blob: 60c6eb850265c18b11945bf50e685aff08c8156f [file] [log] [blame]
Mayank Rana55046232011-03-07 10:28:42 +05301/*
2 * MSM 7k/8k High speed uart driver
3 *
4 * Copyright (c) 2007-2011, Code Aurora Forum. All rights reserved.
5 * Copyright (c) 2008 Google Inc.
6 * Modified: Nick Pelly <npelly@google.com>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * version 2 as published by the Free Software Foundation.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
15 * See the GNU General Public License for more details.
16 *
17 * Has optional support for uart power management independent of linux
18 * suspend/resume:
19 *
20 * RX wakeup.
21 * UART wakeup can be triggered by RX activity (using a wakeup GPIO on the
22 * UART RX pin). This should only be used if there is not a wakeup
23 * GPIO on the UART CTS, and the first RX byte is known (for example, with the
24 * Bluetooth Texas Instruments HCILL protocol), since the first RX byte will
25 * always be lost. RTS will be asserted even while the UART is off in this mode
26 * of operation. See msm_serial_hs_platform_data.rx_wakeup_irq.
27 */
28
29#include <linux/module.h>
30
31#include <linux/serial.h>
32#include <linux/serial_core.h>
Jiri Slabyee160a32011-09-01 16:20:57 +020033#include <linux/tty.h>
34#include <linux/tty_flip.h>
Mayank Rana55046232011-03-07 10:28:42 +053035#include <linux/slab.h>
36#include <linux/init.h>
37#include <linux/interrupt.h>
38#include <linux/irq.h>
39#include <linux/io.h>
40#include <linux/ioport.h>
41#include <linux/kernel.h>
42#include <linux/timer.h>
43#include <linux/clk.h>
44#include <linux/platform_device.h>
45#include <linux/pm_runtime.h>
46#include <linux/dma-mapping.h>
47#include <linux/dmapool.h>
48#include <linux/wait.h>
49#include <linux/workqueue.h>
50
51#include <linux/atomic.h>
52#include <asm/irq.h>
53#include <asm/system.h>
54
55#include <mach/hardware.h>
56#include <mach/dma.h>
57#include <linux/platform_data/msm_serial_hs.h>
58
59/* HSUART Registers */
60#define UARTDM_MR1_ADDR 0x0
61#define UARTDM_MR2_ADDR 0x4
62
63/* Data Mover result codes */
64#define RSLT_FIFO_CNTR_BMSK (0xE << 28)
65#define RSLT_VLD BIT(1)
66
67/* write only register */
68#define UARTDM_CSR_ADDR 0x8
69#define UARTDM_CSR_115200 0xFF
70#define UARTDM_CSR_57600 0xEE
71#define UARTDM_CSR_38400 0xDD
72#define UARTDM_CSR_28800 0xCC
73#define UARTDM_CSR_19200 0xBB
74#define UARTDM_CSR_14400 0xAA
75#define UARTDM_CSR_9600 0x99
76#define UARTDM_CSR_7200 0x88
77#define UARTDM_CSR_4800 0x77
78#define UARTDM_CSR_3600 0x66
79#define UARTDM_CSR_2400 0x55
80#define UARTDM_CSR_1200 0x44
81#define UARTDM_CSR_600 0x33
82#define UARTDM_CSR_300 0x22
83#define UARTDM_CSR_150 0x11
84#define UARTDM_CSR_75 0x00
85
86/* write only register */
87#define UARTDM_TF_ADDR 0x70
88#define UARTDM_TF2_ADDR 0x74
89#define UARTDM_TF3_ADDR 0x78
90#define UARTDM_TF4_ADDR 0x7C
91
92/* write only register */
93#define UARTDM_CR_ADDR 0x10
94#define UARTDM_IMR_ADDR 0x14
95
96#define UARTDM_IPR_ADDR 0x18
97#define UARTDM_TFWR_ADDR 0x1c
98#define UARTDM_RFWR_ADDR 0x20
99#define UARTDM_HCR_ADDR 0x24
100#define UARTDM_DMRX_ADDR 0x34
101#define UARTDM_IRDA_ADDR 0x38
102#define UARTDM_DMEN_ADDR 0x3c
103
104/* UART_DM_NO_CHARS_FOR_TX */
105#define UARTDM_NCF_TX_ADDR 0x40
106
107#define UARTDM_BADR_ADDR 0x44
108
109#define UARTDM_SIM_CFG_ADDR 0x80
110/* Read Only register */
111#define UARTDM_SR_ADDR 0x8
112
113/* Read Only register */
114#define UARTDM_RF_ADDR 0x70
115#define UARTDM_RF2_ADDR 0x74
116#define UARTDM_RF3_ADDR 0x78
117#define UARTDM_RF4_ADDR 0x7C
118
119/* Read Only register */
120#define UARTDM_MISR_ADDR 0x10
121
122/* Read Only register */
123#define UARTDM_ISR_ADDR 0x14
124#define UARTDM_RX_TOTAL_SNAP_ADDR 0x38
125
126#define UARTDM_RXFS_ADDR 0x50
127
128/* Register field Mask Mapping */
129#define UARTDM_SR_PAR_FRAME_BMSK BIT(5)
130#define UARTDM_SR_OVERRUN_BMSK BIT(4)
131#define UARTDM_SR_TXEMT_BMSK BIT(3)
132#define UARTDM_SR_TXRDY_BMSK BIT(2)
133#define UARTDM_SR_RXRDY_BMSK BIT(0)
134
135#define UARTDM_CR_TX_DISABLE_BMSK BIT(3)
136#define UARTDM_CR_RX_DISABLE_BMSK BIT(1)
137#define UARTDM_CR_TX_EN_BMSK BIT(2)
138#define UARTDM_CR_RX_EN_BMSK BIT(0)
139
140/* UARTDM_CR channel_comman bit value (register field is bits 8:4) */
141#define RESET_RX 0x10
142#define RESET_TX 0x20
143#define RESET_ERROR_STATUS 0x30
144#define RESET_BREAK_INT 0x40
145#define START_BREAK 0x50
146#define STOP_BREAK 0x60
147#define RESET_CTS 0x70
148#define RESET_STALE_INT 0x80
149#define RFR_LOW 0xD0
150#define RFR_HIGH 0xE0
151#define CR_PROTECTION_EN 0x100
152#define STALE_EVENT_ENABLE 0x500
153#define STALE_EVENT_DISABLE 0x600
154#define FORCE_STALE_EVENT 0x400
155#define CLEAR_TX_READY 0x300
156#define RESET_TX_ERROR 0x800
157#define RESET_TX_DONE 0x810
158
159#define UARTDM_MR1_AUTO_RFR_LEVEL1_BMSK 0xffffff00
160#define UARTDM_MR1_AUTO_RFR_LEVEL0_BMSK 0x3f
161#define UARTDM_MR1_CTS_CTL_BMSK 0x40
162#define UARTDM_MR1_RX_RDY_CTL_BMSK 0x80
163
164#define UARTDM_MR2_ERROR_MODE_BMSK 0x40
165#define UARTDM_MR2_BITS_PER_CHAR_BMSK 0x30
166
167/* bits per character configuration */
168#define FIVE_BPC (0 << 4)
169#define SIX_BPC (1 << 4)
170#define SEVEN_BPC (2 << 4)
171#define EIGHT_BPC (3 << 4)
172
173#define UARTDM_MR2_STOP_BIT_LEN_BMSK 0xc
174#define STOP_BIT_ONE (1 << 2)
175#define STOP_BIT_TWO (3 << 2)
176
177#define UARTDM_MR2_PARITY_MODE_BMSK 0x3
178
179/* Parity configuration */
180#define NO_PARITY 0x0
181#define EVEN_PARITY 0x1
182#define ODD_PARITY 0x2
183#define SPACE_PARITY 0x3
184
185#define UARTDM_IPR_STALE_TIMEOUT_MSB_BMSK 0xffffff80
186#define UARTDM_IPR_STALE_LSB_BMSK 0x1f
187
188/* These can be used for both ISR and IMR register */
189#define UARTDM_ISR_TX_READY_BMSK BIT(7)
190#define UARTDM_ISR_CURRENT_CTS_BMSK BIT(6)
191#define UARTDM_ISR_DELTA_CTS_BMSK BIT(5)
192#define UARTDM_ISR_RXLEV_BMSK BIT(4)
193#define UARTDM_ISR_RXSTALE_BMSK BIT(3)
194#define UARTDM_ISR_RXBREAK_BMSK BIT(2)
195#define UARTDM_ISR_RXHUNT_BMSK BIT(1)
196#define UARTDM_ISR_TXLEV_BMSK BIT(0)
197
198/* Field definitions for UART_DM_DMEN*/
199#define UARTDM_TX_DM_EN_BMSK 0x1
200#define UARTDM_RX_DM_EN_BMSK 0x2
201
202#define UART_FIFOSIZE 64
203#define UARTCLK 7372800
204
205/* Rx DMA request states */
206enum flush_reason {
207 FLUSH_NONE,
208 FLUSH_DATA_READY,
209 FLUSH_DATA_INVALID, /* values after this indicate invalid data */
210 FLUSH_IGNORE = FLUSH_DATA_INVALID,
211 FLUSH_STOP,
212 FLUSH_SHUTDOWN,
213};
214
215/* UART clock states */
216enum msm_hs_clk_states_e {
217 MSM_HS_CLK_PORT_OFF, /* port not in use */
218 MSM_HS_CLK_OFF, /* clock disabled */
219 MSM_HS_CLK_REQUEST_OFF, /* disable after TX and RX flushed */
220 MSM_HS_CLK_ON, /* clock enabled */
221};
222
223/* Track the forced RXSTALE flush during clock off sequence.
224 * These states are only valid during MSM_HS_CLK_REQUEST_OFF */
225enum msm_hs_clk_req_off_state_e {
226 CLK_REQ_OFF_START,
227 CLK_REQ_OFF_RXSTALE_ISSUED,
228 CLK_REQ_OFF_FLUSH_ISSUED,
229 CLK_REQ_OFF_RXSTALE_FLUSHED,
230};
231
232/**
233 * struct msm_hs_tx
234 * @tx_ready_int_en: ok to dma more tx?
235 * @dma_in_flight: tx dma in progress
236 * @xfer: top level DMA command pointer structure
237 * @command_ptr: third level command struct pointer
238 * @command_ptr_ptr: second level command list struct pointer
239 * @mapped_cmd_ptr: DMA view of third level command struct
240 * @mapped_cmd_ptr_ptr: DMA view of second level command list struct
241 * @tx_count: number of bytes to transfer in DMA transfer
242 * @dma_base: DMA view of UART xmit buffer
243 *
244 * This structure describes a single Tx DMA transaction. MSM DMA
245 * commands have two levels of indirection. The top level command
246 * ptr points to a list of command ptr which in turn points to a
247 * single DMA 'command'. In our case each Tx transaction consists
248 * of a single second level pointer pointing to a 'box type' command.
249 */
250struct msm_hs_tx {
251 unsigned int tx_ready_int_en;
252 unsigned int dma_in_flight;
253 struct msm_dmov_cmd xfer;
254 dmov_box *command_ptr;
255 u32 *command_ptr_ptr;
256 dma_addr_t mapped_cmd_ptr;
257 dma_addr_t mapped_cmd_ptr_ptr;
258 int tx_count;
259 dma_addr_t dma_base;
260};
261
262/**
263 * struct msm_hs_rx
264 * @flush: Rx DMA request state
265 * @xfer: top level DMA command pointer structure
266 * @cmdptr_dmaaddr: DMA view of second level command structure
267 * @command_ptr: third level DMA command pointer structure
268 * @command_ptr_ptr: second level DMA command list pointer
269 * @mapped_cmd_ptr: DMA view of the third level command structure
270 * @wait: wait for DMA completion before shutdown
271 * @buffer: destination buffer for RX DMA
272 * @rbuffer: DMA view of buffer
273 * @pool: dma pool out of which coherent rx buffer is allocated
274 * @tty_work: private work-queue for tty flip buffer push task
275 *
276 * This structure describes a single Rx DMA transaction. Rx DMA
277 * transactions use box mode DMA commands.
278 */
279struct msm_hs_rx {
280 enum flush_reason flush;
281 struct msm_dmov_cmd xfer;
282 dma_addr_t cmdptr_dmaaddr;
283 dmov_box *command_ptr;
284 u32 *command_ptr_ptr;
285 dma_addr_t mapped_cmd_ptr;
286 wait_queue_head_t wait;
287 dma_addr_t rbuffer;
288 unsigned char *buffer;
289 struct dma_pool *pool;
290 struct work_struct tty_work;
291};
292
293/**
294 * struct msm_hs_rx_wakeup
295 * @irq: IRQ line to be configured as interrupt source on Rx activity
296 * @ignore: boolean value. 1 = ignore the wakeup interrupt
297 * @rx_to_inject: extra character to be inserted to Rx tty on wakeup
298 * @inject_rx: 1 = insert rx_to_inject. 0 = do not insert extra character
299 *
300 * This is an optional structure required for UART Rx GPIO IRQ based
301 * wakeup from low power state. UART wakeup can be triggered by RX activity
302 * (using a wakeup GPIO on the UART RX pin). This should only be used if
303 * there is not a wakeup GPIO on the UART CTS, and the first RX byte is
304 * known (eg., with the Bluetooth Texas Instruments HCILL protocol),
305 * since the first RX byte will always be lost. RTS will be asserted even
306 * while the UART is clocked off in this mode of operation.
307 */
308struct msm_hs_rx_wakeup {
309 int irq; /* < 0 indicates low power wakeup disabled */
310 unsigned char ignore;
311 unsigned char inject_rx;
312 char rx_to_inject;
313};
314
315/**
316 * struct msm_hs_port
317 * @uport: embedded uart port structure
318 * @imr_reg: shadow value of UARTDM_IMR
319 * @clk: uart input clock handle
320 * @tx: Tx transaction related data structure
321 * @rx: Rx transaction related data structure
322 * @dma_tx_channel: Tx DMA command channel
323 * @dma_rx_channel Rx DMA command channel
324 * @dma_tx_crci: Tx channel rate control interface number
325 * @dma_rx_crci: Rx channel rate control interface number
326 * @clk_off_timer: Timer to poll DMA event completion before clock off
327 * @clk_off_delay: clk_off_timer poll interval
328 * @clk_state: overall clock state
329 * @clk_req_off_state: post flush clock states
330 * @rx_wakeup: optional rx_wakeup feature related data
331 * @exit_lpm_cb: optional callback to exit low power mode
332 *
333 * Low level serial port structure.
334 */
335struct msm_hs_port {
336 struct uart_port uport;
337 unsigned long imr_reg;
338 struct clk *clk;
339 struct msm_hs_tx tx;
340 struct msm_hs_rx rx;
341
342 int dma_tx_channel;
343 int dma_rx_channel;
344 int dma_tx_crci;
345 int dma_rx_crci;
346
347 struct hrtimer clk_off_timer;
348 ktime_t clk_off_delay;
349 enum msm_hs_clk_states_e clk_state;
350 enum msm_hs_clk_req_off_state_e clk_req_off_state;
351
352 struct msm_hs_rx_wakeup rx_wakeup;
353 void (*exit_lpm_cb)(struct uart_port *);
354};
355
356#define MSM_UARTDM_BURST_SIZE 16 /* DM burst size (in bytes) */
357#define UARTDM_TX_BUF_SIZE UART_XMIT_SIZE
358#define UARTDM_RX_BUF_SIZE 512
359
360#define UARTDM_NR 2
361
362static struct msm_hs_port q_uart_port[UARTDM_NR];
363static struct platform_driver msm_serial_hs_platform_driver;
364static struct uart_driver msm_hs_driver;
365static struct uart_ops msm_hs_ops;
366static struct workqueue_struct *msm_hs_workqueue;
367
368#define UARTDM_TO_MSM(uart_port) \
369 container_of((uart_port), struct msm_hs_port, uport)
370
371static unsigned int use_low_power_rx_wakeup(struct msm_hs_port
372 *msm_uport)
373{
374 return (msm_uport->rx_wakeup.irq >= 0);
375}
376
377static unsigned int msm_hs_read(struct uart_port *uport,
378 unsigned int offset)
379{
380 return ioread32(uport->membase + offset);
381}
382
383static void msm_hs_write(struct uart_port *uport, unsigned int offset,
384 unsigned int value)
385{
386 iowrite32(value, uport->membase + offset);
387}
388
389static void msm_hs_release_port(struct uart_port *port)
390{
391 iounmap(port->membase);
392}
393
394static int msm_hs_request_port(struct uart_port *port)
395{
396 port->membase = ioremap(port->mapbase, PAGE_SIZE);
397 if (unlikely(!port->membase))
398 return -ENOMEM;
399
400 /* configure the CR Protection to Enable */
401 msm_hs_write(port, UARTDM_CR_ADDR, CR_PROTECTION_EN);
402 return 0;
403}
404
405static int __devexit msm_hs_remove(struct platform_device *pdev)
406{
407
408 struct msm_hs_port *msm_uport;
409 struct device *dev;
410
411 if (pdev->id < 0 || pdev->id >= UARTDM_NR) {
412 printk(KERN_ERR "Invalid plaform device ID = %d\n", pdev->id);
413 return -EINVAL;
414 }
415
416 msm_uport = &q_uart_port[pdev->id];
417 dev = msm_uport->uport.dev;
418
419 dma_unmap_single(dev, msm_uport->rx.mapped_cmd_ptr, sizeof(dmov_box),
420 DMA_TO_DEVICE);
421 dma_pool_free(msm_uport->rx.pool, msm_uport->rx.buffer,
422 msm_uport->rx.rbuffer);
423 dma_pool_destroy(msm_uport->rx.pool);
424
425 dma_unmap_single(dev, msm_uport->rx.cmdptr_dmaaddr, sizeof(u32 *),
426 DMA_TO_DEVICE);
427 dma_unmap_single(dev, msm_uport->tx.mapped_cmd_ptr_ptr, sizeof(u32 *),
428 DMA_TO_DEVICE);
429 dma_unmap_single(dev, msm_uport->tx.mapped_cmd_ptr, sizeof(dmov_box),
430 DMA_TO_DEVICE);
431
432 uart_remove_one_port(&msm_hs_driver, &msm_uport->uport);
433 clk_put(msm_uport->clk);
434
435 /* Free the tx resources */
436 kfree(msm_uport->tx.command_ptr);
437 kfree(msm_uport->tx.command_ptr_ptr);
438
439 /* Free the rx resources */
440 kfree(msm_uport->rx.command_ptr);
441 kfree(msm_uport->rx.command_ptr_ptr);
442
443 iounmap(msm_uport->uport.membase);
444
445 return 0;
446}
447
448static int msm_hs_init_clk_locked(struct uart_port *uport)
449{
450 int ret;
451 struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport);
452
453 ret = clk_enable(msm_uport->clk);
454 if (ret) {
455 printk(KERN_ERR "Error could not turn on UART clk\n");
456 return ret;
457 }
458
459 /* Set up the MREG/NREG/DREG/MNDREG */
460 ret = clk_set_rate(msm_uport->clk, uport->uartclk);
461 if (ret) {
462 printk(KERN_WARNING "Error setting clock rate on UART\n");
463 clk_disable(msm_uport->clk);
464 return ret;
465 }
466
467 msm_uport->clk_state = MSM_HS_CLK_ON;
468 return 0;
469}
470
471/* Enable and Disable clocks (Used for power management) */
472static void msm_hs_pm(struct uart_port *uport, unsigned int state,
473 unsigned int oldstate)
474{
475 struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport);
476
477 if (use_low_power_rx_wakeup(msm_uport) ||
478 msm_uport->exit_lpm_cb)
479 return; /* ignore linux PM states,
480 use msm_hs_request_clock API */
481
482 switch (state) {
483 case 0:
484 clk_enable(msm_uport->clk);
485 break;
486 case 3:
487 clk_disable(msm_uport->clk);
488 break;
489 default:
490 dev_err(uport->dev, "msm_serial: Unknown PM state %d\n",
491 state);
492 }
493}
494
495/*
496 * programs the UARTDM_CSR register with correct bit rates
497 *
498 * Interrupts should be disabled before we are called, as
499 * we modify Set Baud rate
Lucas De Marchi25985ed2011-03-30 22:57:33 -0300500 * Set receive stale interrupt level, dependent on Bit Rate
Mayank Rana55046232011-03-07 10:28:42 +0530501 * Goal is to have around 8 ms before indicate stale.
502 * roundup (((Bit Rate * .008) / 10) + 1
503 */
504static void msm_hs_set_bps_locked(struct uart_port *uport,
505 unsigned int bps)
506{
507 unsigned long rxstale;
508 unsigned long data;
509 struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport);
510
511 switch (bps) {
512 case 300:
513 msm_hs_write(uport, UARTDM_CSR_ADDR, UARTDM_CSR_75);
514 rxstale = 1;
515 break;
516 case 600:
517 msm_hs_write(uport, UARTDM_CSR_ADDR, UARTDM_CSR_150);
518 rxstale = 1;
519 break;
520 case 1200:
521 msm_hs_write(uport, UARTDM_CSR_ADDR, UARTDM_CSR_300);
522 rxstale = 1;
523 break;
524 case 2400:
525 msm_hs_write(uport, UARTDM_CSR_ADDR, UARTDM_CSR_600);
526 rxstale = 1;
527 break;
528 case 4800:
529 msm_hs_write(uport, UARTDM_CSR_ADDR, UARTDM_CSR_1200);
530 rxstale = 1;
531 break;
532 case 9600:
533 msm_hs_write(uport, UARTDM_CSR_ADDR, UARTDM_CSR_2400);
534 rxstale = 2;
535 break;
536 case 14400:
537 msm_hs_write(uport, UARTDM_CSR_ADDR, UARTDM_CSR_3600);
538 rxstale = 3;
539 break;
540 case 19200:
541 msm_hs_write(uport, UARTDM_CSR_ADDR, UARTDM_CSR_4800);
542 rxstale = 4;
543 break;
544 case 28800:
545 msm_hs_write(uport, UARTDM_CSR_ADDR, UARTDM_CSR_7200);
546 rxstale = 6;
547 break;
548 case 38400:
549 msm_hs_write(uport, UARTDM_CSR_ADDR, UARTDM_CSR_9600);
550 rxstale = 8;
551 break;
552 case 57600:
553 msm_hs_write(uport, UARTDM_CSR_ADDR, UARTDM_CSR_14400);
554 rxstale = 16;
555 break;
556 case 76800:
557 msm_hs_write(uport, UARTDM_CSR_ADDR, UARTDM_CSR_19200);
558 rxstale = 16;
559 break;
560 case 115200:
561 msm_hs_write(uport, UARTDM_CSR_ADDR, UARTDM_CSR_28800);
562 rxstale = 31;
563 break;
564 case 230400:
565 msm_hs_write(uport, UARTDM_CSR_ADDR, UARTDM_CSR_57600);
566 rxstale = 31;
567 break;
568 case 460800:
569 msm_hs_write(uport, UARTDM_CSR_ADDR, UARTDM_CSR_115200);
570 rxstale = 31;
571 break;
572 case 4000000:
573 case 3686400:
574 case 3200000:
575 case 3500000:
576 case 3000000:
577 case 2500000:
578 case 1500000:
579 case 1152000:
580 case 1000000:
581 case 921600:
582 msm_hs_write(uport, UARTDM_CSR_ADDR, UARTDM_CSR_115200);
583 rxstale = 31;
584 break;
585 default:
586 msm_hs_write(uport, UARTDM_CSR_ADDR, UARTDM_CSR_2400);
587 /* default to 9600 */
588 bps = 9600;
589 rxstale = 2;
590 break;
591 }
592 if (bps > 460800)
593 uport->uartclk = bps * 16;
594 else
595 uport->uartclk = UARTCLK;
596
597 if (clk_set_rate(msm_uport->clk, uport->uartclk)) {
598 printk(KERN_WARNING "Error setting clock rate on UART\n");
599 return;
600 }
601
602 data = rxstale & UARTDM_IPR_STALE_LSB_BMSK;
603 data |= UARTDM_IPR_STALE_TIMEOUT_MSB_BMSK & (rxstale << 2);
604
605 msm_hs_write(uport, UARTDM_IPR_ADDR, data);
606}
607
608/*
609 * termios : new ktermios
610 * oldtermios: old ktermios previous setting
611 *
612 * Configure the serial port
613 */
614static void msm_hs_set_termios(struct uart_port *uport,
615 struct ktermios *termios,
616 struct ktermios *oldtermios)
617{
618 unsigned int bps;
619 unsigned long data;
620 unsigned long flags;
621 unsigned int c_cflag = termios->c_cflag;
622 struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport);
623
624 spin_lock_irqsave(&uport->lock, flags);
625 clk_enable(msm_uport->clk);
626
627 /* 300 is the minimum baud support by the driver */
628 bps = uart_get_baud_rate(uport, termios, oldtermios, 200, 4000000);
629
630 /* Temporary remapping 200 BAUD to 3.2 mbps */
631 if (bps == 200)
632 bps = 3200000;
633
634 msm_hs_set_bps_locked(uport, bps);
635
636 data = msm_hs_read(uport, UARTDM_MR2_ADDR);
637 data &= ~UARTDM_MR2_PARITY_MODE_BMSK;
638 /* set parity */
639 if (PARENB == (c_cflag & PARENB)) {
640 if (PARODD == (c_cflag & PARODD))
641 data |= ODD_PARITY;
642 else if (CMSPAR == (c_cflag & CMSPAR))
643 data |= SPACE_PARITY;
644 else
645 data |= EVEN_PARITY;
646 }
647
648 /* Set bits per char */
649 data &= ~UARTDM_MR2_BITS_PER_CHAR_BMSK;
650
651 switch (c_cflag & CSIZE) {
652 case CS5:
653 data |= FIVE_BPC;
654 break;
655 case CS6:
656 data |= SIX_BPC;
657 break;
658 case CS7:
659 data |= SEVEN_BPC;
660 break;
661 default:
662 data |= EIGHT_BPC;
663 break;
664 }
665 /* stop bits */
666 if (c_cflag & CSTOPB) {
667 data |= STOP_BIT_TWO;
668 } else {
669 /* otherwise 1 stop bit */
670 data |= STOP_BIT_ONE;
671 }
672 data |= UARTDM_MR2_ERROR_MODE_BMSK;
673 /* write parity/bits per char/stop bit configuration */
674 msm_hs_write(uport, UARTDM_MR2_ADDR, data);
675
676 /* Configure HW flow control */
677 data = msm_hs_read(uport, UARTDM_MR1_ADDR);
678
679 data &= ~(UARTDM_MR1_CTS_CTL_BMSK | UARTDM_MR1_RX_RDY_CTL_BMSK);
680
681 if (c_cflag & CRTSCTS) {
682 data |= UARTDM_MR1_CTS_CTL_BMSK;
683 data |= UARTDM_MR1_RX_RDY_CTL_BMSK;
684 }
685
686 msm_hs_write(uport, UARTDM_MR1_ADDR, data);
687
688 uport->ignore_status_mask = termios->c_iflag & INPCK;
689 uport->ignore_status_mask |= termios->c_iflag & IGNPAR;
690 uport->read_status_mask = (termios->c_cflag & CREAD);
691
692 msm_hs_write(uport, UARTDM_IMR_ADDR, 0);
693
694 /* Set Transmit software time out */
695 uart_update_timeout(uport, c_cflag, bps);
696
697 msm_hs_write(uport, UARTDM_CR_ADDR, RESET_RX);
698 msm_hs_write(uport, UARTDM_CR_ADDR, RESET_TX);
699
700 if (msm_uport->rx.flush == FLUSH_NONE) {
701 msm_uport->rx.flush = FLUSH_IGNORE;
702 msm_dmov_stop_cmd(msm_uport->dma_rx_channel, NULL, 1);
703 }
704
705 msm_hs_write(uport, UARTDM_IMR_ADDR, msm_uport->imr_reg);
706
707 clk_disable(msm_uport->clk);
708 spin_unlock_irqrestore(&uport->lock, flags);
709}
710
711/*
712 * Standard API, Transmitter
713 * Any character in the transmit shift register is sent
714 */
715static unsigned int msm_hs_tx_empty(struct uart_port *uport)
716{
717 unsigned int data;
718 unsigned int ret = 0;
719 struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport);
720
721 clk_enable(msm_uport->clk);
722
723 data = msm_hs_read(uport, UARTDM_SR_ADDR);
724 if (data & UARTDM_SR_TXEMT_BMSK)
725 ret = TIOCSER_TEMT;
726
727 clk_disable(msm_uport->clk);
728
729 return ret;
730}
731
732/*
733 * Standard API, Stop transmitter.
734 * Any character in the transmit shift register is sent as
735 * well as the current data mover transfer .
736 */
737static void msm_hs_stop_tx_locked(struct uart_port *uport)
738{
739 struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport);
740
741 msm_uport->tx.tx_ready_int_en = 0;
742}
743
744/*
745 * Standard API, Stop receiver as soon as possible.
746 *
747 * Function immediately terminates the operation of the
748 * channel receiver and any incoming characters are lost. None
749 * of the receiver status bits are affected by this command and
750 * characters that are already in the receive FIFO there.
751 */
752static void msm_hs_stop_rx_locked(struct uart_port *uport)
753{
754 struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport);
755 unsigned int data;
756
757 clk_enable(msm_uport->clk);
758
759 /* disable dlink */
760 data = msm_hs_read(uport, UARTDM_DMEN_ADDR);
761 data &= ~UARTDM_RX_DM_EN_BMSK;
762 msm_hs_write(uport, UARTDM_DMEN_ADDR, data);
763
764 /* Disable the receiver */
765 if (msm_uport->rx.flush == FLUSH_NONE)
766 msm_dmov_stop_cmd(msm_uport->dma_rx_channel, NULL, 1);
767
768 if (msm_uport->rx.flush != FLUSH_SHUTDOWN)
769 msm_uport->rx.flush = FLUSH_STOP;
770
771 clk_disable(msm_uport->clk);
772}
773
774/* Transmit the next chunk of data */
775static void msm_hs_submit_tx_locked(struct uart_port *uport)
776{
777 int left;
778 int tx_count;
779 dma_addr_t src_addr;
780 struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport);
781 struct msm_hs_tx *tx = &msm_uport->tx;
782 struct circ_buf *tx_buf = &msm_uport->uport.state->xmit;
783
784 if (uart_circ_empty(tx_buf) || uport->state->port.tty->stopped) {
785 msm_hs_stop_tx_locked(uport);
786 return;
787 }
788
789 tx->dma_in_flight = 1;
790
791 tx_count = uart_circ_chars_pending(tx_buf);
792
793 if (UARTDM_TX_BUF_SIZE < tx_count)
794 tx_count = UARTDM_TX_BUF_SIZE;
795
796 left = UART_XMIT_SIZE - tx_buf->tail;
797
798 if (tx_count > left)
799 tx_count = left;
800
801 src_addr = tx->dma_base + tx_buf->tail;
802 dma_sync_single_for_device(uport->dev, src_addr, tx_count,
803 DMA_TO_DEVICE);
804
805 tx->command_ptr->num_rows = (((tx_count + 15) >> 4) << 16) |
806 ((tx_count + 15) >> 4);
807 tx->command_ptr->src_row_addr = src_addr;
808
809 dma_sync_single_for_device(uport->dev, tx->mapped_cmd_ptr,
810 sizeof(dmov_box), DMA_TO_DEVICE);
811
812 *tx->command_ptr_ptr = CMD_PTR_LP | DMOV_CMD_ADDR(tx->mapped_cmd_ptr);
813
814 dma_sync_single_for_device(uport->dev, tx->mapped_cmd_ptr_ptr,
815 sizeof(u32 *), DMA_TO_DEVICE);
816
817 /* Save tx_count to use in Callback */
818 tx->tx_count = tx_count;
819 msm_hs_write(uport, UARTDM_NCF_TX_ADDR, tx_count);
820
821 /* Disable the tx_ready interrupt */
822 msm_uport->imr_reg &= ~UARTDM_ISR_TX_READY_BMSK;
823 msm_hs_write(uport, UARTDM_IMR_ADDR, msm_uport->imr_reg);
824 msm_dmov_enqueue_cmd(msm_uport->dma_tx_channel, &tx->xfer);
825}
826
827/* Start to receive the next chunk of data */
828static void msm_hs_start_rx_locked(struct uart_port *uport)
829{
830 struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport);
831
832 msm_hs_write(uport, UARTDM_CR_ADDR, RESET_STALE_INT);
833 msm_hs_write(uport, UARTDM_DMRX_ADDR, UARTDM_RX_BUF_SIZE);
834 msm_hs_write(uport, UARTDM_CR_ADDR, STALE_EVENT_ENABLE);
835 msm_uport->imr_reg |= UARTDM_ISR_RXLEV_BMSK;
836 msm_hs_write(uport, UARTDM_IMR_ADDR, msm_uport->imr_reg);
837
838 msm_uport->rx.flush = FLUSH_NONE;
839 msm_dmov_enqueue_cmd(msm_uport->dma_rx_channel, &msm_uport->rx.xfer);
840
841 /* might have finished RX and be ready to clock off */
842 hrtimer_start(&msm_uport->clk_off_timer, msm_uport->clk_off_delay,
843 HRTIMER_MODE_REL);
844}
845
846/* Enable the transmitter Interrupt */
847static void msm_hs_start_tx_locked(struct uart_port *uport)
848{
849 struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport);
850
851 clk_enable(msm_uport->clk);
852
853 if (msm_uport->exit_lpm_cb)
854 msm_uport->exit_lpm_cb(uport);
855
856 if (msm_uport->tx.tx_ready_int_en == 0) {
857 msm_uport->tx.tx_ready_int_en = 1;
858 msm_hs_submit_tx_locked(uport);
859 }
860
861 clk_disable(msm_uport->clk);
862}
863
864/*
865 * This routine is called when we are done with a DMA transfer
866 *
867 * This routine is registered with Data mover when we set
868 * up a Data Mover transfer. It is called from Data mover ISR
869 * when the DMA transfer is done.
870 */
871static void msm_hs_dmov_tx_callback(struct msm_dmov_cmd *cmd_ptr,
872 unsigned int result,
873 struct msm_dmov_errdata *err)
874{
875 unsigned long flags;
876 struct msm_hs_port *msm_uport;
877
878 /* DMA did not finish properly */
879 WARN_ON((((result & RSLT_FIFO_CNTR_BMSK) >> 28) == 1) &&
880 !(result & RSLT_VLD));
881
882 msm_uport = container_of(cmd_ptr, struct msm_hs_port, tx.xfer);
883
884 spin_lock_irqsave(&msm_uport->uport.lock, flags);
885 clk_enable(msm_uport->clk);
886
887 msm_uport->imr_reg |= UARTDM_ISR_TX_READY_BMSK;
888 msm_hs_write(&msm_uport->uport, UARTDM_IMR_ADDR, msm_uport->imr_reg);
889
890 clk_disable(msm_uport->clk);
891 spin_unlock_irqrestore(&msm_uport->uport.lock, flags);
892}
893
894/*
895 * This routine is called when we are done with a DMA transfer or the
896 * a flush has been sent to the data mover driver.
897 *
898 * This routine is registered with Data mover when we set up a Data Mover
899 * transfer. It is called from Data mover ISR when the DMA transfer is done.
900 */
901static void msm_hs_dmov_rx_callback(struct msm_dmov_cmd *cmd_ptr,
902 unsigned int result,
903 struct msm_dmov_errdata *err)
904{
905 int retval;
906 int rx_count;
907 unsigned long status;
908 unsigned int error_f = 0;
909 unsigned long flags;
910 unsigned int flush;
911 struct tty_struct *tty;
912 struct uart_port *uport;
913 struct msm_hs_port *msm_uport;
914
915 msm_uport = container_of(cmd_ptr, struct msm_hs_port, rx.xfer);
916 uport = &msm_uport->uport;
917
918 spin_lock_irqsave(&uport->lock, flags);
919 clk_enable(msm_uport->clk);
920
921 tty = uport->state->port.tty;
922
923 msm_hs_write(uport, UARTDM_CR_ADDR, STALE_EVENT_DISABLE);
924
925 status = msm_hs_read(uport, UARTDM_SR_ADDR);
926
927 /* overflow is not connect to data in a FIFO */
928 if (unlikely((status & UARTDM_SR_OVERRUN_BMSK) &&
929 (uport->read_status_mask & CREAD))) {
930 tty_insert_flip_char(tty, 0, TTY_OVERRUN);
931 uport->icount.buf_overrun++;
932 error_f = 1;
933 }
934
935 if (!(uport->ignore_status_mask & INPCK))
936 status = status & ~(UARTDM_SR_PAR_FRAME_BMSK);
937
938 if (unlikely(status & UARTDM_SR_PAR_FRAME_BMSK)) {
939 /* Can not tell difference between parity & frame error */
940 uport->icount.parity++;
941 error_f = 1;
942 if (uport->ignore_status_mask & IGNPAR)
943 tty_insert_flip_char(tty, 0, TTY_PARITY);
944 }
945
946 if (error_f)
947 msm_hs_write(uport, UARTDM_CR_ADDR, RESET_ERROR_STATUS);
948
949 if (msm_uport->clk_req_off_state == CLK_REQ_OFF_FLUSH_ISSUED)
950 msm_uport->clk_req_off_state = CLK_REQ_OFF_RXSTALE_FLUSHED;
951
952 flush = msm_uport->rx.flush;
953 if (flush == FLUSH_IGNORE)
954 msm_hs_start_rx_locked(uport);
955 if (flush == FLUSH_STOP)
956 msm_uport->rx.flush = FLUSH_SHUTDOWN;
957 if (flush >= FLUSH_DATA_INVALID)
958 goto out;
959
960 rx_count = msm_hs_read(uport, UARTDM_RX_TOTAL_SNAP_ADDR);
961
962 if (0 != (uport->read_status_mask & CREAD)) {
963 retval = tty_insert_flip_string(tty, msm_uport->rx.buffer,
964 rx_count);
965 BUG_ON(retval != rx_count);
966 }
967
968 msm_hs_start_rx_locked(uport);
969
970out:
971 clk_disable(msm_uport->clk);
972
973 spin_unlock_irqrestore(&uport->lock, flags);
974
975 if (flush < FLUSH_DATA_INVALID)
976 queue_work(msm_hs_workqueue, &msm_uport->rx.tty_work);
977}
978
979static void msm_hs_tty_flip_buffer_work(struct work_struct *work)
980{
981 struct msm_hs_port *msm_uport =
982 container_of(work, struct msm_hs_port, rx.tty_work);
983 struct tty_struct *tty = msm_uport->uport.state->port.tty;
984
985 tty_flip_buffer_push(tty);
986}
987
988/*
989 * Standard API, Current states of modem control inputs
990 *
991 * Since CTS can be handled entirely by HARDWARE we always
992 * indicate clear to send and count on the TX FIFO to block when
993 * it fills up.
994 *
995 * - TIOCM_DCD
996 * - TIOCM_CTS
997 * - TIOCM_DSR
998 * - TIOCM_RI
999 * (Unsupported) DCD and DSR will return them high. RI will return low.
1000 */
1001static unsigned int msm_hs_get_mctrl_locked(struct uart_port *uport)
1002{
1003 return TIOCM_DSR | TIOCM_CAR | TIOCM_CTS;
1004}
1005
1006/*
1007 * True enables UART auto RFR, which indicates we are ready for data if the RX
1008 * buffer is not full. False disables auto RFR, and deasserts RFR to indicate
1009 * we are not ready for data. Must be called with UART clock on.
1010 */
1011static void set_rfr_locked(struct uart_port *uport, int auto_rfr)
1012{
1013 unsigned int data;
1014
1015 data = msm_hs_read(uport, UARTDM_MR1_ADDR);
1016
1017 if (auto_rfr) {
1018 /* enable auto ready-for-receiving */
1019 data |= UARTDM_MR1_RX_RDY_CTL_BMSK;
1020 msm_hs_write(uport, UARTDM_MR1_ADDR, data);
1021 } else {
1022 /* disable auto ready-for-receiving */
1023 data &= ~UARTDM_MR1_RX_RDY_CTL_BMSK;
1024 msm_hs_write(uport, UARTDM_MR1_ADDR, data);
1025 /* RFR is active low, set high */
1026 msm_hs_write(uport, UARTDM_CR_ADDR, RFR_HIGH);
1027 }
1028}
1029
1030/*
1031 * Standard API, used to set or clear RFR
1032 */
1033static void msm_hs_set_mctrl_locked(struct uart_port *uport,
1034 unsigned int mctrl)
1035{
1036 unsigned int auto_rfr;
1037 struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport);
1038
1039 clk_enable(msm_uport->clk);
1040
1041 auto_rfr = TIOCM_RTS & mctrl ? 1 : 0;
1042 set_rfr_locked(uport, auto_rfr);
1043
1044 clk_disable(msm_uport->clk);
1045}
1046
1047/* Standard API, Enable modem status (CTS) interrupt */
1048static void msm_hs_enable_ms_locked(struct uart_port *uport)
1049{
1050 struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport);
1051
1052 clk_enable(msm_uport->clk);
1053
1054 /* Enable DELTA_CTS Interrupt */
1055 msm_uport->imr_reg |= UARTDM_ISR_DELTA_CTS_BMSK;
1056 msm_hs_write(uport, UARTDM_IMR_ADDR, msm_uport->imr_reg);
1057
1058 clk_disable(msm_uport->clk);
1059
1060}
1061
1062/*
1063 * Standard API, Break Signal
1064 *
1065 * Control the transmission of a break signal. ctl eq 0 => break
1066 * signal terminate ctl ne 0 => start break signal
1067 */
1068static void msm_hs_break_ctl(struct uart_port *uport, int ctl)
1069{
1070 struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport);
1071
1072 clk_enable(msm_uport->clk);
1073 msm_hs_write(uport, UARTDM_CR_ADDR, ctl ? START_BREAK : STOP_BREAK);
1074 clk_disable(msm_uport->clk);
1075}
1076
1077static void msm_hs_config_port(struct uart_port *uport, int cfg_flags)
1078{
1079 unsigned long flags;
1080
1081 spin_lock_irqsave(&uport->lock, flags);
1082 if (cfg_flags & UART_CONFIG_TYPE) {
1083 uport->type = PORT_MSM;
1084 msm_hs_request_port(uport);
1085 }
1086 spin_unlock_irqrestore(&uport->lock, flags);
1087}
1088
1089/* Handle CTS changes (Called from interrupt handler) */
1090static void msm_hs_handle_delta_cts(struct uart_port *uport)
1091{
1092 unsigned long flags;
1093 struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport);
1094
1095 spin_lock_irqsave(&uport->lock, flags);
1096 clk_enable(msm_uport->clk);
1097
1098 /* clear interrupt */
1099 msm_hs_write(uport, UARTDM_CR_ADDR, RESET_CTS);
1100 uport->icount.cts++;
1101
1102 clk_disable(msm_uport->clk);
1103 spin_unlock_irqrestore(&uport->lock, flags);
1104
1105 /* clear the IOCTL TIOCMIWAIT if called */
1106 wake_up_interruptible(&uport->state->port.delta_msr_wait);
1107}
1108
1109/* check if the TX path is flushed, and if so clock off
1110 * returns 0 did not clock off, need to retry (still sending final byte)
1111 * -1 did not clock off, do not retry
1112 * 1 if we clocked off
1113 */
1114static int msm_hs_check_clock_off_locked(struct uart_port *uport)
1115{
1116 unsigned long sr_status;
1117 struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport);
1118 struct circ_buf *tx_buf = &uport->state->xmit;
1119
1120 /* Cancel if tx tty buffer is not empty, dma is in flight,
1121 * or tx fifo is not empty, or rx fifo is not empty */
1122 if (msm_uport->clk_state != MSM_HS_CLK_REQUEST_OFF ||
1123 !uart_circ_empty(tx_buf) || msm_uport->tx.dma_in_flight ||
1124 (msm_uport->imr_reg & UARTDM_ISR_TXLEV_BMSK) ||
1125 !(msm_uport->imr_reg & UARTDM_ISR_RXLEV_BMSK)) {
1126 return -1;
1127 }
1128
1129 /* Make sure the uart is finished with the last byte */
1130 sr_status = msm_hs_read(uport, UARTDM_SR_ADDR);
1131 if (!(sr_status & UARTDM_SR_TXEMT_BMSK))
1132 return 0; /* retry */
1133
1134 /* Make sure forced RXSTALE flush complete */
1135 switch (msm_uport->clk_req_off_state) {
1136 case CLK_REQ_OFF_START:
1137 msm_uport->clk_req_off_state = CLK_REQ_OFF_RXSTALE_ISSUED;
1138 msm_hs_write(uport, UARTDM_CR_ADDR, FORCE_STALE_EVENT);
1139 return 0; /* RXSTALE flush not complete - retry */
1140 case CLK_REQ_OFF_RXSTALE_ISSUED:
1141 case CLK_REQ_OFF_FLUSH_ISSUED:
1142 return 0; /* RXSTALE flush not complete - retry */
1143 case CLK_REQ_OFF_RXSTALE_FLUSHED:
1144 break; /* continue */
1145 }
1146
1147 if (msm_uport->rx.flush != FLUSH_SHUTDOWN) {
1148 if (msm_uport->rx.flush == FLUSH_NONE)
1149 msm_hs_stop_rx_locked(uport);
1150 return 0; /* come back later to really clock off */
1151 }
1152
1153 /* we really want to clock off */
1154 clk_disable(msm_uport->clk);
1155 msm_uport->clk_state = MSM_HS_CLK_OFF;
1156
1157 if (use_low_power_rx_wakeup(msm_uport)) {
1158 msm_uport->rx_wakeup.ignore = 1;
1159 enable_irq(msm_uport->rx_wakeup.irq);
1160 }
1161 return 1;
1162}
1163
1164static enum hrtimer_restart msm_hs_clk_off_retry(struct hrtimer *timer)
1165{
1166 unsigned long flags;
1167 int ret = HRTIMER_NORESTART;
1168 struct msm_hs_port *msm_uport = container_of(timer, struct msm_hs_port,
1169 clk_off_timer);
1170 struct uart_port *uport = &msm_uport->uport;
1171
1172 spin_lock_irqsave(&uport->lock, flags);
1173
1174 if (!msm_hs_check_clock_off_locked(uport)) {
1175 hrtimer_forward_now(timer, msm_uport->clk_off_delay);
1176 ret = HRTIMER_RESTART;
1177 }
1178
1179 spin_unlock_irqrestore(&uport->lock, flags);
1180
1181 return ret;
1182}
1183
1184static irqreturn_t msm_hs_isr(int irq, void *dev)
1185{
1186 unsigned long flags;
1187 unsigned long isr_status;
1188 struct msm_hs_port *msm_uport = dev;
1189 struct uart_port *uport = &msm_uport->uport;
1190 struct circ_buf *tx_buf = &uport->state->xmit;
1191 struct msm_hs_tx *tx = &msm_uport->tx;
1192 struct msm_hs_rx *rx = &msm_uport->rx;
1193
1194 spin_lock_irqsave(&uport->lock, flags);
1195
1196 isr_status = msm_hs_read(uport, UARTDM_MISR_ADDR);
1197
1198 /* Uart RX starting */
1199 if (isr_status & UARTDM_ISR_RXLEV_BMSK) {
1200 msm_uport->imr_reg &= ~UARTDM_ISR_RXLEV_BMSK;
1201 msm_hs_write(uport, UARTDM_IMR_ADDR, msm_uport->imr_reg);
1202 }
1203 /* Stale rx interrupt */
1204 if (isr_status & UARTDM_ISR_RXSTALE_BMSK) {
1205 msm_hs_write(uport, UARTDM_CR_ADDR, STALE_EVENT_DISABLE);
1206 msm_hs_write(uport, UARTDM_CR_ADDR, RESET_STALE_INT);
1207
1208 if (msm_uport->clk_req_off_state == CLK_REQ_OFF_RXSTALE_ISSUED)
1209 msm_uport->clk_req_off_state =
1210 CLK_REQ_OFF_FLUSH_ISSUED;
1211 if (rx->flush == FLUSH_NONE) {
1212 rx->flush = FLUSH_DATA_READY;
1213 msm_dmov_stop_cmd(msm_uport->dma_rx_channel, NULL, 1);
1214 }
1215 }
1216 /* tx ready interrupt */
1217 if (isr_status & UARTDM_ISR_TX_READY_BMSK) {
1218 /* Clear TX Ready */
1219 msm_hs_write(uport, UARTDM_CR_ADDR, CLEAR_TX_READY);
1220
1221 if (msm_uport->clk_state == MSM_HS_CLK_REQUEST_OFF) {
1222 msm_uport->imr_reg |= UARTDM_ISR_TXLEV_BMSK;
1223 msm_hs_write(uport, UARTDM_IMR_ADDR,
1224 msm_uport->imr_reg);
1225 }
1226
1227 /* Complete DMA TX transactions and submit new transactions */
1228 tx_buf->tail = (tx_buf->tail + tx->tx_count) & ~UART_XMIT_SIZE;
1229
1230 tx->dma_in_flight = 0;
1231
1232 uport->icount.tx += tx->tx_count;
1233 if (tx->tx_ready_int_en)
1234 msm_hs_submit_tx_locked(uport);
1235
1236 if (uart_circ_chars_pending(tx_buf) < WAKEUP_CHARS)
1237 uart_write_wakeup(uport);
1238 }
1239 if (isr_status & UARTDM_ISR_TXLEV_BMSK) {
1240 /* TX FIFO is empty */
1241 msm_uport->imr_reg &= ~UARTDM_ISR_TXLEV_BMSK;
1242 msm_hs_write(uport, UARTDM_IMR_ADDR, msm_uport->imr_reg);
1243 if (!msm_hs_check_clock_off_locked(uport))
1244 hrtimer_start(&msm_uport->clk_off_timer,
1245 msm_uport->clk_off_delay,
1246 HRTIMER_MODE_REL);
1247 }
1248
1249 /* Change in CTS interrupt */
1250 if (isr_status & UARTDM_ISR_DELTA_CTS_BMSK)
1251 msm_hs_handle_delta_cts(uport);
1252
1253 spin_unlock_irqrestore(&uport->lock, flags);
1254
1255 return IRQ_HANDLED;
1256}
1257
1258void msm_hs_request_clock_off_locked(struct uart_port *uport)
1259{
1260 struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport);
1261
1262 if (msm_uport->clk_state == MSM_HS_CLK_ON) {
1263 msm_uport->clk_state = MSM_HS_CLK_REQUEST_OFF;
1264 msm_uport->clk_req_off_state = CLK_REQ_OFF_START;
1265 if (!use_low_power_rx_wakeup(msm_uport))
1266 set_rfr_locked(uport, 0);
1267 msm_uport->imr_reg |= UARTDM_ISR_TXLEV_BMSK;
1268 msm_hs_write(uport, UARTDM_IMR_ADDR, msm_uport->imr_reg);
1269 }
1270}
1271
1272/**
1273 * msm_hs_request_clock_off - request to (i.e. asynchronously) turn off uart
1274 * clock once pending TX is flushed and Rx DMA command is terminated.
1275 * @uport: uart_port structure for the device instance.
1276 *
1277 * This functions puts the device into a partially active low power mode. It
1278 * waits to complete all pending tx transactions, flushes ongoing Rx DMA
1279 * command and terminates UART side Rx transaction, puts UART HW in non DMA
1280 * mode and then clocks off the device. A client calls this when no UART
1281 * data is expected. msm_request_clock_on() must be called before any further
1282 * UART can be sent or received.
1283 */
1284void msm_hs_request_clock_off(struct uart_port *uport)
1285{
1286 unsigned long flags;
1287
1288 spin_lock_irqsave(&uport->lock, flags);
1289 msm_hs_request_clock_off_locked(uport);
1290 spin_unlock_irqrestore(&uport->lock, flags);
1291}
1292
1293void msm_hs_request_clock_on_locked(struct uart_port *uport)
1294{
1295 struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport);
1296 unsigned int data;
1297
1298 switch (msm_uport->clk_state) {
1299 case MSM_HS_CLK_OFF:
1300 clk_enable(msm_uport->clk);
1301 disable_irq_nosync(msm_uport->rx_wakeup.irq);
1302 /* fall-through */
1303 case MSM_HS_CLK_REQUEST_OFF:
1304 if (msm_uport->rx.flush == FLUSH_STOP ||
1305 msm_uport->rx.flush == FLUSH_SHUTDOWN) {
1306 msm_hs_write(uport, UARTDM_CR_ADDR, RESET_RX);
1307 data = msm_hs_read(uport, UARTDM_DMEN_ADDR);
1308 data |= UARTDM_RX_DM_EN_BMSK;
1309 msm_hs_write(uport, UARTDM_DMEN_ADDR, data);
1310 }
1311 hrtimer_try_to_cancel(&msm_uport->clk_off_timer);
1312 if (msm_uport->rx.flush == FLUSH_SHUTDOWN)
1313 msm_hs_start_rx_locked(uport);
1314 if (!use_low_power_rx_wakeup(msm_uport))
1315 set_rfr_locked(uport, 1);
1316 if (msm_uport->rx.flush == FLUSH_STOP)
1317 msm_uport->rx.flush = FLUSH_IGNORE;
1318 msm_uport->clk_state = MSM_HS_CLK_ON;
1319 break;
1320 case MSM_HS_CLK_ON:
1321 break;
1322 case MSM_HS_CLK_PORT_OFF:
1323 break;
1324 }
1325}
1326
1327/**
1328 * msm_hs_request_clock_on - Switch the device from partially active low
1329 * power mode to fully active (i.e. clock on) mode.
1330 * @uport: uart_port structure for the device.
1331 *
1332 * This function switches on the input clock, puts UART HW into DMA mode
1333 * and enqueues an Rx DMA command if the device was in partially active
1334 * mode. It has no effect if called with the device in inactive state.
1335 */
1336void msm_hs_request_clock_on(struct uart_port *uport)
1337{
1338 unsigned long flags;
1339
1340 spin_lock_irqsave(&uport->lock, flags);
1341 msm_hs_request_clock_on_locked(uport);
1342 spin_unlock_irqrestore(&uport->lock, flags);
1343}
1344
1345static irqreturn_t msm_hs_rx_wakeup_isr(int irq, void *dev)
1346{
1347 unsigned int wakeup = 0;
1348 unsigned long flags;
1349 struct msm_hs_port *msm_uport = dev;
1350 struct uart_port *uport = &msm_uport->uport;
1351 struct tty_struct *tty = NULL;
1352
1353 spin_lock_irqsave(&uport->lock, flags);
1354 if (msm_uport->clk_state == MSM_HS_CLK_OFF) {
Lucas De Marchi25985ed2011-03-30 22:57:33 -03001355 /* ignore the first irq - it is a pending irq that occurred
Mayank Rana55046232011-03-07 10:28:42 +05301356 * before enable_irq() */
1357 if (msm_uport->rx_wakeup.ignore)
1358 msm_uport->rx_wakeup.ignore = 0;
1359 else
1360 wakeup = 1;
1361 }
1362
1363 if (wakeup) {
1364 /* the uart was clocked off during an rx, wake up and
1365 * optionally inject char into tty rx */
1366 msm_hs_request_clock_on_locked(uport);
1367 if (msm_uport->rx_wakeup.inject_rx) {
1368 tty = uport->state->port.tty;
1369 tty_insert_flip_char(tty,
1370 msm_uport->rx_wakeup.rx_to_inject,
1371 TTY_NORMAL);
1372 queue_work(msm_hs_workqueue, &msm_uport->rx.tty_work);
1373 }
1374 }
1375
1376 spin_unlock_irqrestore(&uport->lock, flags);
1377
1378 return IRQ_HANDLED;
1379}
1380
1381static const char *msm_hs_type(struct uart_port *port)
1382{
1383 return (port->type == PORT_MSM) ? "MSM_HS_UART" : NULL;
1384}
1385
1386/* Called when port is opened */
1387static int msm_hs_startup(struct uart_port *uport)
1388{
1389 int ret;
1390 int rfr_level;
1391 unsigned long flags;
1392 unsigned int data;
1393 struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport);
1394 struct circ_buf *tx_buf = &uport->state->xmit;
1395 struct msm_hs_tx *tx = &msm_uport->tx;
1396 struct msm_hs_rx *rx = &msm_uport->rx;
1397
1398 rfr_level = uport->fifosize;
1399 if (rfr_level > 16)
1400 rfr_level -= 16;
1401
1402 tx->dma_base = dma_map_single(uport->dev, tx_buf->buf, UART_XMIT_SIZE,
1403 DMA_TO_DEVICE);
1404
1405 /* do not let tty layer execute RX in global workqueue, use a
1406 * dedicated workqueue managed by this driver */
1407 uport->state->port.tty->low_latency = 1;
1408
1409 /* turn on uart clk */
1410 ret = msm_hs_init_clk_locked(uport);
1411 if (unlikely(ret)) {
1412 printk(KERN_ERR "Turning uartclk failed!\n");
1413 goto err_msm_hs_init_clk;
1414 }
1415
1416 /* Set auto RFR Level */
1417 data = msm_hs_read(uport, UARTDM_MR1_ADDR);
1418 data &= ~UARTDM_MR1_AUTO_RFR_LEVEL1_BMSK;
1419 data &= ~UARTDM_MR1_AUTO_RFR_LEVEL0_BMSK;
1420 data |= (UARTDM_MR1_AUTO_RFR_LEVEL1_BMSK & (rfr_level << 2));
1421 data |= (UARTDM_MR1_AUTO_RFR_LEVEL0_BMSK & rfr_level);
1422 msm_hs_write(uport, UARTDM_MR1_ADDR, data);
1423
1424 /* Make sure RXSTALE count is non-zero */
1425 data = msm_hs_read(uport, UARTDM_IPR_ADDR);
1426 if (!data) {
1427 data |= 0x1f & UARTDM_IPR_STALE_LSB_BMSK;
1428 msm_hs_write(uport, UARTDM_IPR_ADDR, data);
1429 }
1430
1431 /* Enable Data Mover Mode */
1432 data = UARTDM_TX_DM_EN_BMSK | UARTDM_RX_DM_EN_BMSK;
1433 msm_hs_write(uport, UARTDM_DMEN_ADDR, data);
1434
1435 /* Reset TX */
1436 msm_hs_write(uport, UARTDM_CR_ADDR, RESET_TX);
1437 msm_hs_write(uport, UARTDM_CR_ADDR, RESET_RX);
1438 msm_hs_write(uport, UARTDM_CR_ADDR, RESET_ERROR_STATUS);
1439 msm_hs_write(uport, UARTDM_CR_ADDR, RESET_BREAK_INT);
1440 msm_hs_write(uport, UARTDM_CR_ADDR, RESET_STALE_INT);
1441 msm_hs_write(uport, UARTDM_CR_ADDR, RESET_CTS);
1442 msm_hs_write(uport, UARTDM_CR_ADDR, RFR_LOW);
1443 /* Turn on Uart Receiver */
1444 msm_hs_write(uport, UARTDM_CR_ADDR, UARTDM_CR_RX_EN_BMSK);
1445
1446 /* Turn on Uart Transmitter */
1447 msm_hs_write(uport, UARTDM_CR_ADDR, UARTDM_CR_TX_EN_BMSK);
1448
1449 /* Initialize the tx */
1450 tx->tx_ready_int_en = 0;
1451 tx->dma_in_flight = 0;
1452
1453 tx->xfer.complete_func = msm_hs_dmov_tx_callback;
1454 tx->xfer.execute_func = NULL;
1455
1456 tx->command_ptr->cmd = CMD_LC |
1457 CMD_DST_CRCI(msm_uport->dma_tx_crci) | CMD_MODE_BOX;
1458
1459 tx->command_ptr->src_dst_len = (MSM_UARTDM_BURST_SIZE << 16)
1460 | (MSM_UARTDM_BURST_SIZE);
1461
1462 tx->command_ptr->row_offset = (MSM_UARTDM_BURST_SIZE << 16);
1463
1464 tx->command_ptr->dst_row_addr =
1465 msm_uport->uport.mapbase + UARTDM_TF_ADDR;
1466
1467
1468 /* Turn on Uart Receive */
1469 rx->xfer.complete_func = msm_hs_dmov_rx_callback;
1470 rx->xfer.execute_func = NULL;
1471
1472 rx->command_ptr->cmd = CMD_LC |
1473 CMD_SRC_CRCI(msm_uport->dma_rx_crci) | CMD_MODE_BOX;
1474
1475 rx->command_ptr->src_dst_len = (MSM_UARTDM_BURST_SIZE << 16)
1476 | (MSM_UARTDM_BURST_SIZE);
1477 rx->command_ptr->row_offset = MSM_UARTDM_BURST_SIZE;
1478 rx->command_ptr->src_row_addr = uport->mapbase + UARTDM_RF_ADDR;
1479
1480
1481 msm_uport->imr_reg |= UARTDM_ISR_RXSTALE_BMSK;
1482 /* Enable reading the current CTS, no harm even if CTS is ignored */
1483 msm_uport->imr_reg |= UARTDM_ISR_CURRENT_CTS_BMSK;
1484
1485 msm_hs_write(uport, UARTDM_TFWR_ADDR, 0); /* TXLEV on empty TX fifo */
1486
1487
1488 ret = request_irq(uport->irq, msm_hs_isr, IRQF_TRIGGER_HIGH,
1489 "msm_hs_uart", msm_uport);
1490 if (unlikely(ret)) {
1491 printk(KERN_ERR "Request msm_hs_uart IRQ failed!\n");
1492 goto err_request_irq;
1493 }
1494 if (use_low_power_rx_wakeup(msm_uport)) {
1495 ret = request_irq(msm_uport->rx_wakeup.irq,
1496 msm_hs_rx_wakeup_isr,
1497 IRQF_TRIGGER_FALLING,
1498 "msm_hs_rx_wakeup", msm_uport);
1499 if (unlikely(ret)) {
1500 printk(KERN_ERR "Request msm_hs_rx_wakeup IRQ failed!\n");
1501 free_irq(uport->irq, msm_uport);
1502 goto err_request_irq;
1503 }
1504 disable_irq(msm_uport->rx_wakeup.irq);
1505 }
1506
1507 spin_lock_irqsave(&uport->lock, flags);
1508
1509 msm_hs_write(uport, UARTDM_RFWR_ADDR, 0);
1510 msm_hs_start_rx_locked(uport);
1511
1512 spin_unlock_irqrestore(&uport->lock, flags);
1513 ret = pm_runtime_set_active(uport->dev);
1514 if (ret)
1515 dev_err(uport->dev, "set active error:%d\n", ret);
1516 pm_runtime_enable(uport->dev);
1517
1518 return 0;
1519
1520err_request_irq:
1521err_msm_hs_init_clk:
1522 dma_unmap_single(uport->dev, tx->dma_base,
1523 UART_XMIT_SIZE, DMA_TO_DEVICE);
1524 return ret;
1525}
1526
1527/* Initialize tx and rx data structures */
1528static int __devinit uartdm_init_port(struct uart_port *uport)
1529{
1530 int ret = 0;
1531 struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport);
1532 struct msm_hs_tx *tx = &msm_uport->tx;
1533 struct msm_hs_rx *rx = &msm_uport->rx;
1534
1535 /* Allocate the command pointer. Needs to be 64 bit aligned */
1536 tx->command_ptr = kmalloc(sizeof(dmov_box), GFP_KERNEL | __GFP_DMA);
1537 if (!tx->command_ptr)
1538 return -ENOMEM;
1539
1540 tx->command_ptr_ptr = kmalloc(sizeof(u32 *), GFP_KERNEL | __GFP_DMA);
1541 if (!tx->command_ptr_ptr) {
1542 ret = -ENOMEM;
1543 goto err_tx_command_ptr_ptr;
1544 }
1545
1546 tx->mapped_cmd_ptr = dma_map_single(uport->dev, tx->command_ptr,
1547 sizeof(dmov_box), DMA_TO_DEVICE);
1548 tx->mapped_cmd_ptr_ptr = dma_map_single(uport->dev,
1549 tx->command_ptr_ptr,
1550 sizeof(u32 *), DMA_TO_DEVICE);
1551 tx->xfer.cmdptr = DMOV_CMD_ADDR(tx->mapped_cmd_ptr_ptr);
1552
1553 init_waitqueue_head(&rx->wait);
1554
1555 rx->pool = dma_pool_create("rx_buffer_pool", uport->dev,
1556 UARTDM_RX_BUF_SIZE, 16, 0);
1557 if (!rx->pool) {
1558 pr_err("%s(): cannot allocate rx_buffer_pool", __func__);
1559 ret = -ENOMEM;
1560 goto err_dma_pool_create;
1561 }
1562
1563 rx->buffer = dma_pool_alloc(rx->pool, GFP_KERNEL, &rx->rbuffer);
1564 if (!rx->buffer) {
1565 pr_err("%s(): cannot allocate rx->buffer", __func__);
1566 ret = -ENOMEM;
1567 goto err_dma_pool_alloc;
1568 }
1569
1570 /* Allocate the command pointer. Needs to be 64 bit aligned */
1571 rx->command_ptr = kmalloc(sizeof(dmov_box), GFP_KERNEL | __GFP_DMA);
1572 if (!rx->command_ptr) {
1573 pr_err("%s(): cannot allocate rx->command_ptr", __func__);
1574 ret = -ENOMEM;
1575 goto err_rx_command_ptr;
1576 }
1577
1578 rx->command_ptr_ptr = kmalloc(sizeof(u32 *), GFP_KERNEL | __GFP_DMA);
1579 if (!rx->command_ptr_ptr) {
1580 pr_err("%s(): cannot allocate rx->command_ptr_ptr", __func__);
1581 ret = -ENOMEM;
1582 goto err_rx_command_ptr_ptr;
1583 }
1584
1585 rx->command_ptr->num_rows = ((UARTDM_RX_BUF_SIZE >> 4) << 16) |
1586 (UARTDM_RX_BUF_SIZE >> 4);
1587
1588 rx->command_ptr->dst_row_addr = rx->rbuffer;
1589
1590 rx->mapped_cmd_ptr = dma_map_single(uport->dev, rx->command_ptr,
1591 sizeof(dmov_box), DMA_TO_DEVICE);
1592
1593 *rx->command_ptr_ptr = CMD_PTR_LP | DMOV_CMD_ADDR(rx->mapped_cmd_ptr);
1594
1595 rx->cmdptr_dmaaddr = dma_map_single(uport->dev, rx->command_ptr_ptr,
1596 sizeof(u32 *), DMA_TO_DEVICE);
1597 rx->xfer.cmdptr = DMOV_CMD_ADDR(rx->cmdptr_dmaaddr);
1598
1599 INIT_WORK(&rx->tty_work, msm_hs_tty_flip_buffer_work);
1600
1601 return ret;
1602
1603err_rx_command_ptr_ptr:
1604 kfree(rx->command_ptr);
1605err_rx_command_ptr:
1606 dma_pool_free(msm_uport->rx.pool, msm_uport->rx.buffer,
1607 msm_uport->rx.rbuffer);
1608err_dma_pool_alloc:
1609 dma_pool_destroy(msm_uport->rx.pool);
1610err_dma_pool_create:
1611 dma_unmap_single(uport->dev, msm_uport->tx.mapped_cmd_ptr_ptr,
1612 sizeof(u32 *), DMA_TO_DEVICE);
1613 dma_unmap_single(uport->dev, msm_uport->tx.mapped_cmd_ptr,
1614 sizeof(dmov_box), DMA_TO_DEVICE);
1615 kfree(msm_uport->tx.command_ptr_ptr);
1616err_tx_command_ptr_ptr:
1617 kfree(msm_uport->tx.command_ptr);
1618 return ret;
1619}
1620
1621static int __devinit msm_hs_probe(struct platform_device *pdev)
1622{
1623 int ret;
1624 struct uart_port *uport;
1625 struct msm_hs_port *msm_uport;
1626 struct resource *resource;
1627 const struct msm_serial_hs_platform_data *pdata =
1628 pdev->dev.platform_data;
1629
1630 if (pdev->id < 0 || pdev->id >= UARTDM_NR) {
1631 printk(KERN_ERR "Invalid plaform device ID = %d\n", pdev->id);
1632 return -EINVAL;
1633 }
1634
1635 msm_uport = &q_uart_port[pdev->id];
1636 uport = &msm_uport->uport;
1637
1638 uport->dev = &pdev->dev;
1639
1640 resource = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1641 if (unlikely(!resource))
1642 return -ENXIO;
1643
1644 uport->mapbase = resource->start;
1645 uport->irq = platform_get_irq(pdev, 0);
1646 if (unlikely(uport->irq < 0))
1647 return -ENXIO;
1648
Thomas Gleixnerdced35a2011-03-28 17:49:12 +02001649 if (unlikely(irq_set_irq_wake(uport->irq, 1)))
Mayank Rana55046232011-03-07 10:28:42 +05301650 return -ENXIO;
1651
1652 if (pdata == NULL || pdata->rx_wakeup_irq < 0)
1653 msm_uport->rx_wakeup.irq = -1;
1654 else {
1655 msm_uport->rx_wakeup.irq = pdata->rx_wakeup_irq;
1656 msm_uport->rx_wakeup.ignore = 1;
1657 msm_uport->rx_wakeup.inject_rx = pdata->inject_rx_on_wakeup;
1658 msm_uport->rx_wakeup.rx_to_inject = pdata->rx_to_inject;
1659
1660 if (unlikely(msm_uport->rx_wakeup.irq < 0))
1661 return -ENXIO;
1662
Thomas Gleixnerdced35a2011-03-28 17:49:12 +02001663 if (unlikely(irq_set_irq_wake(msm_uport->rx_wakeup.irq, 1)))
Mayank Rana55046232011-03-07 10:28:42 +05301664 return -ENXIO;
1665 }
1666
1667 if (pdata == NULL)
1668 msm_uport->exit_lpm_cb = NULL;
1669 else
1670 msm_uport->exit_lpm_cb = pdata->exit_lpm_cb;
1671
1672 resource = platform_get_resource_byname(pdev, IORESOURCE_DMA,
1673 "uartdm_channels");
1674 if (unlikely(!resource))
1675 return -ENXIO;
1676
1677 msm_uport->dma_tx_channel = resource->start;
1678 msm_uport->dma_rx_channel = resource->end;
1679
1680 resource = platform_get_resource_byname(pdev, IORESOURCE_DMA,
1681 "uartdm_crci");
1682 if (unlikely(!resource))
1683 return -ENXIO;
1684
1685 msm_uport->dma_tx_crci = resource->start;
1686 msm_uport->dma_rx_crci = resource->end;
1687
1688 uport->iotype = UPIO_MEM;
1689 uport->fifosize = UART_FIFOSIZE;
1690 uport->ops = &msm_hs_ops;
1691 uport->flags = UPF_BOOT_AUTOCONF;
1692 uport->uartclk = UARTCLK;
1693 msm_uport->imr_reg = 0x0;
1694 msm_uport->clk = clk_get(&pdev->dev, "uartdm_clk");
1695 if (IS_ERR(msm_uport->clk))
1696 return PTR_ERR(msm_uport->clk);
1697
1698 ret = uartdm_init_port(uport);
1699 if (unlikely(ret))
1700 return ret;
1701
1702 msm_uport->clk_state = MSM_HS_CLK_PORT_OFF;
1703 hrtimer_init(&msm_uport->clk_off_timer, CLOCK_MONOTONIC,
1704 HRTIMER_MODE_REL);
1705 msm_uport->clk_off_timer.function = msm_hs_clk_off_retry;
1706 msm_uport->clk_off_delay = ktime_set(0, 1000000); /* 1ms */
1707
1708 uport->line = pdev->id;
1709 return uart_add_one_port(&msm_hs_driver, uport);
1710}
1711
1712static int __init msm_serial_hs_init(void)
1713{
1714 int ret, i;
1715
1716 /* Init all UARTS as non-configured */
1717 for (i = 0; i < UARTDM_NR; i++)
1718 q_uart_port[i].uport.type = PORT_UNKNOWN;
1719
1720 msm_hs_workqueue = create_singlethread_workqueue("msm_serial_hs");
1721 if (unlikely(!msm_hs_workqueue))
1722 return -ENOMEM;
1723
1724 ret = uart_register_driver(&msm_hs_driver);
1725 if (unlikely(ret)) {
1726 printk(KERN_ERR "%s failed to load\n", __func__);
1727 goto err_uart_register_driver;
1728 }
1729
1730 ret = platform_driver_register(&msm_serial_hs_platform_driver);
1731 if (ret) {
1732 printk(KERN_ERR "%s failed to load\n", __func__);
1733 goto err_platform_driver_register;
1734 }
1735
1736 return ret;
1737
1738err_platform_driver_register:
1739 uart_unregister_driver(&msm_hs_driver);
1740err_uart_register_driver:
1741 destroy_workqueue(msm_hs_workqueue);
1742 return ret;
1743}
1744module_init(msm_serial_hs_init);
1745
1746/*
1747 * Called by the upper layer when port is closed.
1748 * - Disables the port
1749 * - Unhook the ISR
1750 */
1751static void msm_hs_shutdown(struct uart_port *uport)
1752{
1753 unsigned long flags;
1754 struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport);
1755
1756 BUG_ON(msm_uport->rx.flush < FLUSH_STOP);
1757
1758 spin_lock_irqsave(&uport->lock, flags);
1759 clk_enable(msm_uport->clk);
1760
1761 /* Disable the transmitter */
1762 msm_hs_write(uport, UARTDM_CR_ADDR, UARTDM_CR_TX_DISABLE_BMSK);
1763 /* Disable the receiver */
1764 msm_hs_write(uport, UARTDM_CR_ADDR, UARTDM_CR_RX_DISABLE_BMSK);
1765
1766 pm_runtime_disable(uport->dev);
1767 pm_runtime_set_suspended(uport->dev);
1768
1769 /* Free the interrupt */
1770 free_irq(uport->irq, msm_uport);
1771 if (use_low_power_rx_wakeup(msm_uport))
1772 free_irq(msm_uport->rx_wakeup.irq, msm_uport);
1773
1774 msm_uport->imr_reg = 0;
1775 msm_hs_write(uport, UARTDM_IMR_ADDR, msm_uport->imr_reg);
1776
1777 wait_event(msm_uport->rx.wait, msm_uport->rx.flush == FLUSH_SHUTDOWN);
1778
1779 clk_disable(msm_uport->clk); /* to balance local clk_enable() */
1780 if (msm_uport->clk_state != MSM_HS_CLK_OFF)
1781 clk_disable(msm_uport->clk); /* to balance clk_state */
1782 msm_uport->clk_state = MSM_HS_CLK_PORT_OFF;
1783
1784 dma_unmap_single(uport->dev, msm_uport->tx.dma_base,
1785 UART_XMIT_SIZE, DMA_TO_DEVICE);
1786
1787 spin_unlock_irqrestore(&uport->lock, flags);
1788
1789 if (cancel_work_sync(&msm_uport->rx.tty_work))
1790 msm_hs_tty_flip_buffer_work(&msm_uport->rx.tty_work);
1791}
1792
1793static void __exit msm_serial_hs_exit(void)
1794{
1795 flush_workqueue(msm_hs_workqueue);
1796 destroy_workqueue(msm_hs_workqueue);
1797 platform_driver_unregister(&msm_serial_hs_platform_driver);
1798 uart_unregister_driver(&msm_hs_driver);
1799}
1800module_exit(msm_serial_hs_exit);
1801
1802#ifdef CONFIG_PM_RUNTIME
1803static int msm_hs_runtime_idle(struct device *dev)
1804{
1805 /*
1806 * returning success from idle results in runtime suspend to be
1807 * called
1808 */
1809 return 0;
1810}
1811
1812static int msm_hs_runtime_resume(struct device *dev)
1813{
1814 struct platform_device *pdev = container_of(dev, struct
1815 platform_device, dev);
1816 struct msm_hs_port *msm_uport = &q_uart_port[pdev->id];
1817
1818 msm_hs_request_clock_on(&msm_uport->uport);
1819 return 0;
1820}
1821
1822static int msm_hs_runtime_suspend(struct device *dev)
1823{
1824 struct platform_device *pdev = container_of(dev, struct
1825 platform_device, dev);
1826 struct msm_hs_port *msm_uport = &q_uart_port[pdev->id];
1827
1828 msm_hs_request_clock_off(&msm_uport->uport);
1829 return 0;
1830}
1831#else
1832#define msm_hs_runtime_idle NULL
1833#define msm_hs_runtime_resume NULL
1834#define msm_hs_runtime_suspend NULL
1835#endif
1836
1837static const struct dev_pm_ops msm_hs_dev_pm_ops = {
1838 .runtime_suspend = msm_hs_runtime_suspend,
1839 .runtime_resume = msm_hs_runtime_resume,
1840 .runtime_idle = msm_hs_runtime_idle,
1841};
1842
1843static struct platform_driver msm_serial_hs_platform_driver = {
1844 .probe = msm_hs_probe,
1845 .remove = __devexit_p(msm_hs_remove),
1846 .driver = {
1847 .name = "msm_serial_hs",
1848 .owner = THIS_MODULE,
1849 .pm = &msm_hs_dev_pm_ops,
1850 },
1851};
1852
1853static struct uart_driver msm_hs_driver = {
1854 .owner = THIS_MODULE,
1855 .driver_name = "msm_serial_hs",
1856 .dev_name = "ttyHS",
1857 .nr = UARTDM_NR,
1858 .cons = 0,
1859};
1860
1861static struct uart_ops msm_hs_ops = {
1862 .tx_empty = msm_hs_tx_empty,
1863 .set_mctrl = msm_hs_set_mctrl_locked,
1864 .get_mctrl = msm_hs_get_mctrl_locked,
1865 .stop_tx = msm_hs_stop_tx_locked,
1866 .start_tx = msm_hs_start_tx_locked,
1867 .stop_rx = msm_hs_stop_rx_locked,
1868 .enable_ms = msm_hs_enable_ms_locked,
1869 .break_ctl = msm_hs_break_ctl,
1870 .startup = msm_hs_startup,
1871 .shutdown = msm_hs_shutdown,
1872 .set_termios = msm_hs_set_termios,
1873 .pm = msm_hs_pm,
1874 .type = msm_hs_type,
1875 .config_port = msm_hs_config_port,
1876 .release_port = msm_hs_release_port,
1877 .request_port = msm_hs_request_port,
1878};
1879
1880MODULE_DESCRIPTION("High Speed UART Driver for the MSM chipset");
1881MODULE_VERSION("1.2");
1882MODULE_LICENSE("GPL v2");