blob: 0a4c2d4d9f8d5bfea50a61fc2b3bd5280503d1fb [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001#ifndef _ASM_GENERIC_PGTABLE_H
2#define _ASM_GENERIC_PGTABLE_H
3
Dan Williamsf25748e32016-01-15 16:56:43 -08004#include <linux/pfn.h>
5
Rusty Russell673eae82006-09-25 23:32:29 -07006#ifndef __ASSEMBLY__
Greg Ungerer95352392007-08-10 13:01:20 -07007#ifdef CONFIG_MMU
Rusty Russell673eae82006-09-25 23:32:29 -07008
Ben Hutchingsfbd71842011-02-27 05:41:35 +00009#include <linux/mm_types.h>
Paul Gortmaker187f1882011-11-23 20:12:59 -050010#include <linux/bug.h>
Toshi Kanie61ce6a2015-04-14 15:47:23 -070011#include <linux/errno.h>
Ben Hutchingsfbd71842011-02-27 05:41:35 +000012
Kirill A. Shutemov235a8f02015-04-14 15:46:17 -070013#if 4 - defined(__PAGETABLE_PUD_FOLDED) - defined(__PAGETABLE_PMD_FOLDED) != \
14 CONFIG_PGTABLE_LEVELS
15#error CONFIG_PGTABLE_LEVELS is not consistent with __PAGETABLE_{PUD,PMD}_FOLDED
16#endif
17
Hugh Dickins6ee86302013-04-29 15:07:44 -070018/*
19 * On almost all architectures and configurations, 0 can be used as the
20 * upper ceiling to free_pgtables(): on many architectures it has the same
21 * effect as using TASK_SIZE. However, there is one configuration which
22 * must impose a more careful limit, to avoid freeing kernel pgtables.
23 */
24#ifndef USER_PGTABLES_CEILING
25#define USER_PGTABLES_CEILING 0UL
26#endif
27
Linus Torvalds1da177e2005-04-16 15:20:36 -070028#ifndef __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
Andrea Arcangelie2cda322011-01-13 15:46:40 -080029extern int ptep_set_access_flags(struct vm_area_struct *vma,
30 unsigned long address, pte_t *ptep,
31 pte_t entry, int dirty);
32#endif
33
34#ifndef __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
Vineet Guptabd5e88a2015-07-09 17:22:44 +053035#ifdef CONFIG_TRANSPARENT_HUGEPAGE
Andrea Arcangelie2cda322011-01-13 15:46:40 -080036extern int pmdp_set_access_flags(struct vm_area_struct *vma,
37 unsigned long address, pmd_t *pmdp,
38 pmd_t entry, int dirty);
Vineet Guptabd5e88a2015-07-09 17:22:44 +053039#else
40static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
41 unsigned long address, pmd_t *pmdp,
42 pmd_t entry, int dirty)
43{
44 BUILD_BUG();
45 return 0;
46}
47#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
Linus Torvalds1da177e2005-04-16 15:20:36 -070048#endif
49
50#ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
Andrea Arcangelie2cda322011-01-13 15:46:40 -080051static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
52 unsigned long address,
53 pte_t *ptep)
54{
55 pte_t pte = *ptep;
56 int r = 1;
57 if (!pte_young(pte))
58 r = 0;
59 else
60 set_pte_at(vma->vm_mm, address, ptep, pte_mkold(pte));
61 return r;
62}
63#endif
64
65#ifndef __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
66#ifdef CONFIG_TRANSPARENT_HUGEPAGE
67static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
68 unsigned long address,
69 pmd_t *pmdp)
70{
71 pmd_t pmd = *pmdp;
72 int r = 1;
73 if (!pmd_young(pmd))
74 r = 0;
75 else
76 set_pmd_at(vma->vm_mm, address, pmdp, pmd_mkold(pmd));
77 return r;
78}
Vineet Guptabd5e88a2015-07-09 17:22:44 +053079#else
Andrea Arcangelie2cda322011-01-13 15:46:40 -080080static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
81 unsigned long address,
82 pmd_t *pmdp)
83{
Vineet Guptabd5e88a2015-07-09 17:22:44 +053084 BUILD_BUG();
Andrea Arcangelie2cda322011-01-13 15:46:40 -080085 return 0;
86}
87#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
Linus Torvalds1da177e2005-04-16 15:20:36 -070088#endif
89
90#ifndef __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
Andrea Arcangelie2cda322011-01-13 15:46:40 -080091int ptep_clear_flush_young(struct vm_area_struct *vma,
92 unsigned long address, pte_t *ptep);
93#endif
94
95#ifndef __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
Vineet Guptabd5e88a2015-07-09 17:22:44 +053096#ifdef CONFIG_TRANSPARENT_HUGEPAGE
97extern int pmdp_clear_flush_young(struct vm_area_struct *vma,
98 unsigned long address, pmd_t *pmdp);
99#else
100/*
101 * Despite relevant to THP only, this API is called from generic rmap code
102 * under PageTransHuge(), hence needs a dummy implementation for !THP
103 */
104static inline int pmdp_clear_flush_young(struct vm_area_struct *vma,
105 unsigned long address, pmd_t *pmdp)
106{
107 BUILD_BUG();
108 return 0;
109}
110#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700111#endif
112
Linus Torvalds1da177e2005-04-16 15:20:36 -0700113#ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR
Andrea Arcangelie2cda322011-01-13 15:46:40 -0800114static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
115 unsigned long address,
116 pte_t *ptep)
117{
118 pte_t pte = *ptep;
119 pte_clear(mm, address, ptep);
120 return pte;
121}
122#endif
123
Aneesh Kumar K.V8809aa22015-06-24 16:57:44 -0700124#ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
Andrea Arcangelie2cda322011-01-13 15:46:40 -0800125#ifdef CONFIG_TRANSPARENT_HUGEPAGE
Aneesh Kumar K.V8809aa22015-06-24 16:57:44 -0700126static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
127 unsigned long address,
128 pmd_t *pmdp)
Andrea Arcangelie2cda322011-01-13 15:46:40 -0800129{
130 pmd_t pmd = *pmdp;
Catalin Marinas2d28a222012-10-08 16:32:59 -0700131 pmd_clear(pmdp);
Andrea Arcangelie2cda322011-01-13 15:46:40 -0800132 return pmd;
Nicolas Kaiser49b24d62011-06-15 15:08:34 -0700133}
Andrea Arcangelie2cda322011-01-13 15:46:40 -0800134#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700135#endif
136
Aneesh Kumar K.V8809aa22015-06-24 16:57:44 -0700137#ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL
Martin Schwidefskyfcbe08d62014-10-24 10:52:29 +0200138#ifdef CONFIG_TRANSPARENT_HUGEPAGE
Aneesh Kumar K.V8809aa22015-06-24 16:57:44 -0700139static inline pmd_t pmdp_huge_get_and_clear_full(struct mm_struct *mm,
Martin Schwidefskyfcbe08d62014-10-24 10:52:29 +0200140 unsigned long address, pmd_t *pmdp,
141 int full)
142{
Aneesh Kumar K.V8809aa22015-06-24 16:57:44 -0700143 return pmdp_huge_get_and_clear(mm, address, pmdp);
Martin Schwidefskyfcbe08d62014-10-24 10:52:29 +0200144}
145#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
146#endif
147
Zachary Amsdena6003882005-09-03 15:55:04 -0700148#ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
Andrea Arcangelie2cda322011-01-13 15:46:40 -0800149static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
150 unsigned long address, pte_t *ptep,
151 int full)
152{
153 pte_t pte;
154 pte = ptep_get_and_clear(mm, address, ptep);
155 return pte;
156}
Zachary Amsdena6003882005-09-03 15:55:04 -0700157#endif
158
Zachary Amsden9888a1c2006-09-30 23:29:31 -0700159/*
160 * Some architectures may be able to avoid expensive synchronization
161 * primitives when modifications are made to PTE's which are already
162 * not present, or in the process of an address space destruction.
163 */
164#ifndef __HAVE_ARCH_PTE_CLEAR_NOT_PRESENT_FULL
Andrea Arcangelie2cda322011-01-13 15:46:40 -0800165static inline void pte_clear_not_present_full(struct mm_struct *mm,
166 unsigned long address,
167 pte_t *ptep,
168 int full)
169{
170 pte_clear(mm, address, ptep);
171}
Zachary Amsdena6003882005-09-03 15:55:04 -0700172#endif
173
Linus Torvalds1da177e2005-04-16 15:20:36 -0700174#ifndef __HAVE_ARCH_PTEP_CLEAR_FLUSH
Andrea Arcangelie2cda322011-01-13 15:46:40 -0800175extern pte_t ptep_clear_flush(struct vm_area_struct *vma,
176 unsigned long address,
177 pte_t *ptep);
178#endif
179
Aneesh Kumar K.V8809aa22015-06-24 16:57:44 -0700180#ifndef __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH
181extern pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma,
Andrea Arcangelie2cda322011-01-13 15:46:40 -0800182 unsigned long address,
183 pmd_t *pmdp);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700184#endif
185
186#ifndef __HAVE_ARCH_PTEP_SET_WRPROTECT
Tim Schmielau8c65b4a2005-11-07 00:59:43 -0800187struct mm_struct;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700188static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long address, pte_t *ptep)
189{
190 pte_t old_pte = *ptep;
191 set_pte_at(mm, address, ptep, pte_wrprotect(old_pte));
192}
193#endif
194
Andrea Arcangelie2cda322011-01-13 15:46:40 -0800195#ifndef __HAVE_ARCH_PMDP_SET_WRPROTECT
196#ifdef CONFIG_TRANSPARENT_HUGEPAGE
197static inline void pmdp_set_wrprotect(struct mm_struct *mm,
198 unsigned long address, pmd_t *pmdp)
199{
200 pmd_t old_pmd = *pmdp;
201 set_pmd_at(mm, address, pmdp, pmd_wrprotect(old_pmd));
202}
Vineet Guptabd5e88a2015-07-09 17:22:44 +0530203#else
Andrea Arcangelie2cda322011-01-13 15:46:40 -0800204static inline void pmdp_set_wrprotect(struct mm_struct *mm,
205 unsigned long address, pmd_t *pmdp)
206{
Vineet Guptabd5e88a2015-07-09 17:22:44 +0530207 BUILD_BUG();
Andrea Arcangelie2cda322011-01-13 15:46:40 -0800208}
209#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
210#endif
211
Aneesh Kumar K.V15a25b22015-06-24 16:57:39 -0700212#ifndef pmdp_collapse_flush
213#ifdef CONFIG_TRANSPARENT_HUGEPAGE
Aneesh Kumar K.Vf28b6ff2015-06-24 16:57:42 -0700214extern pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
215 unsigned long address, pmd_t *pmdp);
Aneesh Kumar K.V15a25b22015-06-24 16:57:39 -0700216#else
217static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
218 unsigned long address,
219 pmd_t *pmdp)
220{
221 BUILD_BUG();
222 return *pmdp;
223}
224#define pmdp_collapse_flush pmdp_collapse_flush
225#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
226#endif
227
Gerald Schaefere3ebcf62012-10-08 16:30:07 -0700228#ifndef __HAVE_ARCH_PGTABLE_DEPOSIT
Aneesh Kumar K.V6b0b50b2013-06-05 17:14:02 -0700229extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
230 pgtable_t pgtable);
Gerald Schaefere3ebcf62012-10-08 16:30:07 -0700231#endif
232
233#ifndef __HAVE_ARCH_PGTABLE_WITHDRAW
Aneesh Kumar K.V6b0b50b2013-06-05 17:14:02 -0700234extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
Gerald Schaefere3ebcf62012-10-08 16:30:07 -0700235#endif
236
Kirill A. Shutemov038ab512018-01-31 16:17:43 -0800237#ifdef CONFIG_TRANSPARENT_HUGEPAGE
238/*
239 * This is an implementation of pmdp_establish() that is only suitable for an
240 * architecture that doesn't have hardware dirty/accessed bits. In this case we
241 * can't race with CPU which sets these bits and non-atomic aproach is fine.
242 */
243static inline pmd_t generic_pmdp_establish(struct vm_area_struct *vma,
244 unsigned long address, pmd_t *pmdp, pmd_t pmd)
245{
246 pmd_t old_pmd = *pmdp;
247 set_pmd_at(vma->vm_mm, address, pmdp, pmd);
248 return old_pmd;
249}
250#endif
251
Gerald Schaefer46dcde72012-10-08 16:30:09 -0700252#ifndef __HAVE_ARCH_PMDP_INVALIDATE
253extern void pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
254 pmd_t *pmdp);
255#endif
256
Aneesh Kumar K.Vc777e2a2016-02-09 06:50:31 +0530257#ifndef __HAVE_ARCH_PMDP_HUGE_SPLIT_PREPARE
258static inline void pmdp_huge_split_prepare(struct vm_area_struct *vma,
259 unsigned long address, pmd_t *pmdp)
260{
261
262}
263#endif
264
Linus Torvalds1da177e2005-04-16 15:20:36 -0700265#ifndef __HAVE_ARCH_PTE_SAME
Andrea Arcangelie2cda322011-01-13 15:46:40 -0800266static inline int pte_same(pte_t pte_a, pte_t pte_b)
267{
268 return pte_val(pte_a) == pte_val(pte_b);
269}
270#endif
271
Konstantin Weitz45961722013-04-17 13:59:32 +0200272#ifndef __HAVE_ARCH_PTE_UNUSED
273/*
274 * Some architectures provide facilities to virtualization guests
275 * so that they can flag allocated pages as unused. This allows the
276 * host to transparently reclaim unused pages. This function returns
277 * whether the pte's page is unused.
278 */
279static inline int pte_unused(pte_t pte)
280{
281 return 0;
282}
283#endif
284
Andrea Arcangelie2cda322011-01-13 15:46:40 -0800285#ifndef __HAVE_ARCH_PMD_SAME
286#ifdef CONFIG_TRANSPARENT_HUGEPAGE
287static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
288{
289 return pmd_val(pmd_a) == pmd_val(pmd_b);
290}
291#else /* CONFIG_TRANSPARENT_HUGEPAGE */
292static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
293{
Vineet Guptabd5e88a2015-07-09 17:22:44 +0530294 BUILD_BUG();
Andrea Arcangelie2cda322011-01-13 15:46:40 -0800295 return 0;
296}
297#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700298#endif
299
Linus Torvalds1da177e2005-04-16 15:20:36 -0700300#ifndef __HAVE_ARCH_PGD_OFFSET_GATE
301#define pgd_offset_gate(mm, addr) pgd_offset(mm, addr)
302#endif
303
David S. Miller0b0968a2006-06-01 17:47:25 -0700304#ifndef __HAVE_ARCH_MOVE_PTE
Nick Piggin8b1f3122005-09-27 21:45:18 -0700305#define move_pte(pte, prot, old_addr, new_addr) (pte)
Nick Piggin8b1f3122005-09-27 21:45:18 -0700306#endif
307
Rik van Riel2c3cf552012-10-09 15:31:12 +0200308#ifndef pte_accessible
Rik van Riel20841402013-12-18 17:08:44 -0800309# define pte_accessible(mm, pte) ((void)(pte), 1)
Rik van Riel2c3cf552012-10-09 15:31:12 +0200310#endif
311
Shaohua Li61c77322010-08-16 09:16:55 +0800312#ifndef flush_tlb_fix_spurious_fault
313#define flush_tlb_fix_spurious_fault(vma, address) flush_tlb_page(vma, address)
314#endif
315
Paul Mundt0634a632009-06-23 13:51:19 +0200316#ifndef pgprot_noncached
317#define pgprot_noncached(prot) (prot)
318#endif
319
venkatesh.pallipadi@intel.com2520bd32008-12-18 11:41:32 -0800320#ifndef pgprot_writecombine
321#define pgprot_writecombine pgprot_noncached
322#endif
323
Toshi Kanid1b4bfb2015-06-04 18:55:18 +0200324#ifndef pgprot_writethrough
325#define pgprot_writethrough pgprot_noncached
326#endif
327
Liviu Dudau8b921ac2014-09-29 15:29:30 +0100328#ifndef pgprot_device
329#define pgprot_device pgprot_noncached
330#endif
331
Peter Feiner64e45502014-10-13 15:55:46 -0700332#ifndef pgprot_modify
333#define pgprot_modify pgprot_modify
334static inline pgprot_t pgprot_modify(pgprot_t oldprot, pgprot_t newprot)
335{
336 if (pgprot_val(oldprot) == pgprot_val(pgprot_noncached(oldprot)))
337 newprot = pgprot_noncached(newprot);
338 if (pgprot_val(oldprot) == pgprot_val(pgprot_writecombine(oldprot)))
339 newprot = pgprot_writecombine(newprot);
340 if (pgprot_val(oldprot) == pgprot_val(pgprot_device(oldprot)))
341 newprot = pgprot_device(newprot);
342 return newprot;
343}
344#endif
345
Linus Torvalds1da177e2005-04-16 15:20:36 -0700346/*
Hugh Dickins8f6c99c2005-04-19 13:29:17 -0700347 * When walking page tables, get the address of the next boundary,
348 * or the end address of the range if that comes earlier. Although no
349 * vma end wraps to 0, rounded up __boundary may wrap to 0 throughout.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700350 */
351
Linus Torvalds1da177e2005-04-16 15:20:36 -0700352#define pgd_addr_end(addr, end) \
353({ unsigned long __boundary = ((addr) + PGDIR_SIZE) & PGDIR_MASK; \
354 (__boundary - 1 < (end) - 1)? __boundary: (end); \
355})
Linus Torvalds1da177e2005-04-16 15:20:36 -0700356
357#ifndef pud_addr_end
358#define pud_addr_end(addr, end) \
359({ unsigned long __boundary = ((addr) + PUD_SIZE) & PUD_MASK; \
360 (__boundary - 1 < (end) - 1)? __boundary: (end); \
361})
362#endif
363
364#ifndef pmd_addr_end
365#define pmd_addr_end(addr, end) \
366({ unsigned long __boundary = ((addr) + PMD_SIZE) & PMD_MASK; \
367 (__boundary - 1 < (end) - 1)? __boundary: (end); \
368})
369#endif
370
Linus Torvalds1da177e2005-04-16 15:20:36 -0700371/*
372 * When walking page tables, we usually want to skip any p?d_none entries;
373 * and any p?d_bad entries - reporting the error before resetting to none.
374 * Do the tests inline, but report and clear the bad entry in mm/memory.c.
375 */
376void pgd_clear_bad(pgd_t *);
377void pud_clear_bad(pud_t *);
378void pmd_clear_bad(pmd_t *);
379
380static inline int pgd_none_or_clear_bad(pgd_t *pgd)
381{
382 if (pgd_none(*pgd))
383 return 1;
384 if (unlikely(pgd_bad(*pgd))) {
385 pgd_clear_bad(pgd);
386 return 1;
387 }
388 return 0;
389}
390
391static inline int pud_none_or_clear_bad(pud_t *pud)
392{
393 if (pud_none(*pud))
394 return 1;
395 if (unlikely(pud_bad(*pud))) {
396 pud_clear_bad(pud);
397 return 1;
398 }
399 return 0;
400}
401
402static inline int pmd_none_or_clear_bad(pmd_t *pmd)
403{
404 if (pmd_none(*pmd))
405 return 1;
406 if (unlikely(pmd_bad(*pmd))) {
407 pmd_clear_bad(pmd);
408 return 1;
409 }
410 return 0;
411}
Greg Ungerer95352392007-08-10 13:01:20 -0700412
Jeremy Fitzhardinge1ea07042008-06-16 04:30:00 -0700413static inline pte_t __ptep_modify_prot_start(struct mm_struct *mm,
414 unsigned long addr,
415 pte_t *ptep)
416{
417 /*
418 * Get the current pte state, but zero it out to make it
419 * non-present, preventing the hardware from asynchronously
420 * updating it.
421 */
422 return ptep_get_and_clear(mm, addr, ptep);
423}
424
425static inline void __ptep_modify_prot_commit(struct mm_struct *mm,
426 unsigned long addr,
427 pte_t *ptep, pte_t pte)
428{
429 /*
430 * The pte is non-present, so there's no hardware state to
431 * preserve.
432 */
433 set_pte_at(mm, addr, ptep, pte);
434}
435
436#ifndef __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
437/*
438 * Start a pte protection read-modify-write transaction, which
439 * protects against asynchronous hardware modifications to the pte.
440 * The intention is not to prevent the hardware from making pte
441 * updates, but to prevent any updates it may make from being lost.
442 *
443 * This does not protect against other software modifications of the
444 * pte; the appropriate pte lock must be held over the transation.
445 *
446 * Note that this interface is intended to be batchable, meaning that
447 * ptep_modify_prot_commit may not actually update the pte, but merely
448 * queue the update to be done at some later time. The update must be
449 * actually committed before the pte lock is released, however.
450 */
451static inline pte_t ptep_modify_prot_start(struct mm_struct *mm,
452 unsigned long addr,
453 pte_t *ptep)
454{
455 return __ptep_modify_prot_start(mm, addr, ptep);
456}
457
458/*
459 * Commit an update to a pte, leaving any hardware-controlled bits in
460 * the PTE unmodified.
461 */
462static inline void ptep_modify_prot_commit(struct mm_struct *mm,
463 unsigned long addr,
464 pte_t *ptep, pte_t pte)
465{
466 __ptep_modify_prot_commit(mm, addr, ptep, pte);
467}
468#endif /* __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION */
Sebastian Siewiorfe1a6872008-07-15 22:28:46 +0200469#endif /* CONFIG_MMU */
Jeremy Fitzhardinge1ea07042008-06-16 04:30:00 -0700470
Greg Ungerer95352392007-08-10 13:01:20 -0700471/*
472 * A facility to provide lazy MMU batching. This allows PTE updates and
473 * page invalidations to be delayed until a call to leave lazy MMU mode
474 * is issued. Some architectures may benefit from doing this, and it is
475 * beneficial for both shadow and direct mode hypervisors, which may batch
476 * the PTE updates which happen during this window. Note that using this
477 * interface requires that read hazards be removed from the code. A read
478 * hazard could result in the direct mode hypervisor case, since the actual
479 * write to the page tables may not yet have taken place, so reads though
480 * a raw PTE pointer after it has been modified are not guaranteed to be
481 * up to date. This mode can only be entered and left under the protection of
482 * the page table locks for all page tables which may be modified. In the UP
483 * case, this is required so that preemption is disabled, and in the SMP case,
484 * it must synchronize the delayed page table writes properly on other CPUs.
485 */
486#ifndef __HAVE_ARCH_ENTER_LAZY_MMU_MODE
487#define arch_enter_lazy_mmu_mode() do {} while (0)
488#define arch_leave_lazy_mmu_mode() do {} while (0)
489#define arch_flush_lazy_mmu_mode() do {} while (0)
490#endif
491
492/*
Jeremy Fitzhardinge7fd7d832009-02-17 23:24:03 -0800493 * A facility to provide batching of the reload of page tables and
494 * other process state with the actual context switch code for
495 * paravirtualized guests. By convention, only one of the batched
496 * update (lazy) modes (CPU, MMU) should be active at any given time,
497 * entry should never be nested, and entry and exits should always be
498 * paired. This is for sanity of maintaining and reasoning about the
499 * kernel code. In this case, the exit (end of the context switch) is
500 * in architecture-specific code, and so doesn't need a generic
501 * definition.
Greg Ungerer95352392007-08-10 13:01:20 -0700502 */
Jeremy Fitzhardinge7fd7d832009-02-17 23:24:03 -0800503#ifndef __HAVE_ARCH_START_CONTEXT_SWITCH
Jeremy Fitzhardinge224101e2009-02-18 11:18:57 -0800504#define arch_start_context_switch(prev) do {} while (0)
Greg Ungerer95352392007-08-10 13:01:20 -0700505#endif
506
Pavel Emelyanov0f8975e2013-07-03 15:01:20 -0700507#ifndef CONFIG_HAVE_ARCH_SOFT_DIRTY
508static inline int pte_soft_dirty(pte_t pte)
509{
510 return 0;
511}
512
513static inline int pmd_soft_dirty(pmd_t pmd)
514{
515 return 0;
516}
517
518static inline pte_t pte_mksoft_dirty(pte_t pte)
519{
520 return pte;
521}
522
523static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
524{
525 return pmd;
526}
Cyrill Gorcunov179ef712013-08-13 16:00:49 -0700527
Martin Schwidefskya7b76172015-04-22 14:20:47 +0200528static inline pte_t pte_clear_soft_dirty(pte_t pte)
529{
530 return pte;
531}
532
533static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd)
534{
535 return pmd;
536}
537
Cyrill Gorcunov179ef712013-08-13 16:00:49 -0700538static inline pte_t pte_swp_mksoft_dirty(pte_t pte)
539{
540 return pte;
541}
542
543static inline int pte_swp_soft_dirty(pte_t pte)
544{
545 return 0;
546}
547
548static inline pte_t pte_swp_clear_soft_dirty(pte_t pte)
549{
550 return pte;
551}
Pavel Emelyanov0f8975e2013-07-03 15:01:20 -0700552#endif
553
venkatesh.pallipadi@intel.com34801ba2008-12-19 13:47:29 -0800554#ifndef __HAVE_PFNMAP_TRACKING
555/*
Suresh Siddha5180da42012-10-08 16:28:29 -0700556 * Interfaces that can be used by architecture code to keep track of
557 * memory type of pfn mappings specified by the remap_pfn_range,
558 * vm_insert_pfn.
venkatesh.pallipadi@intel.com34801ba2008-12-19 13:47:29 -0800559 */
Suresh Siddha5180da42012-10-08 16:28:29 -0700560
561/*
562 * track_pfn_remap is called when a _new_ pfn mapping is being established
563 * by remap_pfn_range() for physical range indicated by pfn and size.
564 */
565static inline int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
Konstantin Khlebnikovb3b9c292012-10-08 16:28:34 -0700566 unsigned long pfn, unsigned long addr,
567 unsigned long size)
venkatesh.pallipadi@intel.com34801ba2008-12-19 13:47:29 -0800568{
569 return 0;
570}
571
572/*
Suresh Siddha5180da42012-10-08 16:28:29 -0700573 * track_pfn_insert is called when a _new_ single pfn is established
574 * by vm_insert_pfn().
575 */
576static inline int track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
Dan Williamsf25748e32016-01-15 16:56:43 -0800577 pfn_t pfn)
Suresh Siddha5180da42012-10-08 16:28:29 -0700578{
579 return 0;
580}
581
582/*
583 * track_pfn_copy is called when vma that is covering the pfnmap gets
venkatesh.pallipadi@intel.com34801ba2008-12-19 13:47:29 -0800584 * copied through copy_page_range().
585 */
Suresh Siddha5180da42012-10-08 16:28:29 -0700586static inline int track_pfn_copy(struct vm_area_struct *vma)
venkatesh.pallipadi@intel.com34801ba2008-12-19 13:47:29 -0800587{
588 return 0;
589}
590
591/*
Toshi Kanid9fe4fa2015-12-22 17:54:23 -0700592 * untrack_pfn is called while unmapping a pfnmap for a region.
venkatesh.pallipadi@intel.com34801ba2008-12-19 13:47:29 -0800593 * untrack can be called for a specific region indicated by pfn and size or
Suresh Siddha5180da42012-10-08 16:28:29 -0700594 * can be for the entire vma (in which case pfn, size are zero).
venkatesh.pallipadi@intel.com34801ba2008-12-19 13:47:29 -0800595 */
Suresh Siddha5180da42012-10-08 16:28:29 -0700596static inline void untrack_pfn(struct vm_area_struct *vma,
597 unsigned long pfn, unsigned long size)
venkatesh.pallipadi@intel.com34801ba2008-12-19 13:47:29 -0800598{
599}
Toshi Kanid9fe4fa2015-12-22 17:54:23 -0700600
601/*
602 * untrack_pfn_moved is called while mremapping a pfnmap for a new region.
603 */
604static inline void untrack_pfn_moved(struct vm_area_struct *vma)
605{
606}
venkatesh.pallipadi@intel.com34801ba2008-12-19 13:47:29 -0800607#else
Suresh Siddha5180da42012-10-08 16:28:29 -0700608extern int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
Konstantin Khlebnikovb3b9c292012-10-08 16:28:34 -0700609 unsigned long pfn, unsigned long addr,
610 unsigned long size);
Suresh Siddha5180da42012-10-08 16:28:29 -0700611extern int track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
Dan Williamsf25748e32016-01-15 16:56:43 -0800612 pfn_t pfn);
Suresh Siddha5180da42012-10-08 16:28:29 -0700613extern int track_pfn_copy(struct vm_area_struct *vma);
614extern void untrack_pfn(struct vm_area_struct *vma, unsigned long pfn,
615 unsigned long size);
Toshi Kanid9fe4fa2015-12-22 17:54:23 -0700616extern void untrack_pfn_moved(struct vm_area_struct *vma);
venkatesh.pallipadi@intel.com34801ba2008-12-19 13:47:29 -0800617#endif
618
Kirill A. Shutemov816422a2012-12-12 13:52:36 -0800619#ifdef __HAVE_COLOR_ZERO_PAGE
620static inline int is_zero_pfn(unsigned long pfn)
621{
622 extern unsigned long zero_pfn;
623 unsigned long offset_from_zero_pfn = pfn - zero_pfn;
624 return offset_from_zero_pfn <= (zero_page_mask >> PAGE_SHIFT);
625}
626
Kirill A. Shutemov2f91ec82012-12-26 03:19:55 +0300627#define my_zero_pfn(addr) page_to_pfn(ZERO_PAGE(addr))
628
Kirill A. Shutemov816422a2012-12-12 13:52:36 -0800629#else
630static inline int is_zero_pfn(unsigned long pfn)
631{
632 extern unsigned long zero_pfn;
633 return pfn == zero_pfn;
634}
635
636static inline unsigned long my_zero_pfn(unsigned long addr)
637{
638 extern unsigned long zero_pfn;
639 return zero_pfn;
640}
641#endif
642
Andrea Arcangeli1a5a9902012-03-21 16:33:42 -0700643#ifdef CONFIG_MMU
644
Andrea Arcangeli5f6e8da2011-01-13 15:46:40 -0800645#ifndef CONFIG_TRANSPARENT_HUGEPAGE
646static inline int pmd_trans_huge(pmd_t pmd)
647{
648 return 0;
649}
Andrea Arcangelie2cda322011-01-13 15:46:40 -0800650#ifndef __HAVE_ARCH_PMD_WRITE
651static inline int pmd_write(pmd_t pmd)
652{
653 BUG();
654 return 0;
655}
656#endif /* __HAVE_ARCH_PMD_WRITE */
Andrea Arcangeli1a5a9902012-03-21 16:33:42 -0700657#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
658
Andrea Arcangeli26c19172012-05-29 15:06:49 -0700659#ifndef pmd_read_atomic
660static inline pmd_t pmd_read_atomic(pmd_t *pmdp)
661{
662 /*
663 * Depend on compiler for an atomic pmd read. NOTE: this is
664 * only going to work, if the pmdval_t isn't larger than
665 * an unsigned long.
666 */
667 return *pmdp;
668}
669#endif
670
Aneesh Kumar K.Vb3084f42014-01-13 11:34:24 +0530671#ifndef pmd_move_must_withdraw
672static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
673 spinlock_t *old_pmd_ptl)
674{
675 /*
676 * With split pmd lock we also need to move preallocated
677 * PTE page table if new_pmd is on different PMD page table.
678 */
679 return new_pmd_ptl != old_pmd_ptl;
680}
681#endif
682
Andrea Arcangeli1a5a9902012-03-21 16:33:42 -0700683/*
684 * This function is meant to be used by sites walking pagetables with
685 * the mmap_sem hold in read mode to protect against MADV_DONTNEED and
686 * transhuge page faults. MADV_DONTNEED can convert a transhuge pmd
687 * into a null pmd and the transhuge page fault can convert a null pmd
688 * into an hugepmd or into a regular pmd (if the hugepage allocation
689 * fails). While holding the mmap_sem in read mode the pmd becomes
690 * stable and stops changing under us only if it's not null and not a
691 * transhuge pmd. When those races occurs and this function makes a
692 * difference vs the standard pmd_none_or_clear_bad, the result is
693 * undefined so behaving like if the pmd was none is safe (because it
694 * can return none anyway). The compiler level barrier() is critically
695 * important to compute the two checks atomically on the same pmdval.
Andrea Arcangeli26c19172012-05-29 15:06:49 -0700696 *
697 * For 32bit kernels with a 64bit large pmd_t this automatically takes
698 * care of reading the pmd atomically to avoid SMP race conditions
699 * against pmd_populate() when the mmap_sem is hold for reading by the
700 * caller (a special atomic read not done by "gcc" as in the generic
701 * version above, is also needed when THP is disabled because the page
702 * fault can populate the pmd from under us).
Andrea Arcangeli1a5a9902012-03-21 16:33:42 -0700703 */
704static inline int pmd_none_or_trans_huge_or_clear_bad(pmd_t *pmd)
705{
Andrea Arcangeli26c19172012-05-29 15:06:49 -0700706 pmd_t pmdval = pmd_read_atomic(pmd);
Andrea Arcangeli1a5a9902012-03-21 16:33:42 -0700707 /*
708 * The barrier will stabilize the pmdval in a register or on
709 * the stack so that it will stop changing under the code.
Andrea Arcangelie4eed032012-06-20 12:52:57 -0700710 *
711 * When CONFIG_TRANSPARENT_HUGEPAGE=y on x86 32bit PAE,
712 * pmd_read_atomic is allowed to return a not atomic pmdval
713 * (for example pointing to an hugepage that has never been
714 * mapped in the pmd). The below checks will only care about
715 * the low part of the pmd with 32bit PAE x86 anyway, with the
716 * exception of pmd_none(). So the important thing is that if
717 * the low part of the pmd is found null, the high part will
718 * be also null or the pmd_none() check below would be
719 * confused.
Andrea Arcangeli1a5a9902012-03-21 16:33:42 -0700720 */
721#ifdef CONFIG_TRANSPARENT_HUGEPAGE
722 barrier();
Andrea Arcangeli5f6e8da2011-01-13 15:46:40 -0800723#endif
Kirill A. Shutemovee536642013-12-20 15:10:03 +0200724 if (pmd_none(pmdval) || pmd_trans_huge(pmdval))
Andrea Arcangeli1a5a9902012-03-21 16:33:42 -0700725 return 1;
726 if (unlikely(pmd_bad(pmdval))) {
Kirill A. Shutemovee536642013-12-20 15:10:03 +0200727 pmd_clear_bad(pmd);
Andrea Arcangeli1a5a9902012-03-21 16:33:42 -0700728 return 1;
729 }
730 return 0;
731}
732
733/*
734 * This is a noop if Transparent Hugepage Support is not built into
735 * the kernel. Otherwise it is equivalent to
736 * pmd_none_or_trans_huge_or_clear_bad(), and shall only be called in
737 * places that already verified the pmd is not none and they want to
738 * walk ptes while holding the mmap sem in read mode (write mode don't
739 * need this). If THP is not enabled, the pmd can't go away under the
740 * code even if MADV_DONTNEED runs, but if THP is enabled we need to
741 * run a pmd_trans_unstable before walking the ptes after
742 * split_huge_page_pmd returns (because it may have run when the pmd
743 * become null, but then a page fault can map in a THP and not a
744 * regular page).
745 */
746static inline int pmd_trans_unstable(pmd_t *pmd)
747{
748#ifdef CONFIG_TRANSPARENT_HUGEPAGE
749 return pmd_none_or_trans_huge_or_clear_bad(pmd);
750#else
751 return 0;
752#endif
753}
754
Mel Gormane7bb4b6d2015-02-12 14:58:19 -0800755#ifndef CONFIG_NUMA_BALANCING
756/*
757 * Technically a PTE can be PROTNONE even when not doing NUMA balancing but
758 * the only case the kernel cares is for NUMA balancing and is only ever set
759 * when the VMA is accessible. For PROT_NONE VMAs, the PTEs are not marked
760 * _PAGE_PROTNONE so by by default, implement the helper as "always no". It
761 * is the responsibility of the caller to distinguish between PROT_NONE
762 * protections and NUMA hinting fault protections.
763 */
764static inline int pte_protnone(pte_t pte)
765{
766 return 0;
767}
768
769static inline int pmd_protnone(pmd_t pmd)
770{
771 return 0;
772}
773#endif /* CONFIG_NUMA_BALANCING */
774
Andrea Arcangeli1a5a9902012-03-21 16:33:42 -0700775#endif /* CONFIG_MMU */
Andrea Arcangeli5f6e8da2011-01-13 15:46:40 -0800776
Toshi Kanie61ce6a2015-04-14 15:47:23 -0700777#ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
778int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot);
779int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot);
Toshi Kanib9820d82015-04-14 15:47:26 -0700780int pud_clear_huge(pud_t *pud);
781int pmd_clear_huge(pmd_t *pmd);
Chintan Pandya6e6b6372018-06-27 08:13:47 -0600782int pud_free_pmd_page(pud_t *pud, unsigned long addr);
783int pmd_free_pte_page(pmd_t *pmd, unsigned long addr);
Toshi Kanie61ce6a2015-04-14 15:47:23 -0700784#else /* !CONFIG_HAVE_ARCH_HUGE_VMAP */
785static inline int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot)
786{
787 return 0;
788}
789static inline int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot)
790{
791 return 0;
792}
Toshi Kanib9820d82015-04-14 15:47:26 -0700793static inline int pud_clear_huge(pud_t *pud)
794{
795 return 0;
796}
797static inline int pmd_clear_huge(pmd_t *pmd)
798{
799 return 0;
800}
Chintan Pandya6e6b6372018-06-27 08:13:47 -0600801static inline int pud_free_pmd_page(pud_t *pud, unsigned long addr)
Toshi Kani9c7f7bd2018-03-22 16:17:20 -0700802{
803 return 0;
804}
Chintan Pandya6e6b6372018-06-27 08:13:47 -0600805static inline int pmd_free_pte_page(pmd_t *pmd, unsigned long addr)
Toshi Kani9c7f7bd2018-03-22 16:17:20 -0700806{
807 return 0;
808}
Toshi Kanie61ce6a2015-04-14 15:47:23 -0700809#endif /* CONFIG_HAVE_ARCH_HUGE_VMAP */
810
Aneesh Kumar K.V458aa762016-03-17 14:18:56 -0700811#ifndef __HAVE_ARCH_FLUSH_PMD_TLB_RANGE
812#ifdef CONFIG_TRANSPARENT_HUGEPAGE
813/*
814 * ARCHes with special requirements for evicting THP backing TLB entries can
815 * implement this. Otherwise also, it can help optimize normal TLB flush in
816 * THP regime. stock flush_tlb_range() typically has optimization to nuke the
817 * entire TLB TLB if flush span is greater than a threshold, which will
818 * likely be true for a single huge page. Thus a single thp flush will
819 * invalidate the entire TLB which is not desitable.
820 * e.g. see arch/arc: flush_pmd_tlb_range
821 */
822#define flush_pmd_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
823#else
824#define flush_pmd_tlb_range(vma, addr, end) BUILD_BUG()
825#endif
826#endif
827
Baoyou Xie08ea8c02016-10-07 17:00:55 -0700828struct file;
829int phys_mem_access_prot_allowed(struct file *file, unsigned long pfn,
830 unsigned long size, pgprot_t *vma_prot);
Jiri Kosinab4f17de2018-07-14 21:56:13 +0200831
832#ifndef __HAVE_ARCH_PFN_MODIFY_ALLOWED
833static inline bool pfn_modify_allowed(unsigned long pfn, pgprot_t prot)
834{
835 return true;
836}
837
838static inline bool arch_has_pfn_modify_check(void)
839{
840 return false;
841}
842#endif /* !_HAVE_ARCH_PFN_MODIFY_ALLOWED */
843
Linus Torvalds1da177e2005-04-16 15:20:36 -0700844#endif /* !__ASSEMBLY__ */
845
Al Viro40d158e2013-05-11 12:13:10 -0400846#ifndef io_remap_pfn_range
847#define io_remap_pfn_range remap_pfn_range
848#endif
849
Hugh Dickinsfd8cfd32016-05-19 17:13:00 -0700850#ifndef has_transparent_hugepage
851#ifdef CONFIG_TRANSPARENT_HUGEPAGE
852#define has_transparent_hugepage() 1
853#else
854#define has_transparent_hugepage() 0
855#endif
856#endif
857
Linus Torvalds1da177e2005-04-16 15:20:36 -0700858#endif /* _ASM_GENERIC_PGTABLE_H */