Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* |
| 2 | * in2000.c - Linux device driver for the |
| 3 | * Always IN2000 ISA SCSI card. |
| 4 | * |
| 5 | * Copyright (c) 1996 John Shifflett, GeoLog Consulting |
| 6 | * john@geolog.com |
| 7 | * jshiffle@netcom.com |
| 8 | * |
| 9 | * This program is free software; you can redistribute it and/or modify |
| 10 | * it under the terms of the GNU General Public License as published by |
| 11 | * the Free Software Foundation; either version 2, or (at your option) |
| 12 | * any later version. |
| 13 | * |
| 14 | * This program is distributed in the hope that it will be useful, |
| 15 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 16 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 17 | * GNU General Public License for more details. |
| 18 | * |
| 19 | * For the avoidance of doubt the "preferred form" of this code is one which |
| 20 | * is in an open non patent encumbered format. Where cryptographic key signing |
| 21 | * forms part of the process of creating an executable the information |
| 22 | * including keys needed to generate an equivalently functional executable |
| 23 | * are deemed to be part of the source code. |
| 24 | * |
| 25 | * Drew Eckhardt's excellent 'Generic NCR5380' sources provided |
| 26 | * much of the inspiration and some of the code for this driver. |
| 27 | * The Linux IN2000 driver distributed in the Linux kernels through |
| 28 | * version 1.2.13 was an extremely valuable reference on the arcane |
| 29 | * (and still mysterious) workings of the IN2000's fifo. It also |
| 30 | * is where I lifted in2000_biosparam(), the gist of the card |
| 31 | * detection scheme, and other bits of code. Many thanks to the |
| 32 | * talented and courageous people who wrote, contributed to, and |
| 33 | * maintained that driver (including Brad McLean, Shaun Savage, |
| 34 | * Bill Earnest, Larry Doolittle, Roger Sunshine, John Luckey, |
| 35 | * Matt Postiff, Peter Lu, zerucha@shell.portal.com, and Eric |
| 36 | * Youngdale). I should also mention the driver written by |
| 37 | * Hamish Macdonald for the (GASP!) Amiga A2091 card, included |
| 38 | * in the Linux-m68k distribution; it gave me a good initial |
| 39 | * understanding of the proper way to run a WD33c93 chip, and I |
| 40 | * ended up stealing lots of code from it. |
| 41 | * |
| 42 | * _This_ driver is (I feel) an improvement over the old one in |
| 43 | * several respects: |
| 44 | * - All problems relating to the data size of a SCSI request are |
| 45 | * gone (as far as I know). The old driver couldn't handle |
| 46 | * swapping to partitions because that involved 4k blocks, nor |
| 47 | * could it deal with the st.c tape driver unmodified, because |
| 48 | * that usually involved 4k - 32k blocks. The old driver never |
| 49 | * quite got away from a morbid dependence on 2k block sizes - |
| 50 | * which of course is the size of the card's fifo. |
| 51 | * |
| 52 | * - Target Disconnection/Reconnection is now supported. Any |
| 53 | * system with more than one device active on the SCSI bus |
| 54 | * will benefit from this. The driver defaults to what I'm |
| 55 | * calling 'adaptive disconnect' - meaning that each command |
| 56 | * is evaluated individually as to whether or not it should |
| 57 | * be run with the option to disconnect/reselect (if the |
| 58 | * device chooses), or as a "SCSI-bus-hog". |
| 59 | * |
| 60 | * - Synchronous data transfers are now supported. Because there |
| 61 | * are a few devices (and many improperly terminated systems) |
| 62 | * that choke when doing sync, the default is sync DISABLED |
| 63 | * for all devices. This faster protocol can (and should!) |
| 64 | * be enabled on selected devices via the command-line. |
| 65 | * |
| 66 | * - Runtime operating parameters can now be specified through |
| 67 | * either the LILO or the 'insmod' command line. For LILO do: |
| 68 | * "in2000=blah,blah,blah" |
| 69 | * and with insmod go like: |
| 70 | * "insmod /usr/src/linux/modules/in2000.o setup_strings=blah,blah" |
| 71 | * The defaults should be good for most people. See the comment |
| 72 | * for 'setup_strings' below for more details. |
| 73 | * |
| 74 | * - The old driver relied exclusively on what the Western Digital |
| 75 | * docs call "Combination Level 2 Commands", which are a great |
| 76 | * idea in that the CPU is relieved of a lot of interrupt |
| 77 | * overhead. However, by accepting a certain (user-settable) |
| 78 | * amount of additional interrupts, this driver achieves |
| 79 | * better control over the SCSI bus, and data transfers are |
| 80 | * almost as fast while being much easier to define, track, |
| 81 | * and debug. |
| 82 | * |
| 83 | * - You can force detection of a card whose BIOS has been disabled. |
| 84 | * |
| 85 | * - Multiple IN2000 cards might almost be supported. I've tried to |
| 86 | * keep it in mind, but have no way to test... |
| 87 | * |
| 88 | * |
| 89 | * TODO: |
| 90 | * tagged queuing. multiple cards. |
| 91 | * |
| 92 | * |
| 93 | * NOTE: |
| 94 | * When using this or any other SCSI driver as a module, you'll |
| 95 | * find that with the stock kernel, at most _two_ SCSI hard |
| 96 | * drives will be linked into the device list (ie, usable). |
| 97 | * If your IN2000 card has more than 2 disks on its bus, you |
| 98 | * might want to change the define of 'SD_EXTRA_DEVS' in the |
| 99 | * 'hosts.h' file from 2 to whatever is appropriate. It took |
| 100 | * me a while to track down this surprisingly obscure and |
| 101 | * undocumented little "feature". |
| 102 | * |
| 103 | * |
| 104 | * People with bug reports, wish-lists, complaints, comments, |
| 105 | * or improvements are asked to pah-leeez email me (John Shifflett) |
| 106 | * at john@geolog.com or jshiffle@netcom.com! I'm anxious to get |
| 107 | * this thing into as good a shape as possible, and I'm positive |
| 108 | * there are lots of lurking bugs and "Stupid Places". |
| 109 | * |
| 110 | * Updated for Linux 2.5 by Alan Cox <alan@redhat.com> |
| 111 | * - Using new_eh handler |
| 112 | * - Hopefully got all the locking right again |
| 113 | * See "FIXME" notes for items that could do with more work |
| 114 | */ |
| 115 | |
| 116 | #include <linux/module.h> |
| 117 | #include <linux/blkdev.h> |
| 118 | #include <linux/interrupt.h> |
| 119 | #include <linux/string.h> |
| 120 | #include <linux/delay.h> |
| 121 | #include <linux/proc_fs.h> |
| 122 | #include <linux/ioport.h> |
| 123 | #include <linux/stat.h> |
| 124 | |
| 125 | #include <asm/io.h> |
| 126 | #include <asm/system.h> |
| 127 | |
| 128 | #include "scsi.h" |
| 129 | #include <scsi/scsi_host.h> |
| 130 | |
| 131 | #define IN2000_VERSION "1.33-2.5" |
| 132 | #define IN2000_DATE "2002/11/03" |
| 133 | |
| 134 | #include "in2000.h" |
| 135 | |
| 136 | |
| 137 | /* |
| 138 | * 'setup_strings' is a single string used to pass operating parameters and |
| 139 | * settings from the kernel/module command-line to the driver. 'setup_args[]' |
| 140 | * is an array of strings that define the compile-time default values for |
| 141 | * these settings. If Linux boots with a LILO or insmod command-line, those |
| 142 | * settings are combined with 'setup_args[]'. Note that LILO command-lines |
| 143 | * are prefixed with "in2000=" while insmod uses a "setup_strings=" prefix. |
| 144 | * The driver recognizes the following keywords (lower case required) and |
| 145 | * arguments: |
| 146 | * |
| 147 | * - ioport:addr -Where addr is IO address of a (usually ROM-less) card. |
| 148 | * - noreset -No optional args. Prevents SCSI bus reset at boot time. |
| 149 | * - nosync:x -x is a bitmask where the 1st 7 bits correspond with |
| 150 | * the 7 possible SCSI devices (bit 0 for device #0, etc). |
| 151 | * Set a bit to PREVENT sync negotiation on that device. |
| 152 | * The driver default is sync DISABLED on all devices. |
| 153 | * - period:ns -ns is the minimum # of nanoseconds in a SCSI data transfer |
| 154 | * period. Default is 500; acceptable values are 250 - 1000. |
| 155 | * - disconnect:x -x = 0 to never allow disconnects, 2 to always allow them. |
| 156 | * x = 1 does 'adaptive' disconnects, which is the default |
| 157 | * and generally the best choice. |
| 158 | * - debug:x -If 'DEBUGGING_ON' is defined, x is a bitmask that causes |
| 159 | * various types of debug output to printed - see the DB_xxx |
| 160 | * defines in in2000.h |
| 161 | * - proc:x -If 'PROC_INTERFACE' is defined, x is a bitmask that |
| 162 | * determines how the /proc interface works and what it |
| 163 | * does - see the PR_xxx defines in in2000.h |
| 164 | * |
| 165 | * Syntax Notes: |
| 166 | * - Numeric arguments can be decimal or the '0x' form of hex notation. There |
| 167 | * _must_ be a colon between a keyword and its numeric argument, with no |
| 168 | * spaces. |
| 169 | * - Keywords are separated by commas, no spaces, in the standard kernel |
| 170 | * command-line manner. |
| 171 | * - A keyword in the 'nth' comma-separated command-line member will overwrite |
| 172 | * the 'nth' element of setup_args[]. A blank command-line member (in |
| 173 | * other words, a comma with no preceding keyword) will _not_ overwrite |
| 174 | * the corresponding setup_args[] element. |
| 175 | * |
| 176 | * A few LILO examples (for insmod, use 'setup_strings' instead of 'in2000'): |
| 177 | * - in2000=ioport:0x220,noreset |
| 178 | * - in2000=period:250,disconnect:2,nosync:0x03 |
| 179 | * - in2000=debug:0x1e |
| 180 | * - in2000=proc:3 |
| 181 | */ |
| 182 | |
| 183 | /* Normally, no defaults are specified... */ |
| 184 | static char *setup_args[] = { "", "", "", "", "", "", "", "", "" }; |
| 185 | |
| 186 | /* filled in by 'insmod' */ |
| 187 | static char *setup_strings; |
| 188 | |
| 189 | module_param(setup_strings, charp, 0); |
| 190 | |
| 191 | static inline uchar read_3393(struct IN2000_hostdata *hostdata, uchar reg_num) |
| 192 | { |
| 193 | write1_io(reg_num, IO_WD_ADDR); |
| 194 | return read1_io(IO_WD_DATA); |
| 195 | } |
| 196 | |
| 197 | |
| 198 | #define READ_AUX_STAT() read1_io(IO_WD_ASR) |
| 199 | |
| 200 | |
| 201 | static inline void write_3393(struct IN2000_hostdata *hostdata, uchar reg_num, uchar value) |
| 202 | { |
| 203 | write1_io(reg_num, IO_WD_ADDR); |
| 204 | write1_io(value, IO_WD_DATA); |
| 205 | } |
| 206 | |
| 207 | |
| 208 | static inline void write_3393_cmd(struct IN2000_hostdata *hostdata, uchar cmd) |
| 209 | { |
| 210 | /* while (READ_AUX_STAT() & ASR_CIP) |
| 211 | printk("|");*/ |
| 212 | write1_io(WD_COMMAND, IO_WD_ADDR); |
| 213 | write1_io(cmd, IO_WD_DATA); |
| 214 | } |
| 215 | |
| 216 | |
| 217 | static uchar read_1_byte(struct IN2000_hostdata *hostdata) |
| 218 | { |
| 219 | uchar asr, x = 0; |
| 220 | |
| 221 | write_3393(hostdata, WD_CONTROL, CTRL_IDI | CTRL_EDI | CTRL_POLLED); |
| 222 | write_3393_cmd(hostdata, WD_CMD_TRANS_INFO | 0x80); |
| 223 | do { |
| 224 | asr = READ_AUX_STAT(); |
| 225 | if (asr & ASR_DBR) |
| 226 | x = read_3393(hostdata, WD_DATA); |
| 227 | } while (!(asr & ASR_INT)); |
| 228 | return x; |
| 229 | } |
| 230 | |
| 231 | |
| 232 | static void write_3393_count(struct IN2000_hostdata *hostdata, unsigned long value) |
| 233 | { |
| 234 | write1_io(WD_TRANSFER_COUNT_MSB, IO_WD_ADDR); |
| 235 | write1_io((value >> 16), IO_WD_DATA); |
| 236 | write1_io((value >> 8), IO_WD_DATA); |
| 237 | write1_io(value, IO_WD_DATA); |
| 238 | } |
| 239 | |
| 240 | |
| 241 | static unsigned long read_3393_count(struct IN2000_hostdata *hostdata) |
| 242 | { |
| 243 | unsigned long value; |
| 244 | |
| 245 | write1_io(WD_TRANSFER_COUNT_MSB, IO_WD_ADDR); |
| 246 | value = read1_io(IO_WD_DATA) << 16; |
| 247 | value |= read1_io(IO_WD_DATA) << 8; |
| 248 | value |= read1_io(IO_WD_DATA); |
| 249 | return value; |
| 250 | } |
| 251 | |
| 252 | |
| 253 | /* The 33c93 needs to be told which direction a command transfers its |
| 254 | * data; we use this function to figure it out. Returns true if there |
| 255 | * will be a DATA_OUT phase with this command, false otherwise. |
| 256 | * (Thanks to Joerg Dorchain for the research and suggestion.) |
| 257 | */ |
| 258 | static int is_dir_out(Scsi_Cmnd * cmd) |
| 259 | { |
| 260 | switch (cmd->cmnd[0]) { |
| 261 | case WRITE_6: |
| 262 | case WRITE_10: |
| 263 | case WRITE_12: |
| 264 | case WRITE_LONG: |
| 265 | case WRITE_SAME: |
| 266 | case WRITE_BUFFER: |
| 267 | case WRITE_VERIFY: |
| 268 | case WRITE_VERIFY_12: |
| 269 | case COMPARE: |
| 270 | case COPY: |
| 271 | case COPY_VERIFY: |
| 272 | case SEARCH_EQUAL: |
| 273 | case SEARCH_HIGH: |
| 274 | case SEARCH_LOW: |
| 275 | case SEARCH_EQUAL_12: |
| 276 | case SEARCH_HIGH_12: |
| 277 | case SEARCH_LOW_12: |
| 278 | case FORMAT_UNIT: |
| 279 | case REASSIGN_BLOCKS: |
| 280 | case RESERVE: |
| 281 | case MODE_SELECT: |
| 282 | case MODE_SELECT_10: |
| 283 | case LOG_SELECT: |
| 284 | case SEND_DIAGNOSTIC: |
| 285 | case CHANGE_DEFINITION: |
| 286 | case UPDATE_BLOCK: |
| 287 | case SET_WINDOW: |
| 288 | case MEDIUM_SCAN: |
| 289 | case SEND_VOLUME_TAG: |
| 290 | case 0xea: |
| 291 | return 1; |
| 292 | default: |
| 293 | return 0; |
| 294 | } |
| 295 | } |
| 296 | |
| 297 | |
| 298 | |
| 299 | static struct sx_period sx_table[] = { |
| 300 | {1, 0x20}, |
| 301 | {252, 0x20}, |
| 302 | {376, 0x30}, |
| 303 | {500, 0x40}, |
| 304 | {624, 0x50}, |
| 305 | {752, 0x60}, |
| 306 | {876, 0x70}, |
| 307 | {1000, 0x00}, |
| 308 | {0, 0} |
| 309 | }; |
| 310 | |
| 311 | static int round_period(unsigned int period) |
| 312 | { |
| 313 | int x; |
| 314 | |
| 315 | for (x = 1; sx_table[x].period_ns; x++) { |
| 316 | if ((period <= sx_table[x - 0].period_ns) && (period > sx_table[x - 1].period_ns)) { |
| 317 | return x; |
| 318 | } |
| 319 | } |
| 320 | return 7; |
| 321 | } |
| 322 | |
| 323 | static uchar calc_sync_xfer(unsigned int period, unsigned int offset) |
| 324 | { |
| 325 | uchar result; |
| 326 | |
| 327 | period *= 4; /* convert SDTR code to ns */ |
| 328 | result = sx_table[round_period(period)].reg_value; |
| 329 | result |= (offset < OPTIMUM_SX_OFF) ? offset : OPTIMUM_SX_OFF; |
| 330 | return result; |
| 331 | } |
| 332 | |
| 333 | |
| 334 | |
| 335 | static void in2000_execute(struct Scsi_Host *instance); |
| 336 | |
| 337 | static int in2000_queuecommand(Scsi_Cmnd * cmd, void (*done) (Scsi_Cmnd *)) |
| 338 | { |
| 339 | struct Scsi_Host *instance; |
| 340 | struct IN2000_hostdata *hostdata; |
| 341 | Scsi_Cmnd *tmp; |
| 342 | |
| 343 | instance = cmd->device->host; |
| 344 | hostdata = (struct IN2000_hostdata *) instance->hostdata; |
| 345 | |
Jeff Garzik | 017560f | 2005-10-24 18:04:36 -0400 | [diff] [blame] | 346 | DB(DB_QUEUE_COMMAND, scmd_printk(KERN_DEBUG, cmd, "Q-%02x-%ld(", cmd->cmnd[0], cmd->pid)) |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 347 | |
| 348 | /* Set up a few fields in the Scsi_Cmnd structure for our own use: |
| 349 | * - host_scribble is the pointer to the next cmd in the input queue |
| 350 | * - scsi_done points to the routine we call when a cmd is finished |
| 351 | * - result is what you'd expect |
| 352 | */ |
| 353 | cmd->host_scribble = NULL; |
| 354 | cmd->scsi_done = done; |
| 355 | cmd->result = 0; |
| 356 | |
| 357 | /* We use the Scsi_Pointer structure that's included with each command |
| 358 | * as a scratchpad (as it's intended to be used!). The handy thing about |
| 359 | * the SCp.xxx fields is that they're always associated with a given |
| 360 | * cmd, and are preserved across disconnect-reselect. This means we |
| 361 | * can pretty much ignore SAVE_POINTERS and RESTORE_POINTERS messages |
| 362 | * if we keep all the critical pointers and counters in SCp: |
| 363 | * - SCp.ptr is the pointer into the RAM buffer |
| 364 | * - SCp.this_residual is the size of that buffer |
| 365 | * - SCp.buffer points to the current scatter-gather buffer |
| 366 | * - SCp.buffers_residual tells us how many S.G. buffers there are |
| 367 | * - SCp.have_data_in helps keep track of >2048 byte transfers |
| 368 | * - SCp.sent_command is not used |
| 369 | * - SCp.phase records this command's SRCID_ER bit setting |
| 370 | */ |
| 371 | |
| 372 | if (cmd->use_sg) { |
Christoph Hellwig | 5d5ff44 | 2006-06-03 13:21:13 +0200 | [diff] [blame] | 373 | cmd->SCp.buffer = (struct scatterlist *) cmd->request_buffer; |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 374 | cmd->SCp.buffers_residual = cmd->use_sg - 1; |
| 375 | cmd->SCp.ptr = (char *) page_address(cmd->SCp.buffer->page) + cmd->SCp.buffer->offset; |
| 376 | cmd->SCp.this_residual = cmd->SCp.buffer->length; |
| 377 | } else { |
| 378 | cmd->SCp.buffer = NULL; |
| 379 | cmd->SCp.buffers_residual = 0; |
| 380 | cmd->SCp.ptr = (char *) cmd->request_buffer; |
| 381 | cmd->SCp.this_residual = cmd->request_bufflen; |
| 382 | } |
| 383 | cmd->SCp.have_data_in = 0; |
| 384 | |
| 385 | /* We don't set SCp.phase here - that's done in in2000_execute() */ |
| 386 | |
| 387 | /* WD docs state that at the conclusion of a "LEVEL2" command, the |
| 388 | * status byte can be retrieved from the LUN register. Apparently, |
| 389 | * this is the case only for *uninterrupted* LEVEL2 commands! If |
| 390 | * there are any unexpected phases entered, even if they are 100% |
| 391 | * legal (different devices may choose to do things differently), |
| 392 | * the LEVEL2 command sequence is exited. This often occurs prior |
| 393 | * to receiving the status byte, in which case the driver does a |
| 394 | * status phase interrupt and gets the status byte on its own. |
| 395 | * While such a command can then be "resumed" (ie restarted to |
| 396 | * finish up as a LEVEL2 command), the LUN register will NOT be |
| 397 | * a valid status byte at the command's conclusion, and we must |
| 398 | * use the byte obtained during the earlier interrupt. Here, we |
| 399 | * preset SCp.Status to an illegal value (0xff) so that when |
| 400 | * this command finally completes, we can tell where the actual |
| 401 | * status byte is stored. |
| 402 | */ |
| 403 | |
| 404 | cmd->SCp.Status = ILLEGAL_STATUS_BYTE; |
| 405 | |
| 406 | /* We need to disable interrupts before messing with the input |
| 407 | * queue and calling in2000_execute(). |
| 408 | */ |
| 409 | |
| 410 | /* |
| 411 | * Add the cmd to the end of 'input_Q'. Note that REQUEST_SENSE |
| 412 | * commands are added to the head of the queue so that the desired |
| 413 | * sense data is not lost before REQUEST_SENSE executes. |
| 414 | */ |
| 415 | |
| 416 | if (!(hostdata->input_Q) || (cmd->cmnd[0] == REQUEST_SENSE)) { |
| 417 | cmd->host_scribble = (uchar *) hostdata->input_Q; |
| 418 | hostdata->input_Q = cmd; |
| 419 | } else { /* find the end of the queue */ |
| 420 | for (tmp = (Scsi_Cmnd *) hostdata->input_Q; tmp->host_scribble; tmp = (Scsi_Cmnd *) tmp->host_scribble); |
| 421 | tmp->host_scribble = (uchar *) cmd; |
| 422 | } |
| 423 | |
| 424 | /* We know that there's at least one command in 'input_Q' now. |
| 425 | * Go see if any of them are runnable! |
| 426 | */ |
| 427 | |
| 428 | in2000_execute(cmd->device->host); |
| 429 | |
| 430 | DB(DB_QUEUE_COMMAND, printk(")Q-%ld ", cmd->pid)) |
| 431 | return 0; |
| 432 | } |
| 433 | |
| 434 | |
| 435 | |
| 436 | /* |
| 437 | * This routine attempts to start a scsi command. If the host_card is |
| 438 | * already connected, we give up immediately. Otherwise, look through |
| 439 | * the input_Q, using the first command we find that's intended |
| 440 | * for a currently non-busy target/lun. |
| 441 | * Note that this function is always called with interrupts already |
| 442 | * disabled (either from in2000_queuecommand() or in2000_intr()). |
| 443 | */ |
| 444 | static void in2000_execute(struct Scsi_Host *instance) |
| 445 | { |
| 446 | struct IN2000_hostdata *hostdata; |
| 447 | Scsi_Cmnd *cmd, *prev; |
| 448 | int i; |
| 449 | unsigned short *sp; |
| 450 | unsigned short f; |
| 451 | unsigned short flushbuf[16]; |
| 452 | |
| 453 | |
| 454 | hostdata = (struct IN2000_hostdata *) instance->hostdata; |
| 455 | |
| 456 | DB(DB_EXECUTE, printk("EX(")) |
| 457 | |
| 458 | if (hostdata->selecting || hostdata->connected) { |
| 459 | |
| 460 | DB(DB_EXECUTE, printk(")EX-0 ")) |
| 461 | |
| 462 | return; |
| 463 | } |
| 464 | |
| 465 | /* |
| 466 | * Search through the input_Q for a command destined |
| 467 | * for an idle target/lun. |
| 468 | */ |
| 469 | |
| 470 | cmd = (Scsi_Cmnd *) hostdata->input_Q; |
| 471 | prev = NULL; |
| 472 | while (cmd) { |
| 473 | if (!(hostdata->busy[cmd->device->id] & (1 << cmd->device->lun))) |
| 474 | break; |
| 475 | prev = cmd; |
| 476 | cmd = (Scsi_Cmnd *) cmd->host_scribble; |
| 477 | } |
| 478 | |
| 479 | /* quit if queue empty or all possible targets are busy */ |
| 480 | |
| 481 | if (!cmd) { |
| 482 | |
| 483 | DB(DB_EXECUTE, printk(")EX-1 ")) |
| 484 | |
| 485 | return; |
| 486 | } |
| 487 | |
| 488 | /* remove command from queue */ |
| 489 | |
| 490 | if (prev) |
| 491 | prev->host_scribble = cmd->host_scribble; |
| 492 | else |
| 493 | hostdata->input_Q = (Scsi_Cmnd *) cmd->host_scribble; |
| 494 | |
| 495 | #ifdef PROC_STATISTICS |
| 496 | hostdata->cmd_cnt[cmd->device->id]++; |
| 497 | #endif |
| 498 | |
| 499 | /* |
| 500 | * Start the selection process |
| 501 | */ |
| 502 | |
| 503 | if (is_dir_out(cmd)) |
| 504 | write_3393(hostdata, WD_DESTINATION_ID, cmd->device->id); |
| 505 | else |
| 506 | write_3393(hostdata, WD_DESTINATION_ID, cmd->device->id | DSTID_DPD); |
| 507 | |
| 508 | /* Now we need to figure out whether or not this command is a good |
| 509 | * candidate for disconnect/reselect. We guess to the best of our |
| 510 | * ability, based on a set of hierarchical rules. When several |
| 511 | * devices are operating simultaneously, disconnects are usually |
| 512 | * an advantage. In a single device system, or if only 1 device |
| 513 | * is being accessed, transfers usually go faster if disconnects |
| 514 | * are not allowed: |
| 515 | * |
| 516 | * + Commands should NEVER disconnect if hostdata->disconnect = |
| 517 | * DIS_NEVER (this holds for tape drives also), and ALWAYS |
| 518 | * disconnect if hostdata->disconnect = DIS_ALWAYS. |
| 519 | * + Tape drive commands should always be allowed to disconnect. |
| 520 | * + Disconnect should be allowed if disconnected_Q isn't empty. |
| 521 | * + Commands should NOT disconnect if input_Q is empty. |
| 522 | * + Disconnect should be allowed if there are commands in input_Q |
| 523 | * for a different target/lun. In this case, the other commands |
| 524 | * should be made disconnect-able, if not already. |
| 525 | * |
| 526 | * I know, I know - this code would flunk me out of any |
| 527 | * "C Programming 101" class ever offered. But it's easy |
| 528 | * to change around and experiment with for now. |
| 529 | */ |
| 530 | |
| 531 | cmd->SCp.phase = 0; /* assume no disconnect */ |
| 532 | if (hostdata->disconnect == DIS_NEVER) |
| 533 | goto no; |
| 534 | if (hostdata->disconnect == DIS_ALWAYS) |
| 535 | goto yes; |
| 536 | if (cmd->device->type == 1) /* tape drive? */ |
| 537 | goto yes; |
| 538 | if (hostdata->disconnected_Q) /* other commands disconnected? */ |
| 539 | goto yes; |
| 540 | if (!(hostdata->input_Q)) /* input_Q empty? */ |
| 541 | goto no; |
| 542 | for (prev = (Scsi_Cmnd *) hostdata->input_Q; prev; prev = (Scsi_Cmnd *) prev->host_scribble) { |
| 543 | if ((prev->device->id != cmd->device->id) || (prev->device->lun != cmd->device->lun)) { |
| 544 | for (prev = (Scsi_Cmnd *) hostdata->input_Q; prev; prev = (Scsi_Cmnd *) prev->host_scribble) |
| 545 | prev->SCp.phase = 1; |
| 546 | goto yes; |
| 547 | } |
| 548 | } |
| 549 | goto no; |
| 550 | |
| 551 | yes: |
| 552 | cmd->SCp.phase = 1; |
| 553 | |
| 554 | #ifdef PROC_STATISTICS |
| 555 | hostdata->disc_allowed_cnt[cmd->device->id]++; |
| 556 | #endif |
| 557 | |
| 558 | no: |
| 559 | write_3393(hostdata, WD_SOURCE_ID, ((cmd->SCp.phase) ? SRCID_ER : 0)); |
| 560 | |
| 561 | write_3393(hostdata, WD_TARGET_LUN, cmd->device->lun); |
| 562 | write_3393(hostdata, WD_SYNCHRONOUS_TRANSFER, hostdata->sync_xfer[cmd->device->id]); |
| 563 | hostdata->busy[cmd->device->id] |= (1 << cmd->device->lun); |
| 564 | |
| 565 | if ((hostdata->level2 <= L2_NONE) || (hostdata->sync_stat[cmd->device->id] == SS_UNSET)) { |
| 566 | |
| 567 | /* |
| 568 | * Do a 'Select-With-ATN' command. This will end with |
| 569 | * one of the following interrupts: |
| 570 | * CSR_RESEL_AM: failure - can try again later. |
| 571 | * CSR_TIMEOUT: failure - give up. |
| 572 | * CSR_SELECT: success - proceed. |
| 573 | */ |
| 574 | |
| 575 | hostdata->selecting = cmd; |
| 576 | |
| 577 | /* Every target has its own synchronous transfer setting, kept in |
| 578 | * the sync_xfer array, and a corresponding status byte in sync_stat[]. |
| 579 | * Each target's sync_stat[] entry is initialized to SS_UNSET, and its |
| 580 | * sync_xfer[] entry is initialized to the default/safe value. SS_UNSET |
| 581 | * means that the parameters are undetermined as yet, and that we |
| 582 | * need to send an SDTR message to this device after selection is |
| 583 | * complete. We set SS_FIRST to tell the interrupt routine to do so, |
| 584 | * unless we don't want to even _try_ synchronous transfers: In this |
| 585 | * case we set SS_SET to make the defaults final. |
| 586 | */ |
| 587 | if (hostdata->sync_stat[cmd->device->id] == SS_UNSET) { |
| 588 | if (hostdata->sync_off & (1 << cmd->device->id)) |
| 589 | hostdata->sync_stat[cmd->device->id] = SS_SET; |
| 590 | else |
| 591 | hostdata->sync_stat[cmd->device->id] = SS_FIRST; |
| 592 | } |
| 593 | hostdata->state = S_SELECTING; |
| 594 | write_3393_count(hostdata, 0); /* this guarantees a DATA_PHASE interrupt */ |
| 595 | write_3393_cmd(hostdata, WD_CMD_SEL_ATN); |
| 596 | } |
| 597 | |
| 598 | else { |
| 599 | |
| 600 | /* |
| 601 | * Do a 'Select-With-ATN-Xfer' command. This will end with |
| 602 | * one of the following interrupts: |
| 603 | * CSR_RESEL_AM: failure - can try again later. |
| 604 | * CSR_TIMEOUT: failure - give up. |
| 605 | * anything else: success - proceed. |
| 606 | */ |
| 607 | |
| 608 | hostdata->connected = cmd; |
| 609 | write_3393(hostdata, WD_COMMAND_PHASE, 0); |
| 610 | |
| 611 | /* copy command_descriptor_block into WD chip |
| 612 | * (take advantage of auto-incrementing) |
| 613 | */ |
| 614 | |
| 615 | write1_io(WD_CDB_1, IO_WD_ADDR); |
| 616 | for (i = 0; i < cmd->cmd_len; i++) |
| 617 | write1_io(cmd->cmnd[i], IO_WD_DATA); |
| 618 | |
| 619 | /* The wd33c93 only knows about Group 0, 1, and 5 commands when |
| 620 | * it's doing a 'select-and-transfer'. To be safe, we write the |
| 621 | * size of the CDB into the OWN_ID register for every case. This |
| 622 | * way there won't be problems with vendor-unique, audio, etc. |
| 623 | */ |
| 624 | |
| 625 | write_3393(hostdata, WD_OWN_ID, cmd->cmd_len); |
| 626 | |
| 627 | /* When doing a non-disconnect command, we can save ourselves a DATA |
| 628 | * phase interrupt later by setting everything up now. With writes we |
| 629 | * need to pre-fill the fifo; if there's room for the 32 flush bytes, |
| 630 | * put them in there too - that'll avoid a fifo interrupt. Reads are |
| 631 | * somewhat simpler. |
| 632 | * KLUDGE NOTE: It seems that you can't completely fill the fifo here: |
| 633 | * This results in the IO_FIFO_COUNT register rolling over to zero, |
| 634 | * and apparently the gate array logic sees this as empty, not full, |
| 635 | * so the 3393 chip is never signalled to start reading from the |
| 636 | * fifo. Or maybe it's seen as a permanent fifo interrupt condition. |
| 637 | * Regardless, we fix this by temporarily pretending that the fifo |
| 638 | * is 16 bytes smaller. (I see now that the old driver has a comment |
| 639 | * about "don't fill completely" in an analogous place - must be the |
| 640 | * same deal.) This results in CDROM, swap partitions, and tape drives |
| 641 | * needing an extra interrupt per write command - I think we can live |
| 642 | * with that! |
| 643 | */ |
| 644 | |
| 645 | if (!(cmd->SCp.phase)) { |
| 646 | write_3393_count(hostdata, cmd->SCp.this_residual); |
| 647 | write_3393(hostdata, WD_CONTROL, CTRL_IDI | CTRL_EDI | CTRL_BUS); |
| 648 | write1_io(0, IO_FIFO_WRITE); /* clear fifo counter, write mode */ |
| 649 | |
| 650 | if (is_dir_out(cmd)) { |
| 651 | hostdata->fifo = FI_FIFO_WRITING; |
| 652 | if ((i = cmd->SCp.this_residual) > (IN2000_FIFO_SIZE - 16)) |
| 653 | i = IN2000_FIFO_SIZE - 16; |
| 654 | cmd->SCp.have_data_in = i; /* this much data in fifo */ |
| 655 | i >>= 1; /* Gulp. Assuming modulo 2. */ |
| 656 | sp = (unsigned short *) cmd->SCp.ptr; |
| 657 | f = hostdata->io_base + IO_FIFO; |
| 658 | |
| 659 | #ifdef FAST_WRITE_IO |
| 660 | |
| 661 | FAST_WRITE2_IO(); |
| 662 | #else |
| 663 | while (i--) |
| 664 | write2_io(*sp++, IO_FIFO); |
| 665 | |
| 666 | #endif |
| 667 | |
| 668 | /* Is there room for the flush bytes? */ |
| 669 | |
| 670 | if (cmd->SCp.have_data_in <= ((IN2000_FIFO_SIZE - 16) - 32)) { |
| 671 | sp = flushbuf; |
| 672 | i = 16; |
| 673 | |
| 674 | #ifdef FAST_WRITE_IO |
| 675 | |
| 676 | FAST_WRITE2_IO(); |
| 677 | #else |
| 678 | while (i--) |
| 679 | write2_io(0, IO_FIFO); |
| 680 | |
| 681 | #endif |
| 682 | |
| 683 | } |
| 684 | } |
| 685 | |
| 686 | else { |
| 687 | write1_io(0, IO_FIFO_READ); /* put fifo in read mode */ |
| 688 | hostdata->fifo = FI_FIFO_READING; |
| 689 | cmd->SCp.have_data_in = 0; /* nothing transferred yet */ |
| 690 | } |
| 691 | |
| 692 | } else { |
| 693 | write_3393_count(hostdata, 0); /* this guarantees a DATA_PHASE interrupt */ |
| 694 | } |
| 695 | hostdata->state = S_RUNNING_LEVEL2; |
| 696 | write_3393_cmd(hostdata, WD_CMD_SEL_ATN_XFER); |
| 697 | } |
| 698 | |
| 699 | /* |
| 700 | * Since the SCSI bus can handle only 1 connection at a time, |
| 701 | * we get out of here now. If the selection fails, or when |
| 702 | * the command disconnects, we'll come back to this routine |
| 703 | * to search the input_Q again... |
| 704 | */ |
| 705 | |
| 706 | DB(DB_EXECUTE, printk("%s%ld)EX-2 ", (cmd->SCp.phase) ? "d:" : "", cmd->pid)) |
| 707 | |
| 708 | } |
| 709 | |
| 710 | |
| 711 | |
| 712 | static void transfer_pio(uchar * buf, int cnt, int data_in_dir, struct IN2000_hostdata *hostdata) |
| 713 | { |
| 714 | uchar asr; |
| 715 | |
| 716 | DB(DB_TRANSFER, printk("(%p,%d,%s)", buf, cnt, data_in_dir ? "in" : "out")) |
| 717 | |
| 718 | write_3393(hostdata, WD_CONTROL, CTRL_IDI | CTRL_EDI | CTRL_POLLED); |
| 719 | write_3393_count(hostdata, cnt); |
| 720 | write_3393_cmd(hostdata, WD_CMD_TRANS_INFO); |
| 721 | if (data_in_dir) { |
| 722 | do { |
| 723 | asr = READ_AUX_STAT(); |
| 724 | if (asr & ASR_DBR) |
| 725 | *buf++ = read_3393(hostdata, WD_DATA); |
| 726 | } while (!(asr & ASR_INT)); |
| 727 | } else { |
| 728 | do { |
| 729 | asr = READ_AUX_STAT(); |
| 730 | if (asr & ASR_DBR) |
| 731 | write_3393(hostdata, WD_DATA, *buf++); |
| 732 | } while (!(asr & ASR_INT)); |
| 733 | } |
| 734 | |
| 735 | /* Note: we are returning with the interrupt UN-cleared. |
| 736 | * Since (presumably) an entire I/O operation has |
| 737 | * completed, the bus phase is probably different, and |
| 738 | * the interrupt routine will discover this when it |
| 739 | * responds to the uncleared int. |
| 740 | */ |
| 741 | |
| 742 | } |
| 743 | |
| 744 | |
| 745 | |
| 746 | static void transfer_bytes(Scsi_Cmnd * cmd, int data_in_dir) |
| 747 | { |
| 748 | struct IN2000_hostdata *hostdata; |
| 749 | unsigned short *sp; |
| 750 | unsigned short f; |
| 751 | int i; |
| 752 | |
| 753 | hostdata = (struct IN2000_hostdata *) cmd->device->host->hostdata; |
| 754 | |
| 755 | /* Normally, you'd expect 'this_residual' to be non-zero here. |
| 756 | * In a series of scatter-gather transfers, however, this |
| 757 | * routine will usually be called with 'this_residual' equal |
| 758 | * to 0 and 'buffers_residual' non-zero. This means that a |
| 759 | * previous transfer completed, clearing 'this_residual', and |
| 760 | * now we need to setup the next scatter-gather buffer as the |
| 761 | * source or destination for THIS transfer. |
| 762 | */ |
| 763 | if (!cmd->SCp.this_residual && cmd->SCp.buffers_residual) { |
| 764 | ++cmd->SCp.buffer; |
| 765 | --cmd->SCp.buffers_residual; |
| 766 | cmd->SCp.this_residual = cmd->SCp.buffer->length; |
| 767 | cmd->SCp.ptr = page_address(cmd->SCp.buffer->page) + cmd->SCp.buffer->offset; |
| 768 | } |
| 769 | |
| 770 | /* Set up hardware registers */ |
| 771 | |
| 772 | write_3393(hostdata, WD_SYNCHRONOUS_TRANSFER, hostdata->sync_xfer[cmd->device->id]); |
| 773 | write_3393_count(hostdata, cmd->SCp.this_residual); |
| 774 | write_3393(hostdata, WD_CONTROL, CTRL_IDI | CTRL_EDI | CTRL_BUS); |
| 775 | write1_io(0, IO_FIFO_WRITE); /* zero counter, assume write */ |
| 776 | |
| 777 | /* Reading is easy. Just issue the command and return - we'll |
| 778 | * get an interrupt later when we have actual data to worry about. |
| 779 | */ |
| 780 | |
| 781 | if (data_in_dir) { |
| 782 | write1_io(0, IO_FIFO_READ); |
| 783 | if ((hostdata->level2 >= L2_DATA) || (hostdata->level2 == L2_BASIC && cmd->SCp.phase == 0)) { |
| 784 | write_3393(hostdata, WD_COMMAND_PHASE, 0x45); |
| 785 | write_3393_cmd(hostdata, WD_CMD_SEL_ATN_XFER); |
| 786 | hostdata->state = S_RUNNING_LEVEL2; |
| 787 | } else |
| 788 | write_3393_cmd(hostdata, WD_CMD_TRANS_INFO); |
| 789 | hostdata->fifo = FI_FIFO_READING; |
| 790 | cmd->SCp.have_data_in = 0; |
| 791 | return; |
| 792 | } |
| 793 | |
| 794 | /* Writing is more involved - we'll start the WD chip and write as |
| 795 | * much data to the fifo as we can right now. Later interrupts will |
| 796 | * write any bytes that don't make it at this stage. |
| 797 | */ |
| 798 | |
| 799 | if ((hostdata->level2 >= L2_DATA) || (hostdata->level2 == L2_BASIC && cmd->SCp.phase == 0)) { |
| 800 | write_3393(hostdata, WD_COMMAND_PHASE, 0x45); |
| 801 | write_3393_cmd(hostdata, WD_CMD_SEL_ATN_XFER); |
| 802 | hostdata->state = S_RUNNING_LEVEL2; |
| 803 | } else |
| 804 | write_3393_cmd(hostdata, WD_CMD_TRANS_INFO); |
| 805 | hostdata->fifo = FI_FIFO_WRITING; |
| 806 | sp = (unsigned short *) cmd->SCp.ptr; |
| 807 | |
| 808 | if ((i = cmd->SCp.this_residual) > IN2000_FIFO_SIZE) |
| 809 | i = IN2000_FIFO_SIZE; |
| 810 | cmd->SCp.have_data_in = i; |
| 811 | i >>= 1; /* Gulp. We assume this_residual is modulo 2 */ |
| 812 | f = hostdata->io_base + IO_FIFO; |
| 813 | |
| 814 | #ifdef FAST_WRITE_IO |
| 815 | |
| 816 | FAST_WRITE2_IO(); |
| 817 | #else |
| 818 | while (i--) |
| 819 | write2_io(*sp++, IO_FIFO); |
| 820 | |
| 821 | #endif |
| 822 | |
| 823 | } |
| 824 | |
| 825 | |
| 826 | /* We need to use spin_lock_irqsave() & spin_unlock_irqrestore() in this |
| 827 | * function in order to work in an SMP environment. (I'd be surprised |
| 828 | * if the driver is ever used by anyone on a real multi-CPU motherboard, |
| 829 | * but it _does_ need to be able to compile and run in an SMP kernel.) |
| 830 | */ |
| 831 | |
| 832 | static irqreturn_t in2000_intr(int irqnum, void *dev_id, struct pt_regs *ptregs) |
| 833 | { |
| 834 | struct Scsi_Host *instance = dev_id; |
| 835 | struct IN2000_hostdata *hostdata; |
| 836 | Scsi_Cmnd *patch, *cmd; |
| 837 | uchar asr, sr, phs, id, lun, *ucp, msg; |
| 838 | int i, j; |
| 839 | unsigned long length; |
| 840 | unsigned short *sp; |
| 841 | unsigned short f; |
| 842 | unsigned long flags; |
| 843 | |
| 844 | hostdata = (struct IN2000_hostdata *) instance->hostdata; |
| 845 | |
| 846 | /* Get the spin_lock and disable further ints, for SMP */ |
| 847 | |
| 848 | spin_lock_irqsave(instance->host_lock, flags); |
| 849 | |
| 850 | #ifdef PROC_STATISTICS |
| 851 | hostdata->int_cnt++; |
| 852 | #endif |
| 853 | |
| 854 | /* The IN2000 card has 2 interrupt sources OR'ed onto its IRQ line - the |
| 855 | * WD3393 chip and the 2k fifo (which is actually a dual-port RAM combined |
| 856 | * with a big logic array, so it's a little different than what you might |
| 857 | * expect). As far as I know, there's no reason that BOTH can't be active |
| 858 | * at the same time, but there's a problem: while we can read the 3393 |
| 859 | * to tell if _it_ wants an interrupt, I don't know of a way to ask the |
| 860 | * fifo the same question. The best we can do is check the 3393 and if |
| 861 | * it _isn't_ the source of the interrupt, then we can be pretty sure |
| 862 | * that the fifo is the culprit. |
| 863 | * UPDATE: I have it on good authority (Bill Earnest) that bit 0 of the |
| 864 | * IO_FIFO_COUNT register mirrors the fifo interrupt state. I |
| 865 | * assume that bit clear means interrupt active. As it turns |
| 866 | * out, the driver really doesn't need to check for this after |
| 867 | * all, so my remarks above about a 'problem' can safely be |
| 868 | * ignored. The way the logic is set up, there's no advantage |
| 869 | * (that I can see) to worrying about it. |
| 870 | * |
| 871 | * It seems that the fifo interrupt signal is negated when we extract |
| 872 | * bytes during read or write bytes during write. |
| 873 | * - fifo will interrupt when data is moving from it to the 3393, and |
| 874 | * there are 31 (or less?) bytes left to go. This is sort of short- |
| 875 | * sighted: what if you don't WANT to do more? In any case, our |
| 876 | * response is to push more into the fifo - either actual data or |
| 877 | * dummy bytes if need be. Note that we apparently have to write at |
| 878 | * least 32 additional bytes to the fifo after an interrupt in order |
| 879 | * to get it to release the ones it was holding on to - writing fewer |
| 880 | * than 32 will result in another fifo int. |
| 881 | * UPDATE: Again, info from Bill Earnest makes this more understandable: |
| 882 | * 32 bytes = two counts of the fifo counter register. He tells |
| 883 | * me that the fifo interrupt is a non-latching signal derived |
| 884 | * from a straightforward boolean interpretation of the 7 |
| 885 | * highest bits of the fifo counter and the fifo-read/fifo-write |
| 886 | * state. Who'd a thought? |
| 887 | */ |
| 888 | |
| 889 | write1_io(0, IO_LED_ON); |
| 890 | asr = READ_AUX_STAT(); |
| 891 | if (!(asr & ASR_INT)) { /* no WD33c93 interrupt? */ |
| 892 | |
| 893 | /* Ok. This is definitely a FIFO-only interrupt. |
| 894 | * |
| 895 | * If FI_FIFO_READING is set, there are up to 2048 bytes waiting to be read, |
| 896 | * maybe more to come from the SCSI bus. Read as many as we can out of the |
| 897 | * fifo and into memory at the location of SCp.ptr[SCp.have_data_in], and |
| 898 | * update have_data_in afterwards. |
| 899 | * |
| 900 | * If we have FI_FIFO_WRITING, the FIFO has almost run out of bytes to move |
| 901 | * into the WD3393 chip (I think the interrupt happens when there are 31 |
| 902 | * bytes left, but it may be fewer...). The 3393 is still waiting, so we |
| 903 | * shove some more into the fifo, which gets things moving again. If the |
| 904 | * original SCSI command specified more than 2048 bytes, there may still |
| 905 | * be some of that data left: fine - use it (from SCp.ptr[SCp.have_data_in]). |
| 906 | * Don't forget to update have_data_in. If we've already written out the |
| 907 | * entire buffer, feed 32 dummy bytes to the fifo - they're needed to |
| 908 | * push out the remaining real data. |
| 909 | * (Big thanks to Bill Earnest for getting me out of the mud in here.) |
| 910 | */ |
| 911 | |
| 912 | cmd = (Scsi_Cmnd *) hostdata->connected; /* assume we're connected */ |
| 913 | CHECK_NULL(cmd, "fifo_int") |
| 914 | |
| 915 | if (hostdata->fifo == FI_FIFO_READING) { |
| 916 | |
| 917 | DB(DB_FIFO, printk("{R:%02x} ", read1_io(IO_FIFO_COUNT))) |
| 918 | |
| 919 | sp = (unsigned short *) (cmd->SCp.ptr + cmd->SCp.have_data_in); |
| 920 | i = read1_io(IO_FIFO_COUNT) & 0xfe; |
| 921 | i <<= 2; /* # of words waiting in the fifo */ |
| 922 | f = hostdata->io_base + IO_FIFO; |
| 923 | |
| 924 | #ifdef FAST_READ_IO |
| 925 | |
| 926 | FAST_READ2_IO(); |
| 927 | #else |
| 928 | while (i--) |
| 929 | *sp++ = read2_io(IO_FIFO); |
| 930 | |
| 931 | #endif |
| 932 | |
| 933 | i = sp - (unsigned short *) (cmd->SCp.ptr + cmd->SCp.have_data_in); |
| 934 | i <<= 1; |
| 935 | cmd->SCp.have_data_in += i; |
| 936 | } |
| 937 | |
| 938 | else if (hostdata->fifo == FI_FIFO_WRITING) { |
| 939 | |
| 940 | DB(DB_FIFO, printk("{W:%02x} ", read1_io(IO_FIFO_COUNT))) |
| 941 | |
| 942 | /* If all bytes have been written to the fifo, flush out the stragglers. |
| 943 | * Note that while writing 16 dummy words seems arbitrary, we don't |
| 944 | * have another choice that I can see. What we really want is to read |
| 945 | * the 3393 transfer count register (that would tell us how many bytes |
| 946 | * needed flushing), but the TRANSFER_INFO command hasn't completed |
| 947 | * yet (not enough bytes!) and that register won't be accessible. So, |
| 948 | * we use 16 words - a number obtained through trial and error. |
| 949 | * UPDATE: Bill says this is exactly what Always does, so there. |
| 950 | * More thanks due him for help in this section. |
| 951 | */ |
| 952 | if (cmd->SCp.this_residual == cmd->SCp.have_data_in) { |
| 953 | i = 16; |
| 954 | while (i--) /* write 32 dummy bytes */ |
| 955 | write2_io(0, IO_FIFO); |
| 956 | } |
| 957 | |
| 958 | /* If there are still bytes left in the SCSI buffer, write as many as we |
| 959 | * can out to the fifo. |
| 960 | */ |
| 961 | |
| 962 | else { |
| 963 | sp = (unsigned short *) (cmd->SCp.ptr + cmd->SCp.have_data_in); |
| 964 | i = cmd->SCp.this_residual - cmd->SCp.have_data_in; /* bytes yet to go */ |
| 965 | j = read1_io(IO_FIFO_COUNT) & 0xfe; |
| 966 | j <<= 2; /* how many words the fifo has room for */ |
| 967 | if ((j << 1) > i) |
| 968 | j = (i >> 1); |
| 969 | while (j--) |
| 970 | write2_io(*sp++, IO_FIFO); |
| 971 | |
| 972 | i = sp - (unsigned short *) (cmd->SCp.ptr + cmd->SCp.have_data_in); |
| 973 | i <<= 1; |
| 974 | cmd->SCp.have_data_in += i; |
| 975 | } |
| 976 | } |
| 977 | |
| 978 | else { |
| 979 | printk("*** Spurious FIFO interrupt ***"); |
| 980 | } |
| 981 | |
| 982 | write1_io(0, IO_LED_OFF); |
| 983 | |
| 984 | /* release the SMP spin_lock and restore irq state */ |
| 985 | spin_unlock_irqrestore(instance->host_lock, flags); |
| 986 | return IRQ_HANDLED; |
| 987 | } |
| 988 | |
| 989 | /* This interrupt was triggered by the WD33c93 chip. The fifo interrupt |
| 990 | * may also be asserted, but we don't bother to check it: we get more |
| 991 | * detailed info from FIFO_READING and FIFO_WRITING (see below). |
| 992 | */ |
| 993 | |
| 994 | cmd = (Scsi_Cmnd *) hostdata->connected; /* assume we're connected */ |
| 995 | sr = read_3393(hostdata, WD_SCSI_STATUS); /* clear the interrupt */ |
| 996 | phs = read_3393(hostdata, WD_COMMAND_PHASE); |
| 997 | |
| 998 | if (!cmd && (sr != CSR_RESEL_AM && sr != CSR_TIMEOUT && sr != CSR_SELECT)) { |
| 999 | printk("\nNR:wd-intr-1\n"); |
| 1000 | write1_io(0, IO_LED_OFF); |
| 1001 | |
| 1002 | /* release the SMP spin_lock and restore irq state */ |
| 1003 | spin_unlock_irqrestore(instance->host_lock, flags); |
| 1004 | return IRQ_HANDLED; |
| 1005 | } |
| 1006 | |
| 1007 | DB(DB_INTR, printk("{%02x:%02x-", asr, sr)) |
| 1008 | |
| 1009 | /* After starting a FIFO-based transfer, the next _WD3393_ interrupt is |
| 1010 | * guaranteed to be in response to the completion of the transfer. |
| 1011 | * If we were reading, there's probably data in the fifo that needs |
| 1012 | * to be copied into RAM - do that here. Also, we have to update |
| 1013 | * 'this_residual' and 'ptr' based on the contents of the |
| 1014 | * TRANSFER_COUNT register, in case the device decided to do an |
| 1015 | * intermediate disconnect (a device may do this if it has to |
| 1016 | * do a seek, or just to be nice and let other devices have |
| 1017 | * some bus time during long transfers). |
| 1018 | * After doing whatever is necessary with the fifo, we go on and |
| 1019 | * service the WD3393 interrupt normally. |
| 1020 | */ |
| 1021 | if (hostdata->fifo == FI_FIFO_READING) { |
| 1022 | |
| 1023 | /* buffer index = start-of-buffer + #-of-bytes-already-read */ |
| 1024 | |
| 1025 | sp = (unsigned short *) (cmd->SCp.ptr + cmd->SCp.have_data_in); |
| 1026 | |
| 1027 | /* bytes remaining in fifo = (total-wanted - #-not-got) - #-already-read */ |
| 1028 | |
| 1029 | i = (cmd->SCp.this_residual - read_3393_count(hostdata)) - cmd->SCp.have_data_in; |
| 1030 | i >>= 1; /* Gulp. We assume this will always be modulo 2 */ |
| 1031 | f = hostdata->io_base + IO_FIFO; |
| 1032 | |
| 1033 | #ifdef FAST_READ_IO |
| 1034 | |
| 1035 | FAST_READ2_IO(); |
| 1036 | #else |
| 1037 | while (i--) |
| 1038 | *sp++ = read2_io(IO_FIFO); |
| 1039 | |
| 1040 | #endif |
| 1041 | |
| 1042 | hostdata->fifo = FI_FIFO_UNUSED; |
| 1043 | length = cmd->SCp.this_residual; |
| 1044 | cmd->SCp.this_residual = read_3393_count(hostdata); |
| 1045 | cmd->SCp.ptr += (length - cmd->SCp.this_residual); |
| 1046 | |
| 1047 | DB(DB_TRANSFER, printk("(%p,%d)", cmd->SCp.ptr, cmd->SCp.this_residual)) |
| 1048 | |
| 1049 | } |
| 1050 | |
| 1051 | else if (hostdata->fifo == FI_FIFO_WRITING) { |
| 1052 | hostdata->fifo = FI_FIFO_UNUSED; |
| 1053 | length = cmd->SCp.this_residual; |
| 1054 | cmd->SCp.this_residual = read_3393_count(hostdata); |
| 1055 | cmd->SCp.ptr += (length - cmd->SCp.this_residual); |
| 1056 | |
| 1057 | DB(DB_TRANSFER, printk("(%p,%d)", cmd->SCp.ptr, cmd->SCp.this_residual)) |
| 1058 | |
| 1059 | } |
| 1060 | |
| 1061 | /* Respond to the specific WD3393 interrupt - there are quite a few! */ |
| 1062 | |
| 1063 | switch (sr) { |
| 1064 | |
| 1065 | case CSR_TIMEOUT: |
| 1066 | DB(DB_INTR, printk("TIMEOUT")) |
| 1067 | |
| 1068 | if (hostdata->state == S_RUNNING_LEVEL2) |
| 1069 | hostdata->connected = NULL; |
| 1070 | else { |
| 1071 | cmd = (Scsi_Cmnd *) hostdata->selecting; /* get a valid cmd */ |
| 1072 | CHECK_NULL(cmd, "csr_timeout") |
| 1073 | hostdata->selecting = NULL; |
| 1074 | } |
| 1075 | |
| 1076 | cmd->result = DID_NO_CONNECT << 16; |
| 1077 | hostdata->busy[cmd->device->id] &= ~(1 << cmd->device->lun); |
| 1078 | hostdata->state = S_UNCONNECTED; |
| 1079 | cmd->scsi_done(cmd); |
| 1080 | |
| 1081 | /* We are not connected to a target - check to see if there |
| 1082 | * are commands waiting to be executed. |
| 1083 | */ |
| 1084 | |
| 1085 | in2000_execute(instance); |
| 1086 | break; |
| 1087 | |
| 1088 | |
| 1089 | /* Note: this interrupt should not occur in a LEVEL2 command */ |
| 1090 | |
| 1091 | case CSR_SELECT: |
| 1092 | DB(DB_INTR, printk("SELECT")) |
| 1093 | hostdata->connected = cmd = (Scsi_Cmnd *) hostdata->selecting; |
| 1094 | CHECK_NULL(cmd, "csr_select") |
| 1095 | hostdata->selecting = NULL; |
| 1096 | |
| 1097 | /* construct an IDENTIFY message with correct disconnect bit */ |
| 1098 | |
| 1099 | hostdata->outgoing_msg[0] = (0x80 | 0x00 | cmd->device->lun); |
| 1100 | if (cmd->SCp.phase) |
| 1101 | hostdata->outgoing_msg[0] |= 0x40; |
| 1102 | |
| 1103 | if (hostdata->sync_stat[cmd->device->id] == SS_FIRST) { |
| 1104 | #ifdef SYNC_DEBUG |
| 1105 | printk(" sending SDTR "); |
| 1106 | #endif |
| 1107 | |
| 1108 | hostdata->sync_stat[cmd->device->id] = SS_WAITING; |
| 1109 | |
| 1110 | /* tack on a 2nd message to ask about synchronous transfers */ |
| 1111 | |
| 1112 | hostdata->outgoing_msg[1] = EXTENDED_MESSAGE; |
| 1113 | hostdata->outgoing_msg[2] = 3; |
| 1114 | hostdata->outgoing_msg[3] = EXTENDED_SDTR; |
| 1115 | hostdata->outgoing_msg[4] = OPTIMUM_SX_PER / 4; |
| 1116 | hostdata->outgoing_msg[5] = OPTIMUM_SX_OFF; |
| 1117 | hostdata->outgoing_len = 6; |
| 1118 | } else |
| 1119 | hostdata->outgoing_len = 1; |
| 1120 | |
| 1121 | hostdata->state = S_CONNECTED; |
| 1122 | break; |
| 1123 | |
| 1124 | |
| 1125 | case CSR_XFER_DONE | PHS_DATA_IN: |
| 1126 | case CSR_UNEXP | PHS_DATA_IN: |
| 1127 | case CSR_SRV_REQ | PHS_DATA_IN: |
| 1128 | DB(DB_INTR, printk("IN-%d.%d", cmd->SCp.this_residual, cmd->SCp.buffers_residual)) |
| 1129 | transfer_bytes(cmd, DATA_IN_DIR); |
| 1130 | if (hostdata->state != S_RUNNING_LEVEL2) |
| 1131 | hostdata->state = S_CONNECTED; |
| 1132 | break; |
| 1133 | |
| 1134 | |
| 1135 | case CSR_XFER_DONE | PHS_DATA_OUT: |
| 1136 | case CSR_UNEXP | PHS_DATA_OUT: |
| 1137 | case CSR_SRV_REQ | PHS_DATA_OUT: |
| 1138 | DB(DB_INTR, printk("OUT-%d.%d", cmd->SCp.this_residual, cmd->SCp.buffers_residual)) |
| 1139 | transfer_bytes(cmd, DATA_OUT_DIR); |
| 1140 | if (hostdata->state != S_RUNNING_LEVEL2) |
| 1141 | hostdata->state = S_CONNECTED; |
| 1142 | break; |
| 1143 | |
| 1144 | |
| 1145 | /* Note: this interrupt should not occur in a LEVEL2 command */ |
| 1146 | |
| 1147 | case CSR_XFER_DONE | PHS_COMMAND: |
| 1148 | case CSR_UNEXP | PHS_COMMAND: |
| 1149 | case CSR_SRV_REQ | PHS_COMMAND: |
| 1150 | DB(DB_INTR, printk("CMND-%02x,%ld", cmd->cmnd[0], cmd->pid)) |
| 1151 | transfer_pio(cmd->cmnd, cmd->cmd_len, DATA_OUT_DIR, hostdata); |
| 1152 | hostdata->state = S_CONNECTED; |
| 1153 | break; |
| 1154 | |
| 1155 | |
| 1156 | case CSR_XFER_DONE | PHS_STATUS: |
| 1157 | case CSR_UNEXP | PHS_STATUS: |
| 1158 | case CSR_SRV_REQ | PHS_STATUS: |
| 1159 | DB(DB_INTR, printk("STATUS=")) |
| 1160 | |
| 1161 | cmd->SCp.Status = read_1_byte(hostdata); |
| 1162 | DB(DB_INTR, printk("%02x", cmd->SCp.Status)) |
| 1163 | if (hostdata->level2 >= L2_BASIC) { |
| 1164 | sr = read_3393(hostdata, WD_SCSI_STATUS); /* clear interrupt */ |
| 1165 | hostdata->state = S_RUNNING_LEVEL2; |
| 1166 | write_3393(hostdata, WD_COMMAND_PHASE, 0x50); |
| 1167 | write_3393_cmd(hostdata, WD_CMD_SEL_ATN_XFER); |
| 1168 | } else { |
| 1169 | hostdata->state = S_CONNECTED; |
| 1170 | } |
| 1171 | break; |
| 1172 | |
| 1173 | |
| 1174 | case CSR_XFER_DONE | PHS_MESS_IN: |
| 1175 | case CSR_UNEXP | PHS_MESS_IN: |
| 1176 | case CSR_SRV_REQ | PHS_MESS_IN: |
| 1177 | DB(DB_INTR, printk("MSG_IN=")) |
| 1178 | |
| 1179 | msg = read_1_byte(hostdata); |
| 1180 | sr = read_3393(hostdata, WD_SCSI_STATUS); /* clear interrupt */ |
| 1181 | |
| 1182 | hostdata->incoming_msg[hostdata->incoming_ptr] = msg; |
| 1183 | if (hostdata->incoming_msg[0] == EXTENDED_MESSAGE) |
| 1184 | msg = EXTENDED_MESSAGE; |
| 1185 | else |
| 1186 | hostdata->incoming_ptr = 0; |
| 1187 | |
| 1188 | cmd->SCp.Message = msg; |
| 1189 | switch (msg) { |
| 1190 | |
| 1191 | case COMMAND_COMPLETE: |
| 1192 | DB(DB_INTR, printk("CCMP-%ld", cmd->pid)) |
| 1193 | write_3393_cmd(hostdata, WD_CMD_NEGATE_ACK); |
| 1194 | hostdata->state = S_PRE_CMP_DISC; |
| 1195 | break; |
| 1196 | |
| 1197 | case SAVE_POINTERS: |
| 1198 | DB(DB_INTR, printk("SDP")) |
| 1199 | write_3393_cmd(hostdata, WD_CMD_NEGATE_ACK); |
| 1200 | hostdata->state = S_CONNECTED; |
| 1201 | break; |
| 1202 | |
| 1203 | case RESTORE_POINTERS: |
| 1204 | DB(DB_INTR, printk("RDP")) |
| 1205 | if (hostdata->level2 >= L2_BASIC) { |
| 1206 | write_3393(hostdata, WD_COMMAND_PHASE, 0x45); |
| 1207 | write_3393_cmd(hostdata, WD_CMD_SEL_ATN_XFER); |
| 1208 | hostdata->state = S_RUNNING_LEVEL2; |
| 1209 | } else { |
| 1210 | write_3393_cmd(hostdata, WD_CMD_NEGATE_ACK); |
| 1211 | hostdata->state = S_CONNECTED; |
| 1212 | } |
| 1213 | break; |
| 1214 | |
| 1215 | case DISCONNECT: |
| 1216 | DB(DB_INTR, printk("DIS")) |
| 1217 | cmd->device->disconnect = 1; |
| 1218 | write_3393_cmd(hostdata, WD_CMD_NEGATE_ACK); |
| 1219 | hostdata->state = S_PRE_TMP_DISC; |
| 1220 | break; |
| 1221 | |
| 1222 | case MESSAGE_REJECT: |
| 1223 | DB(DB_INTR, printk("REJ")) |
| 1224 | #ifdef SYNC_DEBUG |
| 1225 | printk("-REJ-"); |
| 1226 | #endif |
| 1227 | if (hostdata->sync_stat[cmd->device->id] == SS_WAITING) |
| 1228 | hostdata->sync_stat[cmd->device->id] = SS_SET; |
| 1229 | write_3393_cmd(hostdata, WD_CMD_NEGATE_ACK); |
| 1230 | hostdata->state = S_CONNECTED; |
| 1231 | break; |
| 1232 | |
| 1233 | case EXTENDED_MESSAGE: |
| 1234 | DB(DB_INTR, printk("EXT")) |
| 1235 | |
| 1236 | ucp = hostdata->incoming_msg; |
| 1237 | |
| 1238 | #ifdef SYNC_DEBUG |
| 1239 | printk("%02x", ucp[hostdata->incoming_ptr]); |
| 1240 | #endif |
| 1241 | /* Is this the last byte of the extended message? */ |
| 1242 | |
| 1243 | if ((hostdata->incoming_ptr >= 2) && (hostdata->incoming_ptr == (ucp[1] + 1))) { |
| 1244 | |
| 1245 | switch (ucp[2]) { /* what's the EXTENDED code? */ |
| 1246 | case EXTENDED_SDTR: |
| 1247 | id = calc_sync_xfer(ucp[3], ucp[4]); |
| 1248 | if (hostdata->sync_stat[cmd->device->id] != SS_WAITING) { |
| 1249 | |
| 1250 | /* A device has sent an unsolicited SDTR message; rather than go |
| 1251 | * through the effort of decoding it and then figuring out what |
| 1252 | * our reply should be, we're just gonna say that we have a |
| 1253 | * synchronous fifo depth of 0. This will result in asynchronous |
| 1254 | * transfers - not ideal but so much easier. |
| 1255 | * Actually, this is OK because it assures us that if we don't |
| 1256 | * specifically ask for sync transfers, we won't do any. |
| 1257 | */ |
| 1258 | |
| 1259 | write_3393_cmd(hostdata, WD_CMD_ASSERT_ATN); /* want MESS_OUT */ |
| 1260 | hostdata->outgoing_msg[0] = EXTENDED_MESSAGE; |
| 1261 | hostdata->outgoing_msg[1] = 3; |
| 1262 | hostdata->outgoing_msg[2] = EXTENDED_SDTR; |
| 1263 | hostdata->outgoing_msg[3] = hostdata->default_sx_per / 4; |
| 1264 | hostdata->outgoing_msg[4] = 0; |
| 1265 | hostdata->outgoing_len = 5; |
| 1266 | hostdata->sync_xfer[cmd->device->id] = calc_sync_xfer(hostdata->default_sx_per / 4, 0); |
| 1267 | } else { |
| 1268 | hostdata->sync_xfer[cmd->device->id] = id; |
| 1269 | } |
| 1270 | #ifdef SYNC_DEBUG |
| 1271 | printk("sync_xfer=%02x", hostdata->sync_xfer[cmd->device->id]); |
| 1272 | #endif |
| 1273 | hostdata->sync_stat[cmd->device->id] = SS_SET; |
| 1274 | write_3393_cmd(hostdata, WD_CMD_NEGATE_ACK); |
| 1275 | hostdata->state = S_CONNECTED; |
| 1276 | break; |
| 1277 | case EXTENDED_WDTR: |
| 1278 | write_3393_cmd(hostdata, WD_CMD_ASSERT_ATN); /* want MESS_OUT */ |
| 1279 | printk("sending WDTR "); |
| 1280 | hostdata->outgoing_msg[0] = EXTENDED_MESSAGE; |
| 1281 | hostdata->outgoing_msg[1] = 2; |
| 1282 | hostdata->outgoing_msg[2] = EXTENDED_WDTR; |
| 1283 | hostdata->outgoing_msg[3] = 0; /* 8 bit transfer width */ |
| 1284 | hostdata->outgoing_len = 4; |
| 1285 | write_3393_cmd(hostdata, WD_CMD_NEGATE_ACK); |
| 1286 | hostdata->state = S_CONNECTED; |
| 1287 | break; |
| 1288 | default: |
| 1289 | write_3393_cmd(hostdata, WD_CMD_ASSERT_ATN); /* want MESS_OUT */ |
| 1290 | printk("Rejecting Unknown Extended Message(%02x). ", ucp[2]); |
| 1291 | hostdata->outgoing_msg[0] = MESSAGE_REJECT; |
| 1292 | hostdata->outgoing_len = 1; |
| 1293 | write_3393_cmd(hostdata, WD_CMD_NEGATE_ACK); |
| 1294 | hostdata->state = S_CONNECTED; |
| 1295 | break; |
| 1296 | } |
| 1297 | hostdata->incoming_ptr = 0; |
| 1298 | } |
| 1299 | |
| 1300 | /* We need to read more MESS_IN bytes for the extended message */ |
| 1301 | |
| 1302 | else { |
| 1303 | hostdata->incoming_ptr++; |
| 1304 | write_3393_cmd(hostdata, WD_CMD_NEGATE_ACK); |
| 1305 | hostdata->state = S_CONNECTED; |
| 1306 | } |
| 1307 | break; |
| 1308 | |
| 1309 | default: |
| 1310 | printk("Rejecting Unknown Message(%02x) ", msg); |
| 1311 | write_3393_cmd(hostdata, WD_CMD_ASSERT_ATN); /* want MESS_OUT */ |
| 1312 | hostdata->outgoing_msg[0] = MESSAGE_REJECT; |
| 1313 | hostdata->outgoing_len = 1; |
| 1314 | write_3393_cmd(hostdata, WD_CMD_NEGATE_ACK); |
| 1315 | hostdata->state = S_CONNECTED; |
| 1316 | } |
| 1317 | break; |
| 1318 | |
| 1319 | |
| 1320 | /* Note: this interrupt will occur only after a LEVEL2 command */ |
| 1321 | |
| 1322 | case CSR_SEL_XFER_DONE: |
| 1323 | |
| 1324 | /* Make sure that reselection is enabled at this point - it may |
| 1325 | * have been turned off for the command that just completed. |
| 1326 | */ |
| 1327 | |
| 1328 | write_3393(hostdata, WD_SOURCE_ID, SRCID_ER); |
| 1329 | if (phs == 0x60) { |
| 1330 | DB(DB_INTR, printk("SX-DONE-%ld", cmd->pid)) |
| 1331 | cmd->SCp.Message = COMMAND_COMPLETE; |
| 1332 | lun = read_3393(hostdata, WD_TARGET_LUN); |
| 1333 | DB(DB_INTR, printk(":%d.%d", cmd->SCp.Status, lun)) |
| 1334 | hostdata->connected = NULL; |
| 1335 | hostdata->busy[cmd->device->id] &= ~(1 << cmd->device->lun); |
| 1336 | hostdata->state = S_UNCONNECTED; |
| 1337 | if (cmd->SCp.Status == ILLEGAL_STATUS_BYTE) |
| 1338 | cmd->SCp.Status = lun; |
| 1339 | if (cmd->cmnd[0] == REQUEST_SENSE && cmd->SCp.Status != GOOD) |
| 1340 | cmd->result = (cmd->result & 0x00ffff) | (DID_ERROR << 16); |
| 1341 | else |
| 1342 | cmd->result = cmd->SCp.Status | (cmd->SCp.Message << 8); |
| 1343 | cmd->scsi_done(cmd); |
| 1344 | |
| 1345 | /* We are no longer connected to a target - check to see if |
| 1346 | * there are commands waiting to be executed. |
| 1347 | */ |
| 1348 | |
| 1349 | in2000_execute(instance); |
| 1350 | } else { |
| 1351 | printk("%02x:%02x:%02x-%ld: Unknown SEL_XFER_DONE phase!!---", asr, sr, phs, cmd->pid); |
| 1352 | } |
| 1353 | break; |
| 1354 | |
| 1355 | |
| 1356 | /* Note: this interrupt will occur only after a LEVEL2 command */ |
| 1357 | |
| 1358 | case CSR_SDP: |
| 1359 | DB(DB_INTR, printk("SDP")) |
| 1360 | hostdata->state = S_RUNNING_LEVEL2; |
| 1361 | write_3393(hostdata, WD_COMMAND_PHASE, 0x41); |
| 1362 | write_3393_cmd(hostdata, WD_CMD_SEL_ATN_XFER); |
| 1363 | break; |
| 1364 | |
| 1365 | |
| 1366 | case CSR_XFER_DONE | PHS_MESS_OUT: |
| 1367 | case CSR_UNEXP | PHS_MESS_OUT: |
| 1368 | case CSR_SRV_REQ | PHS_MESS_OUT: |
| 1369 | DB(DB_INTR, printk("MSG_OUT=")) |
| 1370 | |
| 1371 | /* To get here, we've probably requested MESSAGE_OUT and have |
| 1372 | * already put the correct bytes in outgoing_msg[] and filled |
| 1373 | * in outgoing_len. We simply send them out to the SCSI bus. |
| 1374 | * Sometimes we get MESSAGE_OUT phase when we're not expecting |
| 1375 | * it - like when our SDTR message is rejected by a target. Some |
| 1376 | * targets send the REJECT before receiving all of the extended |
| 1377 | * message, and then seem to go back to MESSAGE_OUT for a byte |
| 1378 | * or two. Not sure why, or if I'm doing something wrong to |
| 1379 | * cause this to happen. Regardless, it seems that sending |
| 1380 | * NOP messages in these situations results in no harm and |
| 1381 | * makes everyone happy. |
| 1382 | */ |
| 1383 | if (hostdata->outgoing_len == 0) { |
| 1384 | hostdata->outgoing_len = 1; |
| 1385 | hostdata->outgoing_msg[0] = NOP; |
| 1386 | } |
| 1387 | transfer_pio(hostdata->outgoing_msg, hostdata->outgoing_len, DATA_OUT_DIR, hostdata); |
| 1388 | DB(DB_INTR, printk("%02x", hostdata->outgoing_msg[0])) |
| 1389 | hostdata->outgoing_len = 0; |
| 1390 | hostdata->state = S_CONNECTED; |
| 1391 | break; |
| 1392 | |
| 1393 | |
| 1394 | case CSR_UNEXP_DISC: |
| 1395 | |
| 1396 | /* I think I've seen this after a request-sense that was in response |
| 1397 | * to an error condition, but not sure. We certainly need to do |
| 1398 | * something when we get this interrupt - the question is 'what?'. |
| 1399 | * Let's think positively, and assume some command has finished |
| 1400 | * in a legal manner (like a command that provokes a request-sense), |
| 1401 | * so we treat it as a normal command-complete-disconnect. |
| 1402 | */ |
| 1403 | |
| 1404 | |
| 1405 | /* Make sure that reselection is enabled at this point - it may |
| 1406 | * have been turned off for the command that just completed. |
| 1407 | */ |
| 1408 | |
| 1409 | write_3393(hostdata, WD_SOURCE_ID, SRCID_ER); |
| 1410 | if (cmd == NULL) { |
| 1411 | printk(" - Already disconnected! "); |
| 1412 | hostdata->state = S_UNCONNECTED; |
| 1413 | |
| 1414 | /* release the SMP spin_lock and restore irq state */ |
| 1415 | spin_unlock_irqrestore(instance->host_lock, flags); |
| 1416 | return IRQ_HANDLED; |
| 1417 | } |
| 1418 | DB(DB_INTR, printk("UNEXP_DISC-%ld", cmd->pid)) |
| 1419 | hostdata->connected = NULL; |
| 1420 | hostdata->busy[cmd->device->id] &= ~(1 << cmd->device->lun); |
| 1421 | hostdata->state = S_UNCONNECTED; |
| 1422 | if (cmd->cmnd[0] == REQUEST_SENSE && cmd->SCp.Status != GOOD) |
| 1423 | cmd->result = (cmd->result & 0x00ffff) | (DID_ERROR << 16); |
| 1424 | else |
| 1425 | cmd->result = cmd->SCp.Status | (cmd->SCp.Message << 8); |
| 1426 | cmd->scsi_done(cmd); |
| 1427 | |
| 1428 | /* We are no longer connected to a target - check to see if |
| 1429 | * there are commands waiting to be executed. |
| 1430 | */ |
| 1431 | |
| 1432 | in2000_execute(instance); |
| 1433 | break; |
| 1434 | |
| 1435 | |
| 1436 | case CSR_DISC: |
| 1437 | |
| 1438 | /* Make sure that reselection is enabled at this point - it may |
| 1439 | * have been turned off for the command that just completed. |
| 1440 | */ |
| 1441 | |
| 1442 | write_3393(hostdata, WD_SOURCE_ID, SRCID_ER); |
| 1443 | DB(DB_INTR, printk("DISC-%ld", cmd->pid)) |
| 1444 | if (cmd == NULL) { |
| 1445 | printk(" - Already disconnected! "); |
| 1446 | hostdata->state = S_UNCONNECTED; |
| 1447 | } |
| 1448 | switch (hostdata->state) { |
| 1449 | case S_PRE_CMP_DISC: |
| 1450 | hostdata->connected = NULL; |
| 1451 | hostdata->busy[cmd->device->id] &= ~(1 << cmd->device->lun); |
| 1452 | hostdata->state = S_UNCONNECTED; |
| 1453 | DB(DB_INTR, printk(":%d", cmd->SCp.Status)) |
| 1454 | if (cmd->cmnd[0] == REQUEST_SENSE && cmd->SCp.Status != GOOD) |
| 1455 | cmd->result = (cmd->result & 0x00ffff) | (DID_ERROR << 16); |
| 1456 | else |
| 1457 | cmd->result = cmd->SCp.Status | (cmd->SCp.Message << 8); |
| 1458 | cmd->scsi_done(cmd); |
| 1459 | break; |
| 1460 | case S_PRE_TMP_DISC: |
| 1461 | case S_RUNNING_LEVEL2: |
| 1462 | cmd->host_scribble = (uchar *) hostdata->disconnected_Q; |
| 1463 | hostdata->disconnected_Q = cmd; |
| 1464 | hostdata->connected = NULL; |
| 1465 | hostdata->state = S_UNCONNECTED; |
| 1466 | |
| 1467 | #ifdef PROC_STATISTICS |
| 1468 | hostdata->disc_done_cnt[cmd->device->id]++; |
| 1469 | #endif |
| 1470 | |
| 1471 | break; |
| 1472 | default: |
| 1473 | printk("*** Unexpected DISCONNECT interrupt! ***"); |
| 1474 | hostdata->state = S_UNCONNECTED; |
| 1475 | } |
| 1476 | |
| 1477 | /* We are no longer connected to a target - check to see if |
| 1478 | * there are commands waiting to be executed. |
| 1479 | */ |
| 1480 | |
| 1481 | in2000_execute(instance); |
| 1482 | break; |
| 1483 | |
| 1484 | |
| 1485 | case CSR_RESEL_AM: |
| 1486 | DB(DB_INTR, printk("RESEL")) |
| 1487 | |
| 1488 | /* First we have to make sure this reselection didn't */ |
| 1489 | /* happen during Arbitration/Selection of some other device. */ |
| 1490 | /* If yes, put losing command back on top of input_Q. */ |
| 1491 | if (hostdata->level2 <= L2_NONE) { |
| 1492 | |
| 1493 | if (hostdata->selecting) { |
| 1494 | cmd = (Scsi_Cmnd *) hostdata->selecting; |
| 1495 | hostdata->selecting = NULL; |
| 1496 | hostdata->busy[cmd->device->id] &= ~(1 << cmd->device->lun); |
| 1497 | cmd->host_scribble = (uchar *) hostdata->input_Q; |
| 1498 | hostdata->input_Q = cmd; |
| 1499 | } |
| 1500 | } |
| 1501 | |
| 1502 | else { |
| 1503 | |
| 1504 | if (cmd) { |
| 1505 | if (phs == 0x00) { |
| 1506 | hostdata->busy[cmd->device->id] &= ~(1 << cmd->device->lun); |
| 1507 | cmd->host_scribble = (uchar *) hostdata->input_Q; |
| 1508 | hostdata->input_Q = cmd; |
| 1509 | } else { |
| 1510 | printk("---%02x:%02x:%02x-TROUBLE: Intrusive ReSelect!---", asr, sr, phs); |
| 1511 | while (1) |
| 1512 | printk("\r"); |
| 1513 | } |
| 1514 | } |
| 1515 | |
| 1516 | } |
| 1517 | |
| 1518 | /* OK - find out which device reselected us. */ |
| 1519 | |
| 1520 | id = read_3393(hostdata, WD_SOURCE_ID); |
| 1521 | id &= SRCID_MASK; |
| 1522 | |
| 1523 | /* and extract the lun from the ID message. (Note that we don't |
| 1524 | * bother to check for a valid message here - I guess this is |
| 1525 | * not the right way to go, but....) |
| 1526 | */ |
| 1527 | |
| 1528 | lun = read_3393(hostdata, WD_DATA); |
| 1529 | if (hostdata->level2 < L2_RESELECT) |
| 1530 | write_3393_cmd(hostdata, WD_CMD_NEGATE_ACK); |
| 1531 | lun &= 7; |
| 1532 | |
| 1533 | /* Now we look for the command that's reconnecting. */ |
| 1534 | |
| 1535 | cmd = (Scsi_Cmnd *) hostdata->disconnected_Q; |
| 1536 | patch = NULL; |
| 1537 | while (cmd) { |
| 1538 | if (id == cmd->device->id && lun == cmd->device->lun) |
| 1539 | break; |
| 1540 | patch = cmd; |
| 1541 | cmd = (Scsi_Cmnd *) cmd->host_scribble; |
| 1542 | } |
| 1543 | |
| 1544 | /* Hmm. Couldn't find a valid command.... What to do? */ |
| 1545 | |
| 1546 | if (!cmd) { |
| 1547 | printk("---TROUBLE: target %d.%d not in disconnect queue---", id, lun); |
| 1548 | break; |
| 1549 | } |
| 1550 | |
| 1551 | /* Ok, found the command - now start it up again. */ |
| 1552 | |
| 1553 | if (patch) |
| 1554 | patch->host_scribble = cmd->host_scribble; |
| 1555 | else |
| 1556 | hostdata->disconnected_Q = (Scsi_Cmnd *) cmd->host_scribble; |
| 1557 | hostdata->connected = cmd; |
| 1558 | |
| 1559 | /* We don't need to worry about 'initialize_SCp()' or 'hostdata->busy[]' |
| 1560 | * because these things are preserved over a disconnect. |
| 1561 | * But we DO need to fix the DPD bit so it's correct for this command. |
| 1562 | */ |
| 1563 | |
| 1564 | if (is_dir_out(cmd)) |
| 1565 | write_3393(hostdata, WD_DESTINATION_ID, cmd->device->id); |
| 1566 | else |
| 1567 | write_3393(hostdata, WD_DESTINATION_ID, cmd->device->id | DSTID_DPD); |
| 1568 | if (hostdata->level2 >= L2_RESELECT) { |
| 1569 | write_3393_count(hostdata, 0); /* we want a DATA_PHASE interrupt */ |
| 1570 | write_3393(hostdata, WD_COMMAND_PHASE, 0x45); |
| 1571 | write_3393_cmd(hostdata, WD_CMD_SEL_ATN_XFER); |
| 1572 | hostdata->state = S_RUNNING_LEVEL2; |
| 1573 | } else |
| 1574 | hostdata->state = S_CONNECTED; |
| 1575 | |
| 1576 | DB(DB_INTR, printk("-%ld", cmd->pid)) |
| 1577 | break; |
| 1578 | |
| 1579 | default: |
| 1580 | printk("--UNKNOWN INTERRUPT:%02x:%02x:%02x--", asr, sr, phs); |
| 1581 | } |
| 1582 | |
| 1583 | write1_io(0, IO_LED_OFF); |
| 1584 | |
| 1585 | DB(DB_INTR, printk("} ")) |
| 1586 | |
| 1587 | /* release the SMP spin_lock and restore irq state */ |
| 1588 | spin_unlock_irqrestore(instance->host_lock, flags); |
| 1589 | return IRQ_HANDLED; |
| 1590 | } |
| 1591 | |
| 1592 | |
| 1593 | |
| 1594 | #define RESET_CARD 0 |
| 1595 | #define RESET_CARD_AND_BUS 1 |
| 1596 | #define B_FLAG 0x80 |
| 1597 | |
| 1598 | /* |
| 1599 | * Caller must hold instance lock! |
| 1600 | */ |
| 1601 | |
| 1602 | static int reset_hardware(struct Scsi_Host *instance, int type) |
| 1603 | { |
| 1604 | struct IN2000_hostdata *hostdata; |
| 1605 | int qt, x; |
| 1606 | |
| 1607 | hostdata = (struct IN2000_hostdata *) instance->hostdata; |
| 1608 | |
| 1609 | write1_io(0, IO_LED_ON); |
| 1610 | if (type == RESET_CARD_AND_BUS) { |
| 1611 | write1_io(0, IO_CARD_RESET); |
| 1612 | x = read1_io(IO_HARDWARE); |
| 1613 | } |
| 1614 | x = read_3393(hostdata, WD_SCSI_STATUS); /* clear any WD intrpt */ |
| 1615 | write_3393(hostdata, WD_OWN_ID, instance->this_id | OWNID_EAF | OWNID_RAF | OWNID_FS_8); |
| 1616 | write_3393(hostdata, WD_CONTROL, CTRL_IDI | CTRL_EDI | CTRL_POLLED); |
| 1617 | write_3393(hostdata, WD_SYNCHRONOUS_TRANSFER, calc_sync_xfer(hostdata->default_sx_per / 4, DEFAULT_SX_OFF)); |
| 1618 | |
| 1619 | write1_io(0, IO_FIFO_WRITE); /* clear fifo counter */ |
| 1620 | write1_io(0, IO_FIFO_READ); /* start fifo out in read mode */ |
| 1621 | write_3393(hostdata, WD_COMMAND, WD_CMD_RESET); |
| 1622 | /* FIXME: timeout ?? */ |
| 1623 | while (!(READ_AUX_STAT() & ASR_INT)) |
| 1624 | cpu_relax(); /* wait for RESET to complete */ |
| 1625 | |
| 1626 | x = read_3393(hostdata, WD_SCSI_STATUS); /* clear interrupt */ |
| 1627 | |
| 1628 | write_3393(hostdata, WD_QUEUE_TAG, 0xa5); /* any random number */ |
| 1629 | qt = read_3393(hostdata, WD_QUEUE_TAG); |
| 1630 | if (qt == 0xa5) { |
| 1631 | x |= B_FLAG; |
| 1632 | write_3393(hostdata, WD_QUEUE_TAG, 0); |
| 1633 | } |
| 1634 | write_3393(hostdata, WD_TIMEOUT_PERIOD, TIMEOUT_PERIOD_VALUE); |
| 1635 | write_3393(hostdata, WD_CONTROL, CTRL_IDI | CTRL_EDI | CTRL_POLLED); |
| 1636 | write1_io(0, IO_LED_OFF); |
| 1637 | return x; |
| 1638 | } |
| 1639 | |
| 1640 | |
| 1641 | |
| 1642 | static int in2000_bus_reset(Scsi_Cmnd * cmd) |
| 1643 | { |
| 1644 | struct Scsi_Host *instance; |
| 1645 | struct IN2000_hostdata *hostdata; |
| 1646 | int x; |
Jeff Garzik | 68b3aa7 | 2005-05-28 07:56:31 -0400 | [diff] [blame] | 1647 | unsigned long flags; |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1648 | |
| 1649 | instance = cmd->device->host; |
| 1650 | hostdata = (struct IN2000_hostdata *) instance->hostdata; |
| 1651 | |
| 1652 | printk(KERN_WARNING "scsi%d: Reset. ", instance->host_no); |
| 1653 | |
Jeff Garzik | 68b3aa7 | 2005-05-28 07:56:31 -0400 | [diff] [blame] | 1654 | spin_lock_irqsave(instance->host_lock, flags); |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1655 | |
Jeff Garzik | 68b3aa7 | 2005-05-28 07:56:31 -0400 | [diff] [blame] | 1656 | /* do scsi-reset here */ |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1657 | reset_hardware(instance, RESET_CARD_AND_BUS); |
| 1658 | for (x = 0; x < 8; x++) { |
| 1659 | hostdata->busy[x] = 0; |
| 1660 | hostdata->sync_xfer[x] = calc_sync_xfer(DEFAULT_SX_PER / 4, DEFAULT_SX_OFF); |
| 1661 | hostdata->sync_stat[x] = SS_UNSET; /* using default sync values */ |
| 1662 | } |
| 1663 | hostdata->input_Q = NULL; |
| 1664 | hostdata->selecting = NULL; |
| 1665 | hostdata->connected = NULL; |
| 1666 | hostdata->disconnected_Q = NULL; |
| 1667 | hostdata->state = S_UNCONNECTED; |
| 1668 | hostdata->fifo = FI_FIFO_UNUSED; |
| 1669 | hostdata->incoming_ptr = 0; |
| 1670 | hostdata->outgoing_len = 0; |
| 1671 | |
| 1672 | cmd->result = DID_RESET << 16; |
Jeff Garzik | 68b3aa7 | 2005-05-28 07:56:31 -0400 | [diff] [blame] | 1673 | |
| 1674 | spin_unlock_irqrestore(instance->host_lock, flags); |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1675 | return SUCCESS; |
| 1676 | } |
| 1677 | |
Jeff Garzik | 8fa728a | 2005-05-28 07:54:40 -0400 | [diff] [blame] | 1678 | static int __in2000_abort(Scsi_Cmnd * cmd) |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1679 | { |
| 1680 | struct Scsi_Host *instance; |
| 1681 | struct IN2000_hostdata *hostdata; |
| 1682 | Scsi_Cmnd *tmp, *prev; |
| 1683 | uchar sr, asr; |
| 1684 | unsigned long timeout; |
| 1685 | |
| 1686 | instance = cmd->device->host; |
| 1687 | hostdata = (struct IN2000_hostdata *) instance->hostdata; |
| 1688 | |
| 1689 | printk(KERN_DEBUG "scsi%d: Abort-", instance->host_no); |
| 1690 | printk("(asr=%02x,count=%ld,resid=%d,buf_resid=%d,have_data=%d,FC=%02x)- ", READ_AUX_STAT(), read_3393_count(hostdata), cmd->SCp.this_residual, cmd->SCp.buffers_residual, cmd->SCp.have_data_in, read1_io(IO_FIFO_COUNT)); |
| 1691 | |
| 1692 | /* |
| 1693 | * Case 1 : If the command hasn't been issued yet, we simply remove it |
| 1694 | * from the inout_Q. |
| 1695 | */ |
| 1696 | |
| 1697 | tmp = (Scsi_Cmnd *) hostdata->input_Q; |
| 1698 | prev = NULL; |
| 1699 | while (tmp) { |
| 1700 | if (tmp == cmd) { |
| 1701 | if (prev) |
| 1702 | prev->host_scribble = cmd->host_scribble; |
| 1703 | cmd->host_scribble = NULL; |
| 1704 | cmd->result = DID_ABORT << 16; |
| 1705 | printk(KERN_WARNING "scsi%d: Abort - removing command %ld from input_Q. ", instance->host_no, cmd->pid); |
| 1706 | cmd->scsi_done(cmd); |
| 1707 | return SUCCESS; |
| 1708 | } |
| 1709 | prev = tmp; |
| 1710 | tmp = (Scsi_Cmnd *) tmp->host_scribble; |
| 1711 | } |
| 1712 | |
| 1713 | /* |
| 1714 | * Case 2 : If the command is connected, we're going to fail the abort |
| 1715 | * and let the high level SCSI driver retry at a later time or |
| 1716 | * issue a reset. |
| 1717 | * |
| 1718 | * Timeouts, and therefore aborted commands, will be highly unlikely |
| 1719 | * and handling them cleanly in this situation would make the common |
| 1720 | * case of noresets less efficient, and would pollute our code. So, |
| 1721 | * we fail. |
| 1722 | */ |
| 1723 | |
| 1724 | if (hostdata->connected == cmd) { |
| 1725 | |
| 1726 | printk(KERN_WARNING "scsi%d: Aborting connected command %ld - ", instance->host_no, cmd->pid); |
| 1727 | |
| 1728 | printk("sending wd33c93 ABORT command - "); |
| 1729 | write_3393(hostdata, WD_CONTROL, CTRL_IDI | CTRL_EDI | CTRL_POLLED); |
| 1730 | write_3393_cmd(hostdata, WD_CMD_ABORT); |
| 1731 | |
| 1732 | /* Now we have to attempt to flush out the FIFO... */ |
| 1733 | |
| 1734 | printk("flushing fifo - "); |
| 1735 | timeout = 1000000; |
| 1736 | do { |
| 1737 | asr = READ_AUX_STAT(); |
| 1738 | if (asr & ASR_DBR) |
| 1739 | read_3393(hostdata, WD_DATA); |
| 1740 | } while (!(asr & ASR_INT) && timeout-- > 0); |
| 1741 | sr = read_3393(hostdata, WD_SCSI_STATUS); |
| 1742 | printk("asr=%02x, sr=%02x, %ld bytes un-transferred (timeout=%ld) - ", asr, sr, read_3393_count(hostdata), timeout); |
| 1743 | |
| 1744 | /* |
| 1745 | * Abort command processed. |
| 1746 | * Still connected. |
| 1747 | * We must disconnect. |
| 1748 | */ |
| 1749 | |
| 1750 | printk("sending wd33c93 DISCONNECT command - "); |
| 1751 | write_3393_cmd(hostdata, WD_CMD_DISCONNECT); |
| 1752 | |
| 1753 | timeout = 1000000; |
| 1754 | asr = READ_AUX_STAT(); |
| 1755 | while ((asr & ASR_CIP) && timeout-- > 0) |
| 1756 | asr = READ_AUX_STAT(); |
| 1757 | sr = read_3393(hostdata, WD_SCSI_STATUS); |
| 1758 | printk("asr=%02x, sr=%02x.", asr, sr); |
| 1759 | |
| 1760 | hostdata->busy[cmd->device->id] &= ~(1 << cmd->device->lun); |
| 1761 | hostdata->connected = NULL; |
| 1762 | hostdata->state = S_UNCONNECTED; |
| 1763 | cmd->result = DID_ABORT << 16; |
| 1764 | cmd->scsi_done(cmd); |
| 1765 | |
| 1766 | in2000_execute(instance); |
| 1767 | |
| 1768 | return SUCCESS; |
| 1769 | } |
| 1770 | |
| 1771 | /* |
| 1772 | * Case 3: If the command is currently disconnected from the bus, |
| 1773 | * we're not going to expend much effort here: Let's just return |
| 1774 | * an ABORT_SNOOZE and hope for the best... |
| 1775 | */ |
| 1776 | |
| 1777 | for (tmp = (Scsi_Cmnd *) hostdata->disconnected_Q; tmp; tmp = (Scsi_Cmnd *) tmp->host_scribble) |
| 1778 | if (cmd == tmp) { |
| 1779 | printk(KERN_DEBUG "scsi%d: unable to abort disconnected command.\n", instance->host_no); |
| 1780 | return FAILED; |
| 1781 | } |
| 1782 | |
| 1783 | /* |
| 1784 | * Case 4 : If we reached this point, the command was not found in any of |
| 1785 | * the queues. |
| 1786 | * |
| 1787 | * We probably reached this point because of an unlikely race condition |
| 1788 | * between the command completing successfully and the abortion code, |
| 1789 | * so we won't panic, but we will notify the user in case something really |
| 1790 | * broke. |
| 1791 | */ |
| 1792 | |
| 1793 | in2000_execute(instance); |
| 1794 | |
| 1795 | printk("scsi%d: warning : SCSI command probably completed successfully" " before abortion. ", instance->host_no); |
| 1796 | return SUCCESS; |
| 1797 | } |
| 1798 | |
Jeff Garzik | 8fa728a | 2005-05-28 07:54:40 -0400 | [diff] [blame] | 1799 | static int in2000_abort(Scsi_Cmnd * cmd) |
| 1800 | { |
| 1801 | int rc; |
| 1802 | |
| 1803 | spin_lock_irq(cmd->device->host->host_lock); |
| 1804 | rc = __in2000_abort(cmd); |
| 1805 | spin_unlock_irq(cmd->device->host->host_lock); |
| 1806 | |
| 1807 | return rc; |
| 1808 | } |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1809 | |
| 1810 | |
| 1811 | #define MAX_IN2000_HOSTS 3 |
Tobias Klauser | 6391a11 | 2006-06-08 22:23:48 -0700 | [diff] [blame] | 1812 | #define MAX_SETUP_ARGS ARRAY_SIZE(setup_args) |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1813 | #define SETUP_BUFFER_SIZE 200 |
| 1814 | static char setup_buffer[SETUP_BUFFER_SIZE]; |
| 1815 | static char setup_used[MAX_SETUP_ARGS]; |
| 1816 | static int done_setup = 0; |
| 1817 | |
| 1818 | static void __init in2000_setup(char *str, int *ints) |
| 1819 | { |
| 1820 | int i; |
| 1821 | char *p1, *p2; |
| 1822 | |
| 1823 | strlcpy(setup_buffer, str, SETUP_BUFFER_SIZE); |
| 1824 | p1 = setup_buffer; |
| 1825 | i = 0; |
| 1826 | while (*p1 && (i < MAX_SETUP_ARGS)) { |
| 1827 | p2 = strchr(p1, ','); |
| 1828 | if (p2) { |
| 1829 | *p2 = '\0'; |
| 1830 | if (p1 != p2) |
| 1831 | setup_args[i] = p1; |
| 1832 | p1 = p2 + 1; |
| 1833 | i++; |
| 1834 | } else { |
| 1835 | setup_args[i] = p1; |
| 1836 | break; |
| 1837 | } |
| 1838 | } |
| 1839 | for (i = 0; i < MAX_SETUP_ARGS; i++) |
| 1840 | setup_used[i] = 0; |
| 1841 | done_setup = 1; |
| 1842 | } |
| 1843 | |
| 1844 | |
| 1845 | /* check_setup_args() returns index if key found, 0 if not |
| 1846 | */ |
| 1847 | |
| 1848 | static int __init check_setup_args(char *key, int *val, char *buf) |
| 1849 | { |
| 1850 | int x; |
| 1851 | char *cp; |
| 1852 | |
| 1853 | for (x = 0; x < MAX_SETUP_ARGS; x++) { |
| 1854 | if (setup_used[x]) |
| 1855 | continue; |
| 1856 | if (!strncmp(setup_args[x], key, strlen(key))) |
| 1857 | break; |
| 1858 | } |
| 1859 | if (x == MAX_SETUP_ARGS) |
| 1860 | return 0; |
| 1861 | setup_used[x] = 1; |
| 1862 | cp = setup_args[x] + strlen(key); |
| 1863 | *val = -1; |
| 1864 | if (*cp != ':') |
| 1865 | return ++x; |
| 1866 | cp++; |
| 1867 | if ((*cp >= '0') && (*cp <= '9')) { |
| 1868 | *val = simple_strtoul(cp, NULL, 0); |
| 1869 | } |
| 1870 | return ++x; |
| 1871 | } |
| 1872 | |
| 1873 | |
| 1874 | |
| 1875 | /* The "correct" (ie portable) way to access memory-mapped hardware |
| 1876 | * such as the IN2000 EPROM and dip switch is through the use of |
| 1877 | * special macros declared in 'asm/io.h'. We use readb() and readl() |
| 1878 | * when reading from the card's BIOS area in in2000_detect(). |
| 1879 | */ |
| 1880 | static u32 bios_tab[] in2000__INITDATA = { |
| 1881 | 0xc8000, |
| 1882 | 0xd0000, |
| 1883 | 0xd8000, |
| 1884 | 0 |
| 1885 | }; |
| 1886 | |
| 1887 | static unsigned short base_tab[] in2000__INITDATA = { |
| 1888 | 0x220, |
| 1889 | 0x200, |
| 1890 | 0x110, |
| 1891 | 0x100, |
| 1892 | }; |
| 1893 | |
| 1894 | static int int_tab[] in2000__INITDATA = { |
| 1895 | 15, |
| 1896 | 14, |
| 1897 | 11, |
| 1898 | 10 |
| 1899 | }; |
| 1900 | |
Al Viro | 22bc685 | 2006-03-24 03:15:38 -0800 | [diff] [blame] | 1901 | static int probe_bios(u32 addr, u32 *s1, uchar *switches) |
| 1902 | { |
| 1903 | void __iomem *p = ioremap(addr, 0x34); |
| 1904 | if (!p) |
| 1905 | return 0; |
| 1906 | *s1 = readl(p + 0x10); |
| 1907 | if (*s1 == 0x41564f4e || readl(p + 0x30) == 0x61776c41) { |
| 1908 | /* Read the switch image that's mapped into EPROM space */ |
| 1909 | *switches = ~readb(p + 0x20); |
| 1910 | iounmap(p); |
| 1911 | return 1; |
| 1912 | } |
| 1913 | iounmap(p); |
| 1914 | return 0; |
| 1915 | } |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1916 | |
Christoph Hellwig | d0be4a7d | 2005-10-31 18:31:40 +0100 | [diff] [blame] | 1917 | static int __init in2000_detect(struct scsi_host_template * tpnt) |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1918 | { |
| 1919 | struct Scsi_Host *instance; |
| 1920 | struct IN2000_hostdata *hostdata; |
| 1921 | int detect_count; |
| 1922 | int bios; |
| 1923 | int x; |
| 1924 | unsigned short base; |
| 1925 | uchar switches; |
| 1926 | uchar hrev; |
| 1927 | unsigned long flags; |
| 1928 | int val; |
| 1929 | char buf[32]; |
| 1930 | |
| 1931 | /* Thanks to help from Bill Earnest, probing for IN2000 cards is a |
| 1932 | * pretty straightforward and fool-proof operation. There are 3 |
| 1933 | * possible locations for the IN2000 EPROM in memory space - if we |
| 1934 | * find a BIOS signature, we can read the dip switch settings from |
| 1935 | * the byte at BIOS+32 (shadowed in by logic on the card). From 2 |
| 1936 | * of the switch bits we get the card's address in IO space. There's |
| 1937 | * an image of the dip switch there, also, so we have a way to back- |
| 1938 | * check that this really is an IN2000 card. Very nifty. Use the |
| 1939 | * 'ioport:xx' command-line parameter if your BIOS EPROM is absent |
| 1940 | * or disabled. |
| 1941 | */ |
| 1942 | |
| 1943 | if (!done_setup && setup_strings) |
| 1944 | in2000_setup(setup_strings, NULL); |
| 1945 | |
| 1946 | detect_count = 0; |
| 1947 | for (bios = 0; bios_tab[bios]; bios++) { |
Al Viro | 22bc685 | 2006-03-24 03:15:38 -0800 | [diff] [blame] | 1948 | u32 s1 = 0; |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1949 | if (check_setup_args("ioport", &val, buf)) { |
| 1950 | base = val; |
| 1951 | switches = ~inb(base + IO_SWITCHES) & 0xff; |
| 1952 | printk("Forcing IN2000 detection at IOport 0x%x ", base); |
| 1953 | bios = 2; |
| 1954 | } |
| 1955 | /* |
| 1956 | * There have been a couple of BIOS versions with different layouts |
| 1957 | * for the obvious ID strings. We look for the 2 most common ones and |
| 1958 | * hope that they cover all the cases... |
| 1959 | */ |
Al Viro | 22bc685 | 2006-03-24 03:15:38 -0800 | [diff] [blame] | 1960 | else if (probe_bios(bios_tab[bios], &s1, &switches)) { |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1961 | printk("Found IN2000 BIOS at 0x%x ", (unsigned int) bios_tab[bios]); |
| 1962 | |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1963 | /* Find out where the IO space is */ |
| 1964 | |
| 1965 | x = switches & (SW_ADDR0 | SW_ADDR1); |
| 1966 | base = base_tab[x]; |
| 1967 | |
| 1968 | /* Check for the IN2000 signature in IO space. */ |
| 1969 | |
| 1970 | x = ~inb(base + IO_SWITCHES) & 0xff; |
| 1971 | if (x != switches) { |
| 1972 | printk("Bad IO signature: %02x vs %02x.\n", x, switches); |
| 1973 | continue; |
| 1974 | } |
| 1975 | } else |
| 1976 | continue; |
| 1977 | |
| 1978 | /* OK. We have a base address for the IO ports - run a few safety checks */ |
| 1979 | |
| 1980 | if (!(switches & SW_BIT7)) { /* I _think_ all cards do this */ |
| 1981 | printk("There is no IN-2000 SCSI card at IOport 0x%03x!\n", base); |
| 1982 | continue; |
| 1983 | } |
| 1984 | |
| 1985 | /* Let's assume any hardware version will work, although the driver |
| 1986 | * has only been tested on 0x21, 0x22, 0x25, 0x26, and 0x27. We'll |
| 1987 | * print out the rev number for reference later, but accept them all. |
| 1988 | */ |
| 1989 | |
| 1990 | hrev = inb(base + IO_HARDWARE); |
| 1991 | |
| 1992 | /* Bit 2 tells us if interrupts are disabled */ |
| 1993 | if (switches & SW_DISINT) { |
| 1994 | printk("The IN-2000 SCSI card at IOport 0x%03x ", base); |
| 1995 | printk("is not configured for interrupt operation!\n"); |
| 1996 | printk("This driver requires an interrupt: cancelling detection.\n"); |
| 1997 | continue; |
| 1998 | } |
| 1999 | |
| 2000 | /* Ok. We accept that there's an IN2000 at ioaddr 'base'. Now |
| 2001 | * initialize it. |
| 2002 | */ |
| 2003 | |
| 2004 | tpnt->proc_name = "in2000"; |
| 2005 | instance = scsi_register(tpnt, sizeof(struct IN2000_hostdata)); |
| 2006 | if (instance == NULL) |
| 2007 | continue; |
| 2008 | detect_count++; |
| 2009 | hostdata = (struct IN2000_hostdata *) instance->hostdata; |
| 2010 | instance->io_port = hostdata->io_base = base; |
| 2011 | hostdata->dip_switch = switches; |
| 2012 | hostdata->hrev = hrev; |
| 2013 | |
| 2014 | write1_io(0, IO_FIFO_WRITE); /* clear fifo counter */ |
| 2015 | write1_io(0, IO_FIFO_READ); /* start fifo out in read mode */ |
| 2016 | write1_io(0, IO_INTR_MASK); /* allow all ints */ |
| 2017 | x = int_tab[(switches & (SW_INT0 | SW_INT1)) >> SW_INT_SHIFT]; |
Thomas Gleixner | 1d6f359 | 2006-07-01 19:29:42 -0700 | [diff] [blame] | 2018 | if (request_irq(x, in2000_intr, IRQF_DISABLED, "in2000", instance)) { |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 2019 | printk("in2000_detect: Unable to allocate IRQ.\n"); |
| 2020 | detect_count--; |
| 2021 | continue; |
| 2022 | } |
| 2023 | instance->irq = x; |
| 2024 | instance->n_io_port = 13; |
| 2025 | request_region(base, 13, "in2000"); /* lock in this IO space for our use */ |
| 2026 | |
| 2027 | for (x = 0; x < 8; x++) { |
| 2028 | hostdata->busy[x] = 0; |
| 2029 | hostdata->sync_xfer[x] = calc_sync_xfer(DEFAULT_SX_PER / 4, DEFAULT_SX_OFF); |
| 2030 | hostdata->sync_stat[x] = SS_UNSET; /* using default sync values */ |
| 2031 | #ifdef PROC_STATISTICS |
| 2032 | hostdata->cmd_cnt[x] = 0; |
| 2033 | hostdata->disc_allowed_cnt[x] = 0; |
| 2034 | hostdata->disc_done_cnt[x] = 0; |
| 2035 | #endif |
| 2036 | } |
| 2037 | hostdata->input_Q = NULL; |
| 2038 | hostdata->selecting = NULL; |
| 2039 | hostdata->connected = NULL; |
| 2040 | hostdata->disconnected_Q = NULL; |
| 2041 | hostdata->state = S_UNCONNECTED; |
| 2042 | hostdata->fifo = FI_FIFO_UNUSED; |
| 2043 | hostdata->level2 = L2_BASIC; |
| 2044 | hostdata->disconnect = DIS_ADAPTIVE; |
| 2045 | hostdata->args = DEBUG_DEFAULTS; |
| 2046 | hostdata->incoming_ptr = 0; |
| 2047 | hostdata->outgoing_len = 0; |
| 2048 | hostdata->default_sx_per = DEFAULT_SX_PER; |
| 2049 | |
| 2050 | /* Older BIOS's had a 'sync on/off' switch - use its setting */ |
| 2051 | |
Al Viro | 22bc685 | 2006-03-24 03:15:38 -0800 | [diff] [blame] | 2052 | if (s1 == 0x41564f4e && (switches & SW_SYNC_DOS5)) |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 2053 | hostdata->sync_off = 0x00; /* sync defaults to on */ |
| 2054 | else |
| 2055 | hostdata->sync_off = 0xff; /* sync defaults to off */ |
| 2056 | |
| 2057 | #ifdef PROC_INTERFACE |
| 2058 | hostdata->proc = PR_VERSION | PR_INFO | PR_STATISTICS | PR_CONNECTED | PR_INPUTQ | PR_DISCQ | PR_STOP; |
| 2059 | #ifdef PROC_STATISTICS |
| 2060 | hostdata->int_cnt = 0; |
| 2061 | #endif |
| 2062 | #endif |
| 2063 | |
| 2064 | if (check_setup_args("nosync", &val, buf)) |
| 2065 | hostdata->sync_off = val; |
| 2066 | |
| 2067 | if (check_setup_args("period", &val, buf)) |
| 2068 | hostdata->default_sx_per = sx_table[round_period((unsigned int) val)].period_ns; |
| 2069 | |
| 2070 | if (check_setup_args("disconnect", &val, buf)) { |
| 2071 | if ((val >= DIS_NEVER) && (val <= DIS_ALWAYS)) |
| 2072 | hostdata->disconnect = val; |
| 2073 | else |
| 2074 | hostdata->disconnect = DIS_ADAPTIVE; |
| 2075 | } |
| 2076 | |
| 2077 | if (check_setup_args("noreset", &val, buf)) |
| 2078 | hostdata->args ^= A_NO_SCSI_RESET; |
| 2079 | |
| 2080 | if (check_setup_args("level2", &val, buf)) |
| 2081 | hostdata->level2 = val; |
| 2082 | |
| 2083 | if (check_setup_args("debug", &val, buf)) |
| 2084 | hostdata->args = (val & DB_MASK); |
| 2085 | |
| 2086 | #ifdef PROC_INTERFACE |
| 2087 | if (check_setup_args("proc", &val, buf)) |
| 2088 | hostdata->proc = val; |
| 2089 | #endif |
| 2090 | |
| 2091 | |
| 2092 | /* FIXME: not strictly needed I think but the called code expects |
| 2093 | to be locked */ |
| 2094 | spin_lock_irqsave(instance->host_lock, flags); |
| 2095 | x = reset_hardware(instance, (hostdata->args & A_NO_SCSI_RESET) ? RESET_CARD : RESET_CARD_AND_BUS); |
| 2096 | spin_unlock_irqrestore(instance->host_lock, flags); |
| 2097 | |
| 2098 | hostdata->microcode = read_3393(hostdata, WD_CDB_1); |
| 2099 | if (x & 0x01) { |
| 2100 | if (x & B_FLAG) |
| 2101 | hostdata->chip = C_WD33C93B; |
| 2102 | else |
| 2103 | hostdata->chip = C_WD33C93A; |
| 2104 | } else |
| 2105 | hostdata->chip = C_WD33C93; |
| 2106 | |
| 2107 | printk("dip_switch=%02x irq=%d ioport=%02x floppy=%s sync/DOS5=%s ", (switches & 0x7f), instance->irq, hostdata->io_base, (switches & SW_FLOPPY) ? "Yes" : "No", (switches & SW_SYNC_DOS5) ? "Yes" : "No"); |
| 2108 | printk("hardware_ver=%02x chip=%s microcode=%02x\n", hrev, (hostdata->chip == C_WD33C93) ? "WD33c93" : (hostdata->chip == C_WD33C93A) ? "WD33c93A" : (hostdata->chip == C_WD33C93B) ? "WD33c93B" : "unknown", hostdata->microcode); |
| 2109 | #ifdef DEBUGGING_ON |
| 2110 | printk("setup_args = "); |
| 2111 | for (x = 0; x < MAX_SETUP_ARGS; x++) |
| 2112 | printk("%s,", setup_args[x]); |
| 2113 | printk("\n"); |
| 2114 | #endif |
| 2115 | if (hostdata->sync_off == 0xff) |
| 2116 | printk("Sync-transfer DISABLED on all devices: ENABLE from command-line\n"); |
| 2117 | printk("IN2000 driver version %s - %s\n", IN2000_VERSION, IN2000_DATE); |
| 2118 | } |
| 2119 | |
| 2120 | return detect_count; |
| 2121 | } |
| 2122 | |
| 2123 | static int in2000_release(struct Scsi_Host *shost) |
| 2124 | { |
| 2125 | if (shost->irq) |
| 2126 | free_irq(shost->irq, shost); |
| 2127 | if (shost->io_port && shost->n_io_port) |
| 2128 | release_region(shost->io_port, shost->n_io_port); |
| 2129 | return 0; |
| 2130 | } |
| 2131 | |
| 2132 | /* NOTE: I lifted this function straight out of the old driver, |
| 2133 | * and have not tested it. Presumably it does what it's |
| 2134 | * supposed to do... |
| 2135 | */ |
| 2136 | |
| 2137 | static int in2000_biosparam(struct scsi_device *sdev, struct block_device *bdev, sector_t capacity, int *iinfo) |
| 2138 | { |
| 2139 | int size; |
| 2140 | |
| 2141 | size = capacity; |
| 2142 | iinfo[0] = 64; |
| 2143 | iinfo[1] = 32; |
| 2144 | iinfo[2] = size >> 11; |
| 2145 | |
| 2146 | /* This should approximate the large drive handling that the DOS ASPI manager |
| 2147 | uses. Drives very near the boundaries may not be handled correctly (i.e. |
| 2148 | near 2.0 Gb and 4.0 Gb) */ |
| 2149 | |
| 2150 | if (iinfo[2] > 1024) { |
| 2151 | iinfo[0] = 64; |
| 2152 | iinfo[1] = 63; |
| 2153 | iinfo[2] = (unsigned long) capacity / (iinfo[0] * iinfo[1]); |
| 2154 | } |
| 2155 | if (iinfo[2] > 1024) { |
| 2156 | iinfo[0] = 128; |
| 2157 | iinfo[1] = 63; |
| 2158 | iinfo[2] = (unsigned long) capacity / (iinfo[0] * iinfo[1]); |
| 2159 | } |
| 2160 | if (iinfo[2] > 1024) { |
| 2161 | iinfo[0] = 255; |
| 2162 | iinfo[1] = 63; |
| 2163 | iinfo[2] = (unsigned long) capacity / (iinfo[0] * iinfo[1]); |
| 2164 | } |
| 2165 | return 0; |
| 2166 | } |
| 2167 | |
| 2168 | |
| 2169 | static int in2000_proc_info(struct Scsi_Host *instance, char *buf, char **start, off_t off, int len, int in) |
| 2170 | { |
| 2171 | |
| 2172 | #ifdef PROC_INTERFACE |
| 2173 | |
| 2174 | char *bp; |
| 2175 | char tbuf[128]; |
| 2176 | unsigned long flags; |
| 2177 | struct IN2000_hostdata *hd; |
| 2178 | Scsi_Cmnd *cmd; |
| 2179 | int x, i; |
| 2180 | static int stop = 0; |
| 2181 | |
| 2182 | hd = (struct IN2000_hostdata *) instance->hostdata; |
| 2183 | |
| 2184 | /* If 'in' is TRUE we need to _read_ the proc file. We accept the following |
| 2185 | * keywords (same format as command-line, but only ONE per read): |
| 2186 | * debug |
| 2187 | * disconnect |
| 2188 | * period |
| 2189 | * resync |
| 2190 | * proc |
| 2191 | */ |
| 2192 | |
| 2193 | if (in) { |
| 2194 | buf[len] = '\0'; |
| 2195 | bp = buf; |
| 2196 | if (!strncmp(bp, "debug:", 6)) { |
| 2197 | bp += 6; |
| 2198 | hd->args = simple_strtoul(bp, NULL, 0) & DB_MASK; |
| 2199 | } else if (!strncmp(bp, "disconnect:", 11)) { |
| 2200 | bp += 11; |
| 2201 | x = simple_strtoul(bp, NULL, 0); |
| 2202 | if (x < DIS_NEVER || x > DIS_ALWAYS) |
| 2203 | x = DIS_ADAPTIVE; |
| 2204 | hd->disconnect = x; |
| 2205 | } else if (!strncmp(bp, "period:", 7)) { |
| 2206 | bp += 7; |
| 2207 | x = simple_strtoul(bp, NULL, 0); |
| 2208 | hd->default_sx_per = sx_table[round_period((unsigned int) x)].period_ns; |
| 2209 | } else if (!strncmp(bp, "resync:", 7)) { |
| 2210 | bp += 7; |
| 2211 | x = simple_strtoul(bp, NULL, 0); |
| 2212 | for (i = 0; i < 7; i++) |
| 2213 | if (x & (1 << i)) |
| 2214 | hd->sync_stat[i] = SS_UNSET; |
| 2215 | } else if (!strncmp(bp, "proc:", 5)) { |
| 2216 | bp += 5; |
| 2217 | hd->proc = simple_strtoul(bp, NULL, 0); |
| 2218 | } else if (!strncmp(bp, "level2:", 7)) { |
| 2219 | bp += 7; |
| 2220 | hd->level2 = simple_strtoul(bp, NULL, 0); |
| 2221 | } |
| 2222 | return len; |
| 2223 | } |
| 2224 | |
| 2225 | spin_lock_irqsave(instance->host_lock, flags); |
| 2226 | bp = buf; |
| 2227 | *bp = '\0'; |
| 2228 | if (hd->proc & PR_VERSION) { |
| 2229 | sprintf(tbuf, "\nVersion %s - %s. Compiled %s %s", IN2000_VERSION, IN2000_DATE, __DATE__, __TIME__); |
| 2230 | strcat(bp, tbuf); |
| 2231 | } |
| 2232 | if (hd->proc & PR_INFO) { |
| 2233 | sprintf(tbuf, "\ndip_switch=%02x: irq=%d io=%02x floppy=%s sync/DOS5=%s", (hd->dip_switch & 0x7f), instance->irq, hd->io_base, (hd->dip_switch & 0x40) ? "Yes" : "No", (hd->dip_switch & 0x20) ? "Yes" : "No"); |
| 2234 | strcat(bp, tbuf); |
| 2235 | strcat(bp, "\nsync_xfer[] = "); |
| 2236 | for (x = 0; x < 7; x++) { |
| 2237 | sprintf(tbuf, "\t%02x", hd->sync_xfer[x]); |
| 2238 | strcat(bp, tbuf); |
| 2239 | } |
| 2240 | strcat(bp, "\nsync_stat[] = "); |
| 2241 | for (x = 0; x < 7; x++) { |
| 2242 | sprintf(tbuf, "\t%02x", hd->sync_stat[x]); |
| 2243 | strcat(bp, tbuf); |
| 2244 | } |
| 2245 | } |
| 2246 | #ifdef PROC_STATISTICS |
| 2247 | if (hd->proc & PR_STATISTICS) { |
| 2248 | strcat(bp, "\ncommands issued: "); |
| 2249 | for (x = 0; x < 7; x++) { |
| 2250 | sprintf(tbuf, "\t%ld", hd->cmd_cnt[x]); |
| 2251 | strcat(bp, tbuf); |
| 2252 | } |
| 2253 | strcat(bp, "\ndisconnects allowed:"); |
| 2254 | for (x = 0; x < 7; x++) { |
| 2255 | sprintf(tbuf, "\t%ld", hd->disc_allowed_cnt[x]); |
| 2256 | strcat(bp, tbuf); |
| 2257 | } |
| 2258 | strcat(bp, "\ndisconnects done: "); |
| 2259 | for (x = 0; x < 7; x++) { |
| 2260 | sprintf(tbuf, "\t%ld", hd->disc_done_cnt[x]); |
| 2261 | strcat(bp, tbuf); |
| 2262 | } |
| 2263 | sprintf(tbuf, "\ninterrupts: \t%ld", hd->int_cnt); |
| 2264 | strcat(bp, tbuf); |
| 2265 | } |
| 2266 | #endif |
| 2267 | if (hd->proc & PR_CONNECTED) { |
| 2268 | strcat(bp, "\nconnected: "); |
| 2269 | if (hd->connected) { |
| 2270 | cmd = (Scsi_Cmnd *) hd->connected; |
| 2271 | sprintf(tbuf, " %ld-%d:%d(%02x)", cmd->pid, cmd->device->id, cmd->device->lun, cmd->cmnd[0]); |
| 2272 | strcat(bp, tbuf); |
| 2273 | } |
| 2274 | } |
| 2275 | if (hd->proc & PR_INPUTQ) { |
| 2276 | strcat(bp, "\ninput_Q: "); |
| 2277 | cmd = (Scsi_Cmnd *) hd->input_Q; |
| 2278 | while (cmd) { |
| 2279 | sprintf(tbuf, " %ld-%d:%d(%02x)", cmd->pid, cmd->device->id, cmd->device->lun, cmd->cmnd[0]); |
| 2280 | strcat(bp, tbuf); |
| 2281 | cmd = (Scsi_Cmnd *) cmd->host_scribble; |
| 2282 | } |
| 2283 | } |
| 2284 | if (hd->proc & PR_DISCQ) { |
| 2285 | strcat(bp, "\ndisconnected_Q:"); |
| 2286 | cmd = (Scsi_Cmnd *) hd->disconnected_Q; |
| 2287 | while (cmd) { |
| 2288 | sprintf(tbuf, " %ld-%d:%d(%02x)", cmd->pid, cmd->device->id, cmd->device->lun, cmd->cmnd[0]); |
| 2289 | strcat(bp, tbuf); |
| 2290 | cmd = (Scsi_Cmnd *) cmd->host_scribble; |
| 2291 | } |
| 2292 | } |
| 2293 | if (hd->proc & PR_TEST) { |
| 2294 | ; /* insert your own custom function here */ |
| 2295 | } |
| 2296 | strcat(bp, "\n"); |
| 2297 | spin_unlock_irqrestore(instance->host_lock, flags); |
| 2298 | *start = buf; |
| 2299 | if (stop) { |
| 2300 | stop = 0; |
| 2301 | return 0; /* return 0 to signal end-of-file */ |
| 2302 | } |
| 2303 | if (off > 0x40000) /* ALWAYS stop after 256k bytes have been read */ |
| 2304 | stop = 1; |
| 2305 | if (hd->proc & PR_STOP) /* stop every other time */ |
| 2306 | stop = 1; |
| 2307 | return strlen(bp); |
| 2308 | |
| 2309 | #else /* PROC_INTERFACE */ |
| 2310 | |
| 2311 | return 0; |
| 2312 | |
| 2313 | #endif /* PROC_INTERFACE */ |
| 2314 | |
| 2315 | } |
| 2316 | |
| 2317 | MODULE_LICENSE("GPL"); |
| 2318 | |
| 2319 | |
Christoph Hellwig | d0be4a7d | 2005-10-31 18:31:40 +0100 | [diff] [blame] | 2320 | static struct scsi_host_template driver_template = { |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 2321 | .proc_name = "in2000", |
| 2322 | .proc_info = in2000_proc_info, |
| 2323 | .name = "Always IN2000", |
| 2324 | .detect = in2000_detect, |
| 2325 | .release = in2000_release, |
| 2326 | .queuecommand = in2000_queuecommand, |
| 2327 | .eh_abort_handler = in2000_abort, |
| 2328 | .eh_bus_reset_handler = in2000_bus_reset, |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 2329 | .bios_param = in2000_biosparam, |
| 2330 | .can_queue = IN2000_CAN_Q, |
| 2331 | .this_id = IN2000_HOST_ID, |
| 2332 | .sg_tablesize = IN2000_SG, |
| 2333 | .cmd_per_lun = IN2000_CPL, |
| 2334 | .use_clustering = DISABLE_CLUSTERING, |
| 2335 | }; |
| 2336 | #include "scsi_module.c" |