blob: 7da209ab93788f8cafb30d6532b946897d9ae384 [file] [log] [blame]
Artem Bityutskiy1e517642008-07-14 19:08:37 +03001/*
2 * This file is part of UBIFS.
3 *
4 * Copyright (C) 2006-2008 Nokia Corporation.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 *
19 * Authors: Adrian Hunter
20 * Artem Bityutskiy (Битюцкий Артём)
21 */
22
23/*
24 * This file implements TNC (Tree Node Cache) which caches indexing nodes of
25 * the UBIFS B-tree.
26 *
27 * At the moment the locking rules of the TNC tree are quite simple and
28 * straightforward. We just have a mutex and lock it when we traverse the
29 * tree. If a znode is not in memory, we read it from flash while still having
30 * the mutex locked.
31 */
32
33#include <linux/crc32.h>
34#include "ubifs.h"
35
36/*
37 * Returned codes of 'matches_name()' and 'fallible_matches_name()' functions.
38 * @NAME_LESS: name corresponding to the first argument is less than second
39 * @NAME_MATCHES: names match
40 * @NAME_GREATER: name corresponding to the second argument is greater than
41 * first
42 * @NOT_ON_MEDIA: node referred by zbranch does not exist on the media
43 *
44 * These constants were introduce to improve readability.
45 */
46enum {
47 NAME_LESS = 0,
48 NAME_MATCHES = 1,
49 NAME_GREATER = 2,
50 NOT_ON_MEDIA = 3,
51};
52
53/**
54 * insert_old_idx - record an index node obsoleted since the last commit start.
55 * @c: UBIFS file-system description object
56 * @lnum: LEB number of obsoleted index node
57 * @offs: offset of obsoleted index node
58 *
59 * Returns %0 on success, and a negative error code on failure.
60 *
61 * For recovery, there must always be a complete intact version of the index on
62 * flash at all times. That is called the "old index". It is the index as at the
63 * time of the last successful commit. Many of the index nodes in the old index
64 * may be dirty, but they must not be erased until the next successful commit
65 * (at which point that index becomes the old index).
66 *
67 * That means that the garbage collection and the in-the-gaps method of
68 * committing must be able to determine if an index node is in the old index.
69 * Most of the old index nodes can be found by looking up the TNC using the
70 * 'lookup_znode()' function. However, some of the old index nodes may have
71 * been deleted from the current index or may have been changed so much that
72 * they cannot be easily found. In those cases, an entry is added to an RB-tree.
73 * That is what this function does. The RB-tree is ordered by LEB number and
74 * offset because they uniquely identify the old index node.
75 */
76static int insert_old_idx(struct ubifs_info *c, int lnum, int offs)
77{
78 struct ubifs_old_idx *old_idx, *o;
79 struct rb_node **p, *parent = NULL;
80
81 old_idx = kmalloc(sizeof(struct ubifs_old_idx), GFP_NOFS);
82 if (unlikely(!old_idx))
83 return -ENOMEM;
84 old_idx->lnum = lnum;
85 old_idx->offs = offs;
86
87 p = &c->old_idx.rb_node;
88 while (*p) {
89 parent = *p;
90 o = rb_entry(parent, struct ubifs_old_idx, rb);
91 if (lnum < o->lnum)
92 p = &(*p)->rb_left;
93 else if (lnum > o->lnum)
94 p = &(*p)->rb_right;
95 else if (offs < o->offs)
96 p = &(*p)->rb_left;
97 else if (offs > o->offs)
98 p = &(*p)->rb_right;
99 else {
100 ubifs_err("old idx added twice!");
101 kfree(old_idx);
102 return 0;
103 }
104 }
105 rb_link_node(&old_idx->rb, parent, p);
106 rb_insert_color(&old_idx->rb, &c->old_idx);
107 return 0;
108}
109
110/**
111 * insert_old_idx_znode - record a znode obsoleted since last commit start.
112 * @c: UBIFS file-system description object
113 * @znode: znode of obsoleted index node
114 *
115 * Returns %0 on success, and a negative error code on failure.
116 */
117int insert_old_idx_znode(struct ubifs_info *c, struct ubifs_znode *znode)
118{
119 if (znode->parent) {
120 struct ubifs_zbranch *zbr;
121
122 zbr = &znode->parent->zbranch[znode->iip];
123 if (zbr->len)
124 return insert_old_idx(c, zbr->lnum, zbr->offs);
125 } else
126 if (c->zroot.len)
127 return insert_old_idx(c, c->zroot.lnum,
128 c->zroot.offs);
129 return 0;
130}
131
132/**
133 * ins_clr_old_idx_znode - record a znode obsoleted since last commit start.
134 * @c: UBIFS file-system description object
135 * @znode: znode of obsoleted index node
136 *
137 * Returns %0 on success, and a negative error code on failure.
138 */
139static int ins_clr_old_idx_znode(struct ubifs_info *c,
140 struct ubifs_znode *znode)
141{
142 int err;
143
144 if (znode->parent) {
145 struct ubifs_zbranch *zbr;
146
147 zbr = &znode->parent->zbranch[znode->iip];
148 if (zbr->len) {
149 err = insert_old_idx(c, zbr->lnum, zbr->offs);
150 if (err)
151 return err;
152 zbr->lnum = 0;
153 zbr->offs = 0;
154 zbr->len = 0;
155 }
156 } else
157 if (c->zroot.len) {
158 err = insert_old_idx(c, c->zroot.lnum, c->zroot.offs);
159 if (err)
160 return err;
161 c->zroot.lnum = 0;
162 c->zroot.offs = 0;
163 c->zroot.len = 0;
164 }
165 return 0;
166}
167
168/**
169 * destroy_old_idx - destroy the old_idx RB-tree.
170 * @c: UBIFS file-system description object
171 *
172 * During start commit, the old_idx RB-tree is used to avoid overwriting index
173 * nodes that were in the index last commit but have since been deleted. This
174 * is necessary for recovery i.e. the old index must be kept intact until the
175 * new index is successfully written. The old-idx RB-tree is used for the
176 * in-the-gaps method of writing index nodes and is destroyed every commit.
177 */
178void destroy_old_idx(struct ubifs_info *c)
179{
180 struct rb_node *this = c->old_idx.rb_node;
181 struct ubifs_old_idx *old_idx;
182
183 while (this) {
184 if (this->rb_left) {
185 this = this->rb_left;
186 continue;
187 } else if (this->rb_right) {
188 this = this->rb_right;
189 continue;
190 }
191 old_idx = rb_entry(this, struct ubifs_old_idx, rb);
192 this = rb_parent(this);
193 if (this) {
194 if (this->rb_left == &old_idx->rb)
195 this->rb_left = NULL;
196 else
197 this->rb_right = NULL;
198 }
199 kfree(old_idx);
200 }
201 c->old_idx = RB_ROOT;
202}
203
204/**
205 * copy_znode - copy a dirty znode.
206 * @c: UBIFS file-system description object
207 * @znode: znode to copy
208 *
209 * A dirty znode being committed may not be changed, so it is copied.
210 */
211static struct ubifs_znode *copy_znode(struct ubifs_info *c,
212 struct ubifs_znode *znode)
213{
214 struct ubifs_znode *zn;
215
216 zn = kmalloc(c->max_znode_sz, GFP_NOFS);
217 if (unlikely(!zn))
218 return ERR_PTR(-ENOMEM);
219
220 memcpy(zn, znode, c->max_znode_sz);
221 zn->cnext = NULL;
222 __set_bit(DIRTY_ZNODE, &zn->flags);
223 __clear_bit(COW_ZNODE, &zn->flags);
224
225 ubifs_assert(!test_bit(OBSOLETE_ZNODE, &znode->flags));
226 __set_bit(OBSOLETE_ZNODE, &znode->flags);
227
228 if (znode->level != 0) {
229 int i;
230 const int n = zn->child_cnt;
231
232 /* The children now have new parent */
233 for (i = 0; i < n; i++) {
234 struct ubifs_zbranch *zbr = &zn->zbranch[i];
235
236 if (zbr->znode)
237 zbr->znode->parent = zn;
238 }
239 }
240
241 atomic_long_inc(&c->dirty_zn_cnt);
242 return zn;
243}
244
245/**
246 * add_idx_dirt - add dirt due to a dirty znode.
247 * @c: UBIFS file-system description object
248 * @lnum: LEB number of index node
249 * @dirt: size of index node
250 *
251 * This function updates lprops dirty space and the new size of the index.
252 */
253static int add_idx_dirt(struct ubifs_info *c, int lnum, int dirt)
254{
255 c->calc_idx_sz -= ALIGN(dirt, 8);
256 return ubifs_add_dirt(c, lnum, dirt);
257}
258
259/**
260 * dirty_cow_znode - ensure a znode is not being committed.
261 * @c: UBIFS file-system description object
262 * @zbr: branch of znode to check
263 *
264 * Returns dirtied znode on success or negative error code on failure.
265 */
266static struct ubifs_znode *dirty_cow_znode(struct ubifs_info *c,
267 struct ubifs_zbranch *zbr)
268{
269 struct ubifs_znode *znode = zbr->znode;
270 struct ubifs_znode *zn;
271 int err;
272
273 if (!test_bit(COW_ZNODE, &znode->flags)) {
274 /* znode is not being committed */
275 if (!test_and_set_bit(DIRTY_ZNODE, &znode->flags)) {
276 atomic_long_inc(&c->dirty_zn_cnt);
277 atomic_long_dec(&c->clean_zn_cnt);
278 atomic_long_dec(&ubifs_clean_zn_cnt);
279 err = add_idx_dirt(c, zbr->lnum, zbr->len);
280 if (unlikely(err))
281 return ERR_PTR(err);
282 }
283 return znode;
284 }
285
286 zn = copy_znode(c, znode);
287 if (unlikely(IS_ERR(zn)))
288 return zn;
289
290 if (zbr->len) {
291 err = insert_old_idx(c, zbr->lnum, zbr->offs);
292 if (unlikely(err))
293 return ERR_PTR(err);
294 err = add_idx_dirt(c, zbr->lnum, zbr->len);
295 } else
296 err = 0;
297
298 zbr->znode = zn;
299 zbr->lnum = 0;
300 zbr->offs = 0;
301 zbr->len = 0;
302
303 if (unlikely(err))
304 return ERR_PTR(err);
305 return zn;
306}
307
308/**
309 * lnc_add - add a leaf node to the leaf node cache.
310 * @c: UBIFS file-system description object
311 * @zbr: zbranch of leaf node
312 * @node: leaf node
313 *
314 * Leaf nodes are non-index nodes directory entry nodes or data nodes. The
315 * purpose of the leaf node cache is to save re-reading the same leaf node over
316 * and over again. Most things are cached by VFS, however the file system must
317 * cache directory entries for readdir and for resolving hash collisions. The
318 * present implementation of the leaf node cache is extremely simple, and
319 * allows for error returns that are not used but that may be needed if a more
320 * complex implementation is created.
321 *
322 * Note, this function does not add the @node object to LNC directly, but
323 * allocates a copy of the object and adds the copy to LNC. The reason for this
324 * is that @node has been allocated outside of the TNC subsystem and will be
325 * used with @c->tnc_mutex unlock upon return from the TNC subsystem. But LNC
326 * may be changed at any time, e.g. freed by the shrinker.
327 */
328static int lnc_add(struct ubifs_info *c, struct ubifs_zbranch *zbr,
329 const void *node)
330{
331 int err;
332 void *lnc_node;
333 const struct ubifs_dent_node *dent = node;
334
335 ubifs_assert(!zbr->leaf);
336 ubifs_assert(zbr->len != 0);
337 ubifs_assert(is_hash_key(c, &zbr->key));
338
339 err = ubifs_validate_entry(c, dent);
340 if (err) {
341 dbg_dump_stack();
342 dbg_dump_node(c, dent);
343 return err;
344 }
345
346 lnc_node = kmalloc(zbr->len, GFP_NOFS);
347 if (!lnc_node)
348 /* We don't have to have the cache, so no error */
349 return 0;
350
351 memcpy(lnc_node, node, zbr->len);
352 zbr->leaf = lnc_node;
353 return 0;
354}
355
356 /**
357 * lnc_add_directly - add a leaf node to the leaf-node-cache.
358 * @c: UBIFS file-system description object
359 * @zbr: zbranch of leaf node
360 * @node: leaf node
361 *
362 * This function is similar to 'lnc_add()', but it does not create a copy of
363 * @node but inserts @node to TNC directly.
364 */
365static int lnc_add_directly(struct ubifs_info *c, struct ubifs_zbranch *zbr,
366 void *node)
367{
368 int err;
369
370 ubifs_assert(!zbr->leaf);
371 ubifs_assert(zbr->len != 0);
372
373 err = ubifs_validate_entry(c, node);
374 if (err) {
375 dbg_dump_stack();
376 dbg_dump_node(c, node);
377 return err;
378 }
379
380 zbr->leaf = node;
381 return 0;
382}
383
384/**
385 * lnc_free - remove a leaf node from the leaf node cache.
386 * @zbr: zbranch of leaf node
387 * @node: leaf node
388 */
389static void lnc_free(struct ubifs_zbranch *zbr)
390{
391 if (!zbr->leaf)
392 return;
393 kfree(zbr->leaf);
394 zbr->leaf = NULL;
395}
396
397/**
398 * tnc_read_node_nm - read a "hashed" leaf node.
399 * @c: UBIFS file-system description object
400 * @zbr: key and position of the node
401 * @node: node is returned here
402 *
403 * This function reads a "hashed" node defined by @zbr from the leaf node cache
404 * (in it is there) or from the hash media, in which case the node is also
405 * added to LNC. Returns zero in case of success or a negative negative error
406 * code in case of failure.
407 */
408static int tnc_read_node_nm(struct ubifs_info *c, struct ubifs_zbranch *zbr,
409 void *node)
410{
411 int err;
412
413 ubifs_assert(is_hash_key(c, &zbr->key));
414
415 if (zbr->leaf) {
416 /* Read from the leaf node cache */
417 ubifs_assert(zbr->len != 0);
418 memcpy(node, zbr->leaf, zbr->len);
419 return 0;
420 }
421
422 err = ubifs_tnc_read_node(c, zbr, node);
423 if (err)
424 return err;
425
426 /* Add the node to the leaf node cache */
427 err = lnc_add(c, zbr, node);
428 return err;
429}
430
431/**
432 * try_read_node - read a node if it is a node.
433 * @c: UBIFS file-system description object
434 * @buf: buffer to read to
435 * @type: node type
436 * @len: node length (not aligned)
437 * @lnum: LEB number of node to read
438 * @offs: offset of node to read
439 *
440 * This function tries to read a node of known type and length, checks it and
441 * stores it in @buf. This function returns %1 if a node is present and %0 if
442 * a node is not present. A negative error code is returned for I/O errors.
443 * This function performs that same function as ubifs_read_node except that
444 * it does not require that there is actually a node present and instead
445 * the return code indicates if a node was read.
446 */
447static int try_read_node(const struct ubifs_info *c, void *buf, int type,
448 int len, int lnum, int offs)
449{
450 int err, node_len;
451 struct ubifs_ch *ch = buf;
452 uint32_t crc, node_crc;
453
454 dbg_io("LEB %d:%d, %s, length %d", lnum, offs, dbg_ntype(type), len);
455
456 err = ubi_read(c->ubi, lnum, buf, offs, len);
457 if (err) {
458 ubifs_err("cannot read node type %d from LEB %d:%d, error %d",
459 type, lnum, offs, err);
460 return err;
461 }
462
463 if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC)
464 return 0;
465
466 if (ch->node_type != type)
467 return 0;
468
469 node_len = le32_to_cpu(ch->len);
470 if (node_len != len)
471 return 0;
472
473 crc = crc32(UBIFS_CRC32_INIT, buf + 8, node_len - 8);
474 node_crc = le32_to_cpu(ch->crc);
475 if (crc != node_crc)
476 return 0;
477
478 return 1;
479}
480
481/**
482 * fallible_read_node - try to read a leaf node.
483 * @c: UBIFS file-system description object
484 * @key: key of node to read
485 * @zbr: position of node
486 * @node: node returned
487 *
488 * This function tries to read a node and returns %1 if the node is read, %0
489 * if the node is not present, and a negative error code in the case of error.
490 */
491static int fallible_read_node(struct ubifs_info *c, const union ubifs_key *key,
492 struct ubifs_zbranch *zbr, void *node)
493{
494 int ret;
495
496 dbg_tnc("LEB %d:%d, key %s", zbr->lnum, zbr->offs, DBGKEY(key));
497
498 ret = try_read_node(c, node, key_type(c, key), zbr->len, zbr->lnum,
499 zbr->offs);
500 if (ret == 1) {
501 union ubifs_key node_key;
502 struct ubifs_dent_node *dent = node;
503
504 /* All nodes have key in the same place */
505 key_read(c, &dent->key, &node_key);
506 if (keys_cmp(c, key, &node_key) != 0)
507 ret = 0;
508 }
Adrian Hunter601c0bc2008-08-22 14:23:35 +0300509 if (ret == 0 && c->replaying)
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300510 dbg_mnt("dangling branch LEB %d:%d len %d, key %s",
511 zbr->lnum, zbr->offs, zbr->len, DBGKEY(key));
512 return ret;
513}
514
515/**
516 * matches_name - determine if a direntry or xattr entry matches a given name.
517 * @c: UBIFS file-system description object
518 * @zbr: zbranch of dent
519 * @nm: name to match
520 *
521 * This function checks if xentry/direntry referred by zbranch @zbr matches name
522 * @nm. Returns %NAME_MATCHES if it does, %NAME_LESS if the name referred by
523 * @zbr is less than @nm, and %NAME_GREATER if it is greater than @nm. In case
524 * of failure, a negative error code is returned.
525 */
526static int matches_name(struct ubifs_info *c, struct ubifs_zbranch *zbr,
527 const struct qstr *nm)
528{
529 struct ubifs_dent_node *dent;
530 int nlen, err;
531
532 /* If possible, match against the dent in the leaf node cache */
533 if (!zbr->leaf) {
534 dent = kmalloc(zbr->len, GFP_NOFS);
535 if (!dent)
536 return -ENOMEM;
537
538 err = ubifs_tnc_read_node(c, zbr, dent);
539 if (err)
540 goto out_free;
541
542 /* Add the node to the leaf node cache */
543 err = lnc_add_directly(c, zbr, dent);
544 if (err)
545 goto out_free;
546 } else
547 dent = zbr->leaf;
548
549 nlen = le16_to_cpu(dent->nlen);
550 err = memcmp(dent->name, nm->name, min_t(int, nlen, nm->len));
551 if (err == 0) {
552 if (nlen == nm->len)
553 return NAME_MATCHES;
554 else if (nlen < nm->len)
555 return NAME_LESS;
556 else
557 return NAME_GREATER;
558 } else if (err < 0)
559 return NAME_LESS;
560 else
561 return NAME_GREATER;
562
563out_free:
564 kfree(dent);
565 return err;
566}
567
568/**
569 * get_znode - get a TNC znode that may not be loaded yet.
570 * @c: UBIFS file-system description object
571 * @znode: parent znode
572 * @n: znode branch slot number
573 *
574 * This function returns the znode or a negative error code.
575 */
576static struct ubifs_znode *get_znode(struct ubifs_info *c,
577 struct ubifs_znode *znode, int n)
578{
579 struct ubifs_zbranch *zbr;
580
581 zbr = &znode->zbranch[n];
582 if (zbr->znode)
583 znode = zbr->znode;
584 else
585 znode = ubifs_load_znode(c, zbr, znode, n);
586 return znode;
587}
588
589/**
590 * tnc_next - find next TNC entry.
591 * @c: UBIFS file-system description object
592 * @zn: znode is passed and returned here
593 * @n: znode branch slot number is passed and returned here
594 *
595 * This function returns %0 if the next TNC entry is found, %-ENOENT if there is
596 * no next entry, or a negative error code otherwise.
597 */
598static int tnc_next(struct ubifs_info *c, struct ubifs_znode **zn, int *n)
599{
600 struct ubifs_znode *znode = *zn;
601 int nn = *n;
602
603 nn += 1;
604 if (nn < znode->child_cnt) {
605 *n = nn;
606 return 0;
607 }
608 while (1) {
609 struct ubifs_znode *zp;
610
611 zp = znode->parent;
612 if (!zp)
613 return -ENOENT;
614 nn = znode->iip + 1;
615 znode = zp;
616 if (nn < znode->child_cnt) {
617 znode = get_znode(c, znode, nn);
618 if (IS_ERR(znode))
619 return PTR_ERR(znode);
620 while (znode->level != 0) {
621 znode = get_znode(c, znode, 0);
622 if (IS_ERR(znode))
623 return PTR_ERR(znode);
624 }
625 nn = 0;
626 break;
627 }
628 }
629 *zn = znode;
630 *n = nn;
631 return 0;
632}
633
634/**
635 * tnc_prev - find previous TNC entry.
636 * @c: UBIFS file-system description object
637 * @zn: znode is returned here
638 * @n: znode branch slot number is passed and returned here
639 *
640 * This function returns %0 if the previous TNC entry is found, %-ENOENT if
641 * there is no next entry, or a negative error code otherwise.
642 */
643static int tnc_prev(struct ubifs_info *c, struct ubifs_znode **zn, int *n)
644{
645 struct ubifs_znode *znode = *zn;
646 int nn = *n;
647
648 if (nn > 0) {
649 *n = nn - 1;
650 return 0;
651 }
652 while (1) {
653 struct ubifs_znode *zp;
654
655 zp = znode->parent;
656 if (!zp)
657 return -ENOENT;
658 nn = znode->iip - 1;
659 znode = zp;
660 if (nn >= 0) {
661 znode = get_znode(c, znode, nn);
662 if (IS_ERR(znode))
663 return PTR_ERR(znode);
664 while (znode->level != 0) {
665 nn = znode->child_cnt - 1;
666 znode = get_znode(c, znode, nn);
667 if (IS_ERR(znode))
668 return PTR_ERR(znode);
669 }
670 nn = znode->child_cnt - 1;
671 break;
672 }
673 }
674 *zn = znode;
675 *n = nn;
676 return 0;
677}
678
679/**
680 * resolve_collision - resolve a collision.
681 * @c: UBIFS file-system description object
682 * @key: key of a directory or extended attribute entry
683 * @zn: znode is returned here
684 * @n: zbranch number is passed and returned here
685 * @nm: name of the entry
686 *
687 * This function is called for "hashed" keys to make sure that the found key
688 * really corresponds to the looked up node (directory or extended attribute
689 * entry). It returns %1 and sets @zn and @n if the collision is resolved.
690 * %0 is returned if @nm is not found and @zn and @n are set to the previous
691 * entry, i.e. to the entry after which @nm could follow if it were in TNC.
692 * This means that @n may be set to %-1 if the leftmost key in @zn is the
693 * previous one. A negative error code is returned on failures.
694 */
695static int resolve_collision(struct ubifs_info *c, const union ubifs_key *key,
696 struct ubifs_znode **zn, int *n,
697 const struct qstr *nm)
698{
699 int err;
700
701 err = matches_name(c, &(*zn)->zbranch[*n], nm);
702 if (unlikely(err < 0))
703 return err;
704 if (err == NAME_MATCHES)
705 return 1;
706
707 if (err == NAME_GREATER) {
708 /* Look left */
709 while (1) {
710 err = tnc_prev(c, zn, n);
711 if (err == -ENOENT) {
712 ubifs_assert(*n == 0);
713 *n = -1;
714 return 0;
715 }
716 if (err < 0)
717 return err;
718 if (keys_cmp(c, &(*zn)->zbranch[*n].key, key)) {
719 /*
720 * We have found the branch after which we would
721 * like to insert, but inserting in this znode
722 * may still be wrong. Consider the following 3
723 * znodes, in the case where we are resolving a
724 * collision with Key2.
725 *
726 * znode zp
727 * ----------------------
728 * level 1 | Key0 | Key1 |
729 * -----------------------
730 * | |
731 * znode za | | znode zb
732 * ------------ ------------
733 * level 0 | Key0 | | Key2 |
734 * ------------ ------------
735 *
736 * The lookup finds Key2 in znode zb. Lets say
737 * there is no match and the name is greater so
738 * we look left. When we find Key0, we end up
739 * here. If we return now, we will insert into
740 * znode za at slot n = 1. But that is invalid
741 * according to the parent's keys. Key2 must
742 * be inserted into znode zb.
743 *
744 * Note, this problem is not relevant for the
745 * case when we go right, because
746 * 'tnc_insert()' would correct the parent key.
747 */
748 if (*n == (*zn)->child_cnt - 1) {
749 err = tnc_next(c, zn, n);
750 if (err) {
751 /* Should be impossible */
752 ubifs_assert(0);
753 if (err == -ENOENT)
754 err = -EINVAL;
755 return err;
756 }
757 ubifs_assert(*n == 0);
758 *n = -1;
759 }
760 return 0;
761 }
762 err = matches_name(c, &(*zn)->zbranch[*n], nm);
763 if (err < 0)
764 return err;
765 if (err == NAME_LESS)
766 return 0;
767 if (err == NAME_MATCHES)
768 return 1;
769 ubifs_assert(err == NAME_GREATER);
770 }
771 } else {
772 int nn = *n;
773 struct ubifs_znode *znode = *zn;
774
775 /* Look right */
776 while (1) {
777 err = tnc_next(c, &znode, &nn);
778 if (err == -ENOENT)
779 return 0;
780 if (err < 0)
781 return err;
782 if (keys_cmp(c, &znode->zbranch[nn].key, key))
783 return 0;
784 err = matches_name(c, &znode->zbranch[nn], nm);
785 if (err < 0)
786 return err;
787 if (err == NAME_GREATER)
788 return 0;
789 *zn = znode;
790 *n = nn;
791 if (err == NAME_MATCHES)
792 return 1;
793 ubifs_assert(err == NAME_LESS);
794 }
795 }
796}
797
798/**
799 * fallible_matches_name - determine if a dent matches a given name.
800 * @c: UBIFS file-system description object
801 * @zbr: zbranch of dent
802 * @nm: name to match
803 *
804 * This is a "fallible" version of 'matches_name()' function which does not
805 * panic if the direntry/xentry referred by @zbr does not exist on the media.
806 *
807 * This function checks if xentry/direntry referred by zbranch @zbr matches name
808 * @nm. Returns %NAME_MATCHES it does, %NAME_LESS if the name referred by @zbr
809 * is less than @nm, %NAME_GREATER if it is greater than @nm, and @NOT_ON_MEDIA
810 * if xentry/direntry referred by @zbr does not exist on the media. A negative
811 * error code is returned in case of failure.
812 */
813static int fallible_matches_name(struct ubifs_info *c,
814 struct ubifs_zbranch *zbr,
815 const struct qstr *nm)
816{
817 struct ubifs_dent_node *dent;
818 int nlen, err;
819
820 /* If possible, match against the dent in the leaf node cache */
821 if (!zbr->leaf) {
822 dent = kmalloc(zbr->len, GFP_NOFS);
823 if (!dent)
824 return -ENOMEM;
825
826 err = fallible_read_node(c, &zbr->key, zbr, dent);
827 if (err < 0)
828 goto out_free;
829 if (err == 0) {
830 /* The node was not present */
831 err = NOT_ON_MEDIA;
832 goto out_free;
833 }
834 ubifs_assert(err == 1);
835
836 err = lnc_add_directly(c, zbr, dent);
837 if (err)
838 goto out_free;
839 } else
840 dent = zbr->leaf;
841
842 nlen = le16_to_cpu(dent->nlen);
843 err = memcmp(dent->name, nm->name, min_t(int, nlen, nm->len));
844 if (err == 0) {
845 if (nlen == nm->len)
846 return NAME_MATCHES;
847 else if (nlen < nm->len)
848 return NAME_LESS;
849 else
850 return NAME_GREATER;
851 } else if (err < 0)
852 return NAME_LESS;
853 else
854 return NAME_GREATER;
855
856out_free:
857 kfree(dent);
858 return err;
859}
860
861/**
862 * fallible_resolve_collision - resolve a collision even if nodes are missing.
863 * @c: UBIFS file-system description object
864 * @key: key
865 * @zn: znode is returned here
866 * @n: branch number is passed and returned here
867 * @nm: name of directory entry
868 * @adding: indicates caller is adding a key to the TNC
869 *
870 * This is a "fallible" version of the 'resolve_collision()' function which
871 * does not panic if one of the nodes referred to by TNC does not exist on the
872 * media. This may happen when replaying the journal if a deleted node was
873 * Garbage-collected and the commit was not done. A branch that refers to a node
874 * that is not present is called a dangling branch. The following are the return
875 * codes for this function:
876 * o if @nm was found, %1 is returned and @zn and @n are set to the found
877 * branch;
878 * o if we are @adding and @nm was not found, %0 is returned;
879 * o if we are not @adding and @nm was not found, but a dangling branch was
880 * found, then %1 is returned and @zn and @n are set to the dangling branch;
881 * o a negative error code is returned in case of failure.
882 */
883static int fallible_resolve_collision(struct ubifs_info *c,
884 const union ubifs_key *key,
885 struct ubifs_znode **zn, int *n,
886 const struct qstr *nm, int adding)
887{
888 struct ubifs_znode *o_znode = NULL, *znode = *zn;
889 int uninitialized_var(o_n), err, cmp, unsure = 0, nn = *n;
890
891 cmp = fallible_matches_name(c, &znode->zbranch[nn], nm);
892 if (unlikely(cmp < 0))
893 return cmp;
894 if (cmp == NAME_MATCHES)
895 return 1;
896 if (cmp == NOT_ON_MEDIA) {
897 o_znode = znode;
898 o_n = nn;
899 /*
900 * We are unlucky and hit a dangling branch straight away.
901 * Now we do not really know where to go to find the needed
902 * branch - to the left or to the right. Well, let's try left.
903 */
904 unsure = 1;
905 } else if (!adding)
906 unsure = 1; /* Remove a dangling branch wherever it is */
907
908 if (cmp == NAME_GREATER || unsure) {
909 /* Look left */
910 while (1) {
911 err = tnc_prev(c, zn, n);
912 if (err == -ENOENT) {
913 ubifs_assert(*n == 0);
914 *n = -1;
915 break;
916 }
917 if (err < 0)
918 return err;
919 if (keys_cmp(c, &(*zn)->zbranch[*n].key, key)) {
920 /* See comments in 'resolve_collision()' */
921 if (*n == (*zn)->child_cnt - 1) {
922 err = tnc_next(c, zn, n);
923 if (err) {
924 /* Should be impossible */
925 ubifs_assert(0);
926 if (err == -ENOENT)
927 err = -EINVAL;
928 return err;
929 }
930 ubifs_assert(*n == 0);
931 *n = -1;
932 }
933 break;
934 }
935 err = fallible_matches_name(c, &(*zn)->zbranch[*n], nm);
936 if (err < 0)
937 return err;
938 if (err == NAME_MATCHES)
939 return 1;
940 if (err == NOT_ON_MEDIA) {
941 o_znode = *zn;
942 o_n = *n;
943 continue;
944 }
945 if (!adding)
946 continue;
947 if (err == NAME_LESS)
948 break;
949 else
950 unsure = 0;
951 }
952 }
953
954 if (cmp == NAME_LESS || unsure) {
955 /* Look right */
956 *zn = znode;
957 *n = nn;
958 while (1) {
959 err = tnc_next(c, &znode, &nn);
960 if (err == -ENOENT)
961 break;
962 if (err < 0)
963 return err;
964 if (keys_cmp(c, &znode->zbranch[nn].key, key))
965 break;
966 err = fallible_matches_name(c, &znode->zbranch[nn], nm);
967 if (err < 0)
968 return err;
969 if (err == NAME_GREATER)
970 break;
971 *zn = znode;
972 *n = nn;
973 if (err == NAME_MATCHES)
974 return 1;
975 if (err == NOT_ON_MEDIA) {
976 o_znode = znode;
977 o_n = nn;
978 }
979 }
980 }
981
982 /* Never match a dangling branch when adding */
983 if (adding || !o_znode)
984 return 0;
985
986 dbg_mnt("dangling match LEB %d:%d len %d %s",
987 o_znode->zbranch[o_n].lnum, o_znode->zbranch[o_n].offs,
988 o_znode->zbranch[o_n].len, DBGKEY(key));
989 *zn = o_znode;
990 *n = o_n;
991 return 1;
992}
993
994/**
995 * matches_position - determine if a zbranch matches a given position.
996 * @zbr: zbranch of dent
997 * @lnum: LEB number of dent to match
998 * @offs: offset of dent to match
999 *
1000 * This function returns %1 if @lnum:@offs matches, and %0 otherwise.
1001 */
1002static int matches_position(struct ubifs_zbranch *zbr, int lnum, int offs)
1003{
1004 if (zbr->lnum == lnum && zbr->offs == offs)
1005 return 1;
1006 else
1007 return 0;
1008}
1009
1010/**
1011 * resolve_collision_directly - resolve a collision directly.
1012 * @c: UBIFS file-system description object
1013 * @key: key of directory entry
1014 * @zn: znode is passed and returned here
1015 * @n: zbranch number is passed and returned here
1016 * @lnum: LEB number of dent node to match
1017 * @offs: offset of dent node to match
1018 *
1019 * This function is used for "hashed" keys to make sure the found directory or
1020 * extended attribute entry node is what was looked for. It is used when the
1021 * flash address of the right node is known (@lnum:@offs) which makes it much
1022 * easier to resolve collisions (no need to read entries and match full
1023 * names). This function returns %1 and sets @zn and @n if the collision is
1024 * resolved, %0 if @lnum:@offs is not found and @zn and @n are set to the
1025 * previous directory entry. Otherwise a negative error code is returned.
1026 */
1027static int resolve_collision_directly(struct ubifs_info *c,
1028 const union ubifs_key *key,
1029 struct ubifs_znode **zn, int *n,
1030 int lnum, int offs)
1031{
1032 struct ubifs_znode *znode;
1033 int nn, err;
1034
1035 znode = *zn;
1036 nn = *n;
1037 if (matches_position(&znode->zbranch[nn], lnum, offs))
1038 return 1;
1039
1040 /* Look left */
1041 while (1) {
1042 err = tnc_prev(c, &znode, &nn);
1043 if (err == -ENOENT)
1044 break;
1045 if (err < 0)
1046 return err;
1047 if (keys_cmp(c, &znode->zbranch[nn].key, key))
1048 break;
1049 if (matches_position(&znode->zbranch[nn], lnum, offs)) {
1050 *zn = znode;
1051 *n = nn;
1052 return 1;
1053 }
1054 }
1055
1056 /* Look right */
1057 znode = *zn;
1058 nn = *n;
1059 while (1) {
1060 err = tnc_next(c, &znode, &nn);
1061 if (err == -ENOENT)
1062 return 0;
1063 if (err < 0)
1064 return err;
1065 if (keys_cmp(c, &znode->zbranch[nn].key, key))
1066 return 0;
1067 *zn = znode;
1068 *n = nn;
1069 if (matches_position(&znode->zbranch[nn], lnum, offs))
1070 return 1;
1071 }
1072}
1073
1074/**
1075 * dirty_cow_bottom_up - dirty a znode and its ancestors.
1076 * @c: UBIFS file-system description object
1077 * @znode: znode to dirty
1078 *
1079 * If we do not have a unique key that resides in a znode, then we cannot
1080 * dirty that znode from the top down (i.e. by using lookup_level0_dirty)
1081 * This function records the path back to the last dirty ancestor, and then
1082 * dirties the znodes on that path.
1083 */
1084static struct ubifs_znode *dirty_cow_bottom_up(struct ubifs_info *c,
1085 struct ubifs_znode *znode)
1086{
1087 struct ubifs_znode *zp;
1088 int *path = c->bottom_up_buf, p = 0;
1089
1090 ubifs_assert(c->zroot.znode);
1091 ubifs_assert(znode);
1092 if (c->zroot.znode->level > BOTTOM_UP_HEIGHT) {
1093 kfree(c->bottom_up_buf);
1094 c->bottom_up_buf = kmalloc(c->zroot.znode->level * sizeof(int),
1095 GFP_NOFS);
1096 if (!c->bottom_up_buf)
1097 return ERR_PTR(-ENOMEM);
1098 path = c->bottom_up_buf;
1099 }
1100 if (c->zroot.znode->level) {
1101 /* Go up until parent is dirty */
1102 while (1) {
1103 int n;
1104
1105 zp = znode->parent;
1106 if (!zp)
1107 break;
1108 n = znode->iip;
1109 ubifs_assert(p < c->zroot.znode->level);
1110 path[p++] = n;
1111 if (!zp->cnext && ubifs_zn_dirty(znode))
1112 break;
1113 znode = zp;
1114 }
1115 }
1116
1117 /* Come back down, dirtying as we go */
1118 while (1) {
1119 struct ubifs_zbranch *zbr;
1120
1121 zp = znode->parent;
1122 if (zp) {
1123 ubifs_assert(path[p - 1] >= 0);
1124 ubifs_assert(path[p - 1] < zp->child_cnt);
1125 zbr = &zp->zbranch[path[--p]];
1126 znode = dirty_cow_znode(c, zbr);
1127 } else {
1128 ubifs_assert(znode == c->zroot.znode);
1129 znode = dirty_cow_znode(c, &c->zroot);
1130 }
1131 if (unlikely(IS_ERR(znode)) || !p)
1132 break;
1133 ubifs_assert(path[p - 1] >= 0);
1134 ubifs_assert(path[p - 1] < znode->child_cnt);
1135 znode = znode->zbranch[path[p - 1]].znode;
1136 }
1137
1138 return znode;
1139}
1140
1141/**
1142 * ubifs_lookup_level0 - search for zero-level znode.
1143 * @c: UBIFS file-system description object
1144 * @key: key to lookup
1145 * @zn: znode is returned here
1146 * @n: znode branch slot number is returned here
1147 *
1148 * This function looks up the TNC tree and search for zero-level znode which
1149 * refers key @key. The found zero-level znode is returned in @zn. There are 3
1150 * cases:
1151 * o exact match, i.e. the found zero-level znode contains key @key, then %1
1152 * is returned and slot number of the matched branch is stored in @n;
1153 * o not exact match, which means that zero-level znode does not contain
1154 * @key, then %0 is returned and slot number of the closed branch is stored
1155 * in @n;
1156 * o @key is so small that it is even less than the lowest key of the
1157 * leftmost zero-level node, then %0 is returned and %0 is stored in @n.
1158 *
1159 * Note, when the TNC tree is traversed, some znodes may be absent, then this
1160 * function reads corresponding indexing nodes and inserts them to TNC. In
1161 * case of failure, a negative error code is returned.
1162 */
1163int ubifs_lookup_level0(struct ubifs_info *c, const union ubifs_key *key,
1164 struct ubifs_znode **zn, int *n)
1165{
1166 int err, exact;
1167 struct ubifs_znode *znode;
1168 unsigned long time = get_seconds();
1169
1170 dbg_tnc("search key %s", DBGKEY(key));
1171
1172 znode = c->zroot.znode;
1173 if (unlikely(!znode)) {
1174 znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1175 if (IS_ERR(znode))
1176 return PTR_ERR(znode);
1177 }
1178
1179 znode->time = time;
1180
1181 while (1) {
1182 struct ubifs_zbranch *zbr;
1183
1184 exact = ubifs_search_zbranch(c, znode, key, n);
1185
1186 if (znode->level == 0)
1187 break;
1188
1189 if (*n < 0)
1190 *n = 0;
1191 zbr = &znode->zbranch[*n];
1192
1193 if (zbr->znode) {
1194 znode->time = time;
1195 znode = zbr->znode;
1196 continue;
1197 }
1198
1199 /* znode is not in TNC cache, load it from the media */
1200 znode = ubifs_load_znode(c, zbr, znode, *n);
1201 if (IS_ERR(znode))
1202 return PTR_ERR(znode);
1203 }
1204
1205 *zn = znode;
1206 if (exact || !is_hash_key(c, key) || *n != -1) {
1207 dbg_tnc("found %d, lvl %d, n %d", exact, znode->level, *n);
1208 return exact;
1209 }
1210
1211 /*
1212 * Here is a tricky place. We have not found the key and this is a
1213 * "hashed" key, which may collide. The rest of the code deals with
1214 * situations like this:
1215 *
1216 * | 3 | 5 |
1217 * / \
1218 * | 3 | 5 | | 6 | 7 | (x)
1219 *
1220 * Or more a complex example:
1221 *
1222 * | 1 | 5 |
1223 * / \
1224 * | 1 | 3 | | 5 | 8 |
1225 * \ /
1226 * | 5 | 5 | | 6 | 7 | (x)
1227 *
1228 * In the examples, if we are looking for key "5", we may reach nodes
1229 * marked with "(x)". In this case what we have do is to look at the
1230 * left and see if there is "5" key there. If there is, we have to
1231 * return it.
1232 *
1233 * Note, this whole situation is possible because we allow to have
1234 * elements which are equivalent to the next key in the parent in the
1235 * children of current znode. For example, this happens if we split a
1236 * znode like this: | 3 | 5 | 5 | 6 | 7 |, which results in something
1237 * like this:
1238 * | 3 | 5 |
1239 * / \
1240 * | 3 | 5 | | 5 | 6 | 7 |
1241 * ^
1242 * And this becomes what is at the first "picture" after key "5" marked
1243 * with "^" is removed. What could be done is we could prohibit
1244 * splitting in the middle of the colliding sequence. Also, when
1245 * removing the leftmost key, we would have to correct the key of the
1246 * parent node, which would introduce additional complications. Namely,
1247 * if we changed the the leftmost key of the parent znode, the garbage
1248 * collector would be unable to find it (GC is doing this when GC'ing
1249 * indexing LEBs). Although we already have an additional RB-tree where
1250 * we save such changed znodes (see 'ins_clr_old_idx_znode()') until
1251 * after the commit. But anyway, this does not look easy to implement
1252 * so we did not try this.
1253 */
1254 err = tnc_prev(c, &znode, n);
1255 if (err == -ENOENT) {
1256 dbg_tnc("found 0, lvl %d, n -1", znode->level);
1257 *n = -1;
1258 return 0;
1259 }
1260 if (unlikely(err < 0))
1261 return err;
1262 if (keys_cmp(c, key, &znode->zbranch[*n].key)) {
1263 dbg_tnc("found 0, lvl %d, n -1", znode->level);
1264 *n = -1;
1265 return 0;
1266 }
1267
1268 dbg_tnc("found 1, lvl %d, n %d", znode->level, *n);
1269 *zn = znode;
1270 return 1;
1271}
1272
1273/**
1274 * lookup_level0_dirty - search for zero-level znode dirtying.
1275 * @c: UBIFS file-system description object
1276 * @key: key to lookup
1277 * @zn: znode is returned here
1278 * @n: znode branch slot number is returned here
1279 *
1280 * This function looks up the TNC tree and search for zero-level znode which
1281 * refers key @key. The found zero-level znode is returned in @zn. There are 3
1282 * cases:
1283 * o exact match, i.e. the found zero-level znode contains key @key, then %1
1284 * is returned and slot number of the matched branch is stored in @n;
1285 * o not exact match, which means that zero-level znode does not contain @key
1286 * then %0 is returned and slot number of the closed branch is stored in
1287 * @n;
1288 * o @key is so small that it is even less than the lowest key of the
1289 * leftmost zero-level node, then %0 is returned and %-1 is stored in @n.
1290 *
1291 * Additionally all znodes in the path from the root to the located zero-level
1292 * znode are marked as dirty.
1293 *
1294 * Note, when the TNC tree is traversed, some znodes may be absent, then this
1295 * function reads corresponding indexing nodes and inserts them to TNC. In
1296 * case of failure, a negative error code is returned.
1297 */
1298static int lookup_level0_dirty(struct ubifs_info *c, const union ubifs_key *key,
1299 struct ubifs_znode **zn, int *n)
1300{
1301 int err, exact;
1302 struct ubifs_znode *znode;
1303 unsigned long time = get_seconds();
1304
1305 dbg_tnc("search and dirty key %s", DBGKEY(key));
1306
1307 znode = c->zroot.znode;
1308 if (unlikely(!znode)) {
1309 znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1310 if (IS_ERR(znode))
1311 return PTR_ERR(znode);
1312 }
1313
1314 znode = dirty_cow_znode(c, &c->zroot);
1315 if (IS_ERR(znode))
1316 return PTR_ERR(znode);
1317
1318 znode->time = time;
1319
1320 while (1) {
1321 struct ubifs_zbranch *zbr;
1322
1323 exact = ubifs_search_zbranch(c, znode, key, n);
1324
1325 if (znode->level == 0)
1326 break;
1327
1328 if (*n < 0)
1329 *n = 0;
1330 zbr = &znode->zbranch[*n];
1331
1332 if (zbr->znode) {
1333 znode->time = time;
1334 znode = dirty_cow_znode(c, zbr);
1335 if (IS_ERR(znode))
1336 return PTR_ERR(znode);
1337 continue;
1338 }
1339
1340 /* znode is not in TNC cache, load it from the media */
1341 znode = ubifs_load_znode(c, zbr, znode, *n);
1342 if (IS_ERR(znode))
1343 return PTR_ERR(znode);
1344 znode = dirty_cow_znode(c, zbr);
1345 if (IS_ERR(znode))
1346 return PTR_ERR(znode);
1347 }
1348
1349 *zn = znode;
1350 if (exact || !is_hash_key(c, key) || *n != -1) {
1351 dbg_tnc("found %d, lvl %d, n %d", exact, znode->level, *n);
1352 return exact;
1353 }
1354
1355 /*
1356 * See huge comment at 'lookup_level0_dirty()' what is the rest of the
1357 * code.
1358 */
1359 err = tnc_prev(c, &znode, n);
1360 if (err == -ENOENT) {
1361 *n = -1;
1362 dbg_tnc("found 0, lvl %d, n -1", znode->level);
1363 return 0;
1364 }
1365 if (unlikely(err < 0))
1366 return err;
1367 if (keys_cmp(c, key, &znode->zbranch[*n].key)) {
1368 *n = -1;
1369 dbg_tnc("found 0, lvl %d, n -1", znode->level);
1370 return 0;
1371 }
1372
1373 if (znode->cnext || !ubifs_zn_dirty(znode)) {
1374 znode = dirty_cow_bottom_up(c, znode);
1375 if (IS_ERR(znode))
1376 return PTR_ERR(znode);
1377 }
1378
1379 dbg_tnc("found 1, lvl %d, n %d", znode->level, *n);
1380 *zn = znode;
1381 return 1;
1382}
1383
1384/**
Adrian Hunter601c0bc2008-08-22 14:23:35 +03001385 * maybe_leb_gced - determine if a LEB may have been garbage collected.
Artem Bityutskiy1e517642008-07-14 19:08:37 +03001386 * @c: UBIFS file-system description object
Adrian Hunter601c0bc2008-08-22 14:23:35 +03001387 * @lnum: LEB number
1388 * @gc_seq1: garbage collection sequence number
Artem Bityutskiy1e517642008-07-14 19:08:37 +03001389 *
Adrian Hunter601c0bc2008-08-22 14:23:35 +03001390 * This function determines if @lnum may have been garbage collected since
1391 * sequence number @gc_seq1. If it may have been then %1 is returned, otherwise
1392 * %0 is returned.
Artem Bityutskiy1e517642008-07-14 19:08:37 +03001393 */
Adrian Hunter601c0bc2008-08-22 14:23:35 +03001394static int maybe_leb_gced(struct ubifs_info *c, int lnum, int gc_seq1)
Artem Bityutskiy1e517642008-07-14 19:08:37 +03001395{
Adrian Hunter601c0bc2008-08-22 14:23:35 +03001396 int gc_seq2, gced_lnum;
Artem Bityutskiy1e517642008-07-14 19:08:37 +03001397
Adrian Hunter601c0bc2008-08-22 14:23:35 +03001398 gced_lnum = c->gced_lnum;
1399 smp_rmb();
1400 gc_seq2 = c->gc_seq;
1401 /* Same seq means no GC */
1402 if (gc_seq1 == gc_seq2)
1403 return 0;
1404 /* Different by more than 1 means we don't know */
1405 if (gc_seq1 + 1 != gc_seq2)
1406 return 1;
1407 /*
1408 * We have seen the sequence number has increased by 1. Now we need to
1409 * be sure we read the right LEB number, so read it again.
1410 */
1411 smp_rmb();
1412 if (gced_lnum != c->gced_lnum)
1413 return 1;
1414 /* Finally we can check lnum */
1415 if (gced_lnum == lnum)
1416 return 1;
1417 return 0;
Artem Bityutskiy1e517642008-07-14 19:08:37 +03001418}
1419
1420/**
1421 * ubifs_tnc_locate - look up a file-system node and return it and its location.
1422 * @c: UBIFS file-system description object
1423 * @key: node key to lookup
1424 * @node: the node is returned here
1425 * @lnum: LEB number is returned here
1426 * @offs: offset is returned here
1427 *
Adrian Hunter601c0bc2008-08-22 14:23:35 +03001428 * This function look up and reads node with key @key. The caller has to make
1429 * sure the @node buffer is large enough to fit the node. Returns zero in case
1430 * of success, %-ENOENT if the node was not found, and a negative error code in
1431 * case of failure. The node location can be returned in @lnum and @offs.
Artem Bityutskiy1e517642008-07-14 19:08:37 +03001432 */
1433int ubifs_tnc_locate(struct ubifs_info *c, const union ubifs_key *key,
1434 void *node, int *lnum, int *offs)
1435{
Adrian Hunter601c0bc2008-08-22 14:23:35 +03001436 int found, n, err, safely = 0, gc_seq1;
Artem Bityutskiy1e517642008-07-14 19:08:37 +03001437 struct ubifs_znode *znode;
1438 struct ubifs_zbranch zbr, *zt;
1439
Adrian Hunter601c0bc2008-08-22 14:23:35 +03001440again:
Artem Bityutskiy1e517642008-07-14 19:08:37 +03001441 mutex_lock(&c->tnc_mutex);
1442 found = ubifs_lookup_level0(c, key, &znode, &n);
1443 if (!found) {
1444 err = -ENOENT;
1445 goto out;
1446 } else if (found < 0) {
1447 err = found;
1448 goto out;
1449 }
1450 zt = &znode->zbranch[n];
Adrian Hunter601c0bc2008-08-22 14:23:35 +03001451 if (lnum) {
1452 *lnum = zt->lnum;
1453 *offs = zt->offs;
1454 }
Artem Bityutskiy1e517642008-07-14 19:08:37 +03001455 if (is_hash_key(c, key)) {
1456 /*
1457 * In this case the leaf node cache gets used, so we pass the
1458 * address of the zbranch and keep the mutex locked
1459 */
Artem Bityutskiy1e517642008-07-14 19:08:37 +03001460 err = tnc_read_node_nm(c, zt, node);
1461 goto out;
1462 }
Adrian Hunter601c0bc2008-08-22 14:23:35 +03001463 if (safely) {
1464 err = ubifs_tnc_read_node(c, zt, node);
1465 goto out;
1466 }
1467 /* Drop the TNC mutex prematurely and race with garbage collection */
Artem Bityutskiy1e517642008-07-14 19:08:37 +03001468 zbr = znode->zbranch[n];
Adrian Hunter601c0bc2008-08-22 14:23:35 +03001469 gc_seq1 = c->gc_seq;
Artem Bityutskiy1e517642008-07-14 19:08:37 +03001470 mutex_unlock(&c->tnc_mutex);
1471
Adrian Hunter601c0bc2008-08-22 14:23:35 +03001472 if (ubifs_get_wbuf(c, zbr.lnum)) {
1473 /* We do not GC journal heads */
1474 err = ubifs_tnc_read_node(c, &zbr, node);
1475 return err;
1476 }
Artem Bityutskiy1e517642008-07-14 19:08:37 +03001477
Adrian Hunter601c0bc2008-08-22 14:23:35 +03001478 err = fallible_read_node(c, key, &zbr, node);
1479 if (maybe_leb_gced(c, zbr.lnum, gc_seq1)) {
1480 /*
1481 * The node may have been GC'ed out from under us so try again
1482 * while keeping the TNC mutex locked.
1483 */
1484 safely = 1;
1485 goto again;
1486 }
1487 return 0;
Artem Bityutskiy1e517642008-07-14 19:08:37 +03001488
1489out:
1490 mutex_unlock(&c->tnc_mutex);
1491 return err;
1492}
1493
1494/**
1495 * do_lookup_nm- look up a "hashed" node.
1496 * @c: UBIFS file-system description object
1497 * @key: node key to lookup
1498 * @node: the node is returned here
1499 * @nm: node name
1500 *
1501 * This function look up and reads a node which contains name hash in the key.
1502 * Since the hash may have collisions, there may be many nodes with the same
1503 * key, so we have to sequentially look to all of them until the needed one is
1504 * found. This function returns zero in case of success, %-ENOENT if the node
1505 * was not found, and a negative error code in case of failure.
1506 */
1507static int do_lookup_nm(struct ubifs_info *c, const union ubifs_key *key,
1508 void *node, const struct qstr *nm)
1509{
1510 int found, n, err;
1511 struct ubifs_znode *znode;
Artem Bityutskiy1e517642008-07-14 19:08:37 +03001512
1513 dbg_tnc("name '%.*s' key %s", nm->len, nm->name, DBGKEY(key));
1514 mutex_lock(&c->tnc_mutex);
1515 found = ubifs_lookup_level0(c, key, &znode, &n);
1516 if (!found) {
1517 err = -ENOENT;
1518 goto out_unlock;
1519 } else if (found < 0) {
1520 err = found;
1521 goto out_unlock;
1522 }
1523
1524 ubifs_assert(n >= 0);
1525
1526 err = resolve_collision(c, key, &znode, &n, nm);
1527 dbg_tnc("rc returned %d, znode %p, n %d", err, znode, n);
1528 if (unlikely(err < 0))
1529 goto out_unlock;
1530 if (err == 0) {
1531 err = -ENOENT;
1532 goto out_unlock;
1533 }
1534
Adrian Hunter761e29f2008-08-20 16:32:40 +03001535 err = tnc_read_node_nm(c, &znode->zbranch[n], node);
Artem Bityutskiy1e517642008-07-14 19:08:37 +03001536
1537out_unlock:
1538 mutex_unlock(&c->tnc_mutex);
1539 return err;
1540}
1541
1542/**
1543 * ubifs_tnc_lookup_nm - look up a "hashed" node.
1544 * @c: UBIFS file-system description object
1545 * @key: node key to lookup
1546 * @node: the node is returned here
1547 * @nm: node name
1548 *
1549 * This function look up and reads a node which contains name hash in the key.
1550 * Since the hash may have collisions, there may be many nodes with the same
1551 * key, so we have to sequentially look to all of them until the needed one is
1552 * found. This function returns zero in case of success, %-ENOENT if the node
1553 * was not found, and a negative error code in case of failure.
1554 */
1555int ubifs_tnc_lookup_nm(struct ubifs_info *c, const union ubifs_key *key,
1556 void *node, const struct qstr *nm)
1557{
1558 int err, len;
1559 const struct ubifs_dent_node *dent = node;
1560
1561 /*
1562 * We assume that in most of the cases there are no name collisions and
1563 * 'ubifs_tnc_lookup()' returns us the right direntry.
1564 */
1565 err = ubifs_tnc_lookup(c, key, node);
1566 if (err)
1567 return err;
1568
1569 len = le16_to_cpu(dent->nlen);
1570 if (nm->len == len && !memcmp(dent->name, nm->name, len))
1571 return 0;
1572
1573 /*
1574 * Unluckily, there are hash collisions and we have to iterate over
1575 * them look at each direntry with colliding name hash sequentially.
1576 */
1577 return do_lookup_nm(c, key, node, nm);
1578}
1579
1580/**
1581 * correct_parent_keys - correct parent znodes' keys.
1582 * @c: UBIFS file-system description object
1583 * @znode: znode to correct parent znodes for
1584 *
1585 * This is a helper function for 'tnc_insert()'. When the key of the leftmost
1586 * zbranch changes, keys of parent znodes have to be corrected. This helper
1587 * function is called in such situations and corrects the keys if needed.
1588 */
1589static void correct_parent_keys(const struct ubifs_info *c,
1590 struct ubifs_znode *znode)
1591{
1592 union ubifs_key *key, *key1;
1593
1594 ubifs_assert(znode->parent);
1595 ubifs_assert(znode->iip == 0);
1596
1597 key = &znode->zbranch[0].key;
1598 key1 = &znode->parent->zbranch[0].key;
1599
1600 while (keys_cmp(c, key, key1) < 0) {
1601 key_copy(c, key, key1);
1602 znode = znode->parent;
1603 znode->alt = 1;
1604 if (!znode->parent || znode->iip)
1605 break;
1606 key1 = &znode->parent->zbranch[0].key;
1607 }
1608}
1609
1610/**
1611 * insert_zbranch - insert a zbranch into a znode.
1612 * @znode: znode into which to insert
1613 * @zbr: zbranch to insert
1614 * @n: slot number to insert to
1615 *
1616 * This is a helper function for 'tnc_insert()'. UBIFS does not allow "gaps" in
1617 * znode's array of zbranches and keeps zbranches consolidated, so when a new
1618 * zbranch has to be inserted to the @znode->zbranches[]' array at the @n-th
1619 * slot, zbranches starting from @n have to be moved right.
1620 */
1621static void insert_zbranch(struct ubifs_znode *znode,
1622 const struct ubifs_zbranch *zbr, int n)
1623{
1624 int i;
1625
1626 ubifs_assert(ubifs_zn_dirty(znode));
1627
1628 if (znode->level) {
1629 for (i = znode->child_cnt; i > n; i--) {
1630 znode->zbranch[i] = znode->zbranch[i - 1];
1631 if (znode->zbranch[i].znode)
1632 znode->zbranch[i].znode->iip = i;
1633 }
1634 if (zbr->znode)
1635 zbr->znode->iip = n;
1636 } else
1637 for (i = znode->child_cnt; i > n; i--)
1638 znode->zbranch[i] = znode->zbranch[i - 1];
1639
1640 znode->zbranch[n] = *zbr;
1641 znode->child_cnt += 1;
1642
1643 /*
1644 * After inserting at slot zero, the lower bound of the key range of
1645 * this znode may have changed. If this znode is subsequently split
1646 * then the upper bound of the key range may change, and furthermore
1647 * it could change to be lower than the original lower bound. If that
1648 * happens, then it will no longer be possible to find this znode in the
1649 * TNC using the key from the index node on flash. That is bad because
1650 * if it is not found, we will assume it is obsolete and may overwrite
1651 * it. Then if there is an unclean unmount, we will start using the
1652 * old index which will be broken.
1653 *
1654 * So we first mark znodes that have insertions at slot zero, and then
1655 * if they are split we add their lnum/offs to the old_idx tree.
1656 */
1657 if (n == 0)
1658 znode->alt = 1;
1659}
1660
1661/**
1662 * tnc_insert - insert a node into TNC.
1663 * @c: UBIFS file-system description object
1664 * @znode: znode to insert into
1665 * @zbr: branch to insert
1666 * @n: slot number to insert new zbranch to
1667 *
1668 * This function inserts a new node described by @zbr into znode @znode. If
1669 * znode does not have a free slot for new zbranch, it is split. Parent znodes
1670 * are splat as well if needed. Returns zero in case of success or a negative
1671 * error code in case of failure.
1672 */
1673static int tnc_insert(struct ubifs_info *c, struct ubifs_znode *znode,
1674 struct ubifs_zbranch *zbr, int n)
1675{
1676 struct ubifs_znode *zn, *zi, *zp;
1677 int i, keep, move, appending = 0;
1678 union ubifs_key *key = &zbr->key;
1679
1680 ubifs_assert(n >= 0 && n <= c->fanout);
1681
1682 /* Implement naive insert for now */
1683again:
1684 zp = znode->parent;
1685 if (znode->child_cnt < c->fanout) {
1686 ubifs_assert(n != c->fanout);
1687 dbg_tnc("inserted at %d level %d, key %s", n, znode->level,
1688 DBGKEY(key));
1689
1690 insert_zbranch(znode, zbr, n);
1691
1692 /* Ensure parent's key is correct */
1693 if (n == 0 && zp && znode->iip == 0)
1694 correct_parent_keys(c, znode);
1695
1696 return 0;
1697 }
1698
1699 /*
1700 * Unfortunately, @znode does not have more empty slots and we have to
1701 * split it.
1702 */
1703 dbg_tnc("splitting level %d, key %s", znode->level, DBGKEY(key));
1704
1705 if (znode->alt)
1706 /*
1707 * We can no longer be sure of finding this znode by key, so we
1708 * record it in the old_idx tree.
1709 */
1710 ins_clr_old_idx_znode(c, znode);
1711
1712 zn = kzalloc(c->max_znode_sz, GFP_NOFS);
1713 if (!zn)
1714 return -ENOMEM;
1715 zn->parent = zp;
1716 zn->level = znode->level;
1717
1718 /* Decide where to split */
1719 if (znode->level == 0 && n == c->fanout &&
1720 key_type(c, key) == UBIFS_DATA_KEY) {
1721 union ubifs_key *key1;
1722
1723 /*
1724 * If this is an inode which is being appended - do not split
1725 * it because no other zbranches can be inserted between
1726 * zbranches of consecutive data nodes anyway.
1727 */
1728 key1 = &znode->zbranch[n - 1].key;
1729 if (key_inum(c, key1) == key_inum(c, key) &&
1730 key_type(c, key1) == UBIFS_DATA_KEY &&
1731 key_block(c, key1) == key_block(c, key) - 1)
1732 appending = 1;
1733 }
1734
1735 if (appending) {
1736 keep = c->fanout;
1737 move = 0;
1738 } else {
1739 keep = (c->fanout + 1) / 2;
1740 move = c->fanout - keep;
1741 }
1742
1743 /*
1744 * Although we don't at present, we could look at the neighbors and see
1745 * if we can move some zbranches there.
1746 */
1747
1748 if (n < keep) {
1749 /* Insert into existing znode */
1750 zi = znode;
1751 move += 1;
1752 keep -= 1;
1753 } else {
1754 /* Insert into new znode */
1755 zi = zn;
1756 n -= keep;
1757 /* Re-parent */
1758 if (zn->level != 0)
1759 zbr->znode->parent = zn;
1760 }
1761
1762 __set_bit(DIRTY_ZNODE, &zn->flags);
1763 atomic_long_inc(&c->dirty_zn_cnt);
1764
1765 zn->child_cnt = move;
1766 znode->child_cnt = keep;
1767
1768 dbg_tnc("moving %d, keeping %d", move, keep);
1769
1770 /* Move zbranch */
1771 for (i = 0; i < move; i++) {
1772 zn->zbranch[i] = znode->zbranch[keep + i];
1773 /* Re-parent */
1774 if (zn->level != 0)
1775 if (zn->zbranch[i].znode) {
1776 zn->zbranch[i].znode->parent = zn;
1777 zn->zbranch[i].znode->iip = i;
1778 }
1779 }
1780
1781 /* Insert new key and branch */
1782 dbg_tnc("inserting at %d level %d, key %s", n, zn->level, DBGKEY(key));
1783
1784 insert_zbranch(zi, zbr, n);
1785
1786 /* Insert new znode (produced by spitting) into the parent */
1787 if (zp) {
1788 i = n;
1789 /* Locate insertion point */
1790 n = znode->iip + 1;
1791 if (appending && n != c->fanout)
1792 appending = 0;
1793
1794 if (i == 0 && zi == znode && znode->iip == 0)
1795 correct_parent_keys(c, znode);
1796
1797 /* Tail recursion */
1798 zbr->key = zn->zbranch[0].key;
1799 zbr->znode = zn;
1800 zbr->lnum = 0;
1801 zbr->offs = 0;
1802 zbr->len = 0;
1803 znode = zp;
1804
1805 goto again;
1806 }
1807
1808 /* We have to split root znode */
1809 dbg_tnc("creating new zroot at level %d", znode->level + 1);
1810
1811 zi = kzalloc(c->max_znode_sz, GFP_NOFS);
1812 if (!zi)
1813 return -ENOMEM;
1814
1815 zi->child_cnt = 2;
1816 zi->level = znode->level + 1;
1817
1818 __set_bit(DIRTY_ZNODE, &zi->flags);
1819 atomic_long_inc(&c->dirty_zn_cnt);
1820
1821 zi->zbranch[0].key = znode->zbranch[0].key;
1822 zi->zbranch[0].znode = znode;
1823 zi->zbranch[0].lnum = c->zroot.lnum;
1824 zi->zbranch[0].offs = c->zroot.offs;
1825 zi->zbranch[0].len = c->zroot.len;
1826 zi->zbranch[1].key = zn->zbranch[0].key;
1827 zi->zbranch[1].znode = zn;
1828
1829 c->zroot.lnum = 0;
1830 c->zroot.offs = 0;
1831 c->zroot.len = 0;
1832 c->zroot.znode = zi;
1833
1834 zn->parent = zi;
1835 zn->iip = 1;
1836 znode->parent = zi;
1837 znode->iip = 0;
1838
1839 return 0;
1840}
1841
1842/**
1843 * ubifs_tnc_add - add a node to TNC.
1844 * @c: UBIFS file-system description object
1845 * @key: key to add
1846 * @lnum: LEB number of node
1847 * @offs: node offset
1848 * @len: node length
1849 *
1850 * This function adds a node with key @key to TNC. The node may be new or it may
1851 * obsolete some existing one. Returns %0 on success or negative error code on
1852 * failure.
1853 */
1854int ubifs_tnc_add(struct ubifs_info *c, const union ubifs_key *key, int lnum,
1855 int offs, int len)
1856{
1857 int found, n, err = 0;
1858 struct ubifs_znode *znode;
1859
1860 mutex_lock(&c->tnc_mutex);
1861 dbg_tnc("%d:%d, len %d, key %s", lnum, offs, len, DBGKEY(key));
1862 found = lookup_level0_dirty(c, key, &znode, &n);
1863 if (!found) {
1864 struct ubifs_zbranch zbr;
1865
1866 zbr.znode = NULL;
1867 zbr.lnum = lnum;
1868 zbr.offs = offs;
1869 zbr.len = len;
1870 key_copy(c, key, &zbr.key);
1871 err = tnc_insert(c, znode, &zbr, n + 1);
1872 } else if (found == 1) {
1873 struct ubifs_zbranch *zbr = &znode->zbranch[n];
1874
1875 lnc_free(zbr);
1876 err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
1877 zbr->lnum = lnum;
1878 zbr->offs = offs;
1879 zbr->len = len;
1880 } else
1881 err = found;
1882 if (!err)
1883 err = dbg_check_tnc(c, 0);
1884 mutex_unlock(&c->tnc_mutex);
1885
1886 return err;
1887}
1888
1889/**
1890 * ubifs_tnc_replace - replace a node in the TNC only if the old node is found.
1891 * @c: UBIFS file-system description object
1892 * @key: key to add
1893 * @old_lnum: LEB number of old node
1894 * @old_offs: old node offset
1895 * @lnum: LEB number of node
1896 * @offs: node offset
1897 * @len: node length
1898 *
1899 * This function replaces a node with key @key in the TNC only if the old node
1900 * is found. This function is called by garbage collection when node are moved.
1901 * Returns %0 on success or negative error code on failure.
1902 */
1903int ubifs_tnc_replace(struct ubifs_info *c, const union ubifs_key *key,
1904 int old_lnum, int old_offs, int lnum, int offs, int len)
1905{
1906 int found, n, err = 0;
1907 struct ubifs_znode *znode;
1908
1909 mutex_lock(&c->tnc_mutex);
1910 dbg_tnc("old LEB %d:%d, new LEB %d:%d, len %d, key %s", old_lnum,
1911 old_offs, lnum, offs, len, DBGKEY(key));
1912 found = lookup_level0_dirty(c, key, &znode, &n);
1913 if (found < 0) {
1914 err = found;
1915 goto out_unlock;
1916 }
1917
1918 if (found == 1) {
1919 struct ubifs_zbranch *zbr = &znode->zbranch[n];
1920
1921 found = 0;
1922 if (zbr->lnum == old_lnum && zbr->offs == old_offs) {
1923 lnc_free(zbr);
1924 err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
1925 if (err)
1926 goto out_unlock;
1927 zbr->lnum = lnum;
1928 zbr->offs = offs;
1929 zbr->len = len;
1930 found = 1;
1931 } else if (is_hash_key(c, key)) {
1932 found = resolve_collision_directly(c, key, &znode, &n,
1933 old_lnum, old_offs);
1934 dbg_tnc("rc returned %d, znode %p, n %d, LEB %d:%d",
1935 found, znode, n, old_lnum, old_offs);
1936 if (found < 0) {
1937 err = found;
1938 goto out_unlock;
1939 }
1940
1941 if (found) {
1942 /* Ensure the znode is dirtied */
1943 if (znode->cnext || !ubifs_zn_dirty(znode)) {
1944 znode = dirty_cow_bottom_up(c,
1945 znode);
1946 if (IS_ERR(znode)) {
1947 err = PTR_ERR(znode);
1948 goto out_unlock;
1949 }
1950 }
1951 zbr = &znode->zbranch[n];
1952 lnc_free(zbr);
1953 err = ubifs_add_dirt(c, zbr->lnum,
1954 zbr->len);
1955 if (err)
1956 goto out_unlock;
1957 zbr->lnum = lnum;
1958 zbr->offs = offs;
1959 zbr->len = len;
1960 }
1961 }
1962 }
1963
1964 if (!found)
1965 err = ubifs_add_dirt(c, lnum, len);
1966
1967 if (!err)
1968 err = dbg_check_tnc(c, 0);
1969
1970out_unlock:
1971 mutex_unlock(&c->tnc_mutex);
1972 return err;
1973}
1974
1975/**
1976 * ubifs_tnc_add_nm - add a "hashed" node to TNC.
1977 * @c: UBIFS file-system description object
1978 * @key: key to add
1979 * @lnum: LEB number of node
1980 * @offs: node offset
1981 * @len: node length
1982 * @nm: node name
1983 *
1984 * This is the same as 'ubifs_tnc_add()' but it should be used with keys which
1985 * may have collisions, like directory entry keys.
1986 */
1987int ubifs_tnc_add_nm(struct ubifs_info *c, const union ubifs_key *key,
1988 int lnum, int offs, int len, const struct qstr *nm)
1989{
1990 int found, n, err = 0;
1991 struct ubifs_znode *znode;
1992
1993 mutex_lock(&c->tnc_mutex);
1994 dbg_tnc("LEB %d:%d, name '%.*s', key %s", lnum, offs, nm->len, nm->name,
1995 DBGKEY(key));
1996 found = lookup_level0_dirty(c, key, &znode, &n);
1997 if (found < 0) {
1998 err = found;
1999 goto out_unlock;
2000 }
2001
2002 if (found == 1) {
2003 if (c->replaying)
2004 found = fallible_resolve_collision(c, key, &znode, &n,
2005 nm, 1);
2006 else
2007 found = resolve_collision(c, key, &znode, &n, nm);
2008 dbg_tnc("rc returned %d, znode %p, n %d", found, znode, n);
2009 if (found < 0) {
2010 err = found;
2011 goto out_unlock;
2012 }
2013
2014 /* Ensure the znode is dirtied */
2015 if (znode->cnext || !ubifs_zn_dirty(znode)) {
2016 znode = dirty_cow_bottom_up(c, znode);
2017 if (IS_ERR(znode)) {
2018 err = PTR_ERR(znode);
2019 goto out_unlock;
2020 }
2021 }
2022
2023 if (found == 1) {
2024 struct ubifs_zbranch *zbr = &znode->zbranch[n];
2025
2026 lnc_free(zbr);
2027 err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2028 zbr->lnum = lnum;
2029 zbr->offs = offs;
2030 zbr->len = len;
2031 goto out_unlock;
2032 }
2033 }
2034
2035 if (!found) {
2036 struct ubifs_zbranch zbr;
2037
2038 zbr.znode = NULL;
2039 zbr.lnum = lnum;
2040 zbr.offs = offs;
2041 zbr.len = len;
2042 key_copy(c, key, &zbr.key);
2043 err = tnc_insert(c, znode, &zbr, n + 1);
2044 if (err)
2045 goto out_unlock;
2046 if (c->replaying) {
2047 /*
2048 * We did not find it in the index so there may be a
2049 * dangling branch still in the index. So we remove it
2050 * by passing 'ubifs_tnc_remove_nm()' the same key but
2051 * an unmatchable name.
2052 */
2053 struct qstr noname = { .len = 0, .name = "" };
2054
2055 err = dbg_check_tnc(c, 0);
2056 mutex_unlock(&c->tnc_mutex);
2057 if (err)
2058 return err;
2059 return ubifs_tnc_remove_nm(c, key, &noname);
2060 }
2061 }
2062
2063out_unlock:
2064 if (!err)
2065 err = dbg_check_tnc(c, 0);
2066 mutex_unlock(&c->tnc_mutex);
2067 return err;
2068}
2069
2070/**
2071 * tnc_delete - delete a znode form TNC.
2072 * @c: UBIFS file-system description object
2073 * @znode: znode to delete from
2074 * @n: zbranch slot number to delete
2075 *
2076 * This function deletes a leaf node from @n-th slot of @znode. Returns zero in
2077 * case of success and a negative error code in case of failure.
2078 */
2079static int tnc_delete(struct ubifs_info *c, struct ubifs_znode *znode, int n)
2080{
2081 struct ubifs_zbranch *zbr;
2082 struct ubifs_znode *zp;
2083 int i, err;
2084
2085 /* Delete without merge for now */
2086 ubifs_assert(znode->level == 0);
2087 ubifs_assert(n >= 0 && n < c->fanout);
2088 dbg_tnc("deleting %s", DBGKEY(&znode->zbranch[n].key));
2089
2090 zbr = &znode->zbranch[n];
2091 lnc_free(zbr);
2092
2093 err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2094 if (err) {
2095 dbg_dump_znode(c, znode);
2096 return err;
2097 }
2098
2099 /* We do not "gap" zbranch slots */
2100 for (i = n; i < znode->child_cnt - 1; i++)
2101 znode->zbranch[i] = znode->zbranch[i + 1];
2102 znode->child_cnt -= 1;
2103
2104 if (znode->child_cnt > 0)
2105 return 0;
2106
2107 /*
2108 * This was the last zbranch, we have to delete this znode from the
2109 * parent.
2110 */
2111
2112 do {
2113 ubifs_assert(!test_bit(OBSOLETE_ZNODE, &znode->flags));
2114 ubifs_assert(ubifs_zn_dirty(znode));
2115
2116 zp = znode->parent;
2117 n = znode->iip;
2118
2119 atomic_long_dec(&c->dirty_zn_cnt);
2120
2121 err = insert_old_idx_znode(c, znode);
2122 if (err)
2123 return err;
2124
2125 if (znode->cnext) {
2126 __set_bit(OBSOLETE_ZNODE, &znode->flags);
2127 atomic_long_inc(&c->clean_zn_cnt);
2128 atomic_long_inc(&ubifs_clean_zn_cnt);
2129 } else
2130 kfree(znode);
2131 znode = zp;
2132 } while (znode->child_cnt == 1); /* while removing last child */
2133
2134 /* Remove from znode, entry n - 1 */
2135 znode->child_cnt -= 1;
2136 ubifs_assert(znode->level != 0);
2137 for (i = n; i < znode->child_cnt; i++) {
2138 znode->zbranch[i] = znode->zbranch[i + 1];
2139 if (znode->zbranch[i].znode)
2140 znode->zbranch[i].znode->iip = i;
2141 }
2142
2143 /*
2144 * If this is the root and it has only 1 child then
2145 * collapse the tree.
2146 */
2147 if (!znode->parent) {
2148 while (znode->child_cnt == 1 && znode->level != 0) {
2149 zp = znode;
2150 zbr = &znode->zbranch[0];
2151 znode = get_znode(c, znode, 0);
2152 if (IS_ERR(znode))
2153 return PTR_ERR(znode);
2154 znode = dirty_cow_znode(c, zbr);
2155 if (IS_ERR(znode))
2156 return PTR_ERR(znode);
2157 znode->parent = NULL;
2158 znode->iip = 0;
2159 if (c->zroot.len) {
2160 err = insert_old_idx(c, c->zroot.lnum,
2161 c->zroot.offs);
2162 if (err)
2163 return err;
2164 }
2165 c->zroot.lnum = zbr->lnum;
2166 c->zroot.offs = zbr->offs;
2167 c->zroot.len = zbr->len;
2168 c->zroot.znode = znode;
2169 ubifs_assert(!test_bit(OBSOLETE_ZNODE,
2170 &zp->flags));
2171 ubifs_assert(test_bit(DIRTY_ZNODE, &zp->flags));
2172 atomic_long_dec(&c->dirty_zn_cnt);
2173
2174 if (zp->cnext) {
2175 __set_bit(OBSOLETE_ZNODE, &zp->flags);
2176 atomic_long_inc(&c->clean_zn_cnt);
2177 atomic_long_inc(&ubifs_clean_zn_cnt);
2178 } else
2179 kfree(zp);
2180 }
2181 }
2182
2183 return 0;
2184}
2185
2186/**
2187 * ubifs_tnc_remove - remove an index entry of a node.
2188 * @c: UBIFS file-system description object
2189 * @key: key of node
2190 *
2191 * Returns %0 on success or negative error code on failure.
2192 */
2193int ubifs_tnc_remove(struct ubifs_info *c, const union ubifs_key *key)
2194{
2195 int found, n, err = 0;
2196 struct ubifs_znode *znode;
2197
2198 mutex_lock(&c->tnc_mutex);
2199 dbg_tnc("key %s", DBGKEY(key));
2200 found = lookup_level0_dirty(c, key, &znode, &n);
2201 if (found < 0) {
2202 err = found;
2203 goto out_unlock;
2204 }
2205 if (found == 1)
2206 err = tnc_delete(c, znode, n);
2207 if (!err)
2208 err = dbg_check_tnc(c, 0);
2209
2210out_unlock:
2211 mutex_unlock(&c->tnc_mutex);
2212 return err;
2213}
2214
2215/**
2216 * ubifs_tnc_remove_nm - remove an index entry for a "hashed" node.
2217 * @c: UBIFS file-system description object
2218 * @key: key of node
2219 * @nm: directory entry name
2220 *
2221 * Returns %0 on success or negative error code on failure.
2222 */
2223int ubifs_tnc_remove_nm(struct ubifs_info *c, const union ubifs_key *key,
2224 const struct qstr *nm)
2225{
2226 int n, err;
2227 struct ubifs_znode *znode;
2228
2229 mutex_lock(&c->tnc_mutex);
2230 dbg_tnc("%.*s, key %s", nm->len, nm->name, DBGKEY(key));
2231 err = lookup_level0_dirty(c, key, &znode, &n);
2232 if (err < 0)
2233 goto out_unlock;
2234
2235 if (err) {
2236 if (c->replaying)
2237 err = fallible_resolve_collision(c, key, &znode, &n,
2238 nm, 0);
2239 else
2240 err = resolve_collision(c, key, &znode, &n, nm);
2241 dbg_tnc("rc returned %d, znode %p, n %d", err, znode, n);
2242 if (err < 0)
2243 goto out_unlock;
2244 if (err) {
2245 /* Ensure the znode is dirtied */
2246 if (znode->cnext || !ubifs_zn_dirty(znode)) {
2247 znode = dirty_cow_bottom_up(c, znode);
2248 if (IS_ERR(znode)) {
2249 err = PTR_ERR(znode);
2250 goto out_unlock;
2251 }
2252 }
2253 err = tnc_delete(c, znode, n);
2254 }
2255 }
2256
2257out_unlock:
2258 if (!err)
2259 err = dbg_check_tnc(c, 0);
2260 mutex_unlock(&c->tnc_mutex);
2261 return err;
2262}
2263
2264/**
2265 * key_in_range - determine if a key falls within a range of keys.
2266 * @c: UBIFS file-system description object
2267 * @key: key to check
2268 * @from_key: lowest key in range
2269 * @to_key: highest key in range
2270 *
2271 * This function returns %1 if the key is in range and %0 otherwise.
2272 */
2273static int key_in_range(struct ubifs_info *c, union ubifs_key *key,
2274 union ubifs_key *from_key, union ubifs_key *to_key)
2275{
2276 if (keys_cmp(c, key, from_key) < 0)
2277 return 0;
2278 if (keys_cmp(c, key, to_key) > 0)
2279 return 0;
2280 return 1;
2281}
2282
2283/**
2284 * ubifs_tnc_remove_range - remove index entries in range.
2285 * @c: UBIFS file-system description object
2286 * @from_key: lowest key to remove
2287 * @to_key: highest key to remove
2288 *
2289 * This function removes index entries starting at @from_key and ending at
2290 * @to_key. This function returns zero in case of success and a negative error
2291 * code in case of failure.
2292 */
2293int ubifs_tnc_remove_range(struct ubifs_info *c, union ubifs_key *from_key,
2294 union ubifs_key *to_key)
2295{
2296 int i, n, k, err = 0;
2297 struct ubifs_znode *znode;
2298 union ubifs_key *key;
2299
2300 mutex_lock(&c->tnc_mutex);
2301 while (1) {
2302 /* Find first level 0 znode that contains keys to remove */
2303 err = ubifs_lookup_level0(c, from_key, &znode, &n);
2304 if (err < 0)
2305 goto out_unlock;
2306
2307 if (err)
2308 key = from_key;
2309 else {
2310 err = tnc_next(c, &znode, &n);
2311 if (err == -ENOENT) {
2312 err = 0;
2313 goto out_unlock;
2314 }
2315 if (err < 0)
2316 goto out_unlock;
2317 key = &znode->zbranch[n].key;
2318 if (!key_in_range(c, key, from_key, to_key)) {
2319 err = 0;
2320 goto out_unlock;
2321 }
2322 }
2323
2324 /* Ensure the znode is dirtied */
2325 if (znode->cnext || !ubifs_zn_dirty(znode)) {
2326 znode = dirty_cow_bottom_up(c, znode);
2327 if (IS_ERR(znode)) {
2328 err = PTR_ERR(znode);
2329 goto out_unlock;
2330 }
2331 }
2332
2333 /* Remove all keys in range except the first */
2334 for (i = n + 1, k = 0; i < znode->child_cnt; i++, k++) {
2335 key = &znode->zbranch[i].key;
2336 if (!key_in_range(c, key, from_key, to_key))
2337 break;
2338 lnc_free(&znode->zbranch[i]);
2339 err = ubifs_add_dirt(c, znode->zbranch[i].lnum,
2340 znode->zbranch[i].len);
2341 if (err) {
2342 dbg_dump_znode(c, znode);
2343 goto out_unlock;
2344 }
2345 dbg_tnc("removing %s", DBGKEY(key));
2346 }
2347 if (k) {
2348 for (i = n + 1 + k; i < znode->child_cnt; i++)
2349 znode->zbranch[i - k] = znode->zbranch[i];
2350 znode->child_cnt -= k;
2351 }
2352
2353 /* Now delete the first */
2354 err = tnc_delete(c, znode, n);
2355 if (err)
2356 goto out_unlock;
2357 }
2358
2359out_unlock:
2360 if (!err)
2361 err = dbg_check_tnc(c, 0);
2362 mutex_unlock(&c->tnc_mutex);
2363 return err;
2364}
2365
2366/**
2367 * ubifs_tnc_remove_ino - remove an inode from TNC.
2368 * @c: UBIFS file-system description object
2369 * @inum: inode number to remove
2370 *
2371 * This function remove inode @inum and all the extended attributes associated
2372 * with the anode from TNC and returns zero in case of success or a negative
2373 * error code in case of failure.
2374 */
2375int ubifs_tnc_remove_ino(struct ubifs_info *c, ino_t inum)
2376{
2377 union ubifs_key key1, key2;
2378 struct ubifs_dent_node *xent, *pxent = NULL;
2379 struct qstr nm = { .name = NULL };
2380
2381 dbg_tnc("ino %lu", inum);
2382
2383 /*
2384 * Walk all extended attribute entries and remove them together with
2385 * corresponding extended attribute inodes.
2386 */
2387 lowest_xent_key(c, &key1, inum);
2388 while (1) {
2389 ino_t xattr_inum;
2390 int err;
2391
2392 xent = ubifs_tnc_next_ent(c, &key1, &nm);
2393 if (IS_ERR(xent)) {
2394 err = PTR_ERR(xent);
2395 if (err == -ENOENT)
2396 break;
2397 return err;
2398 }
2399
2400 xattr_inum = le64_to_cpu(xent->inum);
2401 dbg_tnc("xent '%s', ino %lu", xent->name, xattr_inum);
2402
2403 nm.name = xent->name;
2404 nm.len = le16_to_cpu(xent->nlen);
2405 err = ubifs_tnc_remove_nm(c, &key1, &nm);
2406 if (err) {
2407 kfree(xent);
2408 return err;
2409 }
2410
2411 lowest_ino_key(c, &key1, xattr_inum);
2412 highest_ino_key(c, &key2, xattr_inum);
2413 err = ubifs_tnc_remove_range(c, &key1, &key2);
2414 if (err) {
2415 kfree(xent);
2416 return err;
2417 }
2418
2419 kfree(pxent);
2420 pxent = xent;
2421 key_read(c, &xent->key, &key1);
2422 }
2423
2424 kfree(pxent);
2425 lowest_ino_key(c, &key1, inum);
2426 highest_ino_key(c, &key2, inum);
2427
2428 return ubifs_tnc_remove_range(c, &key1, &key2);
2429}
2430
2431/**
2432 * ubifs_tnc_next_ent - walk directory or extended attribute entries.
2433 * @c: UBIFS file-system description object
2434 * @key: key of last entry
2435 * @nm: name of last entry found or %NULL
2436 *
2437 * This function finds and reads the next directory or extended attribute entry
2438 * after the given key (@key) if there is one. @nm is used to resolve
2439 * collisions.
2440 *
2441 * If the name of the current entry is not known and only the key is known,
2442 * @nm->name has to be %NULL. In this case the semantics of this function is a
2443 * little bit different and it returns the entry corresponding to this key, not
2444 * the next one. If the key was not found, the closest "right" entry is
2445 * returned.
2446 *
2447 * If the fist entry has to be found, @key has to contain the lowest possible
2448 * key value for this inode and @name has to be %NULL.
2449 *
2450 * This function returns the found directory or extended attribute entry node
2451 * in case of success, %-ENOENT is returned if no entry was found, and a
2452 * negative error code is returned in case of failure.
2453 */
2454struct ubifs_dent_node *ubifs_tnc_next_ent(struct ubifs_info *c,
2455 union ubifs_key *key,
2456 const struct qstr *nm)
2457{
2458 int n, err, type = key_type(c, key);
2459 struct ubifs_znode *znode;
2460 struct ubifs_dent_node *dent;
2461 struct ubifs_zbranch *zbr;
2462 union ubifs_key *dkey;
2463
2464 dbg_tnc("%s %s", nm->name ? (char *)nm->name : "(lowest)", DBGKEY(key));
2465 ubifs_assert(is_hash_key(c, key));
2466
2467 mutex_lock(&c->tnc_mutex);
2468 err = ubifs_lookup_level0(c, key, &znode, &n);
2469 if (unlikely(err < 0))
2470 goto out_unlock;
2471
2472 if (nm->name) {
2473 if (err) {
2474 /* Handle collisions */
2475 err = resolve_collision(c, key, &znode, &n, nm);
2476 dbg_tnc("rc returned %d, znode %p, n %d",
2477 err, znode, n);
2478 if (unlikely(err < 0))
2479 goto out_unlock;
2480 }
2481
2482 /* Now find next entry */
2483 err = tnc_next(c, &znode, &n);
2484 if (unlikely(err))
2485 goto out_unlock;
2486 } else {
2487 /*
2488 * The full name of the entry was not given, in which case the
2489 * behavior of this function is a little different and it
2490 * returns current entry, not the next one.
2491 */
2492 if (!err) {
2493 /*
2494 * However, the given key does not exist in the TNC
2495 * tree and @znode/@n variables contain the closest
2496 * "preceding" element. Switch to the next one.
2497 */
2498 err = tnc_next(c, &znode, &n);
2499 if (err)
2500 goto out_unlock;
2501 }
2502 }
2503
2504 zbr = &znode->zbranch[n];
2505 dent = kmalloc(zbr->len, GFP_NOFS);
2506 if (unlikely(!dent)) {
2507 err = -ENOMEM;
2508 goto out_unlock;
2509 }
2510
2511 /*
2512 * The above 'tnc_next()' call could lead us to the next inode, check
2513 * this.
2514 */
2515 dkey = &zbr->key;
2516 if (key_inum(c, dkey) != key_inum(c, key) ||
2517 key_type(c, dkey) != type) {
2518 err = -ENOENT;
2519 goto out_free;
2520 }
2521
2522 err = tnc_read_node_nm(c, zbr, dent);
2523 if (unlikely(err))
2524 goto out_free;
2525
2526 mutex_unlock(&c->tnc_mutex);
2527 return dent;
2528
2529out_free:
2530 kfree(dent);
2531out_unlock:
2532 mutex_unlock(&c->tnc_mutex);
2533 return ERR_PTR(err);
2534}
2535
2536/**
2537 * tnc_destroy_cnext - destroy left-over obsolete znodes from a failed commit.
2538 * @c: UBIFS file-system description object
2539 *
2540 * Destroy left-over obsolete znodes from a failed commit.
2541 */
2542static void tnc_destroy_cnext(struct ubifs_info *c)
2543{
2544 struct ubifs_znode *cnext;
2545
2546 if (!c->cnext)
2547 return;
2548 ubifs_assert(c->cmt_state == COMMIT_BROKEN);
2549 cnext = c->cnext;
2550 do {
2551 struct ubifs_znode *znode = cnext;
2552
2553 cnext = cnext->cnext;
2554 if (test_bit(OBSOLETE_ZNODE, &znode->flags))
2555 kfree(znode);
2556 } while (cnext && cnext != c->cnext);
2557}
2558
2559/**
2560 * ubifs_tnc_close - close TNC subsystem and free all related resources.
2561 * @c: UBIFS file-system description object
2562 */
2563void ubifs_tnc_close(struct ubifs_info *c)
2564{
2565 long clean_freed;
2566
2567 tnc_destroy_cnext(c);
2568 if (c->zroot.znode) {
2569 clean_freed = ubifs_destroy_tnc_subtree(c->zroot.znode);
2570 atomic_long_sub(clean_freed, &ubifs_clean_zn_cnt);
2571 }
2572 kfree(c->gap_lebs);
2573 kfree(c->ilebs);
2574 destroy_old_idx(c);
2575}
2576
2577/**
2578 * left_znode - get the znode to the left.
2579 * @c: UBIFS file-system description object
2580 * @znode: znode
2581 *
2582 * This function returns a pointer to the znode to the left of @znode or NULL if
2583 * there is not one. A negative error code is returned on failure.
2584 */
2585static struct ubifs_znode *left_znode(struct ubifs_info *c,
2586 struct ubifs_znode *znode)
2587{
2588 int level = znode->level;
2589
2590 while (1) {
2591 int n = znode->iip - 1;
2592
2593 /* Go up until we can go left */
2594 znode = znode->parent;
2595 if (!znode)
2596 return NULL;
2597 if (n >= 0) {
2598 /* Now go down the rightmost branch to 'level' */
2599 znode = get_znode(c, znode, n);
2600 if (IS_ERR(znode))
2601 return znode;
2602 while (znode->level != level) {
2603 n = znode->child_cnt - 1;
2604 znode = get_znode(c, znode, n);
2605 if (IS_ERR(znode))
2606 return znode;
2607 }
2608 break;
2609 }
2610 }
2611 return znode;
2612}
2613
2614/**
2615 * right_znode - get the znode to the right.
2616 * @c: UBIFS file-system description object
2617 * @znode: znode
2618 *
2619 * This function returns a pointer to the znode to the right of @znode or NULL
2620 * if there is not one. A negative error code is returned on failure.
2621 */
2622static struct ubifs_znode *right_znode(struct ubifs_info *c,
2623 struct ubifs_znode *znode)
2624{
2625 int level = znode->level;
2626
2627 while (1) {
2628 int n = znode->iip + 1;
2629
2630 /* Go up until we can go right */
2631 znode = znode->parent;
2632 if (!znode)
2633 return NULL;
2634 if (n < znode->child_cnt) {
2635 /* Now go down the leftmost branch to 'level' */
2636 znode = get_znode(c, znode, n);
2637 if (IS_ERR(znode))
2638 return znode;
2639 while (znode->level != level) {
2640 znode = get_znode(c, znode, 0);
2641 if (IS_ERR(znode))
2642 return znode;
2643 }
2644 break;
2645 }
2646 }
2647 return znode;
2648}
2649
2650/**
2651 * lookup_znode - find a particular indexing node from TNC.
2652 * @c: UBIFS file-system description object
2653 * @key: index node key to lookup
2654 * @level: index node level
2655 * @lnum: index node LEB number
2656 * @offs: index node offset
2657 *
2658 * This function searches an indexing node by its first key @key and its
2659 * address @lnum:@offs. It looks up the indexing tree by pulling all indexing
2660 * nodes it traverses to TNC. This function is called fro indexing nodes which
2661 * were found on the media by scanning, for example when garbage-collecting or
2662 * when doing in-the-gaps commit. This means that the indexing node which is
2663 * looked for does not have to have exactly the same leftmost key @key, because
2664 * the leftmost key may have been changed, in which case TNC will contain a
2665 * dirty znode which still refers the same @lnum:@offs. This function is clever
2666 * enough to recognize such indexing nodes.
2667 *
2668 * Note, if a znode was deleted or changed too much, then this function will
2669 * not find it. For situations like this UBIFS has the old index RB-tree
2670 * (indexed by @lnum:@offs).
2671 *
2672 * This function returns a pointer to the znode found or %NULL if it is not
2673 * found. A negative error code is returned on failure.
2674 */
2675static struct ubifs_znode *lookup_znode(struct ubifs_info *c,
2676 union ubifs_key *key, int level,
2677 int lnum, int offs)
2678{
2679 struct ubifs_znode *znode, *zn;
2680 int n, nn;
2681
2682 /*
2683 * The arguments have probably been read off flash, so don't assume
2684 * they are valid.
2685 */
2686 if (level < 0)
2687 return ERR_PTR(-EINVAL);
2688
2689 /* Get the root znode */
2690 znode = c->zroot.znode;
2691 if (!znode) {
2692 znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
2693 if (IS_ERR(znode))
2694 return znode;
2695 }
2696 /* Check if it is the one we are looking for */
2697 if (c->zroot.lnum == lnum && c->zroot.offs == offs)
2698 return znode;
2699 /* Descend to the parent level i.e. (level + 1) */
2700 if (level >= znode->level)
2701 return NULL;
2702 while (1) {
2703 ubifs_search_zbranch(c, znode, key, &n);
2704 if (n < 0) {
2705 /*
2706 * We reached a znode where the leftmost key is greater
2707 * than the key we are searching for. This is the same
2708 * situation as the one described in a huge comment at
2709 * the end of the 'ubifs_lookup_level0()' function. And
2710 * for exactly the same reasons we have to try to look
2711 * left before giving up.
2712 */
2713 znode = left_znode(c, znode);
2714 if (!znode)
2715 return NULL;
2716 if (IS_ERR(znode))
2717 return znode;
2718 ubifs_search_zbranch(c, znode, key, &n);
2719 ubifs_assert(n >= 0);
2720 }
2721 if (znode->level == level + 1)
2722 break;
2723 znode = get_znode(c, znode, n);
2724 if (IS_ERR(znode))
2725 return znode;
2726 }
2727 /* Check if the child is the one we are looking for */
2728 if (znode->zbranch[n].lnum == lnum && znode->zbranch[n].offs == offs)
2729 return get_znode(c, znode, n);
2730 /* If the key is unique, there is nowhere else to look */
2731 if (!is_hash_key(c, key))
2732 return NULL;
2733 /*
2734 * The key is not unique and so may be also in the znodes to either
2735 * side.
2736 */
2737 zn = znode;
2738 nn = n;
2739 /* Look left */
2740 while (1) {
2741 /* Move one branch to the left */
2742 if (n)
2743 n -= 1;
2744 else {
2745 znode = left_znode(c, znode);
2746 if (!znode)
2747 break;
2748 if (IS_ERR(znode))
2749 return znode;
2750 n = znode->child_cnt - 1;
2751 }
2752 /* Check it */
2753 if (znode->zbranch[n].lnum == lnum &&
2754 znode->zbranch[n].offs == offs)
2755 return get_znode(c, znode, n);
2756 /* Stop if the key is less than the one we are looking for */
2757 if (keys_cmp(c, &znode->zbranch[n].key, key) < 0)
2758 break;
2759 }
2760 /* Back to the middle */
2761 znode = zn;
2762 n = nn;
2763 /* Look right */
2764 while (1) {
2765 /* Move one branch to the right */
2766 if (++n >= znode->child_cnt) {
2767 znode = right_znode(c, znode);
2768 if (!znode)
2769 break;
2770 if (IS_ERR(znode))
2771 return znode;
2772 n = 0;
2773 }
2774 /* Check it */
2775 if (znode->zbranch[n].lnum == lnum &&
2776 znode->zbranch[n].offs == offs)
2777 return get_znode(c, znode, n);
2778 /* Stop if the key is greater than the one we are looking for */
2779 if (keys_cmp(c, &znode->zbranch[n].key, key) > 0)
2780 break;
2781 }
2782 return NULL;
2783}
2784
2785/**
2786 * is_idx_node_in_tnc - determine if an index node is in the TNC.
2787 * @c: UBIFS file-system description object
2788 * @key: key of index node
2789 * @level: index node level
2790 * @lnum: LEB number of index node
2791 * @offs: offset of index node
2792 *
2793 * This function returns %0 if the index node is not referred to in the TNC, %1
2794 * if the index node is referred to in the TNC and the corresponding znode is
2795 * dirty, %2 if an index node is referred to in the TNC and the corresponding
2796 * znode is clean, and a negative error code in case of failure.
2797 *
2798 * Note, the @key argument has to be the key of the first child. Also note,
2799 * this function relies on the fact that 0:0 is never a valid LEB number and
2800 * offset for a main-area node.
2801 */
2802int is_idx_node_in_tnc(struct ubifs_info *c, union ubifs_key *key, int level,
2803 int lnum, int offs)
2804{
2805 struct ubifs_znode *znode;
2806
2807 znode = lookup_znode(c, key, level, lnum, offs);
2808 if (!znode)
2809 return 0;
2810 if (IS_ERR(znode))
2811 return PTR_ERR(znode);
2812
2813 return ubifs_zn_dirty(znode) ? 1 : 2;
2814}
2815
2816/**
2817 * is_leaf_node_in_tnc - determine if a non-indexing not is in the TNC.
2818 * @c: UBIFS file-system description object
2819 * @key: node key
2820 * @lnum: node LEB number
2821 * @offs: node offset
2822 *
2823 * This function returns %1 if the node is referred to in the TNC, %0 if it is
2824 * not, and a negative error code in case of failure.
2825 *
2826 * Note, this function relies on the fact that 0:0 is never a valid LEB number
2827 * and offset for a main-area node.
2828 */
2829static int is_leaf_node_in_tnc(struct ubifs_info *c, union ubifs_key *key,
2830 int lnum, int offs)
2831{
2832 struct ubifs_zbranch *zbr;
2833 struct ubifs_znode *znode, *zn;
2834 int n, found, err, nn;
2835 const int unique = !is_hash_key(c, key);
2836
2837 found = ubifs_lookup_level0(c, key, &znode, &n);
2838 if (found < 0)
2839 return found; /* Error code */
2840 if (!found)
2841 return 0;
2842 zbr = &znode->zbranch[n];
2843 if (lnum == zbr->lnum && offs == zbr->offs)
2844 return 1; /* Found it */
2845 if (unique)
2846 return 0;
2847 /*
2848 * Because the key is not unique, we have to look left
2849 * and right as well
2850 */
2851 zn = znode;
2852 nn = n;
2853 /* Look left */
2854 while (1) {
2855 err = tnc_prev(c, &znode, &n);
2856 if (err == -ENOENT)
2857 break;
2858 if (err)
2859 return err;
2860 if (keys_cmp(c, key, &znode->zbranch[n].key))
2861 break;
2862 zbr = &znode->zbranch[n];
2863 if (lnum == zbr->lnum && offs == zbr->offs)
2864 return 1; /* Found it */
2865 }
2866 /* Look right */
2867 znode = zn;
2868 n = nn;
2869 while (1) {
2870 err = tnc_next(c, &znode, &n);
2871 if (err) {
2872 if (err == -ENOENT)
2873 return 0;
2874 return err;
2875 }
2876 if (keys_cmp(c, key, &znode->zbranch[n].key))
2877 break;
2878 zbr = &znode->zbranch[n];
2879 if (lnum == zbr->lnum && offs == zbr->offs)
2880 return 1; /* Found it */
2881 }
2882 return 0;
2883}
2884
2885/**
2886 * ubifs_tnc_has_node - determine whether a node is in the TNC.
2887 * @c: UBIFS file-system description object
2888 * @key: node key
2889 * @level: index node level (if it is an index node)
2890 * @lnum: node LEB number
2891 * @offs: node offset
2892 * @is_idx: non-zero if the node is an index node
2893 *
2894 * This function returns %1 if the node is in the TNC, %0 if it is not, and a
2895 * negative error code in case of failure. For index nodes, @key has to be the
2896 * key of the first child. An index node is considered to be in the TNC only if
2897 * the corresponding znode is clean or has not been loaded.
2898 */
2899int ubifs_tnc_has_node(struct ubifs_info *c, union ubifs_key *key, int level,
2900 int lnum, int offs, int is_idx)
2901{
2902 int err;
2903
2904 mutex_lock(&c->tnc_mutex);
2905 if (is_idx) {
2906 err = is_idx_node_in_tnc(c, key, level, lnum, offs);
2907 if (err < 0)
2908 goto out_unlock;
2909 if (err == 1)
2910 /* The index node was found but it was dirty */
2911 err = 0;
2912 else if (err == 2)
2913 /* The index node was found and it was clean */
2914 err = 1;
2915 else
2916 BUG_ON(err != 0);
2917 } else
2918 err = is_leaf_node_in_tnc(c, key, lnum, offs);
2919
2920out_unlock:
2921 mutex_unlock(&c->tnc_mutex);
2922 return err;
2923}
2924
2925/**
2926 * ubifs_dirty_idx_node - dirty an index node.
2927 * @c: UBIFS file-system description object
2928 * @key: index node key
2929 * @level: index node level
2930 * @lnum: index node LEB number
2931 * @offs: index node offset
2932 *
2933 * This function loads and dirties an index node so that it can be garbage
2934 * collected. The @key argument has to be the key of the first child. This
2935 * function relies on the fact that 0:0 is never a valid LEB number and offset
2936 * for a main-area node. Returns %0 on success and a negative error code on
2937 * failure.
2938 */
2939int ubifs_dirty_idx_node(struct ubifs_info *c, union ubifs_key *key, int level,
2940 int lnum, int offs)
2941{
2942 struct ubifs_znode *znode;
2943 int err = 0;
2944
2945 mutex_lock(&c->tnc_mutex);
2946 znode = lookup_znode(c, key, level, lnum, offs);
2947 if (!znode)
2948 goto out_unlock;
2949 if (IS_ERR(znode)) {
2950 err = PTR_ERR(znode);
2951 goto out_unlock;
2952 }
2953 znode = dirty_cow_bottom_up(c, znode);
2954 if (IS_ERR(znode)) {
2955 err = PTR_ERR(znode);
2956 goto out_unlock;
2957 }
2958
2959out_unlock:
2960 mutex_unlock(&c->tnc_mutex);
2961 return err;
2962}