blob: ad0b3ba735b77af069a19d3e1a37b2c8bece96fb [file] [log] [blame]
Stefan Behrens5db02762011-11-01 17:04:16 +01001/*
2 * Copyright (C) STRATO AG 2011. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19/*
20 * This module can be used to catch cases when the btrfs kernel
21 * code executes write requests to the disk that bring the file
22 * system in an inconsistent state. In such a state, a power-loss
23 * or kernel panic event would cause that the data on disk is
24 * lost or at least damaged.
25 *
26 * Code is added that examines all block write requests during
27 * runtime (including writes of the super block). Three rules
28 * are verified and an error is printed on violation of the
29 * rules:
30 * 1. It is not allowed to write a disk block which is
31 * currently referenced by the super block (either directly
32 * or indirectly).
33 * 2. When a super block is written, it is verified that all
34 * referenced (directly or indirectly) blocks fulfill the
35 * following requirements:
36 * 2a. All referenced blocks have either been present when
37 * the file system was mounted, (i.e., they have been
38 * referenced by the super block) or they have been
39 * written since then and the write completion callback
40 * was called and a FLUSH request to the device where
41 * these blocks are located was received and completed.
42 * 2b. All referenced blocks need to have a generation
43 * number which is equal to the parent's number.
44 *
45 * One issue that was found using this module was that the log
46 * tree on disk became temporarily corrupted because disk blocks
47 * that had been in use for the log tree had been freed and
48 * reused too early, while being referenced by the written super
49 * block.
50 *
51 * The search term in the kernel log that can be used to filter
52 * on the existence of detected integrity issues is
53 * "btrfs: attempt".
54 *
55 * The integrity check is enabled via mount options. These
56 * mount options are only supported if the integrity check
57 * tool is compiled by defining BTRFS_FS_CHECK_INTEGRITY.
58 *
59 * Example #1, apply integrity checks to all metadata:
60 * mount /dev/sdb1 /mnt -o check_int
61 *
62 * Example #2, apply integrity checks to all metadata and
63 * to data extents:
64 * mount /dev/sdb1 /mnt -o check_int_data
65 *
66 * Example #3, apply integrity checks to all metadata and dump
67 * the tree that the super block references to kernel messages
68 * each time after a super block was written:
69 * mount /dev/sdb1 /mnt -o check_int,check_int_print_mask=263
70 *
71 * If the integrity check tool is included and activated in
72 * the mount options, plenty of kernel memory is used, and
73 * plenty of additional CPU cycles are spent. Enabling this
74 * functionality is not intended for normal use. In most
75 * cases, unless you are a btrfs developer who needs to verify
76 * the integrity of (super)-block write requests, do not
77 * enable the config option BTRFS_FS_CHECK_INTEGRITY to
78 * include and compile the integrity check tool.
79 */
80
81#include <linux/sched.h>
82#include <linux/slab.h>
83#include <linux/buffer_head.h>
84#include <linux/mutex.h>
85#include <linux/crc32c.h>
86#include <linux/genhd.h>
87#include <linux/blkdev.h>
88#include "ctree.h"
89#include "disk-io.h"
90#include "transaction.h"
91#include "extent_io.h"
92#include "disk-io.h"
93#include "volumes.h"
94#include "print-tree.h"
95#include "locking.h"
96#include "check-integrity.h"
97
98#define BTRFSIC_BLOCK_HASHTABLE_SIZE 0x10000
99#define BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE 0x10000
100#define BTRFSIC_DEV2STATE_HASHTABLE_SIZE 0x100
101#define BTRFSIC_BLOCK_MAGIC_NUMBER 0x14491051
102#define BTRFSIC_BLOCK_LINK_MAGIC_NUMBER 0x11070807
103#define BTRFSIC_DEV2STATE_MAGIC_NUMBER 0x20111530
104#define BTRFSIC_BLOCK_STACK_FRAME_MAGIC_NUMBER 20111300
105#define BTRFSIC_TREE_DUMP_MAX_INDENT_LEVEL (200 - 6) /* in characters,
106 * excluding " [...]" */
107#define BTRFSIC_BLOCK_SIZE PAGE_SIZE
108
109#define BTRFSIC_GENERATION_UNKNOWN ((u64)-1)
110
111/*
112 * The definition of the bitmask fields for the print_mask.
113 * They are specified with the mount option check_integrity_print_mask.
114 */
115#define BTRFSIC_PRINT_MASK_SUPERBLOCK_WRITE 0x00000001
116#define BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION 0x00000002
117#define BTRFSIC_PRINT_MASK_TREE_AFTER_SB_WRITE 0x00000004
118#define BTRFSIC_PRINT_MASK_TREE_BEFORE_SB_WRITE 0x00000008
119#define BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH 0x00000010
120#define BTRFSIC_PRINT_MASK_END_IO_BIO_BH 0x00000020
121#define BTRFSIC_PRINT_MASK_VERBOSE 0x00000040
122#define BTRFSIC_PRINT_MASK_VERY_VERBOSE 0x00000080
123#define BTRFSIC_PRINT_MASK_INITIAL_TREE 0x00000100
124#define BTRFSIC_PRINT_MASK_INITIAL_ALL_TREES 0x00000200
125#define BTRFSIC_PRINT_MASK_INITIAL_DATABASE 0x00000400
126#define BTRFSIC_PRINT_MASK_NUM_COPIES 0x00000800
127#define BTRFSIC_PRINT_MASK_TREE_WITH_ALL_MIRRORS 0x00001000
128
129struct btrfsic_dev_state;
130struct btrfsic_state;
131
132struct btrfsic_block {
133 u32 magic_num; /* only used for debug purposes */
134 unsigned int is_metadata:1; /* if it is meta-data, not data-data */
135 unsigned int is_superblock:1; /* if it is one of the superblocks */
136 unsigned int is_iodone:1; /* if is done by lower subsystem */
137 unsigned int iodone_w_error:1; /* error was indicated to endio */
138 unsigned int never_written:1; /* block was added because it was
139 * referenced, not because it was
140 * written */
141 unsigned int mirror_num:2; /* large enough to hold
142 * BTRFS_SUPER_MIRROR_MAX */
143 struct btrfsic_dev_state *dev_state;
144 u64 dev_bytenr; /* key, physical byte num on disk */
145 u64 logical_bytenr; /* logical byte num on disk */
146 u64 generation;
147 struct btrfs_disk_key disk_key; /* extra info to print in case of
148 * issues, will not always be correct */
149 struct list_head collision_resolving_node; /* list node */
150 struct list_head all_blocks_node; /* list node */
151
152 /* the following two lists contain block_link items */
153 struct list_head ref_to_list; /* list */
154 struct list_head ref_from_list; /* list */
155 struct btrfsic_block *next_in_same_bio;
156 void *orig_bio_bh_private;
157 union {
158 bio_end_io_t *bio;
159 bh_end_io_t *bh;
160 } orig_bio_bh_end_io;
161 int submit_bio_bh_rw;
162 u64 flush_gen; /* only valid if !never_written */
163};
164
165/*
166 * Elements of this type are allocated dynamically and required because
167 * each block object can refer to and can be ref from multiple blocks.
168 * The key to lookup them in the hashtable is the dev_bytenr of
169 * the block ref to plus the one from the block refered from.
170 * The fact that they are searchable via a hashtable and that a
171 * ref_cnt is maintained is not required for the btrfs integrity
172 * check algorithm itself, it is only used to make the output more
173 * beautiful in case that an error is detected (an error is defined
174 * as a write operation to a block while that block is still referenced).
175 */
176struct btrfsic_block_link {
177 u32 magic_num; /* only used for debug purposes */
178 u32 ref_cnt;
179 struct list_head node_ref_to; /* list node */
180 struct list_head node_ref_from; /* list node */
181 struct list_head collision_resolving_node; /* list node */
182 struct btrfsic_block *block_ref_to;
183 struct btrfsic_block *block_ref_from;
184 u64 parent_generation;
185};
186
187struct btrfsic_dev_state {
188 u32 magic_num; /* only used for debug purposes */
189 struct block_device *bdev;
190 struct btrfsic_state *state;
191 struct list_head collision_resolving_node; /* list node */
192 struct btrfsic_block dummy_block_for_bio_bh_flush;
193 u64 last_flush_gen;
194 char name[BDEVNAME_SIZE];
195};
196
197struct btrfsic_block_hashtable {
198 struct list_head table[BTRFSIC_BLOCK_HASHTABLE_SIZE];
199};
200
201struct btrfsic_block_link_hashtable {
202 struct list_head table[BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE];
203};
204
205struct btrfsic_dev_state_hashtable {
206 struct list_head table[BTRFSIC_DEV2STATE_HASHTABLE_SIZE];
207};
208
209struct btrfsic_block_data_ctx {
210 u64 start; /* virtual bytenr */
211 u64 dev_bytenr; /* physical bytenr on device */
212 u32 len;
213 struct btrfsic_dev_state *dev;
214 char *data;
215 struct buffer_head *bh; /* do not use if set to NULL */
216};
217
218/* This structure is used to implement recursion without occupying
219 * any stack space, refer to btrfsic_process_metablock() */
220struct btrfsic_stack_frame {
221 u32 magic;
222 u32 nr;
223 int error;
224 int i;
225 int limit_nesting;
226 int num_copies;
227 int mirror_num;
228 struct btrfsic_block *block;
229 struct btrfsic_block_data_ctx *block_ctx;
230 struct btrfsic_block *next_block;
231 struct btrfsic_block_data_ctx next_block_ctx;
232 struct btrfs_header *hdr;
233 struct btrfsic_stack_frame *prev;
234};
235
236/* Some state per mounted filesystem */
237struct btrfsic_state {
238 u32 print_mask;
239 int include_extent_data;
240 int csum_size;
241 struct list_head all_blocks_list;
242 struct btrfsic_block_hashtable block_hashtable;
243 struct btrfsic_block_link_hashtable block_link_hashtable;
244 struct btrfs_root *root;
245 u64 max_superblock_generation;
246 struct btrfsic_block *latest_superblock;
247};
248
249static void btrfsic_block_init(struct btrfsic_block *b);
250static struct btrfsic_block *btrfsic_block_alloc(void);
251static void btrfsic_block_free(struct btrfsic_block *b);
252static void btrfsic_block_link_init(struct btrfsic_block_link *n);
253static struct btrfsic_block_link *btrfsic_block_link_alloc(void);
254static void btrfsic_block_link_free(struct btrfsic_block_link *n);
255static void btrfsic_dev_state_init(struct btrfsic_dev_state *ds);
256static struct btrfsic_dev_state *btrfsic_dev_state_alloc(void);
257static void btrfsic_dev_state_free(struct btrfsic_dev_state *ds);
258static void btrfsic_block_hashtable_init(struct btrfsic_block_hashtable *h);
259static void btrfsic_block_hashtable_add(struct btrfsic_block *b,
260 struct btrfsic_block_hashtable *h);
261static void btrfsic_block_hashtable_remove(struct btrfsic_block *b);
262static struct btrfsic_block *btrfsic_block_hashtable_lookup(
263 struct block_device *bdev,
264 u64 dev_bytenr,
265 struct btrfsic_block_hashtable *h);
266static void btrfsic_block_link_hashtable_init(
267 struct btrfsic_block_link_hashtable *h);
268static void btrfsic_block_link_hashtable_add(
269 struct btrfsic_block_link *l,
270 struct btrfsic_block_link_hashtable *h);
271static void btrfsic_block_link_hashtable_remove(struct btrfsic_block_link *l);
272static struct btrfsic_block_link *btrfsic_block_link_hashtable_lookup(
273 struct block_device *bdev_ref_to,
274 u64 dev_bytenr_ref_to,
275 struct block_device *bdev_ref_from,
276 u64 dev_bytenr_ref_from,
277 struct btrfsic_block_link_hashtable *h);
278static void btrfsic_dev_state_hashtable_init(
279 struct btrfsic_dev_state_hashtable *h);
280static void btrfsic_dev_state_hashtable_add(
281 struct btrfsic_dev_state *ds,
282 struct btrfsic_dev_state_hashtable *h);
283static void btrfsic_dev_state_hashtable_remove(struct btrfsic_dev_state *ds);
284static struct btrfsic_dev_state *btrfsic_dev_state_hashtable_lookup(
285 struct block_device *bdev,
286 struct btrfsic_dev_state_hashtable *h);
287static struct btrfsic_stack_frame *btrfsic_stack_frame_alloc(void);
288static void btrfsic_stack_frame_free(struct btrfsic_stack_frame *sf);
289static int btrfsic_process_superblock(struct btrfsic_state *state,
290 struct btrfs_fs_devices *fs_devices);
291static int btrfsic_process_metablock(struct btrfsic_state *state,
292 struct btrfsic_block *block,
293 struct btrfsic_block_data_ctx *block_ctx,
294 struct btrfs_header *hdr,
295 int limit_nesting, int force_iodone_flag);
296static int btrfsic_create_link_to_next_block(
297 struct btrfsic_state *state,
298 struct btrfsic_block *block,
299 struct btrfsic_block_data_ctx
300 *block_ctx, u64 next_bytenr,
301 int limit_nesting,
302 struct btrfsic_block_data_ctx *next_block_ctx,
303 struct btrfsic_block **next_blockp,
304 int force_iodone_flag,
305 int *num_copiesp, int *mirror_nump,
306 struct btrfs_disk_key *disk_key,
307 u64 parent_generation);
308static int btrfsic_handle_extent_data(struct btrfsic_state *state,
309 struct btrfsic_block *block,
310 struct btrfsic_block_data_ctx *block_ctx,
311 u32 item_offset, int force_iodone_flag);
312static int btrfsic_map_block(struct btrfsic_state *state, u64 bytenr, u32 len,
313 struct btrfsic_block_data_ctx *block_ctx_out,
314 int mirror_num);
315static int btrfsic_map_superblock(struct btrfsic_state *state, u64 bytenr,
316 u32 len, struct block_device *bdev,
317 struct btrfsic_block_data_ctx *block_ctx_out);
318static void btrfsic_release_block_ctx(struct btrfsic_block_data_ctx *block_ctx);
319static int btrfsic_read_block(struct btrfsic_state *state,
320 struct btrfsic_block_data_ctx *block_ctx);
321static void btrfsic_dump_database(struct btrfsic_state *state);
322static int btrfsic_test_for_metadata(struct btrfsic_state *state,
323 const u8 *data, unsigned int size);
324static void btrfsic_process_written_block(struct btrfsic_dev_state *dev_state,
325 u64 dev_bytenr, u8 *mapped_data,
326 unsigned int len, struct bio *bio,
327 int *bio_is_patched,
328 struct buffer_head *bh,
329 int submit_bio_bh_rw);
330static int btrfsic_process_written_superblock(
331 struct btrfsic_state *state,
332 struct btrfsic_block *const block,
333 struct btrfs_super_block *const super_hdr);
334static void btrfsic_bio_end_io(struct bio *bp, int bio_error_status);
335static void btrfsic_bh_end_io(struct buffer_head *bh, int uptodate);
336static int btrfsic_is_block_ref_by_superblock(const struct btrfsic_state *state,
337 const struct btrfsic_block *block,
338 int recursion_level);
339static int btrfsic_check_all_ref_blocks(struct btrfsic_state *state,
340 struct btrfsic_block *const block,
341 int recursion_level);
342static void btrfsic_print_add_link(const struct btrfsic_state *state,
343 const struct btrfsic_block_link *l);
344static void btrfsic_print_rem_link(const struct btrfsic_state *state,
345 const struct btrfsic_block_link *l);
346static char btrfsic_get_block_type(const struct btrfsic_state *state,
347 const struct btrfsic_block *block);
348static void btrfsic_dump_tree(const struct btrfsic_state *state);
349static void btrfsic_dump_tree_sub(const struct btrfsic_state *state,
350 const struct btrfsic_block *block,
351 int indent_level);
352static struct btrfsic_block_link *btrfsic_block_link_lookup_or_add(
353 struct btrfsic_state *state,
354 struct btrfsic_block_data_ctx *next_block_ctx,
355 struct btrfsic_block *next_block,
356 struct btrfsic_block *from_block,
357 u64 parent_generation);
358static struct btrfsic_block *btrfsic_block_lookup_or_add(
359 struct btrfsic_state *state,
360 struct btrfsic_block_data_ctx *block_ctx,
361 const char *additional_string,
362 int is_metadata,
363 int is_iodone,
364 int never_written,
365 int mirror_num,
366 int *was_created);
367static int btrfsic_process_superblock_dev_mirror(
368 struct btrfsic_state *state,
369 struct btrfsic_dev_state *dev_state,
370 struct btrfs_device *device,
371 int superblock_mirror_num,
372 struct btrfsic_dev_state **selected_dev_state,
373 struct btrfs_super_block *selected_super);
374static struct btrfsic_dev_state *btrfsic_dev_state_lookup(
375 struct block_device *bdev);
376static void btrfsic_cmp_log_and_dev_bytenr(struct btrfsic_state *state,
377 u64 bytenr,
378 struct btrfsic_dev_state *dev_state,
379 u64 dev_bytenr, char *data);
380
381static struct mutex btrfsic_mutex;
382static int btrfsic_is_initialized;
383static struct btrfsic_dev_state_hashtable btrfsic_dev_state_hashtable;
384
385
386static void btrfsic_block_init(struct btrfsic_block *b)
387{
388 b->magic_num = BTRFSIC_BLOCK_MAGIC_NUMBER;
389 b->dev_state = NULL;
390 b->dev_bytenr = 0;
391 b->logical_bytenr = 0;
392 b->generation = BTRFSIC_GENERATION_UNKNOWN;
393 b->disk_key.objectid = 0;
394 b->disk_key.type = 0;
395 b->disk_key.offset = 0;
396 b->is_metadata = 0;
397 b->is_superblock = 0;
398 b->is_iodone = 0;
399 b->iodone_w_error = 0;
400 b->never_written = 0;
401 b->mirror_num = 0;
402 b->next_in_same_bio = NULL;
403 b->orig_bio_bh_private = NULL;
404 b->orig_bio_bh_end_io.bio = NULL;
405 INIT_LIST_HEAD(&b->collision_resolving_node);
406 INIT_LIST_HEAD(&b->all_blocks_node);
407 INIT_LIST_HEAD(&b->ref_to_list);
408 INIT_LIST_HEAD(&b->ref_from_list);
409 b->submit_bio_bh_rw = 0;
410 b->flush_gen = 0;
411}
412
413static struct btrfsic_block *btrfsic_block_alloc(void)
414{
415 struct btrfsic_block *b;
416
417 b = kzalloc(sizeof(*b), GFP_NOFS);
418 if (NULL != b)
419 btrfsic_block_init(b);
420
421 return b;
422}
423
424static void btrfsic_block_free(struct btrfsic_block *b)
425{
426 BUG_ON(!(NULL == b || BTRFSIC_BLOCK_MAGIC_NUMBER == b->magic_num));
427 kfree(b);
428}
429
430static void btrfsic_block_link_init(struct btrfsic_block_link *l)
431{
432 l->magic_num = BTRFSIC_BLOCK_LINK_MAGIC_NUMBER;
433 l->ref_cnt = 1;
434 INIT_LIST_HEAD(&l->node_ref_to);
435 INIT_LIST_HEAD(&l->node_ref_from);
436 INIT_LIST_HEAD(&l->collision_resolving_node);
437 l->block_ref_to = NULL;
438 l->block_ref_from = NULL;
439}
440
441static struct btrfsic_block_link *btrfsic_block_link_alloc(void)
442{
443 struct btrfsic_block_link *l;
444
445 l = kzalloc(sizeof(*l), GFP_NOFS);
446 if (NULL != l)
447 btrfsic_block_link_init(l);
448
449 return l;
450}
451
452static void btrfsic_block_link_free(struct btrfsic_block_link *l)
453{
454 BUG_ON(!(NULL == l || BTRFSIC_BLOCK_LINK_MAGIC_NUMBER == l->magic_num));
455 kfree(l);
456}
457
458static void btrfsic_dev_state_init(struct btrfsic_dev_state *ds)
459{
460 ds->magic_num = BTRFSIC_DEV2STATE_MAGIC_NUMBER;
461 ds->bdev = NULL;
462 ds->state = NULL;
463 ds->name[0] = '\0';
464 INIT_LIST_HEAD(&ds->collision_resolving_node);
465 ds->last_flush_gen = 0;
466 btrfsic_block_init(&ds->dummy_block_for_bio_bh_flush);
467 ds->dummy_block_for_bio_bh_flush.is_iodone = 1;
468 ds->dummy_block_for_bio_bh_flush.dev_state = ds;
469}
470
471static struct btrfsic_dev_state *btrfsic_dev_state_alloc(void)
472{
473 struct btrfsic_dev_state *ds;
474
475 ds = kzalloc(sizeof(*ds), GFP_NOFS);
476 if (NULL != ds)
477 btrfsic_dev_state_init(ds);
478
479 return ds;
480}
481
482static void btrfsic_dev_state_free(struct btrfsic_dev_state *ds)
483{
484 BUG_ON(!(NULL == ds ||
485 BTRFSIC_DEV2STATE_MAGIC_NUMBER == ds->magic_num));
486 kfree(ds);
487}
488
489static void btrfsic_block_hashtable_init(struct btrfsic_block_hashtable *h)
490{
491 int i;
492
493 for (i = 0; i < BTRFSIC_BLOCK_HASHTABLE_SIZE; i++)
494 INIT_LIST_HEAD(h->table + i);
495}
496
497static void btrfsic_block_hashtable_add(struct btrfsic_block *b,
498 struct btrfsic_block_hashtable *h)
499{
500 const unsigned int hashval =
501 (((unsigned int)(b->dev_bytenr >> 16)) ^
502 ((unsigned int)((uintptr_t)b->dev_state->bdev))) &
503 (BTRFSIC_BLOCK_HASHTABLE_SIZE - 1);
504
505 list_add(&b->collision_resolving_node, h->table + hashval);
506}
507
508static void btrfsic_block_hashtable_remove(struct btrfsic_block *b)
509{
510 list_del(&b->collision_resolving_node);
511}
512
513static struct btrfsic_block *btrfsic_block_hashtable_lookup(
514 struct block_device *bdev,
515 u64 dev_bytenr,
516 struct btrfsic_block_hashtable *h)
517{
518 const unsigned int hashval =
519 (((unsigned int)(dev_bytenr >> 16)) ^
520 ((unsigned int)((uintptr_t)bdev))) &
521 (BTRFSIC_BLOCK_HASHTABLE_SIZE - 1);
522 struct list_head *elem;
523
524 list_for_each(elem, h->table + hashval) {
525 struct btrfsic_block *const b =
526 list_entry(elem, struct btrfsic_block,
527 collision_resolving_node);
528
529 if (b->dev_state->bdev == bdev && b->dev_bytenr == dev_bytenr)
530 return b;
531 }
532
533 return NULL;
534}
535
536static void btrfsic_block_link_hashtable_init(
537 struct btrfsic_block_link_hashtable *h)
538{
539 int i;
540
541 for (i = 0; i < BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE; i++)
542 INIT_LIST_HEAD(h->table + i);
543}
544
545static void btrfsic_block_link_hashtable_add(
546 struct btrfsic_block_link *l,
547 struct btrfsic_block_link_hashtable *h)
548{
549 const unsigned int hashval =
550 (((unsigned int)(l->block_ref_to->dev_bytenr >> 16)) ^
551 ((unsigned int)(l->block_ref_from->dev_bytenr >> 16)) ^
552 ((unsigned int)((uintptr_t)l->block_ref_to->dev_state->bdev)) ^
553 ((unsigned int)((uintptr_t)l->block_ref_from->dev_state->bdev)))
554 & (BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE - 1);
555
556 BUG_ON(NULL == l->block_ref_to);
557 BUG_ON(NULL == l->block_ref_from);
558 list_add(&l->collision_resolving_node, h->table + hashval);
559}
560
561static void btrfsic_block_link_hashtable_remove(struct btrfsic_block_link *l)
562{
563 list_del(&l->collision_resolving_node);
564}
565
566static struct btrfsic_block_link *btrfsic_block_link_hashtable_lookup(
567 struct block_device *bdev_ref_to,
568 u64 dev_bytenr_ref_to,
569 struct block_device *bdev_ref_from,
570 u64 dev_bytenr_ref_from,
571 struct btrfsic_block_link_hashtable *h)
572{
573 const unsigned int hashval =
574 (((unsigned int)(dev_bytenr_ref_to >> 16)) ^
575 ((unsigned int)(dev_bytenr_ref_from >> 16)) ^
576 ((unsigned int)((uintptr_t)bdev_ref_to)) ^
577 ((unsigned int)((uintptr_t)bdev_ref_from))) &
578 (BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE - 1);
579 struct list_head *elem;
580
581 list_for_each(elem, h->table + hashval) {
582 struct btrfsic_block_link *const l =
583 list_entry(elem, struct btrfsic_block_link,
584 collision_resolving_node);
585
586 BUG_ON(NULL == l->block_ref_to);
587 BUG_ON(NULL == l->block_ref_from);
588 if (l->block_ref_to->dev_state->bdev == bdev_ref_to &&
589 l->block_ref_to->dev_bytenr == dev_bytenr_ref_to &&
590 l->block_ref_from->dev_state->bdev == bdev_ref_from &&
591 l->block_ref_from->dev_bytenr == dev_bytenr_ref_from)
592 return l;
593 }
594
595 return NULL;
596}
597
598static void btrfsic_dev_state_hashtable_init(
599 struct btrfsic_dev_state_hashtable *h)
600{
601 int i;
602
603 for (i = 0; i < BTRFSIC_DEV2STATE_HASHTABLE_SIZE; i++)
604 INIT_LIST_HEAD(h->table + i);
605}
606
607static void btrfsic_dev_state_hashtable_add(
608 struct btrfsic_dev_state *ds,
609 struct btrfsic_dev_state_hashtable *h)
610{
611 const unsigned int hashval =
612 (((unsigned int)((uintptr_t)ds->bdev)) &
613 (BTRFSIC_DEV2STATE_HASHTABLE_SIZE - 1));
614
615 list_add(&ds->collision_resolving_node, h->table + hashval);
616}
617
618static void btrfsic_dev_state_hashtable_remove(struct btrfsic_dev_state *ds)
619{
620 list_del(&ds->collision_resolving_node);
621}
622
623static struct btrfsic_dev_state *btrfsic_dev_state_hashtable_lookup(
624 struct block_device *bdev,
625 struct btrfsic_dev_state_hashtable *h)
626{
627 const unsigned int hashval =
628 (((unsigned int)((uintptr_t)bdev)) &
629 (BTRFSIC_DEV2STATE_HASHTABLE_SIZE - 1));
630 struct list_head *elem;
631
632 list_for_each(elem, h->table + hashval) {
633 struct btrfsic_dev_state *const ds =
634 list_entry(elem, struct btrfsic_dev_state,
635 collision_resolving_node);
636
637 if (ds->bdev == bdev)
638 return ds;
639 }
640
641 return NULL;
642}
643
644static int btrfsic_process_superblock(struct btrfsic_state *state,
645 struct btrfs_fs_devices *fs_devices)
646{
647 int ret;
648 struct btrfs_super_block *selected_super;
649 struct list_head *dev_head = &fs_devices->devices;
650 struct btrfs_device *device;
651 struct btrfsic_dev_state *selected_dev_state = NULL;
652 int pass;
653
654 BUG_ON(NULL == state);
655 selected_super = kmalloc(sizeof(*selected_super), GFP_NOFS);
656 if (NULL == selected_super) {
657 printk(KERN_INFO "btrfsic: error, kmalloc failed!\n");
658 return -1;
659 }
660
661 list_for_each_entry(device, dev_head, dev_list) {
662 int i;
663 struct btrfsic_dev_state *dev_state;
664
665 if (!device->bdev || !device->name)
666 continue;
667
668 dev_state = btrfsic_dev_state_lookup(device->bdev);
669 BUG_ON(NULL == dev_state);
670 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
671 ret = btrfsic_process_superblock_dev_mirror(
672 state, dev_state, device, i,
673 &selected_dev_state, selected_super);
674 if (0 != ret && 0 == i) {
675 kfree(selected_super);
676 return ret;
677 }
678 }
679 }
680
681 if (NULL == state->latest_superblock) {
682 printk(KERN_INFO "btrfsic: no superblock found!\n");
683 kfree(selected_super);
684 return -1;
685 }
686
687 state->csum_size = btrfs_super_csum_size(selected_super);
688
689 for (pass = 0; pass < 3; pass++) {
690 int num_copies;
691 int mirror_num;
692 u64 next_bytenr;
693
694 switch (pass) {
695 case 0:
696 next_bytenr = btrfs_super_root(selected_super);
697 if (state->print_mask &
698 BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
699 printk(KERN_INFO "root@%llu\n",
700 (unsigned long long)next_bytenr);
701 break;
702 case 1:
703 next_bytenr = btrfs_super_chunk_root(selected_super);
704 if (state->print_mask &
705 BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
706 printk(KERN_INFO "chunk@%llu\n",
707 (unsigned long long)next_bytenr);
708 break;
709 case 2:
710 next_bytenr = btrfs_super_log_root(selected_super);
711 if (0 == next_bytenr)
712 continue;
713 if (state->print_mask &
714 BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
715 printk(KERN_INFO "log@%llu\n",
716 (unsigned long long)next_bytenr);
717 break;
718 }
719
720 num_copies =
721 btrfs_num_copies(&state->root->fs_info->mapping_tree,
722 next_bytenr, PAGE_SIZE);
723 if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES)
724 printk(KERN_INFO "num_copies(log_bytenr=%llu) = %d\n",
725 (unsigned long long)next_bytenr, num_copies);
726
727 for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
728 struct btrfsic_block *next_block;
729 struct btrfsic_block_data_ctx tmp_next_block_ctx;
730 struct btrfsic_block_link *l;
731 struct btrfs_header *hdr;
732
733 ret = btrfsic_map_block(state, next_bytenr, PAGE_SIZE,
734 &tmp_next_block_ctx,
735 mirror_num);
736 if (ret) {
737 printk(KERN_INFO "btrfsic:"
738 " btrfsic_map_block(root @%llu,"
739 " mirror %d) failed!\n",
740 (unsigned long long)next_bytenr,
741 mirror_num);
742 kfree(selected_super);
743 return -1;
744 }
745
746 next_block = btrfsic_block_hashtable_lookup(
747 tmp_next_block_ctx.dev->bdev,
748 tmp_next_block_ctx.dev_bytenr,
749 &state->block_hashtable);
750 BUG_ON(NULL == next_block);
751
752 l = btrfsic_block_link_hashtable_lookup(
753 tmp_next_block_ctx.dev->bdev,
754 tmp_next_block_ctx.dev_bytenr,
755 state->latest_superblock->dev_state->
756 bdev,
757 state->latest_superblock->dev_bytenr,
758 &state->block_link_hashtable);
759 BUG_ON(NULL == l);
760
761 ret = btrfsic_read_block(state, &tmp_next_block_ctx);
762 if (ret < (int)BTRFSIC_BLOCK_SIZE) {
763 printk(KERN_INFO
764 "btrfsic: read @logical %llu failed!\n",
765 (unsigned long long)
766 tmp_next_block_ctx.start);
767 btrfsic_release_block_ctx(&tmp_next_block_ctx);
768 kfree(selected_super);
769 return -1;
770 }
771
772 hdr = (struct btrfs_header *)tmp_next_block_ctx.data;
773 ret = btrfsic_process_metablock(state,
774 next_block,
775 &tmp_next_block_ctx,
776 hdr,
777 BTRFS_MAX_LEVEL + 3, 1);
778 btrfsic_release_block_ctx(&tmp_next_block_ctx);
779 }
780 }
781
782 kfree(selected_super);
783 return ret;
784}
785
786static int btrfsic_process_superblock_dev_mirror(
787 struct btrfsic_state *state,
788 struct btrfsic_dev_state *dev_state,
789 struct btrfs_device *device,
790 int superblock_mirror_num,
791 struct btrfsic_dev_state **selected_dev_state,
792 struct btrfs_super_block *selected_super)
793{
794 struct btrfs_super_block *super_tmp;
795 u64 dev_bytenr;
796 struct buffer_head *bh;
797 struct btrfsic_block *superblock_tmp;
798 int pass;
799 struct block_device *const superblock_bdev = device->bdev;
800
801 /* super block bytenr is always the unmapped device bytenr */
802 dev_bytenr = btrfs_sb_offset(superblock_mirror_num);
803 bh = __bread(superblock_bdev, dev_bytenr / 4096, 4096);
804 if (NULL == bh)
805 return -1;
806 super_tmp = (struct btrfs_super_block *)
807 (bh->b_data + (dev_bytenr & 4095));
808
809 if (btrfs_super_bytenr(super_tmp) != dev_bytenr ||
810 strncmp((char *)(&(super_tmp->magic)), BTRFS_MAGIC,
811 sizeof(super_tmp->magic)) ||
812 memcmp(device->uuid, super_tmp->dev_item.uuid, BTRFS_UUID_SIZE)) {
813 brelse(bh);
814 return 0;
815 }
816
817 superblock_tmp =
818 btrfsic_block_hashtable_lookup(superblock_bdev,
819 dev_bytenr,
820 &state->block_hashtable);
821 if (NULL == superblock_tmp) {
822 superblock_tmp = btrfsic_block_alloc();
823 if (NULL == superblock_tmp) {
824 printk(KERN_INFO "btrfsic: error, kmalloc failed!\n");
825 brelse(bh);
826 return -1;
827 }
828 /* for superblock, only the dev_bytenr makes sense */
829 superblock_tmp->dev_bytenr = dev_bytenr;
830 superblock_tmp->dev_state = dev_state;
831 superblock_tmp->logical_bytenr = dev_bytenr;
832 superblock_tmp->generation = btrfs_super_generation(super_tmp);
833 superblock_tmp->is_metadata = 1;
834 superblock_tmp->is_superblock = 1;
835 superblock_tmp->is_iodone = 1;
836 superblock_tmp->never_written = 0;
837 superblock_tmp->mirror_num = 1 + superblock_mirror_num;
838 if (state->print_mask & BTRFSIC_PRINT_MASK_SUPERBLOCK_WRITE)
839 printk(KERN_INFO "New initial S-block (bdev %p, %s)"
840 " @%llu (%s/%llu/%d)\n",
841 superblock_bdev, device->name,
842 (unsigned long long)dev_bytenr,
843 dev_state->name,
844 (unsigned long long)dev_bytenr,
845 superblock_mirror_num);
846 list_add(&superblock_tmp->all_blocks_node,
847 &state->all_blocks_list);
848 btrfsic_block_hashtable_add(superblock_tmp,
849 &state->block_hashtable);
850 }
851
852 /* select the one with the highest generation field */
853 if (btrfs_super_generation(super_tmp) >
854 state->max_superblock_generation ||
855 0 == state->max_superblock_generation) {
856 memcpy(selected_super, super_tmp, sizeof(*selected_super));
857 *selected_dev_state = dev_state;
858 state->max_superblock_generation =
859 btrfs_super_generation(super_tmp);
860 state->latest_superblock = superblock_tmp;
861 }
862
863 for (pass = 0; pass < 3; pass++) {
864 u64 next_bytenr;
865 int num_copies;
866 int mirror_num;
867 const char *additional_string = NULL;
868 struct btrfs_disk_key tmp_disk_key;
869
870 tmp_disk_key.type = BTRFS_ROOT_ITEM_KEY;
871 tmp_disk_key.offset = 0;
872 switch (pass) {
873 case 0:
874 tmp_disk_key.objectid =
875 cpu_to_le64(BTRFS_ROOT_TREE_OBJECTID);
876 additional_string = "initial root ";
877 next_bytenr = btrfs_super_root(super_tmp);
878 break;
879 case 1:
880 tmp_disk_key.objectid =
881 cpu_to_le64(BTRFS_CHUNK_TREE_OBJECTID);
882 additional_string = "initial chunk ";
883 next_bytenr = btrfs_super_chunk_root(super_tmp);
884 break;
885 case 2:
886 tmp_disk_key.objectid =
887 cpu_to_le64(BTRFS_TREE_LOG_OBJECTID);
888 additional_string = "initial log ";
889 next_bytenr = btrfs_super_log_root(super_tmp);
890 if (0 == next_bytenr)
891 continue;
892 break;
893 }
894
895 num_copies =
896 btrfs_num_copies(&state->root->fs_info->mapping_tree,
897 next_bytenr, PAGE_SIZE);
898 if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES)
899 printk(KERN_INFO "num_copies(log_bytenr=%llu) = %d\n",
900 (unsigned long long)next_bytenr, num_copies);
901 for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
902 struct btrfsic_block *next_block;
903 struct btrfsic_block_data_ctx tmp_next_block_ctx;
904 struct btrfsic_block_link *l;
905
906 if (btrfsic_map_block(state, next_bytenr, PAGE_SIZE,
907 &tmp_next_block_ctx,
908 mirror_num)) {
909 printk(KERN_INFO "btrfsic: btrfsic_map_block("
910 "bytenr @%llu, mirror %d) failed!\n",
911 (unsigned long long)next_bytenr,
912 mirror_num);
913 brelse(bh);
914 return -1;
915 }
916
917 next_block = btrfsic_block_lookup_or_add(
918 state, &tmp_next_block_ctx,
919 additional_string, 1, 1, 0,
920 mirror_num, NULL);
921 if (NULL == next_block) {
922 btrfsic_release_block_ctx(&tmp_next_block_ctx);
923 brelse(bh);
924 return -1;
925 }
926
927 next_block->disk_key = tmp_disk_key;
928 next_block->generation = BTRFSIC_GENERATION_UNKNOWN;
929 l = btrfsic_block_link_lookup_or_add(
930 state, &tmp_next_block_ctx,
931 next_block, superblock_tmp,
932 BTRFSIC_GENERATION_UNKNOWN);
933 btrfsic_release_block_ctx(&tmp_next_block_ctx);
934 if (NULL == l) {
935 brelse(bh);
936 return -1;
937 }
938 }
939 }
940 if (state->print_mask & BTRFSIC_PRINT_MASK_INITIAL_ALL_TREES)
941 btrfsic_dump_tree_sub(state, superblock_tmp, 0);
942
943 brelse(bh);
944 return 0;
945}
946
947static struct btrfsic_stack_frame *btrfsic_stack_frame_alloc(void)
948{
949 struct btrfsic_stack_frame *sf;
950
951 sf = kzalloc(sizeof(*sf), GFP_NOFS);
952 if (NULL == sf)
953 printk(KERN_INFO "btrfsic: alloc memory failed!\n");
954 else
955 sf->magic = BTRFSIC_BLOCK_STACK_FRAME_MAGIC_NUMBER;
956 return sf;
957}
958
959static void btrfsic_stack_frame_free(struct btrfsic_stack_frame *sf)
960{
961 BUG_ON(!(NULL == sf ||
962 BTRFSIC_BLOCK_STACK_FRAME_MAGIC_NUMBER == sf->magic));
963 kfree(sf);
964}
965
966static int btrfsic_process_metablock(
967 struct btrfsic_state *state,
968 struct btrfsic_block *const first_block,
969 struct btrfsic_block_data_ctx *const first_block_ctx,
970 struct btrfs_header *const first_hdr,
971 int first_limit_nesting, int force_iodone_flag)
972{
973 struct btrfsic_stack_frame initial_stack_frame = { 0 };
974 struct btrfsic_stack_frame *sf;
975 struct btrfsic_stack_frame *next_stack;
976
977 sf = &initial_stack_frame;
978 sf->error = 0;
979 sf->i = -1;
980 sf->limit_nesting = first_limit_nesting;
981 sf->block = first_block;
982 sf->block_ctx = first_block_ctx;
983 sf->next_block = NULL;
984 sf->hdr = first_hdr;
985 sf->prev = NULL;
986
987continue_with_new_stack_frame:
988 sf->block->generation = le64_to_cpu(sf->hdr->generation);
989 if (0 == sf->hdr->level) {
990 struct btrfs_leaf *const leafhdr =
991 (struct btrfs_leaf *)sf->hdr;
992
993 if (-1 == sf->i) {
994 sf->nr = le32_to_cpu(leafhdr->header.nritems);
995
996 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
997 printk(KERN_INFO
998 "leaf %llu items %d generation %llu"
999 " owner %llu\n",
1000 (unsigned long long)
1001 sf->block_ctx->start,
1002 sf->nr,
1003 (unsigned long long)
1004 le64_to_cpu(leafhdr->header.generation),
1005 (unsigned long long)
1006 le64_to_cpu(leafhdr->header.owner));
1007 }
1008
1009continue_with_current_leaf_stack_frame:
1010 if (0 == sf->num_copies || sf->mirror_num > sf->num_copies) {
1011 sf->i++;
1012 sf->num_copies = 0;
1013 }
1014
1015 if (sf->i < sf->nr) {
1016 struct btrfs_item *disk_item = leafhdr->items + sf->i;
1017 struct btrfs_disk_key *disk_key = &disk_item->key;
1018 u8 type;
1019 const u32 item_offset = le32_to_cpu(disk_item->offset);
1020
1021 type = disk_key->type;
1022
1023 if (BTRFS_ROOT_ITEM_KEY == type) {
1024 const struct btrfs_root_item *const root_item =
1025 (struct btrfs_root_item *)
1026 (sf->block_ctx->data +
1027 offsetof(struct btrfs_leaf, items) +
1028 item_offset);
1029 const u64 next_bytenr =
1030 le64_to_cpu(root_item->bytenr);
1031
1032 sf->error =
1033 btrfsic_create_link_to_next_block(
1034 state,
1035 sf->block,
1036 sf->block_ctx,
1037 next_bytenr,
1038 sf->limit_nesting,
1039 &sf->next_block_ctx,
1040 &sf->next_block,
1041 force_iodone_flag,
1042 &sf->num_copies,
1043 &sf->mirror_num,
1044 disk_key,
1045 le64_to_cpu(root_item->
1046 generation));
1047 if (sf->error)
1048 goto one_stack_frame_backwards;
1049
1050 if (NULL != sf->next_block) {
1051 struct btrfs_header *const next_hdr =
1052 (struct btrfs_header *)
1053 sf->next_block_ctx.data;
1054
1055 next_stack =
1056 btrfsic_stack_frame_alloc();
1057 if (NULL == next_stack) {
1058 btrfsic_release_block_ctx(
1059 &sf->
1060 next_block_ctx);
1061 goto one_stack_frame_backwards;
1062 }
1063
1064 next_stack->i = -1;
1065 next_stack->block = sf->next_block;
1066 next_stack->block_ctx =
1067 &sf->next_block_ctx;
1068 next_stack->next_block = NULL;
1069 next_stack->hdr = next_hdr;
1070 next_stack->limit_nesting =
1071 sf->limit_nesting - 1;
1072 next_stack->prev = sf;
1073 sf = next_stack;
1074 goto continue_with_new_stack_frame;
1075 }
1076 } else if (BTRFS_EXTENT_DATA_KEY == type &&
1077 state->include_extent_data) {
1078 sf->error = btrfsic_handle_extent_data(
1079 state,
1080 sf->block,
1081 sf->block_ctx,
1082 item_offset,
1083 force_iodone_flag);
1084 if (sf->error)
1085 goto one_stack_frame_backwards;
1086 }
1087
1088 goto continue_with_current_leaf_stack_frame;
1089 }
1090 } else {
1091 struct btrfs_node *const nodehdr = (struct btrfs_node *)sf->hdr;
1092
1093 if (-1 == sf->i) {
1094 sf->nr = le32_to_cpu(nodehdr->header.nritems);
1095
1096 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1097 printk(KERN_INFO "node %llu level %d items %d"
1098 " generation %llu owner %llu\n",
1099 (unsigned long long)
1100 sf->block_ctx->start,
1101 nodehdr->header.level, sf->nr,
1102 (unsigned long long)
1103 le64_to_cpu(nodehdr->header.generation),
1104 (unsigned long long)
1105 le64_to_cpu(nodehdr->header.owner));
1106 }
1107
1108continue_with_current_node_stack_frame:
1109 if (0 == sf->num_copies || sf->mirror_num > sf->num_copies) {
1110 sf->i++;
1111 sf->num_copies = 0;
1112 }
1113
1114 if (sf->i < sf->nr) {
1115 struct btrfs_key_ptr *disk_key_ptr =
1116 nodehdr->ptrs + sf->i;
1117 const u64 next_bytenr =
1118 le64_to_cpu(disk_key_ptr->blockptr);
1119
1120 sf->error = btrfsic_create_link_to_next_block(
1121 state,
1122 sf->block,
1123 sf->block_ctx,
1124 next_bytenr,
1125 sf->limit_nesting,
1126 &sf->next_block_ctx,
1127 &sf->next_block,
1128 force_iodone_flag,
1129 &sf->num_copies,
1130 &sf->mirror_num,
1131 &disk_key_ptr->key,
1132 le64_to_cpu(disk_key_ptr->generation));
1133 if (sf->error)
1134 goto one_stack_frame_backwards;
1135
1136 if (NULL != sf->next_block) {
1137 struct btrfs_header *const next_hdr =
1138 (struct btrfs_header *)
1139 sf->next_block_ctx.data;
1140
1141 next_stack = btrfsic_stack_frame_alloc();
1142 if (NULL == next_stack)
1143 goto one_stack_frame_backwards;
1144
1145 next_stack->i = -1;
1146 next_stack->block = sf->next_block;
1147 next_stack->block_ctx = &sf->next_block_ctx;
1148 next_stack->next_block = NULL;
1149 next_stack->hdr = next_hdr;
1150 next_stack->limit_nesting =
1151 sf->limit_nesting - 1;
1152 next_stack->prev = sf;
1153 sf = next_stack;
1154 goto continue_with_new_stack_frame;
1155 }
1156
1157 goto continue_with_current_node_stack_frame;
1158 }
1159 }
1160
1161one_stack_frame_backwards:
1162 if (NULL != sf->prev) {
1163 struct btrfsic_stack_frame *const prev = sf->prev;
1164
1165 /* the one for the initial block is freed in the caller */
1166 btrfsic_release_block_ctx(sf->block_ctx);
1167
1168 if (sf->error) {
1169 prev->error = sf->error;
1170 btrfsic_stack_frame_free(sf);
1171 sf = prev;
1172 goto one_stack_frame_backwards;
1173 }
1174
1175 btrfsic_stack_frame_free(sf);
1176 sf = prev;
1177 goto continue_with_new_stack_frame;
1178 } else {
1179 BUG_ON(&initial_stack_frame != sf);
1180 }
1181
1182 return sf->error;
1183}
1184
1185static int btrfsic_create_link_to_next_block(
1186 struct btrfsic_state *state,
1187 struct btrfsic_block *block,
1188 struct btrfsic_block_data_ctx *block_ctx,
1189 u64 next_bytenr,
1190 int limit_nesting,
1191 struct btrfsic_block_data_ctx *next_block_ctx,
1192 struct btrfsic_block **next_blockp,
1193 int force_iodone_flag,
1194 int *num_copiesp, int *mirror_nump,
1195 struct btrfs_disk_key *disk_key,
1196 u64 parent_generation)
1197{
1198 struct btrfsic_block *next_block = NULL;
1199 int ret;
1200 struct btrfsic_block_link *l;
1201 int did_alloc_block_link;
1202 int block_was_created;
1203
1204 *next_blockp = NULL;
1205 if (0 == *num_copiesp) {
1206 *num_copiesp =
1207 btrfs_num_copies(&state->root->fs_info->mapping_tree,
1208 next_bytenr, PAGE_SIZE);
1209 if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES)
1210 printk(KERN_INFO "num_copies(log_bytenr=%llu) = %d\n",
1211 (unsigned long long)next_bytenr, *num_copiesp);
1212 *mirror_nump = 1;
1213 }
1214
1215 if (*mirror_nump > *num_copiesp)
1216 return 0;
1217
1218 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1219 printk(KERN_INFO
1220 "btrfsic_create_link_to_next_block(mirror_num=%d)\n",
1221 *mirror_nump);
1222 ret = btrfsic_map_block(state, next_bytenr,
1223 BTRFSIC_BLOCK_SIZE,
1224 next_block_ctx, *mirror_nump);
1225 if (ret) {
1226 printk(KERN_INFO
1227 "btrfsic: btrfsic_map_block(@%llu, mirror=%d) failed!\n",
1228 (unsigned long long)next_bytenr, *mirror_nump);
1229 btrfsic_release_block_ctx(next_block_ctx);
1230 *next_blockp = NULL;
1231 return -1;
1232 }
1233
1234 next_block = btrfsic_block_lookup_or_add(state,
1235 next_block_ctx, "referenced ",
1236 1, force_iodone_flag,
1237 !force_iodone_flag,
1238 *mirror_nump,
1239 &block_was_created);
1240 if (NULL == next_block) {
1241 btrfsic_release_block_ctx(next_block_ctx);
1242 *next_blockp = NULL;
1243 return -1;
1244 }
1245 if (block_was_created) {
1246 l = NULL;
1247 next_block->generation = BTRFSIC_GENERATION_UNKNOWN;
1248 } else {
1249 if (next_block->logical_bytenr != next_bytenr &&
1250 !(!next_block->is_metadata &&
1251 0 == next_block->logical_bytenr)) {
1252 printk(KERN_INFO
1253 "Referenced block @%llu (%s/%llu/%d)"
1254 " found in hash table, %c,"
1255 " bytenr mismatch (!= stored %llu).\n",
1256 (unsigned long long)next_bytenr,
1257 next_block_ctx->dev->name,
1258 (unsigned long long)next_block_ctx->dev_bytenr,
1259 *mirror_nump,
1260 btrfsic_get_block_type(state, next_block),
1261 (unsigned long long)next_block->logical_bytenr);
1262 } else if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1263 printk(KERN_INFO
1264 "Referenced block @%llu (%s/%llu/%d)"
1265 " found in hash table, %c.\n",
1266 (unsigned long long)next_bytenr,
1267 next_block_ctx->dev->name,
1268 (unsigned long long)next_block_ctx->dev_bytenr,
1269 *mirror_nump,
1270 btrfsic_get_block_type(state, next_block));
1271 next_block->logical_bytenr = next_bytenr;
1272
1273 next_block->mirror_num = *mirror_nump;
1274 l = btrfsic_block_link_hashtable_lookup(
1275 next_block_ctx->dev->bdev,
1276 next_block_ctx->dev_bytenr,
1277 block_ctx->dev->bdev,
1278 block_ctx->dev_bytenr,
1279 &state->block_link_hashtable);
1280 }
1281
1282 next_block->disk_key = *disk_key;
1283 if (NULL == l) {
1284 l = btrfsic_block_link_alloc();
1285 if (NULL == l) {
1286 printk(KERN_INFO "btrfsic: error, kmalloc failed!\n");
1287 btrfsic_release_block_ctx(next_block_ctx);
1288 *next_blockp = NULL;
1289 return -1;
1290 }
1291
1292 did_alloc_block_link = 1;
1293 l->block_ref_to = next_block;
1294 l->block_ref_from = block;
1295 l->ref_cnt = 1;
1296 l->parent_generation = parent_generation;
1297
1298 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1299 btrfsic_print_add_link(state, l);
1300
1301 list_add(&l->node_ref_to, &block->ref_to_list);
1302 list_add(&l->node_ref_from, &next_block->ref_from_list);
1303
1304 btrfsic_block_link_hashtable_add(l,
1305 &state->block_link_hashtable);
1306 } else {
1307 did_alloc_block_link = 0;
1308 if (0 == limit_nesting) {
1309 l->ref_cnt++;
1310 l->parent_generation = parent_generation;
1311 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1312 btrfsic_print_add_link(state, l);
1313 }
1314 }
1315
1316 if (limit_nesting > 0 && did_alloc_block_link) {
1317 ret = btrfsic_read_block(state, next_block_ctx);
1318 if (ret < (int)BTRFSIC_BLOCK_SIZE) {
1319 printk(KERN_INFO
1320 "btrfsic: read block @logical %llu failed!\n",
1321 (unsigned long long)next_bytenr);
1322 btrfsic_release_block_ctx(next_block_ctx);
1323 *next_blockp = NULL;
1324 return -1;
1325 }
1326
1327 *next_blockp = next_block;
1328 } else {
1329 *next_blockp = NULL;
1330 }
1331 (*mirror_nump)++;
1332
1333 return 0;
1334}
1335
1336static int btrfsic_handle_extent_data(
1337 struct btrfsic_state *state,
1338 struct btrfsic_block *block,
1339 struct btrfsic_block_data_ctx *block_ctx,
1340 u32 item_offset, int force_iodone_flag)
1341{
1342 int ret;
1343 struct btrfs_file_extent_item *file_extent_item =
1344 (struct btrfs_file_extent_item *)(block_ctx->data +
1345 offsetof(struct btrfs_leaf,
1346 items) + item_offset);
1347 u64 next_bytenr =
1348 le64_to_cpu(file_extent_item->disk_bytenr) +
1349 le64_to_cpu(file_extent_item->offset);
1350 u64 num_bytes = le64_to_cpu(file_extent_item->num_bytes);
1351 u64 generation = le64_to_cpu(file_extent_item->generation);
1352 struct btrfsic_block_link *l;
1353
1354 if (state->print_mask & BTRFSIC_PRINT_MASK_VERY_VERBOSE)
1355 printk(KERN_INFO "extent_data: type %u, disk_bytenr = %llu,"
1356 " offset = %llu, num_bytes = %llu\n",
1357 file_extent_item->type,
1358 (unsigned long long)
1359 le64_to_cpu(file_extent_item->disk_bytenr),
1360 (unsigned long long)
1361 le64_to_cpu(file_extent_item->offset),
1362 (unsigned long long)
1363 le64_to_cpu(file_extent_item->num_bytes));
1364 if (BTRFS_FILE_EXTENT_REG != file_extent_item->type ||
1365 ((u64)0) == le64_to_cpu(file_extent_item->disk_bytenr))
1366 return 0;
1367 while (num_bytes > 0) {
1368 u32 chunk_len;
1369 int num_copies;
1370 int mirror_num;
1371
1372 if (num_bytes > BTRFSIC_BLOCK_SIZE)
1373 chunk_len = BTRFSIC_BLOCK_SIZE;
1374 else
1375 chunk_len = num_bytes;
1376
1377 num_copies =
1378 btrfs_num_copies(&state->root->fs_info->mapping_tree,
1379 next_bytenr, PAGE_SIZE);
1380 if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES)
1381 printk(KERN_INFO "num_copies(log_bytenr=%llu) = %d\n",
1382 (unsigned long long)next_bytenr, num_copies);
1383 for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
1384 struct btrfsic_block_data_ctx next_block_ctx;
1385 struct btrfsic_block *next_block;
1386 int block_was_created;
1387
1388 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1389 printk(KERN_INFO "btrfsic_handle_extent_data("
1390 "mirror_num=%d)\n", mirror_num);
1391 if (state->print_mask & BTRFSIC_PRINT_MASK_VERY_VERBOSE)
1392 printk(KERN_INFO
1393 "\tdisk_bytenr = %llu, num_bytes %u\n",
1394 (unsigned long long)next_bytenr,
1395 chunk_len);
1396 ret = btrfsic_map_block(state, next_bytenr,
1397 chunk_len, &next_block_ctx,
1398 mirror_num);
1399 if (ret) {
1400 printk(KERN_INFO
1401 "btrfsic: btrfsic_map_block(@%llu,"
1402 " mirror=%d) failed!\n",
1403 (unsigned long long)next_bytenr,
1404 mirror_num);
1405 return -1;
1406 }
1407
1408 next_block = btrfsic_block_lookup_or_add(
1409 state,
1410 &next_block_ctx,
1411 "referenced ",
1412 0,
1413 force_iodone_flag,
1414 !force_iodone_flag,
1415 mirror_num,
1416 &block_was_created);
1417 if (NULL == next_block) {
1418 printk(KERN_INFO
1419 "btrfsic: error, kmalloc failed!\n");
1420 btrfsic_release_block_ctx(&next_block_ctx);
1421 return -1;
1422 }
1423 if (!block_was_created) {
1424 if (next_block->logical_bytenr != next_bytenr &&
1425 !(!next_block->is_metadata &&
1426 0 == next_block->logical_bytenr)) {
1427 printk(KERN_INFO
1428 "Referenced block"
1429 " @%llu (%s/%llu/%d)"
1430 " found in hash table, D,"
1431 " bytenr mismatch"
1432 " (!= stored %llu).\n",
1433 (unsigned long long)next_bytenr,
1434 next_block_ctx.dev->name,
1435 (unsigned long long)
1436 next_block_ctx.dev_bytenr,
1437 mirror_num,
1438 (unsigned long long)
1439 next_block->logical_bytenr);
1440 }
1441 next_block->logical_bytenr = next_bytenr;
1442 next_block->mirror_num = mirror_num;
1443 }
1444
1445 l = btrfsic_block_link_lookup_or_add(state,
1446 &next_block_ctx,
1447 next_block, block,
1448 generation);
1449 btrfsic_release_block_ctx(&next_block_ctx);
1450 if (NULL == l)
1451 return -1;
1452 }
1453
1454 next_bytenr += chunk_len;
1455 num_bytes -= chunk_len;
1456 }
1457
1458 return 0;
1459}
1460
1461static int btrfsic_map_block(struct btrfsic_state *state, u64 bytenr, u32 len,
1462 struct btrfsic_block_data_ctx *block_ctx_out,
1463 int mirror_num)
1464{
1465 int ret;
1466 u64 length;
1467 struct btrfs_bio *multi = NULL;
1468 struct btrfs_device *device;
1469
1470 length = len;
1471 ret = btrfs_map_block(&state->root->fs_info->mapping_tree, READ,
1472 bytenr, &length, &multi, mirror_num);
1473
1474 device = multi->stripes[0].dev;
1475 block_ctx_out->dev = btrfsic_dev_state_lookup(device->bdev);
1476 block_ctx_out->dev_bytenr = multi->stripes[0].physical;
1477 block_ctx_out->start = bytenr;
1478 block_ctx_out->len = len;
1479 block_ctx_out->data = NULL;
1480 block_ctx_out->bh = NULL;
1481
1482 if (0 == ret)
1483 kfree(multi);
1484 if (NULL == block_ctx_out->dev) {
1485 ret = -ENXIO;
1486 printk(KERN_INFO "btrfsic: error, cannot lookup dev (#1)!\n");
1487 }
1488
1489 return ret;
1490}
1491
1492static int btrfsic_map_superblock(struct btrfsic_state *state, u64 bytenr,
1493 u32 len, struct block_device *bdev,
1494 struct btrfsic_block_data_ctx *block_ctx_out)
1495{
1496 block_ctx_out->dev = btrfsic_dev_state_lookup(bdev);
1497 block_ctx_out->dev_bytenr = bytenr;
1498 block_ctx_out->start = bytenr;
1499 block_ctx_out->len = len;
1500 block_ctx_out->data = NULL;
1501 block_ctx_out->bh = NULL;
1502 if (NULL != block_ctx_out->dev) {
1503 return 0;
1504 } else {
1505 printk(KERN_INFO "btrfsic: error, cannot lookup dev (#2)!\n");
1506 return -ENXIO;
1507 }
1508}
1509
1510static void btrfsic_release_block_ctx(struct btrfsic_block_data_ctx *block_ctx)
1511{
1512 if (NULL != block_ctx->bh) {
1513 brelse(block_ctx->bh);
1514 block_ctx->bh = NULL;
1515 }
1516}
1517
1518static int btrfsic_read_block(struct btrfsic_state *state,
1519 struct btrfsic_block_data_ctx *block_ctx)
1520{
1521 block_ctx->bh = NULL;
1522 if (block_ctx->dev_bytenr & 4095) {
1523 printk(KERN_INFO
1524 "btrfsic: read_block() with unaligned bytenr %llu\n",
1525 (unsigned long long)block_ctx->dev_bytenr);
1526 return -1;
1527 }
1528 if (block_ctx->len > 4096) {
1529 printk(KERN_INFO
1530 "btrfsic: read_block() with too huge size %d\n",
1531 block_ctx->len);
1532 return -1;
1533 }
1534
1535 block_ctx->bh = __bread(block_ctx->dev->bdev,
1536 block_ctx->dev_bytenr >> 12, 4096);
1537 if (NULL == block_ctx->bh)
1538 return -1;
1539 block_ctx->data = block_ctx->bh->b_data;
1540
1541 return block_ctx->len;
1542}
1543
1544static void btrfsic_dump_database(struct btrfsic_state *state)
1545{
1546 struct list_head *elem_all;
1547
1548 BUG_ON(NULL == state);
1549
1550 printk(KERN_INFO "all_blocks_list:\n");
1551 list_for_each(elem_all, &state->all_blocks_list) {
1552 const struct btrfsic_block *const b_all =
1553 list_entry(elem_all, struct btrfsic_block,
1554 all_blocks_node);
1555 struct list_head *elem_ref_to;
1556 struct list_head *elem_ref_from;
1557
1558 printk(KERN_INFO "%c-block @%llu (%s/%llu/%d)\n",
1559 btrfsic_get_block_type(state, b_all),
1560 (unsigned long long)b_all->logical_bytenr,
1561 b_all->dev_state->name,
1562 (unsigned long long)b_all->dev_bytenr,
1563 b_all->mirror_num);
1564
1565 list_for_each(elem_ref_to, &b_all->ref_to_list) {
1566 const struct btrfsic_block_link *const l =
1567 list_entry(elem_ref_to,
1568 struct btrfsic_block_link,
1569 node_ref_to);
1570
1571 printk(KERN_INFO " %c @%llu (%s/%llu/%d)"
1572 " refers %u* to"
1573 " %c @%llu (%s/%llu/%d)\n",
1574 btrfsic_get_block_type(state, b_all),
1575 (unsigned long long)b_all->logical_bytenr,
1576 b_all->dev_state->name,
1577 (unsigned long long)b_all->dev_bytenr,
1578 b_all->mirror_num,
1579 l->ref_cnt,
1580 btrfsic_get_block_type(state, l->block_ref_to),
1581 (unsigned long long)
1582 l->block_ref_to->logical_bytenr,
1583 l->block_ref_to->dev_state->name,
1584 (unsigned long long)l->block_ref_to->dev_bytenr,
1585 l->block_ref_to->mirror_num);
1586 }
1587
1588 list_for_each(elem_ref_from, &b_all->ref_from_list) {
1589 const struct btrfsic_block_link *const l =
1590 list_entry(elem_ref_from,
1591 struct btrfsic_block_link,
1592 node_ref_from);
1593
1594 printk(KERN_INFO " %c @%llu (%s/%llu/%d)"
1595 " is ref %u* from"
1596 " %c @%llu (%s/%llu/%d)\n",
1597 btrfsic_get_block_type(state, b_all),
1598 (unsigned long long)b_all->logical_bytenr,
1599 b_all->dev_state->name,
1600 (unsigned long long)b_all->dev_bytenr,
1601 b_all->mirror_num,
1602 l->ref_cnt,
1603 btrfsic_get_block_type(state, l->block_ref_from),
1604 (unsigned long long)
1605 l->block_ref_from->logical_bytenr,
1606 l->block_ref_from->dev_state->name,
1607 (unsigned long long)
1608 l->block_ref_from->dev_bytenr,
1609 l->block_ref_from->mirror_num);
1610 }
1611
1612 printk(KERN_INFO "\n");
1613 }
1614}
1615
1616/*
1617 * Test whether the disk block contains a tree block (leaf or node)
1618 * (note that this test fails for the super block)
1619 */
1620static int btrfsic_test_for_metadata(struct btrfsic_state *state,
1621 const u8 *data, unsigned int size)
1622{
1623 struct btrfs_header *h;
1624 u8 csum[BTRFS_CSUM_SIZE];
1625 u32 crc = ~(u32)0;
1626 int fail = 0;
1627 int crc_fail = 0;
1628
1629 h = (struct btrfs_header *)data;
1630
1631 if (memcmp(h->fsid, state->root->fs_info->fsid, BTRFS_UUID_SIZE))
1632 fail++;
1633
1634 crc = crc32c(crc, data + BTRFS_CSUM_SIZE, PAGE_SIZE - BTRFS_CSUM_SIZE);
1635 btrfs_csum_final(crc, csum);
1636 if (memcmp(csum, h->csum, state->csum_size))
1637 crc_fail++;
1638
1639 return fail || crc_fail;
1640}
1641
1642static void btrfsic_process_written_block(struct btrfsic_dev_state *dev_state,
1643 u64 dev_bytenr,
1644 u8 *mapped_data, unsigned int len,
1645 struct bio *bio,
1646 int *bio_is_patched,
1647 struct buffer_head *bh,
1648 int submit_bio_bh_rw)
1649{
1650 int is_metadata;
1651 struct btrfsic_block *block;
1652 struct btrfsic_block_data_ctx block_ctx;
1653 int ret;
1654 struct btrfsic_state *state = dev_state->state;
1655 struct block_device *bdev = dev_state->bdev;
1656
1657 WARN_ON(len > PAGE_SIZE);
1658 is_metadata = (0 == btrfsic_test_for_metadata(state, mapped_data, len));
1659 if (NULL != bio_is_patched)
1660 *bio_is_patched = 0;
1661
1662 block = btrfsic_block_hashtable_lookup(bdev, dev_bytenr,
1663 &state->block_hashtable);
1664 if (NULL != block) {
1665 u64 bytenr;
1666 struct list_head *elem_ref_to;
1667 struct list_head *tmp_ref_to;
1668
1669 if (block->is_superblock) {
1670 bytenr = le64_to_cpu(((struct btrfs_super_block *)
1671 mapped_data)->bytenr);
1672 is_metadata = 1;
1673 if (state->print_mask &
1674 BTRFSIC_PRINT_MASK_TREE_BEFORE_SB_WRITE) {
1675 printk(KERN_INFO
1676 "[before new superblock is written]:\n");
1677 btrfsic_dump_tree_sub(state, block, 0);
1678 }
1679 }
1680 if (is_metadata) {
1681 if (!block->is_superblock) {
1682 bytenr = le64_to_cpu(((struct btrfs_header *)
1683 mapped_data)->bytenr);
1684 btrfsic_cmp_log_and_dev_bytenr(state, bytenr,
1685 dev_state,
1686 dev_bytenr,
1687 mapped_data);
1688 }
1689 if (block->logical_bytenr != bytenr) {
1690 printk(KERN_INFO
1691 "Written block @%llu (%s/%llu/%d)"
1692 " found in hash table, %c,"
1693 " bytenr mismatch"
1694 " (!= stored %llu).\n",
1695 (unsigned long long)bytenr,
1696 dev_state->name,
1697 (unsigned long long)dev_bytenr,
1698 block->mirror_num,
1699 btrfsic_get_block_type(state, block),
1700 (unsigned long long)
1701 block->logical_bytenr);
1702 block->logical_bytenr = bytenr;
1703 } else if (state->print_mask &
1704 BTRFSIC_PRINT_MASK_VERBOSE)
1705 printk(KERN_INFO
1706 "Written block @%llu (%s/%llu/%d)"
1707 " found in hash table, %c.\n",
1708 (unsigned long long)bytenr,
1709 dev_state->name,
1710 (unsigned long long)dev_bytenr,
1711 block->mirror_num,
1712 btrfsic_get_block_type(state, block));
1713 } else {
1714 bytenr = block->logical_bytenr;
1715 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1716 printk(KERN_INFO
1717 "Written block @%llu (%s/%llu/%d)"
1718 " found in hash table, %c.\n",
1719 (unsigned long long)bytenr,
1720 dev_state->name,
1721 (unsigned long long)dev_bytenr,
1722 block->mirror_num,
1723 btrfsic_get_block_type(state, block));
1724 }
1725
1726 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1727 printk(KERN_INFO
1728 "ref_to_list: %cE, ref_from_list: %cE\n",
1729 list_empty(&block->ref_to_list) ? ' ' : '!',
1730 list_empty(&block->ref_from_list) ? ' ' : '!');
1731 if (btrfsic_is_block_ref_by_superblock(state, block, 0)) {
1732 printk(KERN_INFO "btrfs: attempt to overwrite %c-block"
1733 " @%llu (%s/%llu/%d), old(gen=%llu,"
1734 " objectid=%llu, type=%d, offset=%llu),"
1735 " new(gen=%llu),"
1736 " which is referenced by most recent superblock"
1737 " (superblockgen=%llu)!\n",
1738 btrfsic_get_block_type(state, block),
1739 (unsigned long long)bytenr,
1740 dev_state->name,
1741 (unsigned long long)dev_bytenr,
1742 block->mirror_num,
1743 (unsigned long long)block->generation,
1744 (unsigned long long)
1745 le64_to_cpu(block->disk_key.objectid),
1746 block->disk_key.type,
1747 (unsigned long long)
1748 le64_to_cpu(block->disk_key.offset),
1749 (unsigned long long)
1750 le64_to_cpu(((struct btrfs_header *)
1751 mapped_data)->generation),
1752 (unsigned long long)
1753 state->max_superblock_generation);
1754 btrfsic_dump_tree(state);
1755 }
1756
1757 if (!block->is_iodone && !block->never_written) {
1758 printk(KERN_INFO "btrfs: attempt to overwrite %c-block"
1759 " @%llu (%s/%llu/%d), oldgen=%llu, newgen=%llu,"
1760 " which is not yet iodone!\n",
1761 btrfsic_get_block_type(state, block),
1762 (unsigned long long)bytenr,
1763 dev_state->name,
1764 (unsigned long long)dev_bytenr,
1765 block->mirror_num,
1766 (unsigned long long)block->generation,
1767 (unsigned long long)
1768 le64_to_cpu(((struct btrfs_header *)
1769 mapped_data)->generation));
1770 /* it would not be safe to go on */
1771 btrfsic_dump_tree(state);
1772 return;
1773 }
1774
1775 /*
1776 * Clear all references of this block. Do not free
1777 * the block itself even if is not referenced anymore
1778 * because it still carries valueable information
1779 * like whether it was ever written and IO completed.
1780 */
1781 list_for_each_safe(elem_ref_to, tmp_ref_to,
1782 &block->ref_to_list) {
1783 struct btrfsic_block_link *const l =
1784 list_entry(elem_ref_to,
1785 struct btrfsic_block_link,
1786 node_ref_to);
1787
1788 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1789 btrfsic_print_rem_link(state, l);
1790 l->ref_cnt--;
1791 if (0 == l->ref_cnt) {
1792 list_del(&l->node_ref_to);
1793 list_del(&l->node_ref_from);
1794 btrfsic_block_link_hashtable_remove(l);
1795 btrfsic_block_link_free(l);
1796 }
1797 }
1798
1799 if (block->is_superblock)
1800 ret = btrfsic_map_superblock(state, bytenr, len,
1801 bdev, &block_ctx);
1802 else
1803 ret = btrfsic_map_block(state, bytenr, len,
1804 &block_ctx, 0);
1805 if (ret) {
1806 printk(KERN_INFO
1807 "btrfsic: btrfsic_map_block(root @%llu)"
1808 " failed!\n", (unsigned long long)bytenr);
1809 return;
1810 }
1811 block_ctx.data = mapped_data;
1812 /* the following is required in case of writes to mirrors,
1813 * use the same that was used for the lookup */
1814 block_ctx.dev = dev_state;
1815 block_ctx.dev_bytenr = dev_bytenr;
1816
1817 if (is_metadata || state->include_extent_data) {
1818 block->never_written = 0;
1819 block->iodone_w_error = 0;
1820 if (NULL != bio) {
1821 block->is_iodone = 0;
1822 BUG_ON(NULL == bio_is_patched);
1823 if (!*bio_is_patched) {
1824 block->orig_bio_bh_private =
1825 bio->bi_private;
1826 block->orig_bio_bh_end_io.bio =
1827 bio->bi_end_io;
1828 block->next_in_same_bio = NULL;
1829 bio->bi_private = block;
1830 bio->bi_end_io = btrfsic_bio_end_io;
1831 *bio_is_patched = 1;
1832 } else {
1833 struct btrfsic_block *chained_block =
1834 (struct btrfsic_block *)
1835 bio->bi_private;
1836
1837 BUG_ON(NULL == chained_block);
1838 block->orig_bio_bh_private =
1839 chained_block->orig_bio_bh_private;
1840 block->orig_bio_bh_end_io.bio =
1841 chained_block->orig_bio_bh_end_io.
1842 bio;
1843 block->next_in_same_bio = chained_block;
1844 bio->bi_private = block;
1845 }
1846 } else if (NULL != bh) {
1847 block->is_iodone = 0;
1848 block->orig_bio_bh_private = bh->b_private;
1849 block->orig_bio_bh_end_io.bh = bh->b_end_io;
1850 block->next_in_same_bio = NULL;
1851 bh->b_private = block;
1852 bh->b_end_io = btrfsic_bh_end_io;
1853 } else {
1854 block->is_iodone = 1;
1855 block->orig_bio_bh_private = NULL;
1856 block->orig_bio_bh_end_io.bio = NULL;
1857 block->next_in_same_bio = NULL;
1858 }
1859 }
1860
1861 block->flush_gen = dev_state->last_flush_gen + 1;
1862 block->submit_bio_bh_rw = submit_bio_bh_rw;
1863 if (is_metadata) {
1864 block->logical_bytenr = bytenr;
1865 block->is_metadata = 1;
1866 if (block->is_superblock) {
1867 ret = btrfsic_process_written_superblock(
1868 state,
1869 block,
1870 (struct btrfs_super_block *)
1871 mapped_data);
1872 if (state->print_mask &
1873 BTRFSIC_PRINT_MASK_TREE_AFTER_SB_WRITE) {
1874 printk(KERN_INFO
1875 "[after new superblock is written]:\n");
1876 btrfsic_dump_tree_sub(state, block, 0);
1877 }
1878 } else {
1879 block->mirror_num = 0; /* unknown */
1880 ret = btrfsic_process_metablock(
1881 state,
1882 block,
1883 &block_ctx,
1884 (struct btrfs_header *)
1885 block_ctx.data,
1886 0, 0);
1887 }
1888 if (ret)
1889 printk(KERN_INFO
1890 "btrfsic: btrfsic_process_metablock"
1891 "(root @%llu) failed!\n",
1892 (unsigned long long)dev_bytenr);
1893 } else {
1894 block->is_metadata = 0;
1895 block->mirror_num = 0; /* unknown */
1896 block->generation = BTRFSIC_GENERATION_UNKNOWN;
1897 if (!state->include_extent_data
1898 && list_empty(&block->ref_from_list)) {
1899 /*
1900 * disk block is overwritten with extent
1901 * data (not meta data) and we are configured
1902 * to not include extent data: take the
1903 * chance and free the block's memory
1904 */
1905 btrfsic_block_hashtable_remove(block);
1906 list_del(&block->all_blocks_node);
1907 btrfsic_block_free(block);
1908 }
1909 }
1910 btrfsic_release_block_ctx(&block_ctx);
1911 } else {
1912 /* block has not been found in hash table */
1913 u64 bytenr;
1914
1915 if (!is_metadata) {
1916 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1917 printk(KERN_INFO "Written block (%s/%llu/?)"
1918 " !found in hash table, D.\n",
1919 dev_state->name,
1920 (unsigned long long)dev_bytenr);
1921 if (!state->include_extent_data)
1922 return; /* ignore that written D block */
1923
1924 /* this is getting ugly for the
1925 * include_extent_data case... */
1926 bytenr = 0; /* unknown */
1927 block_ctx.start = bytenr;
1928 block_ctx.len = len;
1929 block_ctx.bh = NULL;
1930 } else {
1931 bytenr = le64_to_cpu(((struct btrfs_header *)
1932 mapped_data)->bytenr);
1933 btrfsic_cmp_log_and_dev_bytenr(state, bytenr, dev_state,
1934 dev_bytenr,
1935 mapped_data);
1936 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1937 printk(KERN_INFO
1938 "Written block @%llu (%s/%llu/?)"
1939 " !found in hash table, M.\n",
1940 (unsigned long long)bytenr,
1941 dev_state->name,
1942 (unsigned long long)dev_bytenr);
1943
1944 ret = btrfsic_map_block(state, bytenr, len, &block_ctx,
1945 0);
1946 if (ret) {
1947 printk(KERN_INFO
1948 "btrfsic: btrfsic_map_block(root @%llu)"
1949 " failed!\n",
1950 (unsigned long long)dev_bytenr);
1951 return;
1952 }
1953 }
1954 block_ctx.data = mapped_data;
1955 /* the following is required in case of writes to mirrors,
1956 * use the same that was used for the lookup */
1957 block_ctx.dev = dev_state;
1958 block_ctx.dev_bytenr = dev_bytenr;
1959
1960 block = btrfsic_block_alloc();
1961 if (NULL == block) {
1962 printk(KERN_INFO "btrfsic: error, kmalloc failed!\n");
1963 btrfsic_release_block_ctx(&block_ctx);
1964 return;
1965 }
1966 block->dev_state = dev_state;
1967 block->dev_bytenr = dev_bytenr;
1968 block->logical_bytenr = bytenr;
1969 block->is_metadata = is_metadata;
1970 block->never_written = 0;
1971 block->iodone_w_error = 0;
1972 block->mirror_num = 0; /* unknown */
1973 block->flush_gen = dev_state->last_flush_gen + 1;
1974 block->submit_bio_bh_rw = submit_bio_bh_rw;
1975 if (NULL != bio) {
1976 block->is_iodone = 0;
1977 BUG_ON(NULL == bio_is_patched);
1978 if (!*bio_is_patched) {
1979 block->orig_bio_bh_private = bio->bi_private;
1980 block->orig_bio_bh_end_io.bio = bio->bi_end_io;
1981 block->next_in_same_bio = NULL;
1982 bio->bi_private = block;
1983 bio->bi_end_io = btrfsic_bio_end_io;
1984 *bio_is_patched = 1;
1985 } else {
1986 struct btrfsic_block *chained_block =
1987 (struct btrfsic_block *)
1988 bio->bi_private;
1989
1990 BUG_ON(NULL == chained_block);
1991 block->orig_bio_bh_private =
1992 chained_block->orig_bio_bh_private;
1993 block->orig_bio_bh_end_io.bio =
1994 chained_block->orig_bio_bh_end_io.bio;
1995 block->next_in_same_bio = chained_block;
1996 bio->bi_private = block;
1997 }
1998 } else if (NULL != bh) {
1999 block->is_iodone = 0;
2000 block->orig_bio_bh_private = bh->b_private;
2001 block->orig_bio_bh_end_io.bh = bh->b_end_io;
2002 block->next_in_same_bio = NULL;
2003 bh->b_private = block;
2004 bh->b_end_io = btrfsic_bh_end_io;
2005 } else {
2006 block->is_iodone = 1;
2007 block->orig_bio_bh_private = NULL;
2008 block->orig_bio_bh_end_io.bio = NULL;
2009 block->next_in_same_bio = NULL;
2010 }
2011 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2012 printk(KERN_INFO
2013 "New written %c-block @%llu (%s/%llu/%d)\n",
2014 is_metadata ? 'M' : 'D',
2015 (unsigned long long)block->logical_bytenr,
2016 block->dev_state->name,
2017 (unsigned long long)block->dev_bytenr,
2018 block->mirror_num);
2019 list_add(&block->all_blocks_node, &state->all_blocks_list);
2020 btrfsic_block_hashtable_add(block, &state->block_hashtable);
2021
2022 if (is_metadata) {
2023 ret = btrfsic_process_metablock(state, block,
2024 &block_ctx,
2025 (struct btrfs_header *)
2026 block_ctx.data, 0, 0);
2027 if (ret)
2028 printk(KERN_INFO
2029 "btrfsic: process_metablock(root @%llu)"
2030 " failed!\n",
2031 (unsigned long long)dev_bytenr);
2032 }
2033 btrfsic_release_block_ctx(&block_ctx);
2034 }
2035}
2036
2037static void btrfsic_bio_end_io(struct bio *bp, int bio_error_status)
2038{
2039 struct btrfsic_block *block = (struct btrfsic_block *)bp->bi_private;
2040 int iodone_w_error;
2041
2042 /* mutex is not held! This is not save if IO is not yet completed
2043 * on umount */
2044 iodone_w_error = 0;
2045 if (bio_error_status)
2046 iodone_w_error = 1;
2047
2048 BUG_ON(NULL == block);
2049 bp->bi_private = block->orig_bio_bh_private;
2050 bp->bi_end_io = block->orig_bio_bh_end_io.bio;
2051
2052 do {
2053 struct btrfsic_block *next_block;
2054 struct btrfsic_dev_state *const dev_state = block->dev_state;
2055
2056 if ((dev_state->state->print_mask &
2057 BTRFSIC_PRINT_MASK_END_IO_BIO_BH))
2058 printk(KERN_INFO
2059 "bio_end_io(err=%d) for %c @%llu (%s/%llu/%d)\n",
2060 bio_error_status,
2061 btrfsic_get_block_type(dev_state->state, block),
2062 (unsigned long long)block->logical_bytenr,
2063 dev_state->name,
2064 (unsigned long long)block->dev_bytenr,
2065 block->mirror_num);
2066 next_block = block->next_in_same_bio;
2067 block->iodone_w_error = iodone_w_error;
2068 if (block->submit_bio_bh_rw & REQ_FLUSH) {
2069 dev_state->last_flush_gen++;
2070 if ((dev_state->state->print_mask &
2071 BTRFSIC_PRINT_MASK_END_IO_BIO_BH))
2072 printk(KERN_INFO
2073 "bio_end_io() new %s flush_gen=%llu\n",
2074 dev_state->name,
2075 (unsigned long long)
2076 dev_state->last_flush_gen);
2077 }
2078 if (block->submit_bio_bh_rw & REQ_FUA)
2079 block->flush_gen = 0; /* FUA completed means block is
2080 * on disk */
2081 block->is_iodone = 1; /* for FLUSH, this releases the block */
2082 block = next_block;
2083 } while (NULL != block);
2084
2085 bp->bi_end_io(bp, bio_error_status);
2086}
2087
2088static void btrfsic_bh_end_io(struct buffer_head *bh, int uptodate)
2089{
2090 struct btrfsic_block *block = (struct btrfsic_block *)bh->b_private;
2091 int iodone_w_error = !uptodate;
2092 struct btrfsic_dev_state *dev_state;
2093
2094 BUG_ON(NULL == block);
2095 dev_state = block->dev_state;
2096 if ((dev_state->state->print_mask & BTRFSIC_PRINT_MASK_END_IO_BIO_BH))
2097 printk(KERN_INFO
2098 "bh_end_io(error=%d) for %c @%llu (%s/%llu/%d)\n",
2099 iodone_w_error,
2100 btrfsic_get_block_type(dev_state->state, block),
2101 (unsigned long long)block->logical_bytenr,
2102 block->dev_state->name,
2103 (unsigned long long)block->dev_bytenr,
2104 block->mirror_num);
2105
2106 block->iodone_w_error = iodone_w_error;
2107 if (block->submit_bio_bh_rw & REQ_FLUSH) {
2108 dev_state->last_flush_gen++;
2109 if ((dev_state->state->print_mask &
2110 BTRFSIC_PRINT_MASK_END_IO_BIO_BH))
2111 printk(KERN_INFO
2112 "bh_end_io() new %s flush_gen=%llu\n",
2113 dev_state->name,
2114 (unsigned long long)dev_state->last_flush_gen);
2115 }
2116 if (block->submit_bio_bh_rw & REQ_FUA)
2117 block->flush_gen = 0; /* FUA completed means block is on disk */
2118
2119 bh->b_private = block->orig_bio_bh_private;
2120 bh->b_end_io = block->orig_bio_bh_end_io.bh;
2121 block->is_iodone = 1; /* for FLUSH, this releases the block */
2122 bh->b_end_io(bh, uptodate);
2123}
2124
2125static int btrfsic_process_written_superblock(
2126 struct btrfsic_state *state,
2127 struct btrfsic_block *const superblock,
2128 struct btrfs_super_block *const super_hdr)
2129{
2130 int pass;
2131
2132 superblock->generation = btrfs_super_generation(super_hdr);
2133 if (!(superblock->generation > state->max_superblock_generation ||
2134 0 == state->max_superblock_generation)) {
2135 if (state->print_mask & BTRFSIC_PRINT_MASK_SUPERBLOCK_WRITE)
2136 printk(KERN_INFO
2137 "btrfsic: superblock @%llu (%s/%llu/%d)"
2138 " with old gen %llu <= %llu\n",
2139 (unsigned long long)superblock->logical_bytenr,
2140 superblock->dev_state->name,
2141 (unsigned long long)superblock->dev_bytenr,
2142 superblock->mirror_num,
2143 (unsigned long long)
2144 btrfs_super_generation(super_hdr),
2145 (unsigned long long)
2146 state->max_superblock_generation);
2147 } else {
2148 if (state->print_mask & BTRFSIC_PRINT_MASK_SUPERBLOCK_WRITE)
2149 printk(KERN_INFO
2150 "btrfsic: got new superblock @%llu (%s/%llu/%d)"
2151 " with new gen %llu > %llu\n",
2152 (unsigned long long)superblock->logical_bytenr,
2153 superblock->dev_state->name,
2154 (unsigned long long)superblock->dev_bytenr,
2155 superblock->mirror_num,
2156 (unsigned long long)
2157 btrfs_super_generation(super_hdr),
2158 (unsigned long long)
2159 state->max_superblock_generation);
2160
2161 state->max_superblock_generation =
2162 btrfs_super_generation(super_hdr);
2163 state->latest_superblock = superblock;
2164 }
2165
2166 for (pass = 0; pass < 3; pass++) {
2167 int ret;
2168 u64 next_bytenr;
2169 struct btrfsic_block *next_block;
2170 struct btrfsic_block_data_ctx tmp_next_block_ctx;
2171 struct btrfsic_block_link *l;
2172 int num_copies;
2173 int mirror_num;
2174 const char *additional_string = NULL;
2175 struct btrfs_disk_key tmp_disk_key;
2176
2177 tmp_disk_key.type = BTRFS_ROOT_ITEM_KEY;
2178 tmp_disk_key.offset = 0;
2179
2180 switch (pass) {
2181 case 0:
2182 tmp_disk_key.objectid =
2183 cpu_to_le64(BTRFS_ROOT_TREE_OBJECTID);
2184 additional_string = "root ";
2185 next_bytenr = btrfs_super_root(super_hdr);
2186 if (state->print_mask &
2187 BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
2188 printk(KERN_INFO "root@%llu\n",
2189 (unsigned long long)next_bytenr);
2190 break;
2191 case 1:
2192 tmp_disk_key.objectid =
2193 cpu_to_le64(BTRFS_CHUNK_TREE_OBJECTID);
2194 additional_string = "chunk ";
2195 next_bytenr = btrfs_super_chunk_root(super_hdr);
2196 if (state->print_mask &
2197 BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
2198 printk(KERN_INFO "chunk@%llu\n",
2199 (unsigned long long)next_bytenr);
2200 break;
2201 case 2:
2202 tmp_disk_key.objectid =
2203 cpu_to_le64(BTRFS_TREE_LOG_OBJECTID);
2204 additional_string = "log ";
2205 next_bytenr = btrfs_super_log_root(super_hdr);
2206 if (0 == next_bytenr)
2207 continue;
2208 if (state->print_mask &
2209 BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
2210 printk(KERN_INFO "log@%llu\n",
2211 (unsigned long long)next_bytenr);
2212 break;
2213 }
2214
2215 num_copies =
2216 btrfs_num_copies(&state->root->fs_info->mapping_tree,
2217 next_bytenr, PAGE_SIZE);
2218 if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES)
2219 printk(KERN_INFO "num_copies(log_bytenr=%llu) = %d\n",
2220 (unsigned long long)next_bytenr, num_copies);
2221 for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
2222 int was_created;
2223
2224 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2225 printk(KERN_INFO
2226 "btrfsic_process_written_superblock("
2227 "mirror_num=%d)\n", mirror_num);
2228 ret = btrfsic_map_block(state, next_bytenr, PAGE_SIZE,
2229 &tmp_next_block_ctx,
2230 mirror_num);
2231 if (ret) {
2232 printk(KERN_INFO
2233 "btrfsic: btrfsic_map_block(@%llu,"
2234 " mirror=%d) failed!\n",
2235 (unsigned long long)next_bytenr,
2236 mirror_num);
2237 return -1;
2238 }
2239
2240 next_block = btrfsic_block_lookup_or_add(
2241 state,
2242 &tmp_next_block_ctx,
2243 additional_string,
2244 1, 0, 1,
2245 mirror_num,
2246 &was_created);
2247 if (NULL == next_block) {
2248 printk(KERN_INFO
2249 "btrfsic: error, kmalloc failed!\n");
2250 btrfsic_release_block_ctx(&tmp_next_block_ctx);
2251 return -1;
2252 }
2253
2254 next_block->disk_key = tmp_disk_key;
2255 if (was_created)
2256 next_block->generation =
2257 BTRFSIC_GENERATION_UNKNOWN;
2258 l = btrfsic_block_link_lookup_or_add(
2259 state,
2260 &tmp_next_block_ctx,
2261 next_block,
2262 superblock,
2263 BTRFSIC_GENERATION_UNKNOWN);
2264 btrfsic_release_block_ctx(&tmp_next_block_ctx);
2265 if (NULL == l)
2266 return -1;
2267 }
2268 }
2269
2270 if (-1 == btrfsic_check_all_ref_blocks(state, superblock, 0)) {
2271 WARN_ON(1);
2272 btrfsic_dump_tree(state);
2273 }
2274
2275 return 0;
2276}
2277
2278static int btrfsic_check_all_ref_blocks(struct btrfsic_state *state,
2279 struct btrfsic_block *const block,
2280 int recursion_level)
2281{
2282 struct list_head *elem_ref_to;
2283 int ret = 0;
2284
2285 if (recursion_level >= 3 + BTRFS_MAX_LEVEL) {
2286 /*
2287 * Note that this situation can happen and does not
2288 * indicate an error in regular cases. It happens
2289 * when disk blocks are freed and later reused.
2290 * The check-integrity module is not aware of any
2291 * block free operations, it just recognizes block
2292 * write operations. Therefore it keeps the linkage
2293 * information for a block until a block is
2294 * rewritten. This can temporarily cause incorrect
2295 * and even circular linkage informations. This
2296 * causes no harm unless such blocks are referenced
2297 * by the most recent super block.
2298 */
2299 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2300 printk(KERN_INFO
2301 "btrfsic: abort cyclic linkage (case 1).\n");
2302
2303 return ret;
2304 }
2305
2306 /*
2307 * This algorithm is recursive because the amount of used stack
2308 * space is very small and the max recursion depth is limited.
2309 */
2310 list_for_each(elem_ref_to, &block->ref_to_list) {
2311 const struct btrfsic_block_link *const l =
2312 list_entry(elem_ref_to, struct btrfsic_block_link,
2313 node_ref_to);
2314
2315 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2316 printk(KERN_INFO
2317 "rl=%d, %c @%llu (%s/%llu/%d)"
2318 " %u* refers to %c @%llu (%s/%llu/%d)\n",
2319 recursion_level,
2320 btrfsic_get_block_type(state, block),
2321 (unsigned long long)block->logical_bytenr,
2322 block->dev_state->name,
2323 (unsigned long long)block->dev_bytenr,
2324 block->mirror_num,
2325 l->ref_cnt,
2326 btrfsic_get_block_type(state, l->block_ref_to),
2327 (unsigned long long)
2328 l->block_ref_to->logical_bytenr,
2329 l->block_ref_to->dev_state->name,
2330 (unsigned long long)l->block_ref_to->dev_bytenr,
2331 l->block_ref_to->mirror_num);
2332 if (l->block_ref_to->never_written) {
2333 printk(KERN_INFO "btrfs: attempt to write superblock"
2334 " which references block %c @%llu (%s/%llu/%d)"
2335 " which is never written!\n",
2336 btrfsic_get_block_type(state, l->block_ref_to),
2337 (unsigned long long)
2338 l->block_ref_to->logical_bytenr,
2339 l->block_ref_to->dev_state->name,
2340 (unsigned long long)l->block_ref_to->dev_bytenr,
2341 l->block_ref_to->mirror_num);
2342 ret = -1;
2343 } else if (!l->block_ref_to->is_iodone) {
2344 printk(KERN_INFO "btrfs: attempt to write superblock"
2345 " which references block %c @%llu (%s/%llu/%d)"
2346 " which is not yet iodone!\n",
2347 btrfsic_get_block_type(state, l->block_ref_to),
2348 (unsigned long long)
2349 l->block_ref_to->logical_bytenr,
2350 l->block_ref_to->dev_state->name,
2351 (unsigned long long)l->block_ref_to->dev_bytenr,
2352 l->block_ref_to->mirror_num);
2353 ret = -1;
2354 } else if (l->parent_generation !=
2355 l->block_ref_to->generation &&
2356 BTRFSIC_GENERATION_UNKNOWN !=
2357 l->parent_generation &&
2358 BTRFSIC_GENERATION_UNKNOWN !=
2359 l->block_ref_to->generation) {
2360 printk(KERN_INFO "btrfs: attempt to write superblock"
2361 " which references block %c @%llu (%s/%llu/%d)"
2362 " with generation %llu !="
2363 " parent generation %llu!\n",
2364 btrfsic_get_block_type(state, l->block_ref_to),
2365 (unsigned long long)
2366 l->block_ref_to->logical_bytenr,
2367 l->block_ref_to->dev_state->name,
2368 (unsigned long long)l->block_ref_to->dev_bytenr,
2369 l->block_ref_to->mirror_num,
2370 (unsigned long long)l->block_ref_to->generation,
2371 (unsigned long long)l->parent_generation);
2372 ret = -1;
2373 } else if (l->block_ref_to->flush_gen >
2374 l->block_ref_to->dev_state->last_flush_gen) {
2375 printk(KERN_INFO "btrfs: attempt to write superblock"
2376 " which references block %c @%llu (%s/%llu/%d)"
2377 " which is not flushed out of disk's write cache"
2378 " (block flush_gen=%llu,"
2379 " dev->flush_gen=%llu)!\n",
2380 btrfsic_get_block_type(state, l->block_ref_to),
2381 (unsigned long long)
2382 l->block_ref_to->logical_bytenr,
2383 l->block_ref_to->dev_state->name,
2384 (unsigned long long)l->block_ref_to->dev_bytenr,
2385 l->block_ref_to->mirror_num,
2386 (unsigned long long)block->flush_gen,
2387 (unsigned long long)
2388 l->block_ref_to->dev_state->last_flush_gen);
2389 ret = -1;
2390 } else if (-1 == btrfsic_check_all_ref_blocks(state,
2391 l->block_ref_to,
2392 recursion_level +
2393 1)) {
2394 ret = -1;
2395 }
2396 }
2397
2398 return ret;
2399}
2400
2401static int btrfsic_is_block_ref_by_superblock(
2402 const struct btrfsic_state *state,
2403 const struct btrfsic_block *block,
2404 int recursion_level)
2405{
2406 struct list_head *elem_ref_from;
2407
2408 if (recursion_level >= 3 + BTRFS_MAX_LEVEL) {
2409 /* refer to comment at "abort cyclic linkage (case 1)" */
2410 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2411 printk(KERN_INFO
2412 "btrfsic: abort cyclic linkage (case 2).\n");
2413
2414 return 0;
2415 }
2416
2417 /*
2418 * This algorithm is recursive because the amount of used stack space
2419 * is very small and the max recursion depth is limited.
2420 */
2421 list_for_each(elem_ref_from, &block->ref_from_list) {
2422 const struct btrfsic_block_link *const l =
2423 list_entry(elem_ref_from, struct btrfsic_block_link,
2424 node_ref_from);
2425
2426 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2427 printk(KERN_INFO
2428 "rl=%d, %c @%llu (%s/%llu/%d)"
2429 " is ref %u* from %c @%llu (%s/%llu/%d)\n",
2430 recursion_level,
2431 btrfsic_get_block_type(state, block),
2432 (unsigned long long)block->logical_bytenr,
2433 block->dev_state->name,
2434 (unsigned long long)block->dev_bytenr,
2435 block->mirror_num,
2436 l->ref_cnt,
2437 btrfsic_get_block_type(state, l->block_ref_from),
2438 (unsigned long long)
2439 l->block_ref_from->logical_bytenr,
2440 l->block_ref_from->dev_state->name,
2441 (unsigned long long)
2442 l->block_ref_from->dev_bytenr,
2443 l->block_ref_from->mirror_num);
2444 if (l->block_ref_from->is_superblock &&
2445 state->latest_superblock->dev_bytenr ==
2446 l->block_ref_from->dev_bytenr &&
2447 state->latest_superblock->dev_state->bdev ==
2448 l->block_ref_from->dev_state->bdev)
2449 return 1;
2450 else if (btrfsic_is_block_ref_by_superblock(state,
2451 l->block_ref_from,
2452 recursion_level +
2453 1))
2454 return 1;
2455 }
2456
2457 return 0;
2458}
2459
2460static void btrfsic_print_add_link(const struct btrfsic_state *state,
2461 const struct btrfsic_block_link *l)
2462{
2463 printk(KERN_INFO
2464 "Add %u* link from %c @%llu (%s/%llu/%d)"
2465 " to %c @%llu (%s/%llu/%d).\n",
2466 l->ref_cnt,
2467 btrfsic_get_block_type(state, l->block_ref_from),
2468 (unsigned long long)l->block_ref_from->logical_bytenr,
2469 l->block_ref_from->dev_state->name,
2470 (unsigned long long)l->block_ref_from->dev_bytenr,
2471 l->block_ref_from->mirror_num,
2472 btrfsic_get_block_type(state, l->block_ref_to),
2473 (unsigned long long)l->block_ref_to->logical_bytenr,
2474 l->block_ref_to->dev_state->name,
2475 (unsigned long long)l->block_ref_to->dev_bytenr,
2476 l->block_ref_to->mirror_num);
2477}
2478
2479static void btrfsic_print_rem_link(const struct btrfsic_state *state,
2480 const struct btrfsic_block_link *l)
2481{
2482 printk(KERN_INFO
2483 "Rem %u* link from %c @%llu (%s/%llu/%d)"
2484 " to %c @%llu (%s/%llu/%d).\n",
2485 l->ref_cnt,
2486 btrfsic_get_block_type(state, l->block_ref_from),
2487 (unsigned long long)l->block_ref_from->logical_bytenr,
2488 l->block_ref_from->dev_state->name,
2489 (unsigned long long)l->block_ref_from->dev_bytenr,
2490 l->block_ref_from->mirror_num,
2491 btrfsic_get_block_type(state, l->block_ref_to),
2492 (unsigned long long)l->block_ref_to->logical_bytenr,
2493 l->block_ref_to->dev_state->name,
2494 (unsigned long long)l->block_ref_to->dev_bytenr,
2495 l->block_ref_to->mirror_num);
2496}
2497
2498static char btrfsic_get_block_type(const struct btrfsic_state *state,
2499 const struct btrfsic_block *block)
2500{
2501 if (block->is_superblock &&
2502 state->latest_superblock->dev_bytenr == block->dev_bytenr &&
2503 state->latest_superblock->dev_state->bdev == block->dev_state->bdev)
2504 return 'S';
2505 else if (block->is_superblock)
2506 return 's';
2507 else if (block->is_metadata)
2508 return 'M';
2509 else
2510 return 'D';
2511}
2512
2513static void btrfsic_dump_tree(const struct btrfsic_state *state)
2514{
2515 btrfsic_dump_tree_sub(state, state->latest_superblock, 0);
2516}
2517
2518static void btrfsic_dump_tree_sub(const struct btrfsic_state *state,
2519 const struct btrfsic_block *block,
2520 int indent_level)
2521{
2522 struct list_head *elem_ref_to;
2523 int indent_add;
2524 static char buf[80];
2525 int cursor_position;
2526
2527 /*
2528 * Should better fill an on-stack buffer with a complete line and
2529 * dump it at once when it is time to print a newline character.
2530 */
2531
2532 /*
2533 * This algorithm is recursive because the amount of used stack space
2534 * is very small and the max recursion depth is limited.
2535 */
2536 indent_add = sprintf(buf, "%c-%llu(%s/%llu/%d)",
2537 btrfsic_get_block_type(state, block),
2538 (unsigned long long)block->logical_bytenr,
2539 block->dev_state->name,
2540 (unsigned long long)block->dev_bytenr,
2541 block->mirror_num);
2542 if (indent_level + indent_add > BTRFSIC_TREE_DUMP_MAX_INDENT_LEVEL) {
2543 printk("[...]\n");
2544 return;
2545 }
2546 printk(buf);
2547 indent_level += indent_add;
2548 if (list_empty(&block->ref_to_list)) {
2549 printk("\n");
2550 return;
2551 }
2552 if (block->mirror_num > 1 &&
2553 !(state->print_mask & BTRFSIC_PRINT_MASK_TREE_WITH_ALL_MIRRORS)) {
2554 printk(" [...]\n");
2555 return;
2556 }
2557
2558 cursor_position = indent_level;
2559 list_for_each(elem_ref_to, &block->ref_to_list) {
2560 const struct btrfsic_block_link *const l =
2561 list_entry(elem_ref_to, struct btrfsic_block_link,
2562 node_ref_to);
2563
2564 while (cursor_position < indent_level) {
2565 printk(" ");
2566 cursor_position++;
2567 }
2568 if (l->ref_cnt > 1)
2569 indent_add = sprintf(buf, " %d*--> ", l->ref_cnt);
2570 else
2571 indent_add = sprintf(buf, " --> ");
2572 if (indent_level + indent_add >
2573 BTRFSIC_TREE_DUMP_MAX_INDENT_LEVEL) {
2574 printk("[...]\n");
2575 cursor_position = 0;
2576 continue;
2577 }
2578
2579 printk(buf);
2580
2581 btrfsic_dump_tree_sub(state, l->block_ref_to,
2582 indent_level + indent_add);
2583 cursor_position = 0;
2584 }
2585}
2586
2587static struct btrfsic_block_link *btrfsic_block_link_lookup_or_add(
2588 struct btrfsic_state *state,
2589 struct btrfsic_block_data_ctx *next_block_ctx,
2590 struct btrfsic_block *next_block,
2591 struct btrfsic_block *from_block,
2592 u64 parent_generation)
2593{
2594 struct btrfsic_block_link *l;
2595
2596 l = btrfsic_block_link_hashtable_lookup(next_block_ctx->dev->bdev,
2597 next_block_ctx->dev_bytenr,
2598 from_block->dev_state->bdev,
2599 from_block->dev_bytenr,
2600 &state->block_link_hashtable);
2601 if (NULL == l) {
2602 l = btrfsic_block_link_alloc();
2603 if (NULL == l) {
2604 printk(KERN_INFO
2605 "btrfsic: error, kmalloc" " failed!\n");
2606 return NULL;
2607 }
2608
2609 l->block_ref_to = next_block;
2610 l->block_ref_from = from_block;
2611 l->ref_cnt = 1;
2612 l->parent_generation = parent_generation;
2613
2614 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2615 btrfsic_print_add_link(state, l);
2616
2617 list_add(&l->node_ref_to, &from_block->ref_to_list);
2618 list_add(&l->node_ref_from, &next_block->ref_from_list);
2619
2620 btrfsic_block_link_hashtable_add(l,
2621 &state->block_link_hashtable);
2622 } else {
2623 l->ref_cnt++;
2624 l->parent_generation = parent_generation;
2625 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2626 btrfsic_print_add_link(state, l);
2627 }
2628
2629 return l;
2630}
2631
2632static struct btrfsic_block *btrfsic_block_lookup_or_add(
2633 struct btrfsic_state *state,
2634 struct btrfsic_block_data_ctx *block_ctx,
2635 const char *additional_string,
2636 int is_metadata,
2637 int is_iodone,
2638 int never_written,
2639 int mirror_num,
2640 int *was_created)
2641{
2642 struct btrfsic_block *block;
2643
2644 block = btrfsic_block_hashtable_lookup(block_ctx->dev->bdev,
2645 block_ctx->dev_bytenr,
2646 &state->block_hashtable);
2647 if (NULL == block) {
2648 struct btrfsic_dev_state *dev_state;
2649
2650 block = btrfsic_block_alloc();
2651 if (NULL == block) {
2652 printk(KERN_INFO "btrfsic: error, kmalloc failed!\n");
2653 return NULL;
2654 }
2655 dev_state = btrfsic_dev_state_lookup(block_ctx->dev->bdev);
2656 if (NULL == dev_state) {
2657 printk(KERN_INFO
2658 "btrfsic: error, lookup dev_state failed!\n");
2659 btrfsic_block_free(block);
2660 return NULL;
2661 }
2662 block->dev_state = dev_state;
2663 block->dev_bytenr = block_ctx->dev_bytenr;
2664 block->logical_bytenr = block_ctx->start;
2665 block->is_metadata = is_metadata;
2666 block->is_iodone = is_iodone;
2667 block->never_written = never_written;
2668 block->mirror_num = mirror_num;
2669 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2670 printk(KERN_INFO
2671 "New %s%c-block @%llu (%s/%llu/%d)\n",
2672 additional_string,
2673 btrfsic_get_block_type(state, block),
2674 (unsigned long long)block->logical_bytenr,
2675 dev_state->name,
2676 (unsigned long long)block->dev_bytenr,
2677 mirror_num);
2678 list_add(&block->all_blocks_node, &state->all_blocks_list);
2679 btrfsic_block_hashtable_add(block, &state->block_hashtable);
2680 if (NULL != was_created)
2681 *was_created = 1;
2682 } else {
2683 if (NULL != was_created)
2684 *was_created = 0;
2685 }
2686
2687 return block;
2688}
2689
2690static void btrfsic_cmp_log_and_dev_bytenr(struct btrfsic_state *state,
2691 u64 bytenr,
2692 struct btrfsic_dev_state *dev_state,
2693 u64 dev_bytenr, char *data)
2694{
2695 int num_copies;
2696 int mirror_num;
2697 int ret;
2698 struct btrfsic_block_data_ctx block_ctx;
2699 int match = 0;
2700
2701 num_copies = btrfs_num_copies(&state->root->fs_info->mapping_tree,
2702 bytenr, PAGE_SIZE);
2703
2704 for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
2705 ret = btrfsic_map_block(state, bytenr, PAGE_SIZE,
2706 &block_ctx, mirror_num);
2707 if (ret) {
2708 printk(KERN_INFO "btrfsic:"
2709 " btrfsic_map_block(logical @%llu,"
2710 " mirror %d) failed!\n",
2711 (unsigned long long)bytenr, mirror_num);
2712 continue;
2713 }
2714
2715 if (dev_state->bdev == block_ctx.dev->bdev &&
2716 dev_bytenr == block_ctx.dev_bytenr) {
2717 match++;
2718 btrfsic_release_block_ctx(&block_ctx);
2719 break;
2720 }
2721 btrfsic_release_block_ctx(&block_ctx);
2722 }
2723
2724 if (!match) {
2725 printk(KERN_INFO "btrfs: attempt to write M-block which contains logical bytenr that doesn't map to dev+physical bytenr of submit_bio,"
2726 " buffer->log_bytenr=%llu, submit_bio(bdev=%s,"
2727 " phys_bytenr=%llu)!\n",
2728 (unsigned long long)bytenr, dev_state->name,
2729 (unsigned long long)dev_bytenr);
2730 for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
2731 ret = btrfsic_map_block(state, bytenr, PAGE_SIZE,
2732 &block_ctx, mirror_num);
2733 if (ret)
2734 continue;
2735
2736 printk(KERN_INFO "Read logical bytenr @%llu maps to"
2737 " (%s/%llu/%d)\n",
2738 (unsigned long long)bytenr,
2739 block_ctx.dev->name,
2740 (unsigned long long)block_ctx.dev_bytenr,
2741 mirror_num);
2742 }
2743 WARN_ON(1);
2744 }
2745}
2746
2747static struct btrfsic_dev_state *btrfsic_dev_state_lookup(
2748 struct block_device *bdev)
2749{
2750 struct btrfsic_dev_state *ds;
2751
2752 ds = btrfsic_dev_state_hashtable_lookup(bdev,
2753 &btrfsic_dev_state_hashtable);
2754 return ds;
2755}
2756
2757int btrfsic_submit_bh(int rw, struct buffer_head *bh)
2758{
2759 struct btrfsic_dev_state *dev_state;
2760
2761 if (!btrfsic_is_initialized)
2762 return submit_bh(rw, bh);
2763
2764 mutex_lock(&btrfsic_mutex);
2765 /* since btrfsic_submit_bh() might also be called before
2766 * btrfsic_mount(), this might return NULL */
2767 dev_state = btrfsic_dev_state_lookup(bh->b_bdev);
2768
2769 /* Only called to write the superblock (incl. FLUSH/FUA) */
2770 if (NULL != dev_state &&
2771 (rw & WRITE) && bh->b_size > 0) {
2772 u64 dev_bytenr;
2773
2774 dev_bytenr = 4096 * bh->b_blocknr;
2775 if (dev_state->state->print_mask &
2776 BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH)
2777 printk(KERN_INFO
2778 "submit_bh(rw=0x%x, blocknr=%lu (bytenr %llu),"
2779 " size=%lu, data=%p, bdev=%p)\n",
2780 rw, bh->b_blocknr,
2781 (unsigned long long)dev_bytenr, bh->b_size,
2782 bh->b_data, bh->b_bdev);
2783 btrfsic_process_written_block(dev_state, dev_bytenr,
2784 bh->b_data, bh->b_size, NULL,
2785 NULL, bh, rw);
2786 } else if (NULL != dev_state && (rw & REQ_FLUSH)) {
2787 if (dev_state->state->print_mask &
2788 BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH)
2789 printk(KERN_INFO
2790 "submit_bh(rw=0x%x) FLUSH, bdev=%p)\n",
2791 rw, bh->b_bdev);
2792 if (!dev_state->dummy_block_for_bio_bh_flush.is_iodone) {
2793 if ((dev_state->state->print_mask &
2794 (BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH |
2795 BTRFSIC_PRINT_MASK_VERBOSE)))
2796 printk(KERN_INFO
2797 "btrfsic_submit_bh(%s) with FLUSH"
2798 " but dummy block already in use"
2799 " (ignored)!\n",
2800 dev_state->name);
2801 } else {
2802 struct btrfsic_block *const block =
2803 &dev_state->dummy_block_for_bio_bh_flush;
2804
2805 block->is_iodone = 0;
2806 block->never_written = 0;
2807 block->iodone_w_error = 0;
2808 block->flush_gen = dev_state->last_flush_gen + 1;
2809 block->submit_bio_bh_rw = rw;
2810 block->orig_bio_bh_private = bh->b_private;
2811 block->orig_bio_bh_end_io.bh = bh->b_end_io;
2812 block->next_in_same_bio = NULL;
2813 bh->b_private = block;
2814 bh->b_end_io = btrfsic_bh_end_io;
2815 }
2816 }
2817 mutex_unlock(&btrfsic_mutex);
2818 return submit_bh(rw, bh);
2819}
2820
2821void btrfsic_submit_bio(int rw, struct bio *bio)
2822{
2823 struct btrfsic_dev_state *dev_state;
2824
2825 if (!btrfsic_is_initialized) {
2826 submit_bio(rw, bio);
2827 return;
2828 }
2829
2830 mutex_lock(&btrfsic_mutex);
2831 /* since btrfsic_submit_bio() is also called before
2832 * btrfsic_mount(), this might return NULL */
2833 dev_state = btrfsic_dev_state_lookup(bio->bi_bdev);
2834 if (NULL != dev_state &&
2835 (rw & WRITE) && NULL != bio->bi_io_vec) {
2836 unsigned int i;
2837 u64 dev_bytenr;
2838 int bio_is_patched;
2839
2840 dev_bytenr = 512 * bio->bi_sector;
2841 bio_is_patched = 0;
2842 if (dev_state->state->print_mask &
2843 BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH)
2844 printk(KERN_INFO
2845 "submit_bio(rw=0x%x, bi_vcnt=%u,"
2846 " bi_sector=%lu (bytenr %llu), bi_bdev=%p)\n",
2847 rw, bio->bi_vcnt, bio->bi_sector,
2848 (unsigned long long)dev_bytenr,
2849 bio->bi_bdev);
2850
2851 for (i = 0; i < bio->bi_vcnt; i++) {
2852 u8 *mapped_data;
2853
2854 mapped_data = kmap(bio->bi_io_vec[i].bv_page);
2855 if ((BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH |
2856 BTRFSIC_PRINT_MASK_VERBOSE) ==
2857 (dev_state->state->print_mask &
2858 (BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH |
2859 BTRFSIC_PRINT_MASK_VERBOSE)))
2860 printk(KERN_INFO
2861 "#%u: page=%p, mapped=%p, len=%u,"
2862 " offset=%u\n",
2863 i, bio->bi_io_vec[i].bv_page,
2864 mapped_data,
2865 bio->bi_io_vec[i].bv_len,
2866 bio->bi_io_vec[i].bv_offset);
2867 btrfsic_process_written_block(dev_state, dev_bytenr,
2868 mapped_data,
2869 bio->bi_io_vec[i].bv_len,
2870 bio, &bio_is_patched,
2871 NULL, rw);
2872 kunmap(bio->bi_io_vec[i].bv_page);
2873 dev_bytenr += bio->bi_io_vec[i].bv_len;
2874 }
2875 } else if (NULL != dev_state && (rw & REQ_FLUSH)) {
2876 if (dev_state->state->print_mask &
2877 BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH)
2878 printk(KERN_INFO
2879 "submit_bio(rw=0x%x) FLUSH, bdev=%p)\n",
2880 rw, bio->bi_bdev);
2881 if (!dev_state->dummy_block_for_bio_bh_flush.is_iodone) {
2882 if ((dev_state->state->print_mask &
2883 (BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH |
2884 BTRFSIC_PRINT_MASK_VERBOSE)))
2885 printk(KERN_INFO
2886 "btrfsic_submit_bio(%s) with FLUSH"
2887 " but dummy block already in use"
2888 " (ignored)!\n",
2889 dev_state->name);
2890 } else {
2891 struct btrfsic_block *const block =
2892 &dev_state->dummy_block_for_bio_bh_flush;
2893
2894 block->is_iodone = 0;
2895 block->never_written = 0;
2896 block->iodone_w_error = 0;
2897 block->flush_gen = dev_state->last_flush_gen + 1;
2898 block->submit_bio_bh_rw = rw;
2899 block->orig_bio_bh_private = bio->bi_private;
2900 block->orig_bio_bh_end_io.bio = bio->bi_end_io;
2901 block->next_in_same_bio = NULL;
2902 bio->bi_private = block;
2903 bio->bi_end_io = btrfsic_bio_end_io;
2904 }
2905 }
2906 mutex_unlock(&btrfsic_mutex);
2907
2908 submit_bio(rw, bio);
2909}
2910
2911int btrfsic_mount(struct btrfs_root *root,
2912 struct btrfs_fs_devices *fs_devices,
2913 int including_extent_data, u32 print_mask)
2914{
2915 int ret;
2916 struct btrfsic_state *state;
2917 struct list_head *dev_head = &fs_devices->devices;
2918 struct btrfs_device *device;
2919
2920 state = kzalloc(sizeof(*state), GFP_NOFS);
2921 if (NULL == state) {
2922 printk(KERN_INFO "btrfs check-integrity: kmalloc() failed!\n");
2923 return -1;
2924 }
2925
2926 if (!btrfsic_is_initialized) {
2927 mutex_init(&btrfsic_mutex);
2928 btrfsic_dev_state_hashtable_init(&btrfsic_dev_state_hashtable);
2929 btrfsic_is_initialized = 1;
2930 }
2931 mutex_lock(&btrfsic_mutex);
2932 state->root = root;
2933 state->print_mask = print_mask;
2934 state->include_extent_data = including_extent_data;
2935 state->csum_size = 0;
2936 INIT_LIST_HEAD(&state->all_blocks_list);
2937 btrfsic_block_hashtable_init(&state->block_hashtable);
2938 btrfsic_block_link_hashtable_init(&state->block_link_hashtable);
2939 state->max_superblock_generation = 0;
2940 state->latest_superblock = NULL;
2941
2942 list_for_each_entry(device, dev_head, dev_list) {
2943 struct btrfsic_dev_state *ds;
2944 char *p;
2945
2946 if (!device->bdev || !device->name)
2947 continue;
2948
2949 ds = btrfsic_dev_state_alloc();
2950 if (NULL == ds) {
2951 printk(KERN_INFO
2952 "btrfs check-integrity: kmalloc() failed!\n");
2953 mutex_unlock(&btrfsic_mutex);
2954 return -1;
2955 }
2956 ds->bdev = device->bdev;
2957 ds->state = state;
2958 bdevname(ds->bdev, ds->name);
2959 ds->name[BDEVNAME_SIZE - 1] = '\0';
2960 for (p = ds->name; *p != '\0'; p++);
2961 while (p > ds->name && *p != '/')
2962 p--;
2963 if (*p == '/')
2964 p++;
2965 strlcpy(ds->name, p, sizeof(ds->name));
2966 btrfsic_dev_state_hashtable_add(ds,
2967 &btrfsic_dev_state_hashtable);
2968 }
2969
2970 ret = btrfsic_process_superblock(state, fs_devices);
2971 if (0 != ret) {
2972 mutex_unlock(&btrfsic_mutex);
2973 btrfsic_unmount(root, fs_devices);
2974 return ret;
2975 }
2976
2977 if (state->print_mask & BTRFSIC_PRINT_MASK_INITIAL_DATABASE)
2978 btrfsic_dump_database(state);
2979 if (state->print_mask & BTRFSIC_PRINT_MASK_INITIAL_TREE)
2980 btrfsic_dump_tree(state);
2981
2982 mutex_unlock(&btrfsic_mutex);
2983 return 0;
2984}
2985
2986void btrfsic_unmount(struct btrfs_root *root,
2987 struct btrfs_fs_devices *fs_devices)
2988{
2989 struct list_head *elem_all;
2990 struct list_head *tmp_all;
2991 struct btrfsic_state *state;
2992 struct list_head *dev_head = &fs_devices->devices;
2993 struct btrfs_device *device;
2994
2995 if (!btrfsic_is_initialized)
2996 return;
2997
2998 mutex_lock(&btrfsic_mutex);
2999
3000 state = NULL;
3001 list_for_each_entry(device, dev_head, dev_list) {
3002 struct btrfsic_dev_state *ds;
3003
3004 if (!device->bdev || !device->name)
3005 continue;
3006
3007 ds = btrfsic_dev_state_hashtable_lookup(
3008 device->bdev,
3009 &btrfsic_dev_state_hashtable);
3010 if (NULL != ds) {
3011 state = ds->state;
3012 btrfsic_dev_state_hashtable_remove(ds);
3013 btrfsic_dev_state_free(ds);
3014 }
3015 }
3016
3017 if (NULL == state) {
3018 printk(KERN_INFO
3019 "btrfsic: error, cannot find state information"
3020 " on umount!\n");
3021 mutex_unlock(&btrfsic_mutex);
3022 return;
3023 }
3024
3025 /*
3026 * Don't care about keeping the lists' state up to date,
3027 * just free all memory that was allocated dynamically.
3028 * Free the blocks and the block_links.
3029 */
3030 list_for_each_safe(elem_all, tmp_all, &state->all_blocks_list) {
3031 struct btrfsic_block *const b_all =
3032 list_entry(elem_all, struct btrfsic_block,
3033 all_blocks_node);
3034 struct list_head *elem_ref_to;
3035 struct list_head *tmp_ref_to;
3036
3037 list_for_each_safe(elem_ref_to, tmp_ref_to,
3038 &b_all->ref_to_list) {
3039 struct btrfsic_block_link *const l =
3040 list_entry(elem_ref_to,
3041 struct btrfsic_block_link,
3042 node_ref_to);
3043
3044 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
3045 btrfsic_print_rem_link(state, l);
3046
3047 l->ref_cnt--;
3048 if (0 == l->ref_cnt)
3049 btrfsic_block_link_free(l);
3050 }
3051
3052 if (b_all->is_iodone)
3053 btrfsic_block_free(b_all);
3054 else
3055 printk(KERN_INFO "btrfs: attempt to free %c-block"
3056 " @%llu (%s/%llu/%d) on umount which is"
3057 " not yet iodone!\n",
3058 btrfsic_get_block_type(state, b_all),
3059 (unsigned long long)b_all->logical_bytenr,
3060 b_all->dev_state->name,
3061 (unsigned long long)b_all->dev_bytenr,
3062 b_all->mirror_num);
3063 }
3064
3065 mutex_unlock(&btrfsic_mutex);
3066
3067 kfree(state);
3068}