 rc = cpr3_mem_acc_init(&ctrl->thread[0].vreg[0]);
1200 if (rc) {
1201 cpr3_err(ctrl, "failed to initialize mem-acc configuration, rc=%d\n",
1202 rc);
1203 return rc;
1204 }
1205
1206 rc = cpr3_mmss_init_aging(ctrl);
1207 if (rc) {
1208 cpr3_err(ctrl, "failed to initialize aging configurations, rc=%d\n",
1209 rc);
1210 return rc;
1211 }
1212
1213 platform_set_drvdata(pdev, ctrl);
1214
1215 return cpr3_regulator_register(pdev, ctrl);
1216}
1217
1218static int cpr3_mmss_regulator_remove(struct platform_device *pdev)
1219{
1220 struct cpr3_controller *ctrl = platform_get_drvdata(pdev);
1221
1222 return cpr3_regulator_unregister(ctrl);
1223}
1224
1225static struct platform_driver cpr3_mmss_regulator_driver = {
1226 .driver = {
1227 .name = "qcom,cpr3-mmss-regulator",
1228 .of_match_table = cpr_regulator_match_table,
1229 .owner = THIS_MODULE,
1230 },
1231 .probe = cpr3_mmss_regulator_probe,
1232 .remove = cpr3_mmss_regulator_remove,
1233 .suspend = cpr3_mmss_regulator_suspend,
1234 .resume = cpr3_mmss_regulator_resume,
1235};
1236
1237static int cpr_regulator_init(void)
1238{
1239 return platform_driver_register(&cpr3_mmss_regulator_driver);
1240}
1241
1242static void cpr_regulator_exit(void)
1243{
1244 platform_driver_unregister(&cpr3_mmss_regulator_driver);
1245}
1246
1247MODULE_DESCRIPTION("CPR3 MMSS regulator driver");
1248MODULE_LICENSE("GPL v2");
1249
1250arch_initcall(cpr_regulator_init);
1251module_exit(cpr_regulator_exit);