Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* |
| 2 | * Copyright (C) 2001 Anton Blanchard <anton@au.ibm.com>, IBM |
| 3 | * |
| 4 | * This program is free software; you can redistribute it and/or |
| 5 | * modify it under the terms of the GNU General Public License |
| 6 | * as published by the Free Software Foundation; either version |
| 7 | * 2 of the License, or (at your option) any later version. |
| 8 | * |
| 9 | * Communication to userspace based on kernel/printk.c |
| 10 | */ |
| 11 | |
| 12 | #include <linux/types.h> |
| 13 | #include <linux/errno.h> |
| 14 | #include <linux/sched.h> |
| 15 | #include <linux/kernel.h> |
| 16 | #include <linux/poll.h> |
| 17 | #include <linux/proc_fs.h> |
| 18 | #include <linux/init.h> |
| 19 | #include <linux/vmalloc.h> |
| 20 | #include <linux/spinlock.h> |
| 21 | #include <linux/cpu.h> |
Nishanth Aravamudan | 0287ebe | 2005-09-03 15:56:01 -0700 | [diff] [blame] | 22 | #include <linux/delay.h> |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 23 | |
| 24 | #include <asm/uaccess.h> |
| 25 | #include <asm/io.h> |
| 26 | #include <asm/rtas.h> |
| 27 | #include <asm/prom.h> |
| 28 | #include <asm/nvram.h> |
| 29 | #include <asm/atomic.h> |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 30 | |
| 31 | #if 0 |
| 32 | #define DEBUG(A...) printk(KERN_ERR A) |
| 33 | #else |
| 34 | #define DEBUG(A...) |
| 35 | #endif |
| 36 | |
| 37 | static DEFINE_SPINLOCK(rtasd_log_lock); |
| 38 | |
| 39 | DECLARE_WAIT_QUEUE_HEAD(rtas_log_wait); |
| 40 | |
| 41 | static char *rtas_log_buf; |
| 42 | static unsigned long rtas_log_start; |
| 43 | static unsigned long rtas_log_size; |
| 44 | |
| 45 | static int surveillance_timeout = -1; |
| 46 | static unsigned int rtas_event_scan_rate; |
| 47 | static unsigned int rtas_error_log_max; |
| 48 | static unsigned int rtas_error_log_buffer_max; |
| 49 | |
| 50 | static int full_rtas_msgs = 0; |
| 51 | |
| 52 | extern int no_logging; |
| 53 | |
| 54 | volatile int error_log_cnt = 0; |
| 55 | |
| 56 | /* |
| 57 | * Since we use 32 bit RTAS, the physical address of this must be below |
| 58 | * 4G or else bad things happen. Allocate this in the kernel data and |
| 59 | * make it big enough. |
| 60 | */ |
| 61 | static unsigned char logdata[RTAS_ERROR_LOG_MAX]; |
| 62 | |
| 63 | static int get_eventscan_parms(void); |
| 64 | |
| 65 | static char *rtas_type[] = { |
| 66 | "Unknown", "Retry", "TCE Error", "Internal Device Failure", |
| 67 | "Timeout", "Data Parity", "Address Parity", "Cache Parity", |
| 68 | "Address Invalid", "ECC Uncorrected", "ECC Corrupted", |
| 69 | }; |
| 70 | |
| 71 | static char *rtas_event_type(int type) |
| 72 | { |
| 73 | if ((type > 0) && (type < 11)) |
| 74 | return rtas_type[type]; |
| 75 | |
| 76 | switch (type) { |
| 77 | case RTAS_TYPE_EPOW: |
| 78 | return "EPOW"; |
| 79 | case RTAS_TYPE_PLATFORM: |
| 80 | return "Platform Error"; |
| 81 | case RTAS_TYPE_IO: |
| 82 | return "I/O Event"; |
| 83 | case RTAS_TYPE_INFO: |
| 84 | return "Platform Information Event"; |
| 85 | case RTAS_TYPE_DEALLOC: |
| 86 | return "Resource Deallocation Event"; |
| 87 | case RTAS_TYPE_DUMP: |
| 88 | return "Dump Notification Event"; |
| 89 | } |
| 90 | |
| 91 | return rtas_type[0]; |
| 92 | } |
| 93 | |
| 94 | /* To see this info, grep RTAS /var/log/messages and each entry |
| 95 | * will be collected together with obvious begin/end. |
| 96 | * There will be a unique identifier on the begin and end lines. |
| 97 | * This will persist across reboots. |
| 98 | * |
| 99 | * format of error logs returned from RTAS: |
| 100 | * bytes (size) : contents |
| 101 | * -------------------------------------------------------- |
| 102 | * 0-7 (8) : rtas_error_log |
| 103 | * 8-47 (40) : extended info |
| 104 | * 48-51 (4) : vendor id |
| 105 | * 52-1023 (vendor specific) : location code and debug data |
| 106 | */ |
| 107 | static void printk_log_rtas(char *buf, int len) |
| 108 | { |
| 109 | |
| 110 | int i,j,n = 0; |
| 111 | int perline = 16; |
| 112 | char buffer[64]; |
| 113 | char * str = "RTAS event"; |
| 114 | |
| 115 | if (full_rtas_msgs) { |
| 116 | printk(RTAS_DEBUG "%d -------- %s begin --------\n", |
| 117 | error_log_cnt, str); |
| 118 | |
| 119 | /* |
| 120 | * Print perline bytes on each line, each line will start |
| 121 | * with RTAS and a changing number, so syslogd will |
| 122 | * print lines that are otherwise the same. Separate every |
| 123 | * 4 bytes with a space. |
| 124 | */ |
| 125 | for (i = 0; i < len; i++) { |
| 126 | j = i % perline; |
| 127 | if (j == 0) { |
| 128 | memset(buffer, 0, sizeof(buffer)); |
| 129 | n = sprintf(buffer, "RTAS %d:", i/perline); |
| 130 | } |
| 131 | |
| 132 | if ((i % 4) == 0) |
| 133 | n += sprintf(buffer+n, " "); |
| 134 | |
| 135 | n += sprintf(buffer+n, "%02x", (unsigned char)buf[i]); |
| 136 | |
| 137 | if (j == (perline-1)) |
| 138 | printk(KERN_DEBUG "%s\n", buffer); |
| 139 | } |
| 140 | if ((i % perline) != 0) |
| 141 | printk(KERN_DEBUG "%s\n", buffer); |
| 142 | |
| 143 | printk(RTAS_DEBUG "%d -------- %s end ----------\n", |
| 144 | error_log_cnt, str); |
| 145 | } else { |
| 146 | struct rtas_error_log *errlog = (struct rtas_error_log *)buf; |
| 147 | |
| 148 | printk(RTAS_DEBUG "event: %d, Type: %s, Severity: %d\n", |
| 149 | error_log_cnt, rtas_event_type(errlog->type), |
| 150 | errlog->severity); |
| 151 | } |
| 152 | } |
| 153 | |
| 154 | static int log_rtas_len(char * buf) |
| 155 | { |
| 156 | int len; |
| 157 | struct rtas_error_log *err; |
| 158 | |
| 159 | /* rtas fixed header */ |
| 160 | len = 8; |
| 161 | err = (struct rtas_error_log *)buf; |
| 162 | if (err->extended_log_length) { |
| 163 | |
| 164 | /* extended header */ |
| 165 | len += err->extended_log_length; |
| 166 | } |
| 167 | |
| 168 | if (rtas_error_log_max == 0) { |
| 169 | get_eventscan_parms(); |
| 170 | } |
| 171 | if (len > rtas_error_log_max) |
| 172 | len = rtas_error_log_max; |
| 173 | |
| 174 | return len; |
| 175 | } |
| 176 | |
| 177 | /* |
| 178 | * First write to nvram, if fatal error, that is the only |
| 179 | * place we log the info. The error will be picked up |
| 180 | * on the next reboot by rtasd. If not fatal, run the |
| 181 | * method for the type of error. Currently, only RTAS |
| 182 | * errors have methods implemented, but in the future |
| 183 | * there might be a need to store data in nvram before a |
| 184 | * call to panic(). |
| 185 | * |
| 186 | * XXX We write to nvram periodically, to indicate error has |
| 187 | * been written and sync'd, but there is a possibility |
| 188 | * that if we don't shutdown correctly, a duplicate error |
| 189 | * record will be created on next reboot. |
| 190 | */ |
| 191 | void pSeries_log_error(char *buf, unsigned int err_type, int fatal) |
| 192 | { |
| 193 | unsigned long offset; |
| 194 | unsigned long s; |
| 195 | int len = 0; |
| 196 | |
| 197 | DEBUG("logging event\n"); |
| 198 | if (buf == NULL) |
| 199 | return; |
| 200 | |
| 201 | spin_lock_irqsave(&rtasd_log_lock, s); |
| 202 | |
| 203 | /* get length and increase count */ |
| 204 | switch (err_type & ERR_TYPE_MASK) { |
| 205 | case ERR_TYPE_RTAS_LOG: |
| 206 | len = log_rtas_len(buf); |
| 207 | if (!(err_type & ERR_FLAG_BOOT)) |
| 208 | error_log_cnt++; |
| 209 | break; |
| 210 | case ERR_TYPE_KERNEL_PANIC: |
| 211 | default: |
| 212 | spin_unlock_irqrestore(&rtasd_log_lock, s); |
| 213 | return; |
| 214 | } |
| 215 | |
| 216 | /* Write error to NVRAM */ |
| 217 | if (!no_logging && !(err_type & ERR_FLAG_BOOT)) |
| 218 | nvram_write_error_log(buf, len, err_type); |
| 219 | |
| 220 | /* |
| 221 | * rtas errors can occur during boot, and we do want to capture |
| 222 | * those somewhere, even if nvram isn't ready (why not?), and even |
| 223 | * if rtasd isn't ready. Put them into the boot log, at least. |
| 224 | */ |
| 225 | if ((err_type & ERR_TYPE_MASK) == ERR_TYPE_RTAS_LOG) |
| 226 | printk_log_rtas(buf, len); |
| 227 | |
| 228 | /* Check to see if we need to or have stopped logging */ |
| 229 | if (fatal || no_logging) { |
| 230 | no_logging = 1; |
| 231 | spin_unlock_irqrestore(&rtasd_log_lock, s); |
| 232 | return; |
| 233 | } |
| 234 | |
| 235 | /* call type specific method for error */ |
| 236 | switch (err_type & ERR_TYPE_MASK) { |
| 237 | case ERR_TYPE_RTAS_LOG: |
| 238 | offset = rtas_error_log_buffer_max * |
| 239 | ((rtas_log_start+rtas_log_size) & LOG_NUMBER_MASK); |
| 240 | |
| 241 | /* First copy over sequence number */ |
| 242 | memcpy(&rtas_log_buf[offset], (void *) &error_log_cnt, sizeof(int)); |
| 243 | |
| 244 | /* Second copy over error log data */ |
| 245 | offset += sizeof(int); |
| 246 | memcpy(&rtas_log_buf[offset], buf, len); |
| 247 | |
| 248 | if (rtas_log_size < LOG_NUMBER) |
| 249 | rtas_log_size += 1; |
| 250 | else |
| 251 | rtas_log_start += 1; |
| 252 | |
| 253 | spin_unlock_irqrestore(&rtasd_log_lock, s); |
| 254 | wake_up_interruptible(&rtas_log_wait); |
| 255 | break; |
| 256 | case ERR_TYPE_KERNEL_PANIC: |
| 257 | default: |
| 258 | spin_unlock_irqrestore(&rtasd_log_lock, s); |
| 259 | return; |
| 260 | } |
| 261 | |
| 262 | } |
| 263 | |
| 264 | |
| 265 | static int rtas_log_open(struct inode * inode, struct file * file) |
| 266 | { |
| 267 | return 0; |
| 268 | } |
| 269 | |
| 270 | static int rtas_log_release(struct inode * inode, struct file * file) |
| 271 | { |
| 272 | return 0; |
| 273 | } |
| 274 | |
| 275 | /* This will check if all events are logged, if they are then, we |
| 276 | * know that we can safely clear the events in NVRAM. |
| 277 | * Next we'll sit and wait for something else to log. |
| 278 | */ |
| 279 | static ssize_t rtas_log_read(struct file * file, char __user * buf, |
| 280 | size_t count, loff_t *ppos) |
| 281 | { |
| 282 | int error; |
| 283 | char *tmp; |
| 284 | unsigned long s; |
| 285 | unsigned long offset; |
| 286 | |
| 287 | if (!buf || count < rtas_error_log_buffer_max) |
| 288 | return -EINVAL; |
| 289 | |
| 290 | count = rtas_error_log_buffer_max; |
| 291 | |
| 292 | if (!access_ok(VERIFY_WRITE, buf, count)) |
| 293 | return -EFAULT; |
| 294 | |
| 295 | tmp = kmalloc(count, GFP_KERNEL); |
| 296 | if (!tmp) |
| 297 | return -ENOMEM; |
| 298 | |
| 299 | |
| 300 | spin_lock_irqsave(&rtasd_log_lock, s); |
| 301 | /* if it's 0, then we know we got the last one (the one in NVRAM) */ |
| 302 | if (rtas_log_size == 0 && !no_logging) |
| 303 | nvram_clear_error_log(); |
| 304 | spin_unlock_irqrestore(&rtasd_log_lock, s); |
| 305 | |
| 306 | |
| 307 | error = wait_event_interruptible(rtas_log_wait, rtas_log_size); |
| 308 | if (error) |
| 309 | goto out; |
| 310 | |
| 311 | spin_lock_irqsave(&rtasd_log_lock, s); |
| 312 | offset = rtas_error_log_buffer_max * (rtas_log_start & LOG_NUMBER_MASK); |
| 313 | memcpy(tmp, &rtas_log_buf[offset], count); |
| 314 | |
| 315 | rtas_log_start += 1; |
| 316 | rtas_log_size -= 1; |
| 317 | spin_unlock_irqrestore(&rtasd_log_lock, s); |
| 318 | |
| 319 | error = copy_to_user(buf, tmp, count) ? -EFAULT : count; |
| 320 | out: |
| 321 | kfree(tmp); |
| 322 | return error; |
| 323 | } |
| 324 | |
| 325 | static unsigned int rtas_log_poll(struct file *file, poll_table * wait) |
| 326 | { |
| 327 | poll_wait(file, &rtas_log_wait, wait); |
| 328 | if (rtas_log_size) |
| 329 | return POLLIN | POLLRDNORM; |
| 330 | return 0; |
| 331 | } |
| 332 | |
| 333 | struct file_operations proc_rtas_log_operations = { |
| 334 | .read = rtas_log_read, |
| 335 | .poll = rtas_log_poll, |
| 336 | .open = rtas_log_open, |
| 337 | .release = rtas_log_release, |
| 338 | }; |
| 339 | |
| 340 | static int enable_surveillance(int timeout) |
| 341 | { |
| 342 | int error; |
| 343 | |
| 344 | error = rtas_set_indicator(SURVEILLANCE_TOKEN, 0, timeout); |
| 345 | |
| 346 | if (error == 0) |
| 347 | return 0; |
| 348 | |
| 349 | if (error == -EINVAL) { |
| 350 | printk(KERN_INFO "rtasd: surveillance not supported\n"); |
| 351 | return 0; |
| 352 | } |
| 353 | |
| 354 | printk(KERN_ERR "rtasd: could not update surveillance\n"); |
| 355 | return -1; |
| 356 | } |
| 357 | |
| 358 | static int get_eventscan_parms(void) |
| 359 | { |
| 360 | struct device_node *node; |
| 361 | int *ip; |
| 362 | |
| 363 | node = of_find_node_by_path("/rtas"); |
| 364 | |
| 365 | ip = (int *)get_property(node, "rtas-event-scan-rate", NULL); |
| 366 | if (ip == NULL) { |
| 367 | printk(KERN_ERR "rtasd: no rtas-event-scan-rate\n"); |
| 368 | of_node_put(node); |
| 369 | return -1; |
| 370 | } |
| 371 | rtas_event_scan_rate = *ip; |
| 372 | DEBUG("rtas-event-scan-rate %d\n", rtas_event_scan_rate); |
| 373 | |
| 374 | /* Make room for the sequence number */ |
| 375 | rtas_error_log_max = rtas_get_error_log_max(); |
| 376 | rtas_error_log_buffer_max = rtas_error_log_max + sizeof(int); |
| 377 | |
| 378 | of_node_put(node); |
| 379 | |
| 380 | return 0; |
| 381 | } |
| 382 | |
| 383 | static void do_event_scan(int event_scan) |
| 384 | { |
| 385 | int error; |
| 386 | do { |
| 387 | memset(logdata, 0, rtas_error_log_max); |
| 388 | error = rtas_call(event_scan, 4, 1, NULL, |
| 389 | RTAS_EVENT_SCAN_ALL_EVENTS, 0, |
| 390 | __pa(logdata), rtas_error_log_max); |
| 391 | if (error == -1) { |
| 392 | printk(KERN_ERR "event-scan failed\n"); |
| 393 | break; |
| 394 | } |
| 395 | |
| 396 | if (error == 0) |
| 397 | pSeries_log_error(logdata, ERR_TYPE_RTAS_LOG, 0); |
| 398 | |
| 399 | } while(error == 0); |
| 400 | } |
| 401 | |
| 402 | static void do_event_scan_all_cpus(long delay) |
| 403 | { |
| 404 | int cpu; |
| 405 | |
| 406 | lock_cpu_hotplug(); |
| 407 | cpu = first_cpu(cpu_online_map); |
| 408 | for (;;) { |
| 409 | set_cpus_allowed(current, cpumask_of_cpu(cpu)); |
| 410 | do_event_scan(rtas_token("event-scan")); |
| 411 | set_cpus_allowed(current, CPU_MASK_ALL); |
| 412 | |
| 413 | /* Drop hotplug lock, and sleep for the specified delay */ |
| 414 | unlock_cpu_hotplug(); |
Nishanth Aravamudan | 0287ebe | 2005-09-03 15:56:01 -0700 | [diff] [blame] | 415 | msleep_interruptible(delay); |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 416 | lock_cpu_hotplug(); |
| 417 | |
| 418 | cpu = next_cpu(cpu, cpu_online_map); |
| 419 | if (cpu == NR_CPUS) |
| 420 | break; |
| 421 | } |
| 422 | unlock_cpu_hotplug(); |
| 423 | } |
| 424 | |
| 425 | static int rtasd(void *unused) |
| 426 | { |
| 427 | unsigned int err_type; |
| 428 | int event_scan = rtas_token("event-scan"); |
| 429 | int rc; |
| 430 | |
| 431 | daemonize("rtasd"); |
| 432 | |
| 433 | if (event_scan == RTAS_UNKNOWN_SERVICE || get_eventscan_parms() == -1) |
| 434 | goto error; |
| 435 | |
| 436 | rtas_log_buf = vmalloc(rtas_error_log_buffer_max*LOG_NUMBER); |
| 437 | if (!rtas_log_buf) { |
| 438 | printk(KERN_ERR "rtasd: no memory\n"); |
| 439 | goto error; |
| 440 | } |
| 441 | |
Anton Blanchard | ad21798 | 2005-06-20 21:43:07 +1000 | [diff] [blame] | 442 | printk(KERN_INFO "RTAS daemon started\n"); |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 443 | |
Nishanth Aravamudan | 0287ebe | 2005-09-03 15:56:01 -0700 | [diff] [blame] | 444 | DEBUG("will sleep for %d milliseconds\n", (30000/rtas_event_scan_rate)); |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 445 | |
| 446 | /* See if we have any error stored in NVRAM */ |
| 447 | memset(logdata, 0, rtas_error_log_max); |
| 448 | |
| 449 | rc = nvram_read_error_log(logdata, rtas_error_log_max, &err_type); |
| 450 | |
| 451 | /* We can use rtas_log_buf now */ |
| 452 | no_logging = 0; |
| 453 | |
| 454 | if (!rc) { |
| 455 | if (err_type != ERR_FLAG_ALREADY_LOGGED) { |
| 456 | pSeries_log_error(logdata, err_type | ERR_FLAG_BOOT, 0); |
| 457 | } |
| 458 | } |
| 459 | |
| 460 | /* First pass. */ |
Nishanth Aravamudan | 0287ebe | 2005-09-03 15:56:01 -0700 | [diff] [blame] | 461 | do_event_scan_all_cpus(1000); |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 462 | |
| 463 | if (surveillance_timeout != -1) { |
| 464 | DEBUG("enabling surveillance\n"); |
| 465 | enable_surveillance(surveillance_timeout); |
| 466 | DEBUG("surveillance enabled\n"); |
| 467 | } |
| 468 | |
| 469 | /* Delay should be at least one second since some |
| 470 | * machines have problems if we call event-scan too |
| 471 | * quickly. */ |
| 472 | for (;;) |
Nishanth Aravamudan | 0287ebe | 2005-09-03 15:56:01 -0700 | [diff] [blame] | 473 | do_event_scan_all_cpus(30000/rtas_event_scan_rate); |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 474 | |
| 475 | error: |
| 476 | /* Should delete proc entries */ |
| 477 | return -EINVAL; |
| 478 | } |
| 479 | |
| 480 | static int __init rtas_init(void) |
| 481 | { |
| 482 | struct proc_dir_entry *entry; |
| 483 | |
Paul Mackerras | 799d604 | 2005-11-10 13:37:51 +1100 | [diff] [blame] | 484 | if (!platform_is_pseries()) |
| 485 | return 0; |
| 486 | |
| 487 | /* No RTAS */ |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 488 | if (rtas_token("event-scan") == RTAS_UNKNOWN_SERVICE) { |
Paul Mackerras | 799d604 | 2005-11-10 13:37:51 +1100 | [diff] [blame] | 489 | printk(KERN_INFO "rtasd: no event-scan on system\n"); |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 490 | return 1; |
| 491 | } |
| 492 | |
| 493 | entry = create_proc_entry("ppc64/rtas/error_log", S_IRUSR, NULL); |
| 494 | if (entry) |
| 495 | entry->proc_fops = &proc_rtas_log_operations; |
| 496 | else |
| 497 | printk(KERN_ERR "Failed to create error_log proc entry\n"); |
| 498 | |
| 499 | if (kernel_thread(rtasd, NULL, CLONE_FS) < 0) |
| 500 | printk(KERN_ERR "Failed to start RTAS daemon\n"); |
| 501 | |
| 502 | return 0; |
| 503 | } |
| 504 | |
| 505 | static int __init surveillance_setup(char *str) |
| 506 | { |
| 507 | int i; |
| 508 | |
| 509 | if (get_option(&str,&i)) { |
| 510 | if (i >= 0 && i <= 255) |
| 511 | surveillance_timeout = i; |
| 512 | } |
| 513 | |
| 514 | return 1; |
| 515 | } |
| 516 | |
| 517 | static int __init rtasmsgs_setup(char *str) |
| 518 | { |
| 519 | if (strcmp(str, "on") == 0) |
| 520 | full_rtas_msgs = 1; |
| 521 | else if (strcmp(str, "off") == 0) |
| 522 | full_rtas_msgs = 0; |
| 523 | |
| 524 | return 1; |
| 525 | } |
| 526 | __initcall(rtas_init); |
| 527 | __setup("surveillance=", surveillance_setup); |
| 528 | __setup("rtasmsgs=", rtasmsgs_setup); |