blob: 744a49ac9f5cfcc5bf6869df0aa722f4104bc7aa [file] [log] [blame]
Doug Thompson2bc65412009-05-04 20:11:14 +02001#include "amd64_edac.h"
2
3static struct edac_pci_ctl_info *amd64_ctl_pci;
4
5static int report_gart_errors;
6module_param(report_gart_errors, int, 0644);
7
8/*
9 * Set by command line parameter. If BIOS has enabled the ECC, this override is
10 * cleared to prevent re-enabling the hardware by this driver.
11 */
12static int ecc_enable_override;
13module_param(ecc_enable_override, int, 0644);
14
15/* Lookup table for all possible MC control instances */
16struct amd64_pvt;
17static struct mem_ctl_info *mci_lookup[MAX_NUMNODES];
18static struct amd64_pvt *pvt_lookup[MAX_NUMNODES];
19
20/*
21 * Memory scrubber control interface. For K8, memory scrubbing is handled by
22 * hardware and can involve L2 cache, dcache as well as the main memory. With
23 * F10, this is extended to L3 cache scrubbing on CPU models sporting that
24 * functionality.
25 *
26 * This causes the "units" for the scrubbing speed to vary from 64 byte blocks
27 * (dram) over to cache lines. This is nasty, so we will use bandwidth in
28 * bytes/sec for the setting.
29 *
30 * Currently, we only do dram scrubbing. If the scrubbing is done in software on
31 * other archs, we might not have access to the caches directly.
32 */
33
34/*
35 * scan the scrub rate mapping table for a close or matching bandwidth value to
36 * issue. If requested is too big, then use last maximum value found.
37 */
38static int amd64_search_set_scrub_rate(struct pci_dev *ctl, u32 new_bw,
39 u32 min_scrubrate)
40{
41 u32 scrubval;
42 int i;
43
44 /*
45 * map the configured rate (new_bw) to a value specific to the AMD64
46 * memory controller and apply to register. Search for the first
47 * bandwidth entry that is greater or equal than the setting requested
48 * and program that. If at last entry, turn off DRAM scrubbing.
49 */
50 for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
51 /*
52 * skip scrub rates which aren't recommended
53 * (see F10 BKDG, F3x58)
54 */
55 if (scrubrates[i].scrubval < min_scrubrate)
56 continue;
57
58 if (scrubrates[i].bandwidth <= new_bw)
59 break;
60
61 /*
62 * if no suitable bandwidth found, turn off DRAM scrubbing
63 * entirely by falling back to the last element in the
64 * scrubrates array.
65 */
66 }
67
68 scrubval = scrubrates[i].scrubval;
69 if (scrubval)
70 edac_printk(KERN_DEBUG, EDAC_MC,
71 "Setting scrub rate bandwidth: %u\n",
72 scrubrates[i].bandwidth);
73 else
74 edac_printk(KERN_DEBUG, EDAC_MC, "Turning scrubbing off.\n");
75
76 pci_write_bits32(ctl, K8_SCRCTRL, scrubval, 0x001F);
77
78 return 0;
79}
80
81static int amd64_set_scrub_rate(struct mem_ctl_info *mci, u32 *bandwidth)
82{
83 struct amd64_pvt *pvt = mci->pvt_info;
84 u32 min_scrubrate = 0x0;
85
86 switch (boot_cpu_data.x86) {
87 case 0xf:
88 min_scrubrate = K8_MIN_SCRUB_RATE_BITS;
89 break;
90 case 0x10:
91 min_scrubrate = F10_MIN_SCRUB_RATE_BITS;
92 break;
93 case 0x11:
94 min_scrubrate = F11_MIN_SCRUB_RATE_BITS;
95 break;
96
97 default:
98 amd64_printk(KERN_ERR, "Unsupported family!\n");
99 break;
100 }
101 return amd64_search_set_scrub_rate(pvt->misc_f3_ctl, *bandwidth,
102 min_scrubrate);
103}
104
105static int amd64_get_scrub_rate(struct mem_ctl_info *mci, u32 *bw)
106{
107 struct amd64_pvt *pvt = mci->pvt_info;
108 u32 scrubval = 0;
109 int status = -1, i, ret = 0;
110
111 ret = pci_read_config_dword(pvt->misc_f3_ctl, K8_SCRCTRL, &scrubval);
112 if (ret)
113 debugf0("Reading K8_SCRCTRL failed\n");
114
115 scrubval = scrubval & 0x001F;
116
117 edac_printk(KERN_DEBUG, EDAC_MC,
118 "pci-read, sdram scrub control value: %d \n", scrubval);
119
120 for (i = 0; ARRAY_SIZE(scrubrates); i++) {
121 if (scrubrates[i].scrubval == scrubval) {
122 *bw = scrubrates[i].bandwidth;
123 status = 0;
124 break;
125 }
126 }
127
128 return status;
129}
130
Doug Thompson67757632009-04-27 15:53:22 +0200131/* Map from a CSROW entry to the mask entry that operates on it */
132static inline u32 amd64_map_to_dcs_mask(struct amd64_pvt *pvt, int csrow)
133{
134 return csrow >> (pvt->num_dcsm >> 3);
135}
136
137/* return the 'base' address the i'th CS entry of the 'dct' DRAM controller */
138static u32 amd64_get_dct_base(struct amd64_pvt *pvt, int dct, int csrow)
139{
140 if (dct == 0)
141 return pvt->dcsb0[csrow];
142 else
143 return pvt->dcsb1[csrow];
144}
145
146/*
147 * Return the 'mask' address the i'th CS entry. This function is needed because
148 * there number of DCSM registers on Rev E and prior vs Rev F and later is
149 * different.
150 */
151static u32 amd64_get_dct_mask(struct amd64_pvt *pvt, int dct, int csrow)
152{
153 if (dct == 0)
154 return pvt->dcsm0[amd64_map_to_dcs_mask(pvt, csrow)];
155 else
156 return pvt->dcsm1[amd64_map_to_dcs_mask(pvt, csrow)];
157}
158
159
160/*
161 * In *base and *limit, pass back the full 40-bit base and limit physical
162 * addresses for the node given by node_id. This information is obtained from
163 * DRAM Base (section 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers. The
164 * base and limit addresses are of type SysAddr, as defined at the start of
165 * section 3.4.4 (p. 70). They are the lowest and highest physical addresses
166 * in the address range they represent.
167 */
168static void amd64_get_base_and_limit(struct amd64_pvt *pvt, int node_id,
169 u64 *base, u64 *limit)
170{
171 *base = pvt->dram_base[node_id];
172 *limit = pvt->dram_limit[node_id];
173}
174
175/*
176 * Return 1 if the SysAddr given by sys_addr matches the base/limit associated
177 * with node_id
178 */
179static int amd64_base_limit_match(struct amd64_pvt *pvt,
180 u64 sys_addr, int node_id)
181{
182 u64 base, limit, addr;
183
184 amd64_get_base_and_limit(pvt, node_id, &base, &limit);
185
186 /* The K8 treats this as a 40-bit value. However, bits 63-40 will be
187 * all ones if the most significant implemented address bit is 1.
188 * Here we discard bits 63-40. See section 3.4.2 of AMD publication
189 * 24592: AMD x86-64 Architecture Programmer's Manual Volume 1
190 * Application Programming.
191 */
192 addr = sys_addr & 0x000000ffffffffffull;
193
194 return (addr >= base) && (addr <= limit);
195}
196
197/*
198 * Attempt to map a SysAddr to a node. On success, return a pointer to the
199 * mem_ctl_info structure for the node that the SysAddr maps to.
200 *
201 * On failure, return NULL.
202 */
203static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci,
204 u64 sys_addr)
205{
206 struct amd64_pvt *pvt;
207 int node_id;
208 u32 intlv_en, bits;
209
210 /*
211 * Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section
212 * 3.4.4.2) registers to map the SysAddr to a node ID.
213 */
214 pvt = mci->pvt_info;
215
216 /*
217 * The value of this field should be the same for all DRAM Base
218 * registers. Therefore we arbitrarily choose to read it from the
219 * register for node 0.
220 */
221 intlv_en = pvt->dram_IntlvEn[0];
222
223 if (intlv_en == 0) {
224 for (node_id = 0; ; ) {
225 if (amd64_base_limit_match(pvt, sys_addr, node_id))
226 break;
227
228 if (++node_id >= DRAM_REG_COUNT)
229 goto err_no_match;
230 }
231 goto found;
232 }
233
234 if (unlikely((intlv_en != (0x01 << 8)) &&
235 (intlv_en != (0x03 << 8)) &&
236 (intlv_en != (0x07 << 8)))) {
237 amd64_printk(KERN_WARNING, "junk value of 0x%x extracted from "
238 "IntlvEn field of DRAM Base Register for node 0: "
239 "This probably indicates a BIOS bug.\n", intlv_en);
240 return NULL;
241 }
242
243 bits = (((u32) sys_addr) >> 12) & intlv_en;
244
245 for (node_id = 0; ; ) {
246 if ((pvt->dram_limit[node_id] & intlv_en) == bits)
247 break; /* intlv_sel field matches */
248
249 if (++node_id >= DRAM_REG_COUNT)
250 goto err_no_match;
251 }
252
253 /* sanity test for sys_addr */
254 if (unlikely(!amd64_base_limit_match(pvt, sys_addr, node_id))) {
255 amd64_printk(KERN_WARNING,
256 "%s(): sys_addr 0x%lx falls outside base/limit "
257 "address range for node %d with node interleaving "
258 "enabled.\n", __func__, (unsigned long)sys_addr,
259 node_id);
260 return NULL;
261 }
262
263found:
264 return edac_mc_find(node_id);
265
266err_no_match:
267 debugf2("sys_addr 0x%lx doesn't match any node\n",
268 (unsigned long)sys_addr);
269
270 return NULL;
271}
Doug Thompsone2ce7252009-04-27 15:57:12 +0200272
273/*
274 * Extract the DRAM CS base address from selected csrow register.
275 */
276static u64 base_from_dct_base(struct amd64_pvt *pvt, int csrow)
277{
278 return ((u64) (amd64_get_dct_base(pvt, 0, csrow) & pvt->dcsb_base)) <<
279 pvt->dcs_shift;
280}
281
282/*
283 * Extract the mask from the dcsb0[csrow] entry in a CPU revision-specific way.
284 */
285static u64 mask_from_dct_mask(struct amd64_pvt *pvt, int csrow)
286{
287 u64 dcsm_bits, other_bits;
288 u64 mask;
289
290 /* Extract bits from DRAM CS Mask. */
291 dcsm_bits = amd64_get_dct_mask(pvt, 0, csrow) & pvt->dcsm_mask;
292
293 other_bits = pvt->dcsm_mask;
294 other_bits = ~(other_bits << pvt->dcs_shift);
295
296 /*
297 * The extracted bits from DCSM belong in the spaces represented by
298 * the cleared bits in other_bits.
299 */
300 mask = (dcsm_bits << pvt->dcs_shift) | other_bits;
301
302 return mask;
303}
304
305/*
306 * @input_addr is an InputAddr associated with the node given by mci. Return the
307 * csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr).
308 */
309static int input_addr_to_csrow(struct mem_ctl_info *mci, u64 input_addr)
310{
311 struct amd64_pvt *pvt;
312 int csrow;
313 u64 base, mask;
314
315 pvt = mci->pvt_info;
316
317 /*
318 * Here we use the DRAM CS Base and DRAM CS Mask registers. For each CS
319 * base/mask register pair, test the condition shown near the start of
320 * section 3.5.4 (p. 84, BKDG #26094, K8, revA-E).
321 */
322 for (csrow = 0; csrow < CHIPSELECT_COUNT; csrow++) {
323
324 /* This DRAM chip select is disabled on this node */
325 if ((pvt->dcsb0[csrow] & K8_DCSB_CS_ENABLE) == 0)
326 continue;
327
328 base = base_from_dct_base(pvt, csrow);
329 mask = ~mask_from_dct_mask(pvt, csrow);
330
331 if ((input_addr & mask) == (base & mask)) {
332 debugf2("InputAddr 0x%lx matches csrow %d (node %d)\n",
333 (unsigned long)input_addr, csrow,
334 pvt->mc_node_id);
335
336 return csrow;
337 }
338 }
339
340 debugf2("no matching csrow for InputAddr 0x%lx (MC node %d)\n",
341 (unsigned long)input_addr, pvt->mc_node_id);
342
343 return -1;
344}
345
346/*
347 * Return the base value defined by the DRAM Base register for the node
348 * represented by mci. This function returns the full 40-bit value despite the
349 * fact that the register only stores bits 39-24 of the value. See section
350 * 3.4.4.1 (BKDG #26094, K8, revA-E)
351 */
352static inline u64 get_dram_base(struct mem_ctl_info *mci)
353{
354 struct amd64_pvt *pvt = mci->pvt_info;
355
356 return pvt->dram_base[pvt->mc_node_id];
357}
358
359/*
360 * Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094)
361 * for the node represented by mci. Info is passed back in *hole_base,
362 * *hole_offset, and *hole_size. Function returns 0 if info is valid or 1 if
363 * info is invalid. Info may be invalid for either of the following reasons:
364 *
365 * - The revision of the node is not E or greater. In this case, the DRAM Hole
366 * Address Register does not exist.
367 *
368 * - The DramHoleValid bit is cleared in the DRAM Hole Address Register,
369 * indicating that its contents are not valid.
370 *
371 * The values passed back in *hole_base, *hole_offset, and *hole_size are
372 * complete 32-bit values despite the fact that the bitfields in the DHAR
373 * only represent bits 31-24 of the base and offset values.
374 */
375int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base,
376 u64 *hole_offset, u64 *hole_size)
377{
378 struct amd64_pvt *pvt = mci->pvt_info;
379 u64 base;
380
381 /* only revE and later have the DRAM Hole Address Register */
382 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < OPTERON_CPU_REV_E) {
383 debugf1(" revision %d for node %d does not support DHAR\n",
384 pvt->ext_model, pvt->mc_node_id);
385 return 1;
386 }
387
388 /* only valid for Fam10h */
389 if (boot_cpu_data.x86 == 0x10 &&
390 (pvt->dhar & F10_DRAM_MEM_HOIST_VALID) == 0) {
391 debugf1(" Dram Memory Hoisting is DISABLED on this system\n");
392 return 1;
393 }
394
395 if ((pvt->dhar & DHAR_VALID) == 0) {
396 debugf1(" Dram Memory Hoisting is DISABLED on this node %d\n",
397 pvt->mc_node_id);
398 return 1;
399 }
400
401 /* This node has Memory Hoisting */
402
403 /* +------------------+--------------------+--------------------+-----
404 * | memory | DRAM hole | relocated |
405 * | [0, (x - 1)] | [x, 0xffffffff] | addresses from |
406 * | | | DRAM hole |
407 * | | | [0x100000000, |
408 * | | | (0x100000000+ |
409 * | | | (0xffffffff-x))] |
410 * +------------------+--------------------+--------------------+-----
411 *
412 * Above is a diagram of physical memory showing the DRAM hole and the
413 * relocated addresses from the DRAM hole. As shown, the DRAM hole
414 * starts at address x (the base address) and extends through address
415 * 0xffffffff. The DRAM Hole Address Register (DHAR) relocates the
416 * addresses in the hole so that they start at 0x100000000.
417 */
418
419 base = dhar_base(pvt->dhar);
420
421 *hole_base = base;
422 *hole_size = (0x1ull << 32) - base;
423
424 if (boot_cpu_data.x86 > 0xf)
425 *hole_offset = f10_dhar_offset(pvt->dhar);
426 else
427 *hole_offset = k8_dhar_offset(pvt->dhar);
428
429 debugf1(" DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n",
430 pvt->mc_node_id, (unsigned long)*hole_base,
431 (unsigned long)*hole_offset, (unsigned long)*hole_size);
432
433 return 0;
434}
435EXPORT_SYMBOL_GPL(amd64_get_dram_hole_info);
436
Doug Thompson93c2df52009-05-04 20:46:50 +0200437/*
438 * Return the DramAddr that the SysAddr given by @sys_addr maps to. It is
439 * assumed that sys_addr maps to the node given by mci.
440 *
441 * The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section
442 * 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a
443 * SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled,
444 * then it is also involved in translating a SysAddr to a DramAddr. Sections
445 * 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting.
446 * These parts of the documentation are unclear. I interpret them as follows:
447 *
448 * When node n receives a SysAddr, it processes the SysAddr as follows:
449 *
450 * 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM
451 * Limit registers for node n. If the SysAddr is not within the range
452 * specified by the base and limit values, then node n ignores the Sysaddr
453 * (since it does not map to node n). Otherwise continue to step 2 below.
454 *
455 * 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is
456 * disabled so skip to step 3 below. Otherwise see if the SysAddr is within
457 * the range of relocated addresses (starting at 0x100000000) from the DRAM
458 * hole. If not, skip to step 3 below. Else get the value of the
459 * DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the
460 * offset defined by this value from the SysAddr.
461 *
462 * 3. Obtain the base address for node n from the DRAMBase field of the DRAM
463 * Base register for node n. To obtain the DramAddr, subtract the base
464 * address from the SysAddr, as shown near the start of section 3.4.4 (p.70).
465 */
466static u64 sys_addr_to_dram_addr(struct mem_ctl_info *mci, u64 sys_addr)
467{
468 u64 dram_base, hole_base, hole_offset, hole_size, dram_addr;
469 int ret = 0;
470
471 dram_base = get_dram_base(mci);
472
473 ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
474 &hole_size);
475 if (!ret) {
476 if ((sys_addr >= (1ull << 32)) &&
477 (sys_addr < ((1ull << 32) + hole_size))) {
478 /* use DHAR to translate SysAddr to DramAddr */
479 dram_addr = sys_addr - hole_offset;
480
481 debugf2("using DHAR to translate SysAddr 0x%lx to "
482 "DramAddr 0x%lx\n",
483 (unsigned long)sys_addr,
484 (unsigned long)dram_addr);
485
486 return dram_addr;
487 }
488 }
489
490 /*
491 * Translate the SysAddr to a DramAddr as shown near the start of
492 * section 3.4.4 (p. 70). Although sys_addr is a 64-bit value, the k8
493 * only deals with 40-bit values. Therefore we discard bits 63-40 of
494 * sys_addr below. If bit 39 of sys_addr is 1 then the bits we
495 * discard are all 1s. Otherwise the bits we discard are all 0s. See
496 * section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture
497 * Programmer's Manual Volume 1 Application Programming.
498 */
499 dram_addr = (sys_addr & 0xffffffffffull) - dram_base;
500
501 debugf2("using DRAM Base register to translate SysAddr 0x%lx to "
502 "DramAddr 0x%lx\n", (unsigned long)sys_addr,
503 (unsigned long)dram_addr);
504 return dram_addr;
505}
506
507/*
508 * @intlv_en is the value of the IntlvEn field from a DRAM Base register
509 * (section 3.4.4.1). Return the number of bits from a SysAddr that are used
510 * for node interleaving.
511 */
512static int num_node_interleave_bits(unsigned intlv_en)
513{
514 static const int intlv_shift_table[] = { 0, 1, 0, 2, 0, 0, 0, 3 };
515 int n;
516
517 BUG_ON(intlv_en > 7);
518 n = intlv_shift_table[intlv_en];
519 return n;
520}
521
522/* Translate the DramAddr given by @dram_addr to an InputAddr. */
523static u64 dram_addr_to_input_addr(struct mem_ctl_info *mci, u64 dram_addr)
524{
525 struct amd64_pvt *pvt;
526 int intlv_shift;
527 u64 input_addr;
528
529 pvt = mci->pvt_info;
530
531 /*
532 * See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
533 * concerning translating a DramAddr to an InputAddr.
534 */
535 intlv_shift = num_node_interleave_bits(pvt->dram_IntlvEn[0]);
536 input_addr = ((dram_addr >> intlv_shift) & 0xffffff000ull) +
537 (dram_addr & 0xfff);
538
539 debugf2(" Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n",
540 intlv_shift, (unsigned long)dram_addr,
541 (unsigned long)input_addr);
542
543 return input_addr;
544}
545
546/*
547 * Translate the SysAddr represented by @sys_addr to an InputAddr. It is
548 * assumed that @sys_addr maps to the node given by mci.
549 */
550static u64 sys_addr_to_input_addr(struct mem_ctl_info *mci, u64 sys_addr)
551{
552 u64 input_addr;
553
554 input_addr =
555 dram_addr_to_input_addr(mci, sys_addr_to_dram_addr(mci, sys_addr));
556
557 debugf2("SysAdddr 0x%lx translates to InputAddr 0x%lx\n",
558 (unsigned long)sys_addr, (unsigned long)input_addr);
559
560 return input_addr;
561}
562
563
564/*
565 * @input_addr is an InputAddr associated with the node represented by mci.
566 * Translate @input_addr to a DramAddr and return the result.
567 */
568static u64 input_addr_to_dram_addr(struct mem_ctl_info *mci, u64 input_addr)
569{
570 struct amd64_pvt *pvt;
571 int node_id, intlv_shift;
572 u64 bits, dram_addr;
573 u32 intlv_sel;
574
575 /*
576 * Near the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
577 * shows how to translate a DramAddr to an InputAddr. Here we reverse
578 * this procedure. When translating from a DramAddr to an InputAddr, the
579 * bits used for node interleaving are discarded. Here we recover these
580 * bits from the IntlvSel field of the DRAM Limit register (section
581 * 3.4.4.2) for the node that input_addr is associated with.
582 */
583 pvt = mci->pvt_info;
584 node_id = pvt->mc_node_id;
585 BUG_ON((node_id < 0) || (node_id > 7));
586
587 intlv_shift = num_node_interleave_bits(pvt->dram_IntlvEn[0]);
588
589 if (intlv_shift == 0) {
590 debugf1(" InputAddr 0x%lx translates to DramAddr of "
591 "same value\n", (unsigned long)input_addr);
592
593 return input_addr;
594 }
595
596 bits = ((input_addr & 0xffffff000ull) << intlv_shift) +
597 (input_addr & 0xfff);
598
599 intlv_sel = pvt->dram_IntlvSel[node_id] & ((1 << intlv_shift) - 1);
600 dram_addr = bits + (intlv_sel << 12);
601
602 debugf1("InputAddr 0x%lx translates to DramAddr 0x%lx "
603 "(%d node interleave bits)\n", (unsigned long)input_addr,
604 (unsigned long)dram_addr, intlv_shift);
605
606 return dram_addr;
607}
608
609/*
610 * @dram_addr is a DramAddr that maps to the node represented by mci. Convert
611 * @dram_addr to a SysAddr.
612 */
613static u64 dram_addr_to_sys_addr(struct mem_ctl_info *mci, u64 dram_addr)
614{
615 struct amd64_pvt *pvt = mci->pvt_info;
616 u64 hole_base, hole_offset, hole_size, base, limit, sys_addr;
617 int ret = 0;
618
619 ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
620 &hole_size);
621 if (!ret) {
622 if ((dram_addr >= hole_base) &&
623 (dram_addr < (hole_base + hole_size))) {
624 sys_addr = dram_addr + hole_offset;
625
626 debugf1("using DHAR to translate DramAddr 0x%lx to "
627 "SysAddr 0x%lx\n", (unsigned long)dram_addr,
628 (unsigned long)sys_addr);
629
630 return sys_addr;
631 }
632 }
633
634 amd64_get_base_and_limit(pvt, pvt->mc_node_id, &base, &limit);
635 sys_addr = dram_addr + base;
636
637 /*
638 * The sys_addr we have computed up to this point is a 40-bit value
639 * because the k8 deals with 40-bit values. However, the value we are
640 * supposed to return is a full 64-bit physical address. The AMD
641 * x86-64 architecture specifies that the most significant implemented
642 * address bit through bit 63 of a physical address must be either all
643 * 0s or all 1s. Therefore we sign-extend the 40-bit sys_addr to a
644 * 64-bit value below. See section 3.4.2 of AMD publication 24592:
645 * AMD x86-64 Architecture Programmer's Manual Volume 1 Application
646 * Programming.
647 */
648 sys_addr |= ~((sys_addr & (1ull << 39)) - 1);
649
650 debugf1(" Node %d, DramAddr 0x%lx to SysAddr 0x%lx\n",
651 pvt->mc_node_id, (unsigned long)dram_addr,
652 (unsigned long)sys_addr);
653
654 return sys_addr;
655}
656
657/*
658 * @input_addr is an InputAddr associated with the node given by mci. Translate
659 * @input_addr to a SysAddr.
660 */
661static inline u64 input_addr_to_sys_addr(struct mem_ctl_info *mci,
662 u64 input_addr)
663{
664 return dram_addr_to_sys_addr(mci,
665 input_addr_to_dram_addr(mci, input_addr));
666}
667
668/*
669 * Find the minimum and maximum InputAddr values that map to the given @csrow.
670 * Pass back these values in *input_addr_min and *input_addr_max.
671 */
672static void find_csrow_limits(struct mem_ctl_info *mci, int csrow,
673 u64 *input_addr_min, u64 *input_addr_max)
674{
675 struct amd64_pvt *pvt;
676 u64 base, mask;
677
678 pvt = mci->pvt_info;
679 BUG_ON((csrow < 0) || (csrow >= CHIPSELECT_COUNT));
680
681 base = base_from_dct_base(pvt, csrow);
682 mask = mask_from_dct_mask(pvt, csrow);
683
684 *input_addr_min = base & ~mask;
685 *input_addr_max = base | mask | pvt->dcs_mask_notused;
686}
687
688/*
689 * Extract error address from MCA NB Address Low (section 3.6.4.5) and MCA NB
690 * Address High (section 3.6.4.6) register values and return the result. Address
691 * is located in the info structure (nbeah and nbeal), the encoding is device
692 * specific.
693 */
694static u64 extract_error_address(struct mem_ctl_info *mci,
695 struct amd64_error_info_regs *info)
696{
697 struct amd64_pvt *pvt = mci->pvt_info;
698
699 return pvt->ops->get_error_address(mci, info);
700}
701
702
703/* Map the Error address to a PAGE and PAGE OFFSET. */
704static inline void error_address_to_page_and_offset(u64 error_address,
705 u32 *page, u32 *offset)
706{
707 *page = (u32) (error_address >> PAGE_SHIFT);
708 *offset = ((u32) error_address) & ~PAGE_MASK;
709}
710
711/*
712 * @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address
713 * Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers
714 * of a node that detected an ECC memory error. mci represents the node that
715 * the error address maps to (possibly different from the node that detected
716 * the error). Return the number of the csrow that sys_addr maps to, or -1 on
717 * error.
718 */
719static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr)
720{
721 int csrow;
722
723 csrow = input_addr_to_csrow(mci, sys_addr_to_input_addr(mci, sys_addr));
724
725 if (csrow == -1)
726 amd64_mc_printk(mci, KERN_ERR,
727 "Failed to translate InputAddr to csrow for "
728 "address 0x%lx\n", (unsigned long)sys_addr);
729 return csrow;
730}
Doug Thompsone2ce7252009-04-27 15:57:12 +0200731
Doug Thompson2da11652009-04-27 16:09:09 +0200732static int get_channel_from_ecc_syndrome(unsigned short syndrome);
733
734static void amd64_cpu_display_info(struct amd64_pvt *pvt)
735{
736 if (boot_cpu_data.x86 == 0x11)
737 edac_printk(KERN_DEBUG, EDAC_MC, "F11h CPU detected\n");
738 else if (boot_cpu_data.x86 == 0x10)
739 edac_printk(KERN_DEBUG, EDAC_MC, "F10h CPU detected\n");
740 else if (boot_cpu_data.x86 == 0xf)
741 edac_printk(KERN_DEBUG, EDAC_MC, "%s detected\n",
742 (pvt->ext_model >= OPTERON_CPU_REV_F) ?
743 "Rev F or later" : "Rev E or earlier");
744 else
745 /* we'll hardly ever ever get here */
746 edac_printk(KERN_ERR, EDAC_MC, "Unknown cpu!\n");
747}
748
749/*
750 * Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs
751 * are ECC capable.
752 */
753static enum edac_type amd64_determine_edac_cap(struct amd64_pvt *pvt)
754{
755 int bit;
756 enum dev_type edac_cap = EDAC_NONE;
757
758 bit = (boot_cpu_data.x86 > 0xf || pvt->ext_model >= OPTERON_CPU_REV_F)
759 ? 19
760 : 17;
761
762 if (pvt->dclr0 >> BIT(bit))
763 edac_cap = EDAC_FLAG_SECDED;
764
765 return edac_cap;
766}
767
768
769static void f10_debug_display_dimm_sizes(int ctrl, struct amd64_pvt *pvt,
770 int ganged);
771
772/* Display and decode various NB registers for debug purposes. */
773static void amd64_dump_misc_regs(struct amd64_pvt *pvt)
774{
775 int ganged;
776
777 debugf1(" nbcap:0x%8.08x DctDualCap=%s DualNode=%s 8-Node=%s\n",
778 pvt->nbcap,
779 (pvt->nbcap & K8_NBCAP_DCT_DUAL) ? "True" : "False",
780 (pvt->nbcap & K8_NBCAP_DUAL_NODE) ? "True" : "False",
781 (pvt->nbcap & K8_NBCAP_8_NODE) ? "True" : "False");
782 debugf1(" ECC Capable=%s ChipKill Capable=%s\n",
783 (pvt->nbcap & K8_NBCAP_SECDED) ? "True" : "False",
784 (pvt->nbcap & K8_NBCAP_CHIPKILL) ? "True" : "False");
785 debugf1(" DramCfg0-low=0x%08x DIMM-ECC=%s Parity=%s Width=%s\n",
786 pvt->dclr0,
787 (pvt->dclr0 & BIT(19)) ? "Enabled" : "Disabled",
788 (pvt->dclr0 & BIT(8)) ? "Enabled" : "Disabled",
789 (pvt->dclr0 & BIT(11)) ? "128b" : "64b");
790 debugf1(" DIMM x4 Present: L0=%s L1=%s L2=%s L3=%s DIMM Type=%s\n",
791 (pvt->dclr0 & BIT(12)) ? "Y" : "N",
792 (pvt->dclr0 & BIT(13)) ? "Y" : "N",
793 (pvt->dclr0 & BIT(14)) ? "Y" : "N",
794 (pvt->dclr0 & BIT(15)) ? "Y" : "N",
795 (pvt->dclr0 & BIT(16)) ? "UN-Buffered" : "Buffered");
796
797
798 debugf1(" online-spare: 0x%8.08x\n", pvt->online_spare);
799
800 if (boot_cpu_data.x86 == 0xf) {
801 debugf1(" dhar: 0x%8.08x Base=0x%08x Offset=0x%08x\n",
802 pvt->dhar, dhar_base(pvt->dhar),
803 k8_dhar_offset(pvt->dhar));
804 debugf1(" DramHoleValid=%s\n",
805 (pvt->dhar & DHAR_VALID) ? "True" : "False");
806
807 debugf1(" dbam-dkt: 0x%8.08x\n", pvt->dbam0);
808
809 /* everything below this point is Fam10h and above */
810 return;
811
812 } else {
813 debugf1(" dhar: 0x%8.08x Base=0x%08x Offset=0x%08x\n",
814 pvt->dhar, dhar_base(pvt->dhar),
815 f10_dhar_offset(pvt->dhar));
816 debugf1(" DramMemHoistValid=%s DramHoleValid=%s\n",
817 (pvt->dhar & F10_DRAM_MEM_HOIST_VALID) ?
818 "True" : "False",
819 (pvt->dhar & DHAR_VALID) ?
820 "True" : "False");
821 }
822
823 /* Only if NOT ganged does dcl1 have valid info */
824 if (!dct_ganging_enabled(pvt)) {
825 debugf1(" DramCfg1-low=0x%08x DIMM-ECC=%s Parity=%s "
826 "Width=%s\n", pvt->dclr1,
827 (pvt->dclr1 & BIT(19)) ? "Enabled" : "Disabled",
828 (pvt->dclr1 & BIT(8)) ? "Enabled" : "Disabled",
829 (pvt->dclr1 & BIT(11)) ? "128b" : "64b");
830 debugf1(" DIMM x4 Present: L0=%s L1=%s L2=%s L3=%s "
831 "DIMM Type=%s\n",
832 (pvt->dclr1 & BIT(12)) ? "Y" : "N",
833 (pvt->dclr1 & BIT(13)) ? "Y" : "N",
834 (pvt->dclr1 & BIT(14)) ? "Y" : "N",
835 (pvt->dclr1 & BIT(15)) ? "Y" : "N",
836 (pvt->dclr1 & BIT(16)) ? "UN-Buffered" : "Buffered");
837 }
838
839 /*
840 * Determine if ganged and then dump memory sizes for first controller,
841 * and if NOT ganged dump info for 2nd controller.
842 */
843 ganged = dct_ganging_enabled(pvt);
844
845 f10_debug_display_dimm_sizes(0, pvt, ganged);
846
847 if (!ganged)
848 f10_debug_display_dimm_sizes(1, pvt, ganged);
849}
850
851/* Read in both of DBAM registers */
852static void amd64_read_dbam_reg(struct amd64_pvt *pvt)
853{
854 int err = 0;
855 unsigned int reg;
856
857 reg = DBAM0;
858 err = pci_read_config_dword(pvt->dram_f2_ctl, reg, &pvt->dbam0);
859 if (err)
860 goto err_reg;
861
862 if (boot_cpu_data.x86 >= 0x10) {
863 reg = DBAM1;
864 err = pci_read_config_dword(pvt->dram_f2_ctl, reg, &pvt->dbam1);
865
866 if (err)
867 goto err_reg;
868 }
869
870err_reg:
871 debugf0("Error reading F2x%03x.\n", reg);
872}
873
Doug Thompson94be4bf2009-04-27 16:12:00 +0200874/*
875 * NOTE: CPU Revision Dependent code: Rev E and Rev F
876 *
877 * Set the DCSB and DCSM mask values depending on the CPU revision value. Also
878 * set the shift factor for the DCSB and DCSM values.
879 *
880 * ->dcs_mask_notused, RevE:
881 *
882 * To find the max InputAddr for the csrow, start with the base address and set
883 * all bits that are "don't care" bits in the test at the start of section
884 * 3.5.4 (p. 84).
885 *
886 * The "don't care" bits are all set bits in the mask and all bits in the gaps
887 * between bit ranges [35:25] and [19:13]. The value REV_E_DCS_NOTUSED_BITS
888 * represents bits [24:20] and [12:0], which are all bits in the above-mentioned
889 * gaps.
890 *
891 * ->dcs_mask_notused, RevF and later:
892 *
893 * To find the max InputAddr for the csrow, start with the base address and set
894 * all bits that are "don't care" bits in the test at the start of NPT section
895 * 4.5.4 (p. 87).
896 *
897 * The "don't care" bits are all set bits in the mask and all bits in the gaps
898 * between bit ranges [36:27] and [21:13].
899 *
900 * The value REV_F_F1Xh_DCS_NOTUSED_BITS represents bits [26:22] and [12:0],
901 * which are all bits in the above-mentioned gaps.
902 */
903static void amd64_set_dct_base_and_mask(struct amd64_pvt *pvt)
904{
905 if (pvt->ext_model >= OPTERON_CPU_REV_F) {
906 pvt->dcsb_base = REV_F_F1Xh_DCSB_BASE_BITS;
907 pvt->dcsm_mask = REV_F_F1Xh_DCSM_MASK_BITS;
908 pvt->dcs_mask_notused = REV_F_F1Xh_DCS_NOTUSED_BITS;
909 pvt->dcs_shift = REV_F_F1Xh_DCS_SHIFT;
910
911 switch (boot_cpu_data.x86) {
912 case 0xf:
913 pvt->num_dcsm = REV_F_DCSM_COUNT;
914 break;
915
916 case 0x10:
917 pvt->num_dcsm = F10_DCSM_COUNT;
918 break;
919
920 case 0x11:
921 pvt->num_dcsm = F11_DCSM_COUNT;
922 break;
923
924 default:
925 amd64_printk(KERN_ERR, "Unsupported family!\n");
926 break;
927 }
928 } else {
929 pvt->dcsb_base = REV_E_DCSB_BASE_BITS;
930 pvt->dcsm_mask = REV_E_DCSM_MASK_BITS;
931 pvt->dcs_mask_notused = REV_E_DCS_NOTUSED_BITS;
932 pvt->dcs_shift = REV_E_DCS_SHIFT;
933 pvt->num_dcsm = REV_E_DCSM_COUNT;
934 }
935}
936
937/*
938 * Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask hw registers
939 */
940static void amd64_read_dct_base_mask(struct amd64_pvt *pvt)
941{
942 int cs, reg, err = 0;
943
944 amd64_set_dct_base_and_mask(pvt);
945
946 for (cs = 0; cs < CHIPSELECT_COUNT; cs++) {
947 reg = K8_DCSB0 + (cs * 4);
948 err = pci_read_config_dword(pvt->dram_f2_ctl, reg,
949 &pvt->dcsb0[cs]);
950 if (unlikely(err))
951 debugf0("Reading K8_DCSB0[%d] failed\n", cs);
952 else
953 debugf0(" DCSB0[%d]=0x%08x reg: F2x%x\n",
954 cs, pvt->dcsb0[cs], reg);
955
956 /* If DCT are NOT ganged, then read in DCT1's base */
957 if (boot_cpu_data.x86 >= 0x10 && !dct_ganging_enabled(pvt)) {
958 reg = F10_DCSB1 + (cs * 4);
959 err = pci_read_config_dword(pvt->dram_f2_ctl, reg,
960 &pvt->dcsb1[cs]);
961 if (unlikely(err))
962 debugf0("Reading F10_DCSB1[%d] failed\n", cs);
963 else
964 debugf0(" DCSB1[%d]=0x%08x reg: F2x%x\n",
965 cs, pvt->dcsb1[cs], reg);
966 } else {
967 pvt->dcsb1[cs] = 0;
968 }
969 }
970
971 for (cs = 0; cs < pvt->num_dcsm; cs++) {
972 reg = K8_DCSB0 + (cs * 4);
973 err = pci_read_config_dword(pvt->dram_f2_ctl, reg,
974 &pvt->dcsm0[cs]);
975 if (unlikely(err))
976 debugf0("Reading K8_DCSM0 failed\n");
977 else
978 debugf0(" DCSM0[%d]=0x%08x reg: F2x%x\n",
979 cs, pvt->dcsm0[cs], reg);
980
981 /* If DCT are NOT ganged, then read in DCT1's mask */
982 if (boot_cpu_data.x86 >= 0x10 && !dct_ganging_enabled(pvt)) {
983 reg = F10_DCSM1 + (cs * 4);
984 err = pci_read_config_dword(pvt->dram_f2_ctl, reg,
985 &pvt->dcsm1[cs]);
986 if (unlikely(err))
987 debugf0("Reading F10_DCSM1[%d] failed\n", cs);
988 else
989 debugf0(" DCSM1[%d]=0x%08x reg: F2x%x\n",
990 cs, pvt->dcsm1[cs], reg);
991 } else
992 pvt->dcsm1[cs] = 0;
993 }
994}
995
996static enum mem_type amd64_determine_memory_type(struct amd64_pvt *pvt)
997{
998 enum mem_type type;
999
1000 if (boot_cpu_data.x86 >= 0x10 || pvt->ext_model >= OPTERON_CPU_REV_F) {
1001 /* Rev F and later */
1002 type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2;
1003 } else {
1004 /* Rev E and earlier */
1005 type = (pvt->dclr0 & BIT(18)) ? MEM_DDR : MEM_RDDR;
1006 }
1007
1008 debugf1(" Memory type is: %s\n",
1009 (type == MEM_DDR2) ? "MEM_DDR2" :
1010 (type == MEM_RDDR2) ? "MEM_RDDR2" :
1011 (type == MEM_DDR) ? "MEM_DDR" : "MEM_RDDR");
1012
1013 return type;
1014}
1015
Doug Thompsonddff8762009-04-27 16:14:52 +02001016/*
1017 * Read the DRAM Configuration Low register. It differs between CG, D & E revs
1018 * and the later RevF memory controllers (DDR vs DDR2)
1019 *
1020 * Return:
1021 * number of memory channels in operation
1022 * Pass back:
1023 * contents of the DCL0_LOW register
1024 */
1025static int k8_early_channel_count(struct amd64_pvt *pvt)
1026{
1027 int flag, err = 0;
1028
1029 err = pci_read_config_dword(pvt->dram_f2_ctl, F10_DCLR_0, &pvt->dclr0);
1030 if (err)
1031 return err;
1032
1033 if ((boot_cpu_data.x86_model >> 4) >= OPTERON_CPU_REV_F) {
1034 /* RevF (NPT) and later */
1035 flag = pvt->dclr0 & F10_WIDTH_128;
1036 } else {
1037 /* RevE and earlier */
1038 flag = pvt->dclr0 & REVE_WIDTH_128;
1039 }
1040
1041 /* not used */
1042 pvt->dclr1 = 0;
1043
1044 return (flag) ? 2 : 1;
1045}
1046
1047/* extract the ERROR ADDRESS for the K8 CPUs */
1048static u64 k8_get_error_address(struct mem_ctl_info *mci,
1049 struct amd64_error_info_regs *info)
1050{
1051 return (((u64) (info->nbeah & 0xff)) << 32) +
1052 (info->nbeal & ~0x03);
1053}
1054
1055/*
1056 * Read the Base and Limit registers for K8 based Memory controllers; extract
1057 * fields from the 'raw' reg into separate data fields
1058 *
1059 * Isolates: BASE, LIMIT, IntlvEn, IntlvSel, RW_EN
1060 */
1061static void k8_read_dram_base_limit(struct amd64_pvt *pvt, int dram)
1062{
1063 u32 low;
1064 u32 off = dram << 3; /* 8 bytes between DRAM entries */
1065 int err;
1066
1067 err = pci_read_config_dword(pvt->addr_f1_ctl,
1068 K8_DRAM_BASE_LOW + off, &low);
1069 if (err)
1070 debugf0("Reading K8_DRAM_BASE_LOW failed\n");
1071
1072 /* Extract parts into separate data entries */
1073 pvt->dram_base[dram] = ((u64) low & 0xFFFF0000) << 8;
1074 pvt->dram_IntlvEn[dram] = (low >> 8) & 0x7;
1075 pvt->dram_rw_en[dram] = (low & 0x3);
1076
1077 err = pci_read_config_dword(pvt->addr_f1_ctl,
1078 K8_DRAM_LIMIT_LOW + off, &low);
1079 if (err)
1080 debugf0("Reading K8_DRAM_LIMIT_LOW failed\n");
1081
1082 /*
1083 * Extract parts into separate data entries. Limit is the HIGHEST memory
1084 * location of the region, so lower 24 bits need to be all ones
1085 */
1086 pvt->dram_limit[dram] = (((u64) low & 0xFFFF0000) << 8) | 0x00FFFFFF;
1087 pvt->dram_IntlvSel[dram] = (low >> 8) & 0x7;
1088 pvt->dram_DstNode[dram] = (low & 0x7);
1089}
1090
1091static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci,
1092 struct amd64_error_info_regs *info,
1093 u64 SystemAddress)
1094{
1095 struct mem_ctl_info *src_mci;
1096 unsigned short syndrome;
1097 int channel, csrow;
1098 u32 page, offset;
1099
1100 /* Extract the syndrome parts and form a 16-bit syndrome */
1101 syndrome = EXTRACT_HIGH_SYNDROME(info->nbsl) << 8;
1102 syndrome |= EXTRACT_LOW_SYNDROME(info->nbsh);
1103
1104 /* CHIPKILL enabled */
1105 if (info->nbcfg & K8_NBCFG_CHIPKILL) {
1106 channel = get_channel_from_ecc_syndrome(syndrome);
1107 if (channel < 0) {
1108 /*
1109 * Syndrome didn't map, so we don't know which of the
1110 * 2 DIMMs is in error. So we need to ID 'both' of them
1111 * as suspect.
1112 */
1113 amd64_mc_printk(mci, KERN_WARNING,
1114 "unknown syndrome 0x%x - possible error "
1115 "reporting race\n", syndrome);
1116 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1117 return;
1118 }
1119 } else {
1120 /*
1121 * non-chipkill ecc mode
1122 *
1123 * The k8 documentation is unclear about how to determine the
1124 * channel number when using non-chipkill memory. This method
1125 * was obtained from email communication with someone at AMD.
1126 * (Wish the email was placed in this comment - norsk)
1127 */
1128 channel = ((SystemAddress & BIT(3)) != 0);
1129 }
1130
1131 /*
1132 * Find out which node the error address belongs to. This may be
1133 * different from the node that detected the error.
1134 */
1135 src_mci = find_mc_by_sys_addr(mci, SystemAddress);
1136 if (src_mci) {
1137 amd64_mc_printk(mci, KERN_ERR,
1138 "failed to map error address 0x%lx to a node\n",
1139 (unsigned long)SystemAddress);
1140 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1141 return;
1142 }
1143
1144 /* Now map the SystemAddress to a CSROW */
1145 csrow = sys_addr_to_csrow(src_mci, SystemAddress);
1146 if (csrow < 0) {
1147 edac_mc_handle_ce_no_info(src_mci, EDAC_MOD_STR);
1148 } else {
1149 error_address_to_page_and_offset(SystemAddress, &page, &offset);
1150
1151 edac_mc_handle_ce(src_mci, page, offset, syndrome, csrow,
1152 channel, EDAC_MOD_STR);
1153 }
1154}
1155
1156/*
1157 * determrine the number of PAGES in for this DIMM's size based on its DRAM
1158 * Address Mapping.
1159 *
1160 * First step is to calc the number of bits to shift a value of 1 left to
1161 * indicate show many pages. Start with the DBAM value as the starting bits,
1162 * then proceed to adjust those shift bits, based on CPU rev and the table.
1163 * See BKDG on the DBAM
1164 */
1165static int k8_dbam_map_to_pages(struct amd64_pvt *pvt, int dram_map)
1166{
1167 int nr_pages;
1168
1169 if (pvt->ext_model >= OPTERON_CPU_REV_F) {
1170 nr_pages = 1 << (revf_quad_ddr2_shift[dram_map] - PAGE_SHIFT);
1171 } else {
1172 /*
1173 * RevE and less section; this line is tricky. It collapses the
1174 * table used by RevD and later to one that matches revisions CG
1175 * and earlier.
1176 */
1177 dram_map -= (pvt->ext_model >= OPTERON_CPU_REV_D) ?
1178 (dram_map > 8 ? 4 : (dram_map > 5 ?
1179 3 : (dram_map > 2 ? 1 : 0))) : 0;
1180
1181 /* 25 shift is 32MiB minimum DIMM size in RevE and prior */
1182 nr_pages = 1 << (dram_map + 25 - PAGE_SHIFT);
1183 }
1184
1185 return nr_pages;
1186}
1187
Doug Thompson1afd3c92009-04-27 16:16:50 +02001188/*
1189 * Get the number of DCT channels in use.
1190 *
1191 * Return:
1192 * number of Memory Channels in operation
1193 * Pass back:
1194 * contents of the DCL0_LOW register
1195 */
1196static int f10_early_channel_count(struct amd64_pvt *pvt)
1197{
1198 int err = 0, channels = 0;
1199 u32 dbam;
Doug Thompsonddff8762009-04-27 16:14:52 +02001200
Doug Thompson1afd3c92009-04-27 16:16:50 +02001201 err = pci_read_config_dword(pvt->dram_f2_ctl, F10_DCLR_0, &pvt->dclr0);
1202 if (err)
1203 goto err_reg;
1204
1205 err = pci_read_config_dword(pvt->dram_f2_ctl, F10_DCLR_1, &pvt->dclr1);
1206 if (err)
1207 goto err_reg;
1208
1209 /* If we are in 128 bit mode, then we are using 2 channels */
1210 if (pvt->dclr0 & F10_WIDTH_128) {
1211 debugf0("Data WIDTH is 128 bits - 2 channels\n");
1212 channels = 2;
1213 return channels;
1214 }
1215
1216 /*
1217 * Need to check if in UN-ganged mode: In such, there are 2 channels,
1218 * but they are NOT in 128 bit mode and thus the above 'dcl0' status bit
1219 * will be OFF.
1220 *
1221 * Need to check DCT0[0] and DCT1[0] to see if only one of them has
1222 * their CSEnable bit on. If so, then SINGLE DIMM case.
1223 */
1224 debugf0("Data WIDTH is NOT 128 bits - need more decoding\n");
1225
1226 /*
1227 * Check DRAM Bank Address Mapping values for each DIMM to see if there
1228 * is more than just one DIMM present in unganged mode. Need to check
1229 * both controllers since DIMMs can be placed in either one.
1230 */
1231 channels = 0;
1232 err = pci_read_config_dword(pvt->dram_f2_ctl, DBAM0, &dbam);
1233 if (err)
1234 goto err_reg;
1235
1236 if (DBAM_DIMM(0, dbam) > 0)
1237 channels++;
1238 if (DBAM_DIMM(1, dbam) > 0)
1239 channels++;
1240 if (DBAM_DIMM(2, dbam) > 0)
1241 channels++;
1242 if (DBAM_DIMM(3, dbam) > 0)
1243 channels++;
1244
1245 /* If more than 2 DIMMs are present, then we have 2 channels */
1246 if (channels > 2)
1247 channels = 2;
1248 else if (channels == 0) {
1249 /* No DIMMs on DCT0, so look at DCT1 */
1250 err = pci_read_config_dword(pvt->dram_f2_ctl, DBAM1, &dbam);
1251 if (err)
1252 goto err_reg;
1253
1254 if (DBAM_DIMM(0, dbam) > 0)
1255 channels++;
1256 if (DBAM_DIMM(1, dbam) > 0)
1257 channels++;
1258 if (DBAM_DIMM(2, dbam) > 0)
1259 channels++;
1260 if (DBAM_DIMM(3, dbam) > 0)
1261 channels++;
1262
1263 if (channels > 2)
1264 channels = 2;
1265 }
1266
1267 /* If we found ALL 0 values, then assume just ONE DIMM-ONE Channel */
1268 if (channels == 0)
1269 channels = 1;
1270
1271 debugf0("DIMM count= %d\n", channels);
1272
1273 return channels;
1274
1275err_reg:
1276 return -1;
1277
1278}
1279
1280static int f10_dbam_map_to_pages(struct amd64_pvt *pvt, int dram_map)
1281{
1282 return 1 << (revf_quad_ddr2_shift[dram_map] - PAGE_SHIFT);
1283}
1284
1285/* Enable extended configuration access via 0xCF8 feature */
1286static void amd64_setup(struct amd64_pvt *pvt)
1287{
1288 u32 reg;
1289
1290 pci_read_config_dword(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, &reg);
1291
1292 pvt->flags.cf8_extcfg = !!(reg & F10_NB_CFG_LOW_ENABLE_EXT_CFG);
1293 reg |= F10_NB_CFG_LOW_ENABLE_EXT_CFG;
1294 pci_write_config_dword(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, reg);
1295}
1296
1297/* Restore the extended configuration access via 0xCF8 feature */
1298static void amd64_teardown(struct amd64_pvt *pvt)
1299{
1300 u32 reg;
1301
1302 pci_read_config_dword(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, &reg);
1303
1304 reg &= ~F10_NB_CFG_LOW_ENABLE_EXT_CFG;
1305 if (pvt->flags.cf8_extcfg)
1306 reg |= F10_NB_CFG_LOW_ENABLE_EXT_CFG;
1307 pci_write_config_dword(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, reg);
1308}
1309
1310static u64 f10_get_error_address(struct mem_ctl_info *mci,
1311 struct amd64_error_info_regs *info)
1312{
1313 return (((u64) (info->nbeah & 0xffff)) << 32) +
1314 (info->nbeal & ~0x01);
1315}
1316
1317/*
1318 * Read the Base and Limit registers for F10 based Memory controllers. Extract
1319 * fields from the 'raw' reg into separate data fields.
1320 *
1321 * Isolates: BASE, LIMIT, IntlvEn, IntlvSel, RW_EN.
1322 */
1323static void f10_read_dram_base_limit(struct amd64_pvt *pvt, int dram)
1324{
1325 u32 high_offset, low_offset, high_base, low_base, high_limit, low_limit;
1326
1327 low_offset = K8_DRAM_BASE_LOW + (dram << 3);
1328 high_offset = F10_DRAM_BASE_HIGH + (dram << 3);
1329
1330 /* read the 'raw' DRAM BASE Address register */
1331 pci_read_config_dword(pvt->addr_f1_ctl, low_offset, &low_base);
1332
1333 /* Read from the ECS data register */
1334 pci_read_config_dword(pvt->addr_f1_ctl, high_offset, &high_base);
1335
1336 /* Extract parts into separate data entries */
1337 pvt->dram_rw_en[dram] = (low_base & 0x3);
1338
1339 if (pvt->dram_rw_en[dram] == 0)
1340 return;
1341
1342 pvt->dram_IntlvEn[dram] = (low_base >> 8) & 0x7;
1343
1344 pvt->dram_base[dram] = (((((u64) high_base & 0x000000FF) << 32) |
1345 ((u64) low_base & 0xFFFF0000))) << 8;
1346
1347 low_offset = K8_DRAM_LIMIT_LOW + (dram << 3);
1348 high_offset = F10_DRAM_LIMIT_HIGH + (dram << 3);
1349
1350 /* read the 'raw' LIMIT registers */
1351 pci_read_config_dword(pvt->addr_f1_ctl, low_offset, &low_limit);
1352
1353 /* Read from the ECS data register for the HIGH portion */
1354 pci_read_config_dword(pvt->addr_f1_ctl, high_offset, &high_limit);
1355
1356 debugf0(" HW Regs: BASE=0x%08x-%08x LIMIT= 0x%08x-%08x\n",
1357 high_base, low_base, high_limit, low_limit);
1358
1359 pvt->dram_DstNode[dram] = (low_limit & 0x7);
1360 pvt->dram_IntlvSel[dram] = (low_limit >> 8) & 0x7;
1361
1362 /*
1363 * Extract address values and form a LIMIT address. Limit is the HIGHEST
1364 * memory location of the region, so low 24 bits need to be all ones.
1365 */
1366 low_limit |= 0x0000FFFF;
1367 pvt->dram_limit[dram] =
1368 ((((u64) high_limit << 32) + (u64) low_limit) << 8) | (0xFF);
1369}
Doug Thompson6163b5d2009-04-27 16:20:17 +02001370
1371static void f10_read_dram_ctl_register(struct amd64_pvt *pvt)
1372{
1373 int err = 0;
1374
1375 err = pci_read_config_dword(pvt->dram_f2_ctl, F10_DCTL_SEL_LOW,
1376 &pvt->dram_ctl_select_low);
1377 if (err) {
1378 debugf0("Reading F10_DCTL_SEL_LOW failed\n");
1379 } else {
1380 debugf0("DRAM_DCTL_SEL_LOW=0x%x DctSelBaseAddr=0x%x\n",
1381 pvt->dram_ctl_select_low, dct_sel_baseaddr(pvt));
1382
1383 debugf0(" DRAM DCTs are=%s DRAM Is=%s DRAM-Ctl-"
1384 "sel-hi-range=%s\n",
1385 (dct_ganging_enabled(pvt) ? "GANGED" : "NOT GANGED"),
1386 (dct_dram_enabled(pvt) ? "Enabled" : "Disabled"),
1387 (dct_high_range_enabled(pvt) ? "Enabled" : "Disabled"));
1388
1389 debugf0(" DctDatIntLv=%s MemCleared=%s DctSelIntLvAddr=0x%x\n",
1390 (dct_data_intlv_enabled(pvt) ? "Enabled" : "Disabled"),
1391 (dct_memory_cleared(pvt) ? "True " : "False "),
1392 dct_sel_interleave_addr(pvt));
1393 }
1394
1395 err = pci_read_config_dword(pvt->dram_f2_ctl, F10_DCTL_SEL_HIGH,
1396 &pvt->dram_ctl_select_high);
1397 if (err)
1398 debugf0("Reading F10_DCTL_SEL_HIGH failed\n");
1399}
1400
1401static u32 f10_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
1402 int hi_range_sel, u32 intlv_en)
1403{
1404 u32 cs, temp, dct_sel_high = (pvt->dram_ctl_select_low >> 1) & 1;
1405
1406 if (dct_ganging_enabled(pvt))
1407 cs = 0;
1408 else if (hi_range_sel)
1409 cs = dct_sel_high;
1410 else if (dct_interleave_enabled(pvt)) {
1411 if (dct_sel_interleave_addr(pvt) == 0)
1412 cs = sys_addr >> 6 & 1;
1413 else if ((dct_sel_interleave_addr(pvt) >> 1) & 1) {
1414 temp = hweight_long((u32) ((sys_addr >> 16) & 0x1F)) % 2;
1415
1416 if (dct_sel_interleave_addr(pvt) & 1)
1417 cs = (sys_addr >> 9 & 1) ^ temp;
1418 else
1419 cs = (sys_addr >> 6 & 1) ^ temp;
1420 } else if (intlv_en & 4)
1421 cs = sys_addr >> 15 & 1;
1422 else if (intlv_en & 2)
1423 cs = sys_addr >> 14 & 1;
1424 else if (intlv_en & 1)
1425 cs = sys_addr >> 13 & 1;
1426 else
1427 cs = sys_addr >> 12 & 1;
1428 } else if (dct_high_range_enabled(pvt) && !dct_ganging_enabled(pvt))
1429 cs = ~dct_sel_high & 1;
1430 else
1431 cs = 0;
1432
1433 return cs;
1434}
1435
1436static inline u32 f10_map_intlv_en_to_shift(u32 intlv_en)
1437{
1438 if (intlv_en == 1)
1439 return 1;
1440 else if (intlv_en == 3)
1441 return 2;
1442 else if (intlv_en == 7)
1443 return 3;
1444
1445 return 0;
1446}
1447
1448static inline u64 f10_determine_base_addr_offset(u64 sys_addr, int hi_range_sel,
1449 u32 dct_sel_base_addr,
1450 u64 dct_sel_base_off,
1451 u32 hole_en, u32 hole_off,
1452 u64 dram_base)
1453{
1454 u64 chan_off;
1455
1456 if (hi_range_sel) {
1457 if (!(dct_sel_base_addr & 0xFFFFF800) &&
1458 (hole_en & 1) && (sys_addr >= 0x100000000ULL))
1459 chan_off = hole_off << 16;
1460 else
1461 chan_off = dct_sel_base_off;
1462 } else {
1463 if ((hole_en & 1) && (sys_addr >= 0x100000000ULL))
1464 chan_off = hole_off << 16;
1465 else
1466 chan_off = dram_base & 0xFFFFF8000000ULL;
1467 }
1468
1469 return (sys_addr & 0x0000FFFFFFFFFFC0ULL) -
1470 (chan_off & 0x0000FFFFFF800000ULL);
1471}
1472
1473/* Hack for the time being - Can we get this from BIOS?? */
1474#define CH0SPARE_RANK 0
1475#define CH1SPARE_RANK 1
1476
1477/*
1478 * checks if the csrow passed in is marked as SPARED, if so returns the new
1479 * spare row
1480 */
1481static inline int f10_process_possible_spare(int csrow,
1482 u32 cs, struct amd64_pvt *pvt)
1483{
1484 u32 swap_done;
1485 u32 bad_dram_cs;
1486
1487 /* Depending on channel, isolate respective SPARING info */
1488 if (cs) {
1489 swap_done = F10_ONLINE_SPARE_SWAPDONE1(pvt->online_spare);
1490 bad_dram_cs = F10_ONLINE_SPARE_BADDRAM_CS1(pvt->online_spare);
1491 if (swap_done && (csrow == bad_dram_cs))
1492 csrow = CH1SPARE_RANK;
1493 } else {
1494 swap_done = F10_ONLINE_SPARE_SWAPDONE0(pvt->online_spare);
1495 bad_dram_cs = F10_ONLINE_SPARE_BADDRAM_CS0(pvt->online_spare);
1496 if (swap_done && (csrow == bad_dram_cs))
1497 csrow = CH0SPARE_RANK;
1498 }
1499 return csrow;
1500}
1501
1502/*
1503 * Iterate over the DRAM DCT "base" and "mask" registers looking for a
1504 * SystemAddr match on the specified 'ChannelSelect' and 'NodeID'
1505 *
1506 * Return:
1507 * -EINVAL: NOT FOUND
1508 * 0..csrow = Chip-Select Row
1509 */
1510static int f10_lookup_addr_in_dct(u32 in_addr, u32 nid, u32 cs)
1511{
1512 struct mem_ctl_info *mci;
1513 struct amd64_pvt *pvt;
1514 u32 cs_base, cs_mask;
1515 int cs_found = -EINVAL;
1516 int csrow;
1517
1518 mci = mci_lookup[nid];
1519 if (!mci)
1520 return cs_found;
1521
1522 pvt = mci->pvt_info;
1523
1524 debugf1("InputAddr=0x%x channelselect=%d\n", in_addr, cs);
1525
1526 for (csrow = 0; csrow < CHIPSELECT_COUNT; csrow++) {
1527
1528 cs_base = amd64_get_dct_base(pvt, cs, csrow);
1529 if (!(cs_base & K8_DCSB_CS_ENABLE))
1530 continue;
1531
1532 /*
1533 * We have an ENABLED CSROW, Isolate just the MASK bits of the
1534 * target: [28:19] and [13:5], which map to [36:27] and [21:13]
1535 * of the actual address.
1536 */
1537 cs_base &= REV_F_F1Xh_DCSB_BASE_BITS;
1538
1539 /*
1540 * Get the DCT Mask, and ENABLE the reserved bits: [18:16] and
1541 * [4:0] to become ON. Then mask off bits [28:0] ([36:8])
1542 */
1543 cs_mask = amd64_get_dct_mask(pvt, cs, csrow);
1544
1545 debugf1(" CSROW=%d CSBase=0x%x RAW CSMask=0x%x\n",
1546 csrow, cs_base, cs_mask);
1547
1548 cs_mask = (cs_mask | 0x0007C01F) & 0x1FFFFFFF;
1549
1550 debugf1(" Final CSMask=0x%x\n", cs_mask);
1551 debugf1(" (InputAddr & ~CSMask)=0x%x "
1552 "(CSBase & ~CSMask)=0x%x\n",
1553 (in_addr & ~cs_mask), (cs_base & ~cs_mask));
1554
1555 if ((in_addr & ~cs_mask) == (cs_base & ~cs_mask)) {
1556 cs_found = f10_process_possible_spare(csrow, cs, pvt);
1557
1558 debugf1(" MATCH csrow=%d\n", cs_found);
1559 break;
1560 }
1561 }
1562 return cs_found;
1563}
1564
1565