Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* |
| 2 | * File Name: |
| 3 | * defxx.c |
| 4 | * |
| 5 | * Copyright Information: |
| 6 | * Copyright Digital Equipment Corporation 1996. |
| 7 | * |
| 8 | * This software may be used and distributed according to the terms of |
| 9 | * the GNU General Public License, incorporated herein by reference. |
| 10 | * |
| 11 | * Abstract: |
| 12 | * A Linux device driver supporting the Digital Equipment Corporation |
| 13 | * FDDI EISA and PCI controller families. Supported adapters include: |
| 14 | * |
| 15 | * DEC FDDIcontroller/EISA (DEFEA) |
| 16 | * DEC FDDIcontroller/PCI (DEFPA) |
| 17 | * |
| 18 | * The original author: |
| 19 | * LVS Lawrence V. Stefani <lstefani@yahoo.com> |
| 20 | * |
| 21 | * Maintainers: |
| 22 | * macro Maciej W. Rozycki <macro@linux-mips.org> |
| 23 | * |
| 24 | * Credits: |
| 25 | * I'd like to thank Patricia Cross for helping me get started with |
| 26 | * Linux, David Davies for a lot of help upgrading and configuring |
| 27 | * my development system and for answering many OS and driver |
| 28 | * development questions, and Alan Cox for recommendations and |
| 29 | * integration help on getting FDDI support into Linux. LVS |
| 30 | * |
| 31 | * Driver Architecture: |
| 32 | * The driver architecture is largely based on previous driver work |
| 33 | * for other operating systems. The upper edge interface and |
| 34 | * functions were largely taken from existing Linux device drivers |
| 35 | * such as David Davies' DE4X5.C driver and Donald Becker's TULIP.C |
| 36 | * driver. |
| 37 | * |
| 38 | * Adapter Probe - |
| 39 | * The driver scans for supported EISA adapters by reading the |
| 40 | * SLOT ID register for each EISA slot and making a match |
| 41 | * against the expected value. |
| 42 | * |
| 43 | * Bus-Specific Initialization - |
| 44 | * This driver currently supports both EISA and PCI controller |
| 45 | * families. While the custom DMA chip and FDDI logic is similar |
| 46 | * or identical, the bus logic is very different. After |
| 47 | * initialization, the only bus-specific differences is in how the |
| 48 | * driver enables and disables interrupts. Other than that, the |
| 49 | * run-time critical code behaves the same on both families. |
| 50 | * It's important to note that both adapter families are configured |
| 51 | * to I/O map, rather than memory map, the adapter registers. |
| 52 | * |
| 53 | * Driver Open/Close - |
| 54 | * In the driver open routine, the driver ISR (interrupt service |
| 55 | * routine) is registered and the adapter is brought to an |
| 56 | * operational state. In the driver close routine, the opposite |
| 57 | * occurs; the driver ISR is deregistered and the adapter is |
| 58 | * brought to a safe, but closed state. Users may use consecutive |
| 59 | * commands to bring the adapter up and down as in the following |
| 60 | * example: |
| 61 | * ifconfig fddi0 up |
| 62 | * ifconfig fddi0 down |
| 63 | * ifconfig fddi0 up |
| 64 | * |
| 65 | * Driver Shutdown - |
| 66 | * Apparently, there is no shutdown or halt routine support under |
| 67 | * Linux. This routine would be called during "reboot" or |
| 68 | * "shutdown" to allow the driver to place the adapter in a safe |
| 69 | * state before a warm reboot occurs. To be really safe, the user |
| 70 | * should close the adapter before shutdown (eg. ifconfig fddi0 down) |
| 71 | * to ensure that the adapter DMA engine is taken off-line. However, |
| 72 | * the current driver code anticipates this problem and always issues |
| 73 | * a soft reset of the adapter at the beginning of driver initialization. |
| 74 | * A future driver enhancement in this area may occur in 2.1.X where |
| 75 | * Alan indicated that a shutdown handler may be implemented. |
| 76 | * |
| 77 | * Interrupt Service Routine - |
| 78 | * The driver supports shared interrupts, so the ISR is registered for |
| 79 | * each board with the appropriate flag and the pointer to that board's |
| 80 | * device structure. This provides the context during interrupt |
| 81 | * processing to support shared interrupts and multiple boards. |
| 82 | * |
| 83 | * Interrupt enabling/disabling can occur at many levels. At the host |
| 84 | * end, you can disable system interrupts, or disable interrupts at the |
| 85 | * PIC (on Intel systems). Across the bus, both EISA and PCI adapters |
| 86 | * have a bus-logic chip interrupt enable/disable as well as a DMA |
| 87 | * controller interrupt enable/disable. |
| 88 | * |
| 89 | * The driver currently enables and disables adapter interrupts at the |
| 90 | * bus-logic chip and assumes that Linux will take care of clearing or |
| 91 | * acknowledging any host-based interrupt chips. |
| 92 | * |
| 93 | * Control Functions - |
| 94 | * Control functions are those used to support functions such as adding |
| 95 | * or deleting multicast addresses, enabling or disabling packet |
| 96 | * reception filters, or other custom/proprietary commands. Presently, |
| 97 | * the driver supports the "get statistics", "set multicast list", and |
| 98 | * "set mac address" functions defined by Linux. A list of possible |
| 99 | * enhancements include: |
| 100 | * |
| 101 | * - Custom ioctl interface for executing port interface commands |
| 102 | * - Custom ioctl interface for adding unicast addresses to |
| 103 | * adapter CAM (to support bridge functions). |
| 104 | * - Custom ioctl interface for supporting firmware upgrades. |
| 105 | * |
| 106 | * Hardware (port interface) Support Routines - |
| 107 | * The driver function names that start with "dfx_hw_" represent |
| 108 | * low-level port interface routines that are called frequently. They |
| 109 | * include issuing a DMA or port control command to the adapter, |
| 110 | * resetting the adapter, or reading the adapter state. Since the |
| 111 | * driver initialization and run-time code must make calls into the |
| 112 | * port interface, these routines were written to be as generic and |
| 113 | * usable as possible. |
| 114 | * |
| 115 | * Receive Path - |
| 116 | * The adapter DMA engine supports a 256 entry receive descriptor block |
| 117 | * of which up to 255 entries can be used at any given time. The |
| 118 | * architecture is a standard producer, consumer, completion model in |
| 119 | * which the driver "produces" receive buffers to the adapter, the |
| 120 | * adapter "consumes" the receive buffers by DMAing incoming packet data, |
| 121 | * and the driver "completes" the receive buffers by servicing the |
| 122 | * incoming packet, then "produces" a new buffer and starts the cycle |
| 123 | * again. Receive buffers can be fragmented in up to 16 fragments |
| 124 | * (descriptor entries). For simplicity, this driver posts |
| 125 | * single-fragment receive buffers of 4608 bytes, then allocates a |
| 126 | * sk_buff, copies the data, then reposts the buffer. To reduce CPU |
| 127 | * utilization, a better approach would be to pass up the receive |
| 128 | * buffer (no extra copy) then allocate and post a replacement buffer. |
| 129 | * This is a performance enhancement that should be looked into at |
| 130 | * some point. |
| 131 | * |
| 132 | * Transmit Path - |
| 133 | * Like the receive path, the adapter DMA engine supports a 256 entry |
| 134 | * transmit descriptor block of which up to 255 entries can be used at |
| 135 | * any given time. Transmit buffers can be fragmented in up to 255 |
| 136 | * fragments (descriptor entries). This driver always posts one |
| 137 | * fragment per transmit packet request. |
| 138 | * |
| 139 | * The fragment contains the entire packet from FC to end of data. |
| 140 | * Before posting the buffer to the adapter, the driver sets a three-byte |
| 141 | * packet request header (PRH) which is required by the Motorola MAC chip |
| 142 | * used on the adapters. The PRH tells the MAC the type of token to |
| 143 | * receive/send, whether or not to generate and append the CRC, whether |
| 144 | * synchronous or asynchronous framing is used, etc. Since the PRH |
| 145 | * definition is not necessarily consistent across all FDDI chipsets, |
| 146 | * the driver, rather than the common FDDI packet handler routines, |
| 147 | * sets these bytes. |
| 148 | * |
| 149 | * To reduce the amount of descriptor fetches needed per transmit request, |
| 150 | * the driver takes advantage of the fact that there are at least three |
| 151 | * bytes available before the skb->data field on the outgoing transmit |
| 152 | * request. This is guaranteed by having fddi_setup() in net_init.c set |
| 153 | * dev->hard_header_len to 24 bytes. 21 bytes accounts for the largest |
| 154 | * header in an 802.2 SNAP frame. The other 3 bytes are the extra "pad" |
| 155 | * bytes which we'll use to store the PRH. |
| 156 | * |
| 157 | * There's a subtle advantage to adding these pad bytes to the |
| 158 | * hard_header_len, it ensures that the data portion of the packet for |
| 159 | * an 802.2 SNAP frame is longword aligned. Other FDDI driver |
| 160 | * implementations may not need the extra padding and can start copying |
| 161 | * or DMAing directly from the FC byte which starts at skb->data. Should |
| 162 | * another driver implementation need ADDITIONAL padding, the net_init.c |
| 163 | * module should be updated and dev->hard_header_len should be increased. |
| 164 | * NOTE: To maintain the alignment on the data portion of the packet, |
| 165 | * dev->hard_header_len should always be evenly divisible by 4 and at |
| 166 | * least 24 bytes in size. |
| 167 | * |
| 168 | * Modification History: |
| 169 | * Date Name Description |
| 170 | * 16-Aug-96 LVS Created. |
| 171 | * 20-Aug-96 LVS Updated dfx_probe so that version information |
| 172 | * string is only displayed if 1 or more cards are |
| 173 | * found. Changed dfx_rcv_queue_process to copy |
| 174 | * 3 NULL bytes before FC to ensure that data is |
| 175 | * longword aligned in receive buffer. |
| 176 | * 09-Sep-96 LVS Updated dfx_ctl_set_multicast_list to enable |
| 177 | * LLC group promiscuous mode if multicast list |
| 178 | * is too large. LLC individual/group promiscuous |
| 179 | * mode is now disabled if IFF_PROMISC flag not set. |
| 180 | * dfx_xmt_queue_pkt no longer checks for NULL skb |
| 181 | * on Alan Cox recommendation. Added node address |
| 182 | * override support. |
| 183 | * 12-Sep-96 LVS Reset current address to factory address during |
| 184 | * device open. Updated transmit path to post a |
| 185 | * single fragment which includes PRH->end of data. |
| 186 | * Mar 2000 AC Did various cleanups for 2.3.x |
| 187 | * Jun 2000 jgarzik PCI and resource alloc cleanups |
| 188 | * Jul 2000 tjeerd Much cleanup and some bug fixes |
| 189 | * Sep 2000 tjeerd Fix leak on unload, cosmetic code cleanup |
| 190 | * Feb 2001 Skb allocation fixes |
| 191 | * Feb 2001 davej PCI enable cleanups. |
| 192 | * 04 Aug 2003 macro Converted to the DMA API. |
| 193 | * 14 Aug 2004 macro Fix device names reported. |
Maciej W. Rozycki | feea1db | 2005-06-20 15:33:03 -0700 | [diff] [blame] | 194 | * 14 Jun 2005 macro Use irqreturn_t. |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 195 | */ |
| 196 | |
| 197 | /* Include files */ |
| 198 | |
| 199 | #include <linux/module.h> |
| 200 | #include <linux/kernel.h> |
| 201 | #include <linux/string.h> |
| 202 | #include <linux/errno.h> |
| 203 | #include <linux/ioport.h> |
| 204 | #include <linux/slab.h> |
| 205 | #include <linux/interrupt.h> |
| 206 | #include <linux/pci.h> |
| 207 | #include <linux/delay.h> |
| 208 | #include <linux/init.h> |
| 209 | #include <linux/netdevice.h> |
| 210 | #include <linux/fddidevice.h> |
| 211 | #include <linux/skbuff.h> |
| 212 | #include <linux/bitops.h> |
| 213 | |
| 214 | #include <asm/byteorder.h> |
| 215 | #include <asm/io.h> |
| 216 | |
| 217 | #include "defxx.h" |
| 218 | |
| 219 | /* Version information string should be updated prior to each new release! */ |
| 220 | #define DRV_NAME "defxx" |
Maciej W. Rozycki | feea1db | 2005-06-20 15:33:03 -0700 | [diff] [blame] | 221 | #define DRV_VERSION "v1.08" |
| 222 | #define DRV_RELDATE "2005/06/14" |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 223 | |
| 224 | static char version[] __devinitdata = |
| 225 | DRV_NAME ": " DRV_VERSION " " DRV_RELDATE |
| 226 | " Lawrence V. Stefani and others\n"; |
| 227 | |
| 228 | #define DYNAMIC_BUFFERS 1 |
| 229 | |
| 230 | #define SKBUFF_RX_COPYBREAK 200 |
| 231 | /* |
| 232 | * NEW_SKB_SIZE = PI_RCV_DATA_K_SIZE_MAX+128 to allow 128 byte |
| 233 | * alignment for compatibility with old EISA boards. |
| 234 | */ |
| 235 | #define NEW_SKB_SIZE (PI_RCV_DATA_K_SIZE_MAX+128) |
| 236 | |
| 237 | /* Define module-wide (static) routines */ |
| 238 | |
| 239 | static void dfx_bus_init(struct net_device *dev); |
| 240 | static void dfx_bus_config_check(DFX_board_t *bp); |
| 241 | |
| 242 | static int dfx_driver_init(struct net_device *dev, const char *print_name); |
| 243 | static int dfx_adap_init(DFX_board_t *bp, int get_buffers); |
| 244 | |
| 245 | static int dfx_open(struct net_device *dev); |
| 246 | static int dfx_close(struct net_device *dev); |
| 247 | |
| 248 | static void dfx_int_pr_halt_id(DFX_board_t *bp); |
| 249 | static void dfx_int_type_0_process(DFX_board_t *bp); |
| 250 | static void dfx_int_common(struct net_device *dev); |
Maciej W. Rozycki | feea1db | 2005-06-20 15:33:03 -0700 | [diff] [blame] | 251 | static irqreturn_t dfx_interrupt(int irq, void *dev_id, |
| 252 | struct pt_regs *regs); |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 253 | |
| 254 | static struct net_device_stats *dfx_ctl_get_stats(struct net_device *dev); |
| 255 | static void dfx_ctl_set_multicast_list(struct net_device *dev); |
| 256 | static int dfx_ctl_set_mac_address(struct net_device *dev, void *addr); |
| 257 | static int dfx_ctl_update_cam(DFX_board_t *bp); |
| 258 | static int dfx_ctl_update_filters(DFX_board_t *bp); |
| 259 | |
| 260 | static int dfx_hw_dma_cmd_req(DFX_board_t *bp); |
| 261 | static int dfx_hw_port_ctrl_req(DFX_board_t *bp, PI_UINT32 command, PI_UINT32 data_a, PI_UINT32 data_b, PI_UINT32 *host_data); |
| 262 | static void dfx_hw_adap_reset(DFX_board_t *bp, PI_UINT32 type); |
| 263 | static int dfx_hw_adap_state_rd(DFX_board_t *bp); |
| 264 | static int dfx_hw_dma_uninit(DFX_board_t *bp, PI_UINT32 type); |
| 265 | |
| 266 | static int dfx_rcv_init(DFX_board_t *bp, int get_buffers); |
| 267 | static void dfx_rcv_queue_process(DFX_board_t *bp); |
| 268 | static void dfx_rcv_flush(DFX_board_t *bp); |
| 269 | |
| 270 | static int dfx_xmt_queue_pkt(struct sk_buff *skb, struct net_device *dev); |
| 271 | static int dfx_xmt_done(DFX_board_t *bp); |
| 272 | static void dfx_xmt_flush(DFX_board_t *bp); |
| 273 | |
| 274 | /* Define module-wide (static) variables */ |
| 275 | |
| 276 | static struct net_device *root_dfx_eisa_dev; |
| 277 | |
| 278 | |
| 279 | /* |
| 280 | * ======================= |
| 281 | * = dfx_port_write_byte = |
| 282 | * = dfx_port_read_byte = |
| 283 | * = dfx_port_write_long = |
| 284 | * = dfx_port_read_long = |
| 285 | * ======================= |
| 286 | * |
| 287 | * Overview: |
| 288 | * Routines for reading and writing values from/to adapter |
| 289 | * |
| 290 | * Returns: |
| 291 | * None |
| 292 | * |
| 293 | * Arguments: |
| 294 | * bp - pointer to board information |
| 295 | * offset - register offset from base I/O address |
| 296 | * data - for dfx_port_write_byte and dfx_port_write_long, this |
| 297 | * is a value to write. |
| 298 | * for dfx_port_read_byte and dfx_port_read_byte, this |
| 299 | * is a pointer to store the read value. |
| 300 | * |
| 301 | * Functional Description: |
| 302 | * These routines perform the correct operation to read or write |
| 303 | * the adapter register. |
| 304 | * |
| 305 | * EISA port block base addresses are based on the slot number in which the |
| 306 | * controller is installed. For example, if the EISA controller is installed |
| 307 | * in slot 4, the port block base address is 0x4000. If the controller is |
| 308 | * installed in slot 2, the port block base address is 0x2000, and so on. |
| 309 | * This port block can be used to access PDQ, ESIC, and DEFEA on-board |
| 310 | * registers using the register offsets defined in DEFXX.H. |
| 311 | * |
| 312 | * PCI port block base addresses are assigned by the PCI BIOS or system |
| 313 | * firmware. There is one 128 byte port block which can be accessed. It |
| 314 | * allows for I/O mapping of both PDQ and PFI registers using the register |
| 315 | * offsets defined in DEFXX.H. |
| 316 | * |
| 317 | * Return Codes: |
| 318 | * None |
| 319 | * |
| 320 | * Assumptions: |
| 321 | * bp->base_addr is a valid base I/O address for this adapter. |
| 322 | * offset is a valid register offset for this adapter. |
| 323 | * |
| 324 | * Side Effects: |
| 325 | * Rather than produce macros for these functions, these routines |
| 326 | * are defined using "inline" to ensure that the compiler will |
| 327 | * generate inline code and not waste a procedure call and return. |
| 328 | * This provides all the benefits of macros, but with the |
| 329 | * advantage of strict data type checking. |
| 330 | */ |
| 331 | |
| 332 | static inline void dfx_port_write_byte( |
| 333 | DFX_board_t *bp, |
| 334 | int offset, |
| 335 | u8 data |
| 336 | ) |
| 337 | |
| 338 | { |
| 339 | u16 port = bp->base_addr + offset; |
| 340 | |
| 341 | outb(data, port); |
| 342 | } |
| 343 | |
| 344 | static inline void dfx_port_read_byte( |
| 345 | DFX_board_t *bp, |
| 346 | int offset, |
| 347 | u8 *data |
| 348 | ) |
| 349 | |
| 350 | { |
| 351 | u16 port = bp->base_addr + offset; |
| 352 | |
| 353 | *data = inb(port); |
| 354 | } |
| 355 | |
| 356 | static inline void dfx_port_write_long( |
| 357 | DFX_board_t *bp, |
| 358 | int offset, |
| 359 | u32 data |
| 360 | ) |
| 361 | |
| 362 | { |
| 363 | u16 port = bp->base_addr + offset; |
| 364 | |
| 365 | outl(data, port); |
| 366 | } |
| 367 | |
| 368 | static inline void dfx_port_read_long( |
| 369 | DFX_board_t *bp, |
| 370 | int offset, |
| 371 | u32 *data |
| 372 | ) |
| 373 | |
| 374 | { |
| 375 | u16 port = bp->base_addr + offset; |
| 376 | |
| 377 | *data = inl(port); |
| 378 | } |
| 379 | |
| 380 | |
| 381 | /* |
| 382 | * ============= |
| 383 | * = dfx_init_one_pci_or_eisa = |
| 384 | * ============= |
| 385 | * |
| 386 | * Overview: |
| 387 | * Initializes a supported FDDI EISA or PCI controller |
| 388 | * |
| 389 | * Returns: |
| 390 | * Condition code |
| 391 | * |
| 392 | * Arguments: |
| 393 | * pdev - pointer to pci device information (NULL for EISA) |
| 394 | * ioaddr - pointer to port (NULL for PCI) |
| 395 | * |
| 396 | * Functional Description: |
| 397 | * |
| 398 | * Return Codes: |
| 399 | * 0 - This device (fddi0, fddi1, etc) configured successfully |
| 400 | * -EBUSY - Failed to get resources, or dfx_driver_init failed. |
| 401 | * |
| 402 | * Assumptions: |
| 403 | * It compiles so it should work :-( (PCI cards do :-) |
| 404 | * |
| 405 | * Side Effects: |
| 406 | * Device structures for FDDI adapters (fddi0, fddi1, etc) are |
| 407 | * initialized and the board resources are read and stored in |
| 408 | * the device structure. |
| 409 | */ |
| 410 | static int __devinit dfx_init_one_pci_or_eisa(struct pci_dev *pdev, long ioaddr) |
| 411 | { |
| 412 | static int version_disp; |
| 413 | char *print_name = DRV_NAME; |
| 414 | struct net_device *dev; |
| 415 | DFX_board_t *bp; /* board pointer */ |
| 416 | int alloc_size; /* total buffer size used */ |
| 417 | int err; |
| 418 | |
| 419 | if (!version_disp) { /* display version info if adapter is found */ |
| 420 | version_disp = 1; /* set display flag to TRUE so that */ |
| 421 | printk(version); /* we only display this string ONCE */ |
| 422 | } |
| 423 | |
| 424 | if (pdev != NULL) |
| 425 | print_name = pci_name(pdev); |
| 426 | |
| 427 | dev = alloc_fddidev(sizeof(*bp)); |
| 428 | if (!dev) { |
| 429 | printk(KERN_ERR "%s: unable to allocate fddidev, aborting\n", |
| 430 | print_name); |
| 431 | return -ENOMEM; |
| 432 | } |
| 433 | |
| 434 | /* Enable PCI device. */ |
| 435 | if (pdev != NULL) { |
| 436 | err = pci_enable_device (pdev); |
| 437 | if (err) goto err_out; |
| 438 | ioaddr = pci_resource_start (pdev, 1); |
| 439 | } |
| 440 | |
| 441 | SET_MODULE_OWNER(dev); |
Maciej W. Rozycki | feea1db | 2005-06-20 15:33:03 -0700 | [diff] [blame] | 442 | if (pdev != NULL) |
| 443 | SET_NETDEV_DEV(dev, &pdev->dev); |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 444 | |
| 445 | bp = dev->priv; |
| 446 | |
| 447 | if (!request_region(ioaddr, |
| 448 | pdev ? PFI_K_CSR_IO_LEN : PI_ESIC_K_CSR_IO_LEN, |
| 449 | print_name)) { |
| 450 | printk(KERN_ERR "%s: Cannot reserve I/O resource " |
| 451 | "0x%x @ 0x%lx, aborting\n", print_name, |
| 452 | pdev ? PFI_K_CSR_IO_LEN : PI_ESIC_K_CSR_IO_LEN, ioaddr); |
| 453 | err = -EBUSY; |
| 454 | goto err_out; |
| 455 | } |
| 456 | |
| 457 | /* Initialize new device structure */ |
| 458 | |
| 459 | dev->base_addr = ioaddr; /* save port (I/O) base address */ |
| 460 | |
| 461 | dev->get_stats = dfx_ctl_get_stats; |
| 462 | dev->open = dfx_open; |
| 463 | dev->stop = dfx_close; |
| 464 | dev->hard_start_xmit = dfx_xmt_queue_pkt; |
| 465 | dev->set_multicast_list = dfx_ctl_set_multicast_list; |
| 466 | dev->set_mac_address = dfx_ctl_set_mac_address; |
| 467 | |
| 468 | if (pdev == NULL) { |
| 469 | /* EISA board */ |
| 470 | bp->bus_type = DFX_BUS_TYPE_EISA; |
| 471 | bp->next = root_dfx_eisa_dev; |
| 472 | root_dfx_eisa_dev = dev; |
| 473 | } else { |
| 474 | /* PCI board */ |
| 475 | bp->bus_type = DFX_BUS_TYPE_PCI; |
| 476 | bp->pci_dev = pdev; |
| 477 | pci_set_drvdata (pdev, dev); |
| 478 | pci_set_master (pdev); |
| 479 | } |
| 480 | |
| 481 | if (dfx_driver_init(dev, print_name) != DFX_K_SUCCESS) { |
| 482 | err = -ENODEV; |
| 483 | goto err_out_region; |
| 484 | } |
| 485 | |
| 486 | err = register_netdev(dev); |
| 487 | if (err) |
| 488 | goto err_out_kfree; |
| 489 | |
| 490 | printk("%s: registered as %s\n", print_name, dev->name); |
| 491 | return 0; |
| 492 | |
| 493 | err_out_kfree: |
| 494 | alloc_size = sizeof(PI_DESCR_BLOCK) + |
| 495 | PI_CMD_REQ_K_SIZE_MAX + PI_CMD_RSP_K_SIZE_MAX + |
| 496 | #ifndef DYNAMIC_BUFFERS |
| 497 | (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX) + |
| 498 | #endif |
| 499 | sizeof(PI_CONSUMER_BLOCK) + |
| 500 | (PI_ALIGN_K_DESC_BLK - 1); |
| 501 | if (bp->kmalloced) |
| 502 | pci_free_consistent(pdev, alloc_size, |
| 503 | bp->kmalloced, bp->kmalloced_dma); |
| 504 | err_out_region: |
| 505 | release_region(ioaddr, pdev ? PFI_K_CSR_IO_LEN : PI_ESIC_K_CSR_IO_LEN); |
| 506 | err_out: |
| 507 | free_netdev(dev); |
| 508 | return err; |
| 509 | } |
| 510 | |
| 511 | static int __devinit dfx_init_one(struct pci_dev *pdev, const struct pci_device_id *ent) |
| 512 | { |
| 513 | return dfx_init_one_pci_or_eisa(pdev, 0); |
| 514 | } |
| 515 | |
| 516 | static int __init dfx_eisa_init(void) |
| 517 | { |
| 518 | int rc = -ENODEV; |
| 519 | int i; /* used in for loops */ |
| 520 | u16 port; /* temporary I/O (port) address */ |
| 521 | u32 slot_id; /* EISA hardware (slot) ID read from adapter */ |
| 522 | |
| 523 | DBG_printk("In dfx_eisa_init...\n"); |
| 524 | |
| 525 | /* Scan for FDDI EISA controllers */ |
| 526 | |
| 527 | for (i=0; i < DFX_MAX_EISA_SLOTS; i++) /* only scan for up to 16 EISA slots */ |
| 528 | { |
| 529 | port = (i << 12) + PI_ESIC_K_SLOT_ID; /* port = I/O address for reading slot ID */ |
| 530 | slot_id = inl(port); /* read EISA HW (slot) ID */ |
| 531 | if ((slot_id & 0xF0FFFFFF) == DEFEA_PRODUCT_ID) |
| 532 | { |
| 533 | port = (i << 12); /* recalc base addr */ |
| 534 | |
| 535 | if (dfx_init_one_pci_or_eisa(NULL, port) == 0) rc = 0; |
| 536 | } |
| 537 | } |
| 538 | return rc; |
| 539 | } |
| 540 | |
| 541 | /* |
| 542 | * ================ |
| 543 | * = dfx_bus_init = |
| 544 | * ================ |
| 545 | * |
| 546 | * Overview: |
| 547 | * Initializes EISA and PCI controller bus-specific logic. |
| 548 | * |
| 549 | * Returns: |
| 550 | * None |
| 551 | * |
| 552 | * Arguments: |
| 553 | * dev - pointer to device information |
| 554 | * |
| 555 | * Functional Description: |
| 556 | * Determine and save adapter IRQ in device table, |
| 557 | * then perform bus-specific logic initialization. |
| 558 | * |
| 559 | * Return Codes: |
| 560 | * None |
| 561 | * |
| 562 | * Assumptions: |
| 563 | * dev->base_addr has already been set with the proper |
| 564 | * base I/O address for this device. |
| 565 | * |
| 566 | * Side Effects: |
| 567 | * Interrupts are enabled at the adapter bus-specific logic. |
| 568 | * Note: Interrupts at the DMA engine (PDQ chip) are not |
| 569 | * enabled yet. |
| 570 | */ |
| 571 | |
| 572 | static void __devinit dfx_bus_init(struct net_device *dev) |
| 573 | { |
| 574 | DFX_board_t *bp = dev->priv; |
| 575 | u8 val; /* used for I/O read/writes */ |
| 576 | |
| 577 | DBG_printk("In dfx_bus_init...\n"); |
| 578 | |
| 579 | /* |
| 580 | * Initialize base I/O address field in bp structure |
| 581 | * |
| 582 | * Note: bp->base_addr is the same as dev->base_addr. |
| 583 | * It's useful because often we'll need to read |
| 584 | * or write registers where we already have the |
| 585 | * bp pointer instead of the dev pointer. Having |
| 586 | * the base address in the bp structure will |
| 587 | * save a pointer dereference. |
| 588 | * |
| 589 | * IMPORTANT!! This field must be defined before |
| 590 | * any of the dfx_port_* inline functions are |
| 591 | * called. |
| 592 | */ |
| 593 | |
| 594 | bp->base_addr = dev->base_addr; |
| 595 | |
| 596 | /* And a pointer back to the net_device struct */ |
| 597 | bp->dev = dev; |
| 598 | |
| 599 | /* Initialize adapter based on bus type */ |
| 600 | |
| 601 | if (bp->bus_type == DFX_BUS_TYPE_EISA) |
| 602 | { |
| 603 | /* Get the interrupt level from the ESIC chip */ |
| 604 | |
| 605 | dfx_port_read_byte(bp, PI_ESIC_K_IO_CONFIG_STAT_0, &val); |
| 606 | switch ((val & PI_CONFIG_STAT_0_M_IRQ) >> PI_CONFIG_STAT_0_V_IRQ) |
| 607 | { |
| 608 | case PI_CONFIG_STAT_0_IRQ_K_9: |
| 609 | dev->irq = 9; |
| 610 | break; |
| 611 | |
| 612 | case PI_CONFIG_STAT_0_IRQ_K_10: |
| 613 | dev->irq = 10; |
| 614 | break; |
| 615 | |
| 616 | case PI_CONFIG_STAT_0_IRQ_K_11: |
| 617 | dev->irq = 11; |
| 618 | break; |
| 619 | |
| 620 | case PI_CONFIG_STAT_0_IRQ_K_15: |
| 621 | dev->irq = 15; |
| 622 | break; |
| 623 | } |
| 624 | |
| 625 | /* Enable access to I/O on the board by writing 0x03 to Function Control Register */ |
| 626 | |
| 627 | dfx_port_write_byte(bp, PI_ESIC_K_FUNCTION_CNTRL, PI_ESIC_K_FUNCTION_CNTRL_IO_ENB); |
| 628 | |
| 629 | /* Set the I/O decode range of the board */ |
| 630 | |
| 631 | val = ((dev->base_addr >> 12) << PI_IO_CMP_V_SLOT); |
| 632 | dfx_port_write_byte(bp, PI_ESIC_K_IO_CMP_0_1, val); |
| 633 | dfx_port_write_byte(bp, PI_ESIC_K_IO_CMP_1_1, val); |
| 634 | |
| 635 | /* Enable access to rest of module (including PDQ and packet memory) */ |
| 636 | |
| 637 | dfx_port_write_byte(bp, PI_ESIC_K_SLOT_CNTRL, PI_SLOT_CNTRL_M_ENB); |
| 638 | |
| 639 | /* |
| 640 | * Map PDQ registers into I/O space. This is done by clearing a bit |
| 641 | * in Burst Holdoff register. |
| 642 | */ |
| 643 | |
| 644 | dfx_port_read_byte(bp, PI_ESIC_K_BURST_HOLDOFF, &val); |
| 645 | dfx_port_write_byte(bp, PI_ESIC_K_BURST_HOLDOFF, (val & ~PI_BURST_HOLDOFF_M_MEM_MAP)); |
| 646 | |
| 647 | /* Enable interrupts at EISA bus interface chip (ESIC) */ |
| 648 | |
| 649 | dfx_port_read_byte(bp, PI_ESIC_K_IO_CONFIG_STAT_0, &val); |
| 650 | dfx_port_write_byte(bp, PI_ESIC_K_IO_CONFIG_STAT_0, (val | PI_CONFIG_STAT_0_M_INT_ENB)); |
| 651 | } |
| 652 | else |
| 653 | { |
| 654 | struct pci_dev *pdev = bp->pci_dev; |
| 655 | |
| 656 | /* Get the interrupt level from the PCI Configuration Table */ |
| 657 | |
| 658 | dev->irq = pdev->irq; |
| 659 | |
| 660 | /* Check Latency Timer and set if less than minimal */ |
| 661 | |
| 662 | pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &val); |
| 663 | if (val < PFI_K_LAT_TIMER_MIN) /* if less than min, override with default */ |
| 664 | { |
| 665 | val = PFI_K_LAT_TIMER_DEF; |
| 666 | pci_write_config_byte(pdev, PCI_LATENCY_TIMER, val); |
| 667 | } |
| 668 | |
| 669 | /* Enable interrupts at PCI bus interface chip (PFI) */ |
| 670 | |
| 671 | dfx_port_write_long(bp, PFI_K_REG_MODE_CTRL, (PFI_MODE_M_PDQ_INT_ENB | PFI_MODE_M_DMA_ENB)); |
| 672 | } |
| 673 | } |
| 674 | |
| 675 | |
| 676 | /* |
| 677 | * ======================== |
| 678 | * = dfx_bus_config_check = |
| 679 | * ======================== |
| 680 | * |
| 681 | * Overview: |
| 682 | * Checks the configuration (burst size, full-duplex, etc.) If any parameters |
| 683 | * are illegal, then this routine will set new defaults. |
| 684 | * |
| 685 | * Returns: |
| 686 | * None |
| 687 | * |
| 688 | * Arguments: |
| 689 | * bp - pointer to board information |
| 690 | * |
| 691 | * Functional Description: |
| 692 | * For Revision 1 FDDI EISA, Revision 2 or later FDDI EISA with rev E or later |
| 693 | * PDQ, and all FDDI PCI controllers, all values are legal. |
| 694 | * |
| 695 | * Return Codes: |
| 696 | * None |
| 697 | * |
| 698 | * Assumptions: |
| 699 | * dfx_adap_init has NOT been called yet so burst size and other items have |
| 700 | * not been set. |
| 701 | * |
| 702 | * Side Effects: |
| 703 | * None |
| 704 | */ |
| 705 | |
| 706 | static void __devinit dfx_bus_config_check(DFX_board_t *bp) |
| 707 | { |
| 708 | int status; /* return code from adapter port control call */ |
| 709 | u32 slot_id; /* EISA-bus hardware id (DEC3001, DEC3002,...) */ |
| 710 | u32 host_data; /* LW data returned from port control call */ |
| 711 | |
| 712 | DBG_printk("In dfx_bus_config_check...\n"); |
| 713 | |
| 714 | /* Configuration check only valid for EISA adapter */ |
| 715 | |
| 716 | if (bp->bus_type == DFX_BUS_TYPE_EISA) |
| 717 | { |
| 718 | dfx_port_read_long(bp, PI_ESIC_K_SLOT_ID, &slot_id); |
| 719 | |
| 720 | /* |
| 721 | * First check if revision 2 EISA controller. Rev. 1 cards used |
| 722 | * PDQ revision B, so no workaround needed in this case. Rev. 3 |
| 723 | * cards used PDQ revision E, so no workaround needed in this |
| 724 | * case, either. Only Rev. 2 cards used either Rev. D or E |
| 725 | * chips, so we must verify the chip revision on Rev. 2 cards. |
| 726 | */ |
| 727 | |
| 728 | if (slot_id == DEFEA_PROD_ID_2) |
| 729 | { |
| 730 | /* |
| 731 | * Revision 2 FDDI EISA controller found, so let's check PDQ |
| 732 | * revision of adapter. |
| 733 | */ |
| 734 | |
| 735 | status = dfx_hw_port_ctrl_req(bp, |
| 736 | PI_PCTRL_M_SUB_CMD, |
| 737 | PI_SUB_CMD_K_PDQ_REV_GET, |
| 738 | 0, |
| 739 | &host_data); |
| 740 | if ((status != DFX_K_SUCCESS) || (host_data == 2)) |
| 741 | { |
| 742 | /* |
| 743 | * Either we couldn't determine the PDQ revision, or |
| 744 | * we determined that it is at revision D. In either case, |
| 745 | * we need to implement the workaround. |
| 746 | */ |
| 747 | |
| 748 | /* Ensure that the burst size is set to 8 longwords or less */ |
| 749 | |
| 750 | switch (bp->burst_size) |
| 751 | { |
| 752 | case PI_PDATA_B_DMA_BURST_SIZE_32: |
| 753 | case PI_PDATA_B_DMA_BURST_SIZE_16: |
| 754 | bp->burst_size = PI_PDATA_B_DMA_BURST_SIZE_8; |
| 755 | break; |
| 756 | |
| 757 | default: |
| 758 | break; |
| 759 | } |
| 760 | |
| 761 | /* Ensure that full-duplex mode is not enabled */ |
| 762 | |
| 763 | bp->full_duplex_enb = PI_SNMP_K_FALSE; |
| 764 | } |
| 765 | } |
| 766 | } |
| 767 | } |
| 768 | |
| 769 | |
| 770 | /* |
| 771 | * =================== |
| 772 | * = dfx_driver_init = |
| 773 | * =================== |
| 774 | * |
| 775 | * Overview: |
| 776 | * Initializes remaining adapter board structure information |
| 777 | * and makes sure adapter is in a safe state prior to dfx_open(). |
| 778 | * |
| 779 | * Returns: |
| 780 | * Condition code |
| 781 | * |
| 782 | * Arguments: |
| 783 | * dev - pointer to device information |
| 784 | * print_name - printable device name |
| 785 | * |
| 786 | * Functional Description: |
| 787 | * This function allocates additional resources such as the host memory |
| 788 | * blocks needed by the adapter (eg. descriptor and consumer blocks). |
| 789 | * Remaining bus initialization steps are also completed. The adapter |
| 790 | * is also reset so that it is in the DMA_UNAVAILABLE state. The OS |
| 791 | * must call dfx_open() to open the adapter and bring it on-line. |
| 792 | * |
| 793 | * Return Codes: |
| 794 | * DFX_K_SUCCESS - initialization succeeded |
| 795 | * DFX_K_FAILURE - initialization failed - could not allocate memory |
| 796 | * or read adapter MAC address |
| 797 | * |
| 798 | * Assumptions: |
| 799 | * Memory allocated from pci_alloc_consistent() call is physically |
| 800 | * contiguous, locked memory. |
| 801 | * |
| 802 | * Side Effects: |
| 803 | * Adapter is reset and should be in DMA_UNAVAILABLE state before |
| 804 | * returning from this routine. |
| 805 | */ |
| 806 | |
| 807 | static int __devinit dfx_driver_init(struct net_device *dev, |
| 808 | const char *print_name) |
| 809 | { |
| 810 | DFX_board_t *bp = dev->priv; |
| 811 | int alloc_size; /* total buffer size needed */ |
| 812 | char *top_v, *curr_v; /* virtual addrs into memory block */ |
| 813 | dma_addr_t top_p, curr_p; /* physical addrs into memory block */ |
| 814 | u32 data; /* host data register value */ |
| 815 | |
| 816 | DBG_printk("In dfx_driver_init...\n"); |
| 817 | |
| 818 | /* Initialize bus-specific hardware registers */ |
| 819 | |
| 820 | dfx_bus_init(dev); |
| 821 | |
| 822 | /* |
| 823 | * Initialize default values for configurable parameters |
| 824 | * |
| 825 | * Note: All of these parameters are ones that a user may |
| 826 | * want to customize. It'd be nice to break these |
| 827 | * out into Space.c or someplace else that's more |
| 828 | * accessible/understandable than this file. |
| 829 | */ |
| 830 | |
| 831 | bp->full_duplex_enb = PI_SNMP_K_FALSE; |
| 832 | bp->req_ttrt = 8 * 12500; /* 8ms in 80 nanosec units */ |
| 833 | bp->burst_size = PI_PDATA_B_DMA_BURST_SIZE_DEF; |
| 834 | bp->rcv_bufs_to_post = RCV_BUFS_DEF; |
| 835 | |
| 836 | /* |
| 837 | * Ensure that HW configuration is OK |
| 838 | * |
| 839 | * Note: Depending on the hardware revision, we may need to modify |
| 840 | * some of the configurable parameters to workaround hardware |
| 841 | * limitations. We'll perform this configuration check AFTER |
| 842 | * setting the parameters to their default values. |
| 843 | */ |
| 844 | |
| 845 | dfx_bus_config_check(bp); |
| 846 | |
| 847 | /* Disable PDQ interrupts first */ |
| 848 | |
| 849 | dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS); |
| 850 | |
| 851 | /* Place adapter in DMA_UNAVAILABLE state by resetting adapter */ |
| 852 | |
| 853 | (void) dfx_hw_dma_uninit(bp, PI_PDATA_A_RESET_M_SKIP_ST); |
| 854 | |
| 855 | /* Read the factory MAC address from the adapter then save it */ |
| 856 | |
| 857 | if (dfx_hw_port_ctrl_req(bp, PI_PCTRL_M_MLA, PI_PDATA_A_MLA_K_LO, 0, |
| 858 | &data) != DFX_K_SUCCESS) { |
| 859 | printk("%s: Could not read adapter factory MAC address!\n", |
| 860 | print_name); |
| 861 | return(DFX_K_FAILURE); |
| 862 | } |
| 863 | memcpy(&bp->factory_mac_addr[0], &data, sizeof(u32)); |
| 864 | |
| 865 | if (dfx_hw_port_ctrl_req(bp, PI_PCTRL_M_MLA, PI_PDATA_A_MLA_K_HI, 0, |
| 866 | &data) != DFX_K_SUCCESS) { |
| 867 | printk("%s: Could not read adapter factory MAC address!\n", |
| 868 | print_name); |
| 869 | return(DFX_K_FAILURE); |
| 870 | } |
| 871 | memcpy(&bp->factory_mac_addr[4], &data, sizeof(u16)); |
| 872 | |
| 873 | /* |
| 874 | * Set current address to factory address |
| 875 | * |
| 876 | * Note: Node address override support is handled through |
| 877 | * dfx_ctl_set_mac_address. |
| 878 | */ |
| 879 | |
| 880 | memcpy(dev->dev_addr, bp->factory_mac_addr, FDDI_K_ALEN); |
| 881 | if (bp->bus_type == DFX_BUS_TYPE_EISA) |
| 882 | printk("%s: DEFEA at I/O addr = 0x%lX, IRQ = %d, " |
| 883 | "Hardware addr = %02X-%02X-%02X-%02X-%02X-%02X\n", |
| 884 | print_name, dev->base_addr, dev->irq, |
| 885 | dev->dev_addr[0], dev->dev_addr[1], |
| 886 | dev->dev_addr[2], dev->dev_addr[3], |
| 887 | dev->dev_addr[4], dev->dev_addr[5]); |
| 888 | else |
| 889 | printk("%s: DEFPA at I/O addr = 0x%lX, IRQ = %d, " |
| 890 | "Hardware addr = %02X-%02X-%02X-%02X-%02X-%02X\n", |
| 891 | print_name, dev->base_addr, dev->irq, |
| 892 | dev->dev_addr[0], dev->dev_addr[1], |
| 893 | dev->dev_addr[2], dev->dev_addr[3], |
| 894 | dev->dev_addr[4], dev->dev_addr[5]); |
| 895 | |
| 896 | /* |
| 897 | * Get memory for descriptor block, consumer block, and other buffers |
| 898 | * that need to be DMA read or written to by the adapter. |
| 899 | */ |
| 900 | |
| 901 | alloc_size = sizeof(PI_DESCR_BLOCK) + |
| 902 | PI_CMD_REQ_K_SIZE_MAX + |
| 903 | PI_CMD_RSP_K_SIZE_MAX + |
| 904 | #ifndef DYNAMIC_BUFFERS |
| 905 | (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX) + |
| 906 | #endif |
| 907 | sizeof(PI_CONSUMER_BLOCK) + |
| 908 | (PI_ALIGN_K_DESC_BLK - 1); |
| 909 | bp->kmalloced = top_v = pci_alloc_consistent(bp->pci_dev, alloc_size, |
| 910 | &bp->kmalloced_dma); |
| 911 | if (top_v == NULL) { |
| 912 | printk("%s: Could not allocate memory for host buffers " |
| 913 | "and structures!\n", print_name); |
| 914 | return(DFX_K_FAILURE); |
| 915 | } |
| 916 | memset(top_v, 0, alloc_size); /* zero out memory before continuing */ |
| 917 | top_p = bp->kmalloced_dma; /* get physical address of buffer */ |
| 918 | |
| 919 | /* |
| 920 | * To guarantee the 8K alignment required for the descriptor block, 8K - 1 |
| 921 | * plus the amount of memory needed was allocated. The physical address |
| 922 | * is now 8K aligned. By carving up the memory in a specific order, |
| 923 | * we'll guarantee the alignment requirements for all other structures. |
| 924 | * |
| 925 | * Note: If the assumptions change regarding the non-paged, non-cached, |
| 926 | * physically contiguous nature of the memory block or the address |
| 927 | * alignments, then we'll need to implement a different algorithm |
| 928 | * for allocating the needed memory. |
| 929 | */ |
| 930 | |
| 931 | curr_p = ALIGN(top_p, PI_ALIGN_K_DESC_BLK); |
| 932 | curr_v = top_v + (curr_p - top_p); |
| 933 | |
| 934 | /* Reserve space for descriptor block */ |
| 935 | |
| 936 | bp->descr_block_virt = (PI_DESCR_BLOCK *) curr_v; |
| 937 | bp->descr_block_phys = curr_p; |
| 938 | curr_v += sizeof(PI_DESCR_BLOCK); |
| 939 | curr_p += sizeof(PI_DESCR_BLOCK); |
| 940 | |
| 941 | /* Reserve space for command request buffer */ |
| 942 | |
| 943 | bp->cmd_req_virt = (PI_DMA_CMD_REQ *) curr_v; |
| 944 | bp->cmd_req_phys = curr_p; |
| 945 | curr_v += PI_CMD_REQ_K_SIZE_MAX; |
| 946 | curr_p += PI_CMD_REQ_K_SIZE_MAX; |
| 947 | |
| 948 | /* Reserve space for command response buffer */ |
| 949 | |
| 950 | bp->cmd_rsp_virt = (PI_DMA_CMD_RSP *) curr_v; |
| 951 | bp->cmd_rsp_phys = curr_p; |
| 952 | curr_v += PI_CMD_RSP_K_SIZE_MAX; |
| 953 | curr_p += PI_CMD_RSP_K_SIZE_MAX; |
| 954 | |
| 955 | /* Reserve space for the LLC host receive queue buffers */ |
| 956 | |
| 957 | bp->rcv_block_virt = curr_v; |
| 958 | bp->rcv_block_phys = curr_p; |
| 959 | |
| 960 | #ifndef DYNAMIC_BUFFERS |
| 961 | curr_v += (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX); |
| 962 | curr_p += (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX); |
| 963 | #endif |
| 964 | |
| 965 | /* Reserve space for the consumer block */ |
| 966 | |
| 967 | bp->cons_block_virt = (PI_CONSUMER_BLOCK *) curr_v; |
| 968 | bp->cons_block_phys = curr_p; |
| 969 | |
| 970 | /* Display virtual and physical addresses if debug driver */ |
| 971 | |
| 972 | DBG_printk("%s: Descriptor block virt = %0lX, phys = %0X\n", |
| 973 | print_name, |
| 974 | (long)bp->descr_block_virt, bp->descr_block_phys); |
| 975 | DBG_printk("%s: Command Request buffer virt = %0lX, phys = %0X\n", |
| 976 | print_name, (long)bp->cmd_req_virt, bp->cmd_req_phys); |
| 977 | DBG_printk("%s: Command Response buffer virt = %0lX, phys = %0X\n", |
| 978 | print_name, (long)bp->cmd_rsp_virt, bp->cmd_rsp_phys); |
| 979 | DBG_printk("%s: Receive buffer block virt = %0lX, phys = %0X\n", |
| 980 | print_name, (long)bp->rcv_block_virt, bp->rcv_block_phys); |
| 981 | DBG_printk("%s: Consumer block virt = %0lX, phys = %0X\n", |
| 982 | print_name, (long)bp->cons_block_virt, bp->cons_block_phys); |
| 983 | |
| 984 | return(DFX_K_SUCCESS); |
| 985 | } |
| 986 | |
| 987 | |
| 988 | /* |
| 989 | * ================= |
| 990 | * = dfx_adap_init = |
| 991 | * ================= |
| 992 | * |
| 993 | * Overview: |
| 994 | * Brings the adapter to the link avail/link unavailable state. |
| 995 | * |
| 996 | * Returns: |
| 997 | * Condition code |
| 998 | * |
| 999 | * Arguments: |
| 1000 | * bp - pointer to board information |
| 1001 | * get_buffers - non-zero if buffers to be allocated |
| 1002 | * |
| 1003 | * Functional Description: |
| 1004 | * Issues the low-level firmware/hardware calls necessary to bring |
| 1005 | * the adapter up, or to properly reset and restore adapter during |
| 1006 | * run-time. |
| 1007 | * |
| 1008 | * Return Codes: |
| 1009 | * DFX_K_SUCCESS - Adapter brought up successfully |
| 1010 | * DFX_K_FAILURE - Adapter initialization failed |
| 1011 | * |
| 1012 | * Assumptions: |
| 1013 | * bp->reset_type should be set to a valid reset type value before |
| 1014 | * calling this routine. |
| 1015 | * |
| 1016 | * Side Effects: |
| 1017 | * Adapter should be in LINK_AVAILABLE or LINK_UNAVAILABLE state |
| 1018 | * upon a successful return of this routine. |
| 1019 | */ |
| 1020 | |
| 1021 | static int dfx_adap_init(DFX_board_t *bp, int get_buffers) |
| 1022 | { |
| 1023 | DBG_printk("In dfx_adap_init...\n"); |
| 1024 | |
| 1025 | /* Disable PDQ interrupts first */ |
| 1026 | |
| 1027 | dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS); |
| 1028 | |
| 1029 | /* Place adapter in DMA_UNAVAILABLE state by resetting adapter */ |
| 1030 | |
| 1031 | if (dfx_hw_dma_uninit(bp, bp->reset_type) != DFX_K_SUCCESS) |
| 1032 | { |
| 1033 | printk("%s: Could not uninitialize/reset adapter!\n", bp->dev->name); |
| 1034 | return(DFX_K_FAILURE); |
| 1035 | } |
| 1036 | |
| 1037 | /* |
| 1038 | * When the PDQ is reset, some false Type 0 interrupts may be pending, |
| 1039 | * so we'll acknowledge all Type 0 interrupts now before continuing. |
| 1040 | */ |
| 1041 | |
| 1042 | dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_0_STATUS, PI_HOST_INT_K_ACK_ALL_TYPE_0); |
| 1043 | |
| 1044 | /* |
| 1045 | * Clear Type 1 and Type 2 registers before going to DMA_AVAILABLE state |
| 1046 | * |
| 1047 | * Note: We only need to clear host copies of these registers. The PDQ reset |
| 1048 | * takes care of the on-board register values. |
| 1049 | */ |
| 1050 | |
| 1051 | bp->cmd_req_reg.lword = 0; |
| 1052 | bp->cmd_rsp_reg.lword = 0; |
| 1053 | bp->rcv_xmt_reg.lword = 0; |
| 1054 | |
| 1055 | /* Clear consumer block before going to DMA_AVAILABLE state */ |
| 1056 | |
| 1057 | memset(bp->cons_block_virt, 0, sizeof(PI_CONSUMER_BLOCK)); |
| 1058 | |
| 1059 | /* Initialize the DMA Burst Size */ |
| 1060 | |
| 1061 | if (dfx_hw_port_ctrl_req(bp, |
| 1062 | PI_PCTRL_M_SUB_CMD, |
| 1063 | PI_SUB_CMD_K_BURST_SIZE_SET, |
| 1064 | bp->burst_size, |
| 1065 | NULL) != DFX_K_SUCCESS) |
| 1066 | { |
| 1067 | printk("%s: Could not set adapter burst size!\n", bp->dev->name); |
| 1068 | return(DFX_K_FAILURE); |
| 1069 | } |
| 1070 | |
| 1071 | /* |
| 1072 | * Set base address of Consumer Block |
| 1073 | * |
| 1074 | * Assumption: 32-bit physical address of consumer block is 64 byte |
| 1075 | * aligned. That is, bits 0-5 of the address must be zero. |
| 1076 | */ |
| 1077 | |
| 1078 | if (dfx_hw_port_ctrl_req(bp, |
| 1079 | PI_PCTRL_M_CONS_BLOCK, |
| 1080 | bp->cons_block_phys, |
| 1081 | 0, |
| 1082 | NULL) != DFX_K_SUCCESS) |
| 1083 | { |
| 1084 | printk("%s: Could not set consumer block address!\n", bp->dev->name); |
| 1085 | return(DFX_K_FAILURE); |
| 1086 | } |
| 1087 | |
| 1088 | /* |
| 1089 | * Set base address of Descriptor Block and bring adapter to DMA_AVAILABLE state |
| 1090 | * |
| 1091 | * Note: We also set the literal and data swapping requirements in this |
| 1092 | * command. Since this driver presently runs on Intel platforms |
| 1093 | * which are Little Endian, we'll tell the adapter to byte swap |
| 1094 | * data only. This code will need to change when we support |
| 1095 | * Big Endian systems (eg. PowerPC). |
| 1096 | * |
| 1097 | * Assumption: 32-bit physical address of descriptor block is 8Kbyte |
| 1098 | * aligned. That is, bits 0-12 of the address must be zero. |
| 1099 | */ |
| 1100 | |
| 1101 | if (dfx_hw_port_ctrl_req(bp, |
| 1102 | PI_PCTRL_M_INIT, |
| 1103 | (u32) (bp->descr_block_phys | PI_PDATA_A_INIT_M_BSWAP_DATA), |
| 1104 | 0, |
| 1105 | NULL) != DFX_K_SUCCESS) |
| 1106 | { |
| 1107 | printk("%s: Could not set descriptor block address!\n", bp->dev->name); |
| 1108 | return(DFX_K_FAILURE); |
| 1109 | } |
| 1110 | |
| 1111 | /* Set transmit flush timeout value */ |
| 1112 | |
| 1113 | bp->cmd_req_virt->cmd_type = PI_CMD_K_CHARS_SET; |
| 1114 | bp->cmd_req_virt->char_set.item[0].item_code = PI_ITEM_K_FLUSH_TIME; |
| 1115 | bp->cmd_req_virt->char_set.item[0].value = 3; /* 3 seconds */ |
| 1116 | bp->cmd_req_virt->char_set.item[0].item_index = 0; |
| 1117 | bp->cmd_req_virt->char_set.item[1].item_code = PI_ITEM_K_EOL; |
| 1118 | if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS) |
| 1119 | { |
| 1120 | printk("%s: DMA command request failed!\n", bp->dev->name); |
| 1121 | return(DFX_K_FAILURE); |
| 1122 | } |
| 1123 | |
| 1124 | /* Set the initial values for eFDXEnable and MACTReq MIB objects */ |
| 1125 | |
| 1126 | bp->cmd_req_virt->cmd_type = PI_CMD_K_SNMP_SET; |
| 1127 | bp->cmd_req_virt->snmp_set.item[0].item_code = PI_ITEM_K_FDX_ENB_DIS; |
| 1128 | bp->cmd_req_virt->snmp_set.item[0].value = bp->full_duplex_enb; |
| 1129 | bp->cmd_req_virt->snmp_set.item[0].item_index = 0; |
| 1130 | bp->cmd_req_virt->snmp_set.item[1].item_code = PI_ITEM_K_MAC_T_REQ; |
| 1131 | bp->cmd_req_virt->snmp_set.item[1].value = bp->req_ttrt; |
| 1132 | bp->cmd_req_virt->snmp_set.item[1].item_index = 0; |
| 1133 | bp->cmd_req_virt->snmp_set.item[2].item_code = PI_ITEM_K_EOL; |
| 1134 | if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS) |
| 1135 | { |
| 1136 | printk("%s: DMA command request failed!\n", bp->dev->name); |
| 1137 | return(DFX_K_FAILURE); |
| 1138 | } |
| 1139 | |
| 1140 | /* Initialize adapter CAM */ |
| 1141 | |
| 1142 | if (dfx_ctl_update_cam(bp) != DFX_K_SUCCESS) |
| 1143 | { |
| 1144 | printk("%s: Adapter CAM update failed!\n", bp->dev->name); |
| 1145 | return(DFX_K_FAILURE); |
| 1146 | } |
| 1147 | |
| 1148 | /* Initialize adapter filters */ |
| 1149 | |
| 1150 | if (dfx_ctl_update_filters(bp) != DFX_K_SUCCESS) |
| 1151 | { |
| 1152 | printk("%s: Adapter filters update failed!\n", bp->dev->name); |
| 1153 | return(DFX_K_FAILURE); |
| 1154 | } |
| 1155 | |
| 1156 | /* |
| 1157 | * Remove any existing dynamic buffers (i.e. if the adapter is being |
| 1158 | * reinitialized) |
| 1159 | */ |
| 1160 | |
| 1161 | if (get_buffers) |
| 1162 | dfx_rcv_flush(bp); |
| 1163 | |
| 1164 | /* Initialize receive descriptor block and produce buffers */ |
| 1165 | |
| 1166 | if (dfx_rcv_init(bp, get_buffers)) |
| 1167 | { |
| 1168 | printk("%s: Receive buffer allocation failed\n", bp->dev->name); |
| 1169 | if (get_buffers) |
| 1170 | dfx_rcv_flush(bp); |
| 1171 | return(DFX_K_FAILURE); |
| 1172 | } |
| 1173 | |
| 1174 | /* Issue START command and bring adapter to LINK_(UN)AVAILABLE state */ |
| 1175 | |
| 1176 | bp->cmd_req_virt->cmd_type = PI_CMD_K_START; |
| 1177 | if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS) |
| 1178 | { |
| 1179 | printk("%s: Start command failed\n", bp->dev->name); |
| 1180 | if (get_buffers) |
| 1181 | dfx_rcv_flush(bp); |
| 1182 | return(DFX_K_FAILURE); |
| 1183 | } |
| 1184 | |
| 1185 | /* Initialization succeeded, reenable PDQ interrupts */ |
| 1186 | |
| 1187 | dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_ENABLE_DEF_INTS); |
| 1188 | return(DFX_K_SUCCESS); |
| 1189 | } |
| 1190 | |
| 1191 | |
| 1192 | /* |
| 1193 | * ============ |
| 1194 | * = dfx_open = |
| 1195 | * ============ |
| 1196 | * |
| 1197 | * Overview: |
| 1198 | * Opens the adapter |
| 1199 | * |
| 1200 | * Returns: |
| 1201 | * Condition code |
| 1202 | * |
| 1203 | * Arguments: |
| 1204 | * dev - pointer to device information |
| 1205 | * |
| 1206 | * Functional Description: |
| 1207 | * This function brings the adapter to an operational state. |
| 1208 | * |
| 1209 | * Return Codes: |
| 1210 | * 0 - Adapter was successfully opened |
| 1211 | * -EAGAIN - Could not register IRQ or adapter initialization failed |
| 1212 | * |
| 1213 | * Assumptions: |
| 1214 | * This routine should only be called for a device that was |
| 1215 | * initialized successfully. |
| 1216 | * |
| 1217 | * Side Effects: |
| 1218 | * Adapter should be in LINK_AVAILABLE or LINK_UNAVAILABLE state |
| 1219 | * if the open is successful. |
| 1220 | */ |
| 1221 | |
| 1222 | static int dfx_open(struct net_device *dev) |
| 1223 | { |
| 1224 | int ret; |
| 1225 | DFX_board_t *bp = dev->priv; |
| 1226 | |
| 1227 | DBG_printk("In dfx_open...\n"); |
| 1228 | |
| 1229 | /* Register IRQ - support shared interrupts by passing device ptr */ |
| 1230 | |
Thomas Gleixner | 1fb9df5 | 2006-07-01 19:29:39 -0700 | [diff] [blame] | 1231 | ret = request_irq(dev->irq, dfx_interrupt, IRQF_SHARED, dev->name, dev); |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1232 | if (ret) { |
| 1233 | printk(KERN_ERR "%s: Requested IRQ %d is busy\n", dev->name, dev->irq); |
| 1234 | return ret; |
| 1235 | } |
| 1236 | |
| 1237 | /* |
| 1238 | * Set current address to factory MAC address |
| 1239 | * |
| 1240 | * Note: We've already done this step in dfx_driver_init. |
| 1241 | * However, it's possible that a user has set a node |
| 1242 | * address override, then closed and reopened the |
| 1243 | * adapter. Unless we reset the device address field |
| 1244 | * now, we'll continue to use the existing modified |
| 1245 | * address. |
| 1246 | */ |
| 1247 | |
| 1248 | memcpy(dev->dev_addr, bp->factory_mac_addr, FDDI_K_ALEN); |
| 1249 | |
| 1250 | /* Clear local unicast/multicast address tables and counts */ |
| 1251 | |
| 1252 | memset(bp->uc_table, 0, sizeof(bp->uc_table)); |
| 1253 | memset(bp->mc_table, 0, sizeof(bp->mc_table)); |
| 1254 | bp->uc_count = 0; |
| 1255 | bp->mc_count = 0; |
| 1256 | |
| 1257 | /* Disable promiscuous filter settings */ |
| 1258 | |
| 1259 | bp->ind_group_prom = PI_FSTATE_K_BLOCK; |
| 1260 | bp->group_prom = PI_FSTATE_K_BLOCK; |
| 1261 | |
| 1262 | spin_lock_init(&bp->lock); |
| 1263 | |
| 1264 | /* Reset and initialize adapter */ |
| 1265 | |
| 1266 | bp->reset_type = PI_PDATA_A_RESET_M_SKIP_ST; /* skip self-test */ |
| 1267 | if (dfx_adap_init(bp, 1) != DFX_K_SUCCESS) |
| 1268 | { |
| 1269 | printk(KERN_ERR "%s: Adapter open failed!\n", dev->name); |
| 1270 | free_irq(dev->irq, dev); |
| 1271 | return -EAGAIN; |
| 1272 | } |
| 1273 | |
| 1274 | /* Set device structure info */ |
| 1275 | netif_start_queue(dev); |
| 1276 | return(0); |
| 1277 | } |
| 1278 | |
| 1279 | |
| 1280 | /* |
| 1281 | * ============= |
| 1282 | * = dfx_close = |
| 1283 | * ============= |
| 1284 | * |
| 1285 | * Overview: |
| 1286 | * Closes the device/module. |
| 1287 | * |
| 1288 | * Returns: |
| 1289 | * Condition code |
| 1290 | * |
| 1291 | * Arguments: |
| 1292 | * dev - pointer to device information |
| 1293 | * |
| 1294 | * Functional Description: |
| 1295 | * This routine closes the adapter and brings it to a safe state. |
| 1296 | * The interrupt service routine is deregistered with the OS. |
| 1297 | * The adapter can be opened again with another call to dfx_open(). |
| 1298 | * |
| 1299 | * Return Codes: |
| 1300 | * Always return 0. |
| 1301 | * |
| 1302 | * Assumptions: |
| 1303 | * No further requests for this adapter are made after this routine is |
| 1304 | * called. dfx_open() can be called to reset and reinitialize the |
| 1305 | * adapter. |
| 1306 | * |
| 1307 | * Side Effects: |
| 1308 | * Adapter should be in DMA_UNAVAILABLE state upon completion of this |
| 1309 | * routine. |
| 1310 | */ |
| 1311 | |
| 1312 | static int dfx_close(struct net_device *dev) |
| 1313 | { |
| 1314 | DFX_board_t *bp = dev->priv; |
| 1315 | |
| 1316 | DBG_printk("In dfx_close...\n"); |
| 1317 | |
| 1318 | /* Disable PDQ interrupts first */ |
| 1319 | |
| 1320 | dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS); |
| 1321 | |
| 1322 | /* Place adapter in DMA_UNAVAILABLE state by resetting adapter */ |
| 1323 | |
| 1324 | (void) dfx_hw_dma_uninit(bp, PI_PDATA_A_RESET_M_SKIP_ST); |
| 1325 | |
| 1326 | /* |
| 1327 | * Flush any pending transmit buffers |
| 1328 | * |
| 1329 | * Note: It's important that we flush the transmit buffers |
| 1330 | * BEFORE we clear our copy of the Type 2 register. |
| 1331 | * Otherwise, we'll have no idea how many buffers |
| 1332 | * we need to free. |
| 1333 | */ |
| 1334 | |
| 1335 | dfx_xmt_flush(bp); |
| 1336 | |
| 1337 | /* |
| 1338 | * Clear Type 1 and Type 2 registers after adapter reset |
| 1339 | * |
| 1340 | * Note: Even though we're closing the adapter, it's |
| 1341 | * possible that an interrupt will occur after |
| 1342 | * dfx_close is called. Without some assurance to |
| 1343 | * the contrary we want to make sure that we don't |
| 1344 | * process receive and transmit LLC frames and update |
| 1345 | * the Type 2 register with bad information. |
| 1346 | */ |
| 1347 | |
| 1348 | bp->cmd_req_reg.lword = 0; |
| 1349 | bp->cmd_rsp_reg.lword = 0; |
| 1350 | bp->rcv_xmt_reg.lword = 0; |
| 1351 | |
| 1352 | /* Clear consumer block for the same reason given above */ |
| 1353 | |
| 1354 | memset(bp->cons_block_virt, 0, sizeof(PI_CONSUMER_BLOCK)); |
| 1355 | |
| 1356 | /* Release all dynamically allocate skb in the receive ring. */ |
| 1357 | |
| 1358 | dfx_rcv_flush(bp); |
| 1359 | |
| 1360 | /* Clear device structure flags */ |
| 1361 | |
| 1362 | netif_stop_queue(dev); |
| 1363 | |
| 1364 | /* Deregister (free) IRQ */ |
| 1365 | |
| 1366 | free_irq(dev->irq, dev); |
| 1367 | |
| 1368 | return(0); |
| 1369 | } |
| 1370 | |
| 1371 | |
| 1372 | /* |
| 1373 | * ====================== |
| 1374 | * = dfx_int_pr_halt_id = |
| 1375 | * ====================== |
| 1376 | * |
| 1377 | * Overview: |
| 1378 | * Displays halt id's in string form. |
| 1379 | * |
| 1380 | * Returns: |
| 1381 | * None |
| 1382 | * |
| 1383 | * Arguments: |
| 1384 | * bp - pointer to board information |
| 1385 | * |
| 1386 | * Functional Description: |
| 1387 | * Determine current halt id and display appropriate string. |
| 1388 | * |
| 1389 | * Return Codes: |
| 1390 | * None |
| 1391 | * |
| 1392 | * Assumptions: |
| 1393 | * None |
| 1394 | * |
| 1395 | * Side Effects: |
| 1396 | * None |
| 1397 | */ |
| 1398 | |
| 1399 | static void dfx_int_pr_halt_id(DFX_board_t *bp) |
| 1400 | { |
| 1401 | PI_UINT32 port_status; /* PDQ port status register value */ |
| 1402 | PI_UINT32 halt_id; /* PDQ port status halt ID */ |
| 1403 | |
| 1404 | /* Read the latest port status */ |
| 1405 | |
| 1406 | dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_STATUS, &port_status); |
| 1407 | |
| 1408 | /* Display halt state transition information */ |
| 1409 | |
| 1410 | halt_id = (port_status & PI_PSTATUS_M_HALT_ID) >> PI_PSTATUS_V_HALT_ID; |
| 1411 | switch (halt_id) |
| 1412 | { |
| 1413 | case PI_HALT_ID_K_SELFTEST_TIMEOUT: |
| 1414 | printk("%s: Halt ID: Selftest Timeout\n", bp->dev->name); |
| 1415 | break; |
| 1416 | |
| 1417 | case PI_HALT_ID_K_PARITY_ERROR: |
| 1418 | printk("%s: Halt ID: Host Bus Parity Error\n", bp->dev->name); |
| 1419 | break; |
| 1420 | |
| 1421 | case PI_HALT_ID_K_HOST_DIR_HALT: |
| 1422 | printk("%s: Halt ID: Host-Directed Halt\n", bp->dev->name); |
| 1423 | break; |
| 1424 | |
| 1425 | case PI_HALT_ID_K_SW_FAULT: |
| 1426 | printk("%s: Halt ID: Adapter Software Fault\n", bp->dev->name); |
| 1427 | break; |
| 1428 | |
| 1429 | case PI_HALT_ID_K_HW_FAULT: |
| 1430 | printk("%s: Halt ID: Adapter Hardware Fault\n", bp->dev->name); |
| 1431 | break; |
| 1432 | |
| 1433 | case PI_HALT_ID_K_PC_TRACE: |
| 1434 | printk("%s: Halt ID: FDDI Network PC Trace Path Test\n", bp->dev->name); |
| 1435 | break; |
| 1436 | |
| 1437 | case PI_HALT_ID_K_DMA_ERROR: |
| 1438 | printk("%s: Halt ID: Adapter DMA Error\n", bp->dev->name); |
| 1439 | break; |
| 1440 | |
| 1441 | case PI_HALT_ID_K_IMAGE_CRC_ERROR: |
| 1442 | printk("%s: Halt ID: Firmware Image CRC Error\n", bp->dev->name); |
| 1443 | break; |
| 1444 | |
| 1445 | case PI_HALT_ID_K_BUS_EXCEPTION: |
| 1446 | printk("%s: Halt ID: 68000 Bus Exception\n", bp->dev->name); |
| 1447 | break; |
| 1448 | |
| 1449 | default: |
| 1450 | printk("%s: Halt ID: Unknown (code = %X)\n", bp->dev->name, halt_id); |
| 1451 | break; |
| 1452 | } |
| 1453 | } |
| 1454 | |
| 1455 | |
| 1456 | /* |
| 1457 | * ========================== |
| 1458 | * = dfx_int_type_0_process = |
| 1459 | * ========================== |
| 1460 | * |
| 1461 | * Overview: |
| 1462 | * Processes Type 0 interrupts. |
| 1463 | * |
| 1464 | * Returns: |
| 1465 | * None |
| 1466 | * |
| 1467 | * Arguments: |
| 1468 | * bp - pointer to board information |
| 1469 | * |
| 1470 | * Functional Description: |
| 1471 | * Processes all enabled Type 0 interrupts. If the reason for the interrupt |
| 1472 | * is a serious fault on the adapter, then an error message is displayed |
| 1473 | * and the adapter is reset. |
| 1474 | * |
| 1475 | * One tricky potential timing window is the rapid succession of "link avail" |
| 1476 | * "link unavail" state change interrupts. The acknowledgement of the Type 0 |
| 1477 | * interrupt must be done before reading the state from the Port Status |
| 1478 | * register. This is true because a state change could occur after reading |
| 1479 | * the data, but before acknowledging the interrupt. If this state change |
| 1480 | * does happen, it would be lost because the driver is using the old state, |
| 1481 | * and it will never know about the new state because it subsequently |
| 1482 | * acknowledges the state change interrupt. |
| 1483 | * |
| 1484 | * INCORRECT CORRECT |
| 1485 | * read type 0 int reasons read type 0 int reasons |
| 1486 | * read adapter state ack type 0 interrupts |
| 1487 | * ack type 0 interrupts read adapter state |
| 1488 | * ... process interrupt ... ... process interrupt ... |
| 1489 | * |
| 1490 | * Return Codes: |
| 1491 | * None |
| 1492 | * |
| 1493 | * Assumptions: |
| 1494 | * None |
| 1495 | * |
| 1496 | * Side Effects: |
| 1497 | * An adapter reset may occur if the adapter has any Type 0 error interrupts |
| 1498 | * or if the port status indicates that the adapter is halted. The driver |
| 1499 | * is responsible for reinitializing the adapter with the current CAM |
| 1500 | * contents and adapter filter settings. |
| 1501 | */ |
| 1502 | |
| 1503 | static void dfx_int_type_0_process(DFX_board_t *bp) |
| 1504 | |
| 1505 | { |
| 1506 | PI_UINT32 type_0_status; /* Host Interrupt Type 0 register */ |
| 1507 | PI_UINT32 state; /* current adap state (from port status) */ |
| 1508 | |
| 1509 | /* |
| 1510 | * Read host interrupt Type 0 register to determine which Type 0 |
| 1511 | * interrupts are pending. Immediately write it back out to clear |
| 1512 | * those interrupts. |
| 1513 | */ |
| 1514 | |
| 1515 | dfx_port_read_long(bp, PI_PDQ_K_REG_TYPE_0_STATUS, &type_0_status); |
| 1516 | dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_0_STATUS, type_0_status); |
| 1517 | |
| 1518 | /* Check for Type 0 error interrupts */ |
| 1519 | |
| 1520 | if (type_0_status & (PI_TYPE_0_STAT_M_NXM | |
| 1521 | PI_TYPE_0_STAT_M_PM_PAR_ERR | |
| 1522 | PI_TYPE_0_STAT_M_BUS_PAR_ERR)) |
| 1523 | { |
| 1524 | /* Check for Non-Existent Memory error */ |
| 1525 | |
| 1526 | if (type_0_status & PI_TYPE_0_STAT_M_NXM) |
| 1527 | printk("%s: Non-Existent Memory Access Error\n", bp->dev->name); |
| 1528 | |
| 1529 | /* Check for Packet Memory Parity error */ |
| 1530 | |
| 1531 | if (type_0_status & PI_TYPE_0_STAT_M_PM_PAR_ERR) |
| 1532 | printk("%s: Packet Memory Parity Error\n", bp->dev->name); |
| 1533 | |
| 1534 | /* Check for Host Bus Parity error */ |
| 1535 | |
| 1536 | if (type_0_status & PI_TYPE_0_STAT_M_BUS_PAR_ERR) |
| 1537 | printk("%s: Host Bus Parity Error\n", bp->dev->name); |
| 1538 | |
| 1539 | /* Reset adapter and bring it back on-line */ |
| 1540 | |
| 1541 | bp->link_available = PI_K_FALSE; /* link is no longer available */ |
| 1542 | bp->reset_type = 0; /* rerun on-board diagnostics */ |
| 1543 | printk("%s: Resetting adapter...\n", bp->dev->name); |
| 1544 | if (dfx_adap_init(bp, 0) != DFX_K_SUCCESS) |
| 1545 | { |
| 1546 | printk("%s: Adapter reset failed! Disabling adapter interrupts.\n", bp->dev->name); |
| 1547 | dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS); |
| 1548 | return; |
| 1549 | } |
| 1550 | printk("%s: Adapter reset successful!\n", bp->dev->name); |
| 1551 | return; |
| 1552 | } |
| 1553 | |
| 1554 | /* Check for transmit flush interrupt */ |
| 1555 | |
| 1556 | if (type_0_status & PI_TYPE_0_STAT_M_XMT_FLUSH) |
| 1557 | { |
| 1558 | /* Flush any pending xmt's and acknowledge the flush interrupt */ |
| 1559 | |
| 1560 | bp->link_available = PI_K_FALSE; /* link is no longer available */ |
| 1561 | dfx_xmt_flush(bp); /* flush any outstanding packets */ |
| 1562 | (void) dfx_hw_port_ctrl_req(bp, |
| 1563 | PI_PCTRL_M_XMT_DATA_FLUSH_DONE, |
| 1564 | 0, |
| 1565 | 0, |
| 1566 | NULL); |
| 1567 | } |
| 1568 | |
| 1569 | /* Check for adapter state change */ |
| 1570 | |
| 1571 | if (type_0_status & PI_TYPE_0_STAT_M_STATE_CHANGE) |
| 1572 | { |
| 1573 | /* Get latest adapter state */ |
| 1574 | |
| 1575 | state = dfx_hw_adap_state_rd(bp); /* get adapter state */ |
| 1576 | if (state == PI_STATE_K_HALTED) |
| 1577 | { |
| 1578 | /* |
| 1579 | * Adapter has transitioned to HALTED state, try to reset |
| 1580 | * adapter to bring it back on-line. If reset fails, |
| 1581 | * leave the adapter in the broken state. |
| 1582 | */ |
| 1583 | |
| 1584 | printk("%s: Controller has transitioned to HALTED state!\n", bp->dev->name); |
| 1585 | dfx_int_pr_halt_id(bp); /* display halt id as string */ |
| 1586 | |
| 1587 | /* Reset adapter and bring it back on-line */ |
| 1588 | |
| 1589 | bp->link_available = PI_K_FALSE; /* link is no longer available */ |
| 1590 | bp->reset_type = 0; /* rerun on-board diagnostics */ |
| 1591 | printk("%s: Resetting adapter...\n", bp->dev->name); |
| 1592 | if (dfx_adap_init(bp, 0) != DFX_K_SUCCESS) |
| 1593 | { |
| 1594 | printk("%s: Adapter reset failed! Disabling adapter interrupts.\n", bp->dev->name); |
| 1595 | dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS); |
| 1596 | return; |
| 1597 | } |
| 1598 | printk("%s: Adapter reset successful!\n", bp->dev->name); |
| 1599 | } |
| 1600 | else if (state == PI_STATE_K_LINK_AVAIL) |
| 1601 | { |
| 1602 | bp->link_available = PI_K_TRUE; /* set link available flag */ |
| 1603 | } |
| 1604 | } |
| 1605 | } |
| 1606 | |
| 1607 | |
| 1608 | /* |
| 1609 | * ================== |
| 1610 | * = dfx_int_common = |
| 1611 | * ================== |
| 1612 | * |
| 1613 | * Overview: |
| 1614 | * Interrupt service routine (ISR) |
| 1615 | * |
| 1616 | * Returns: |
| 1617 | * None |
| 1618 | * |
| 1619 | * Arguments: |
| 1620 | * bp - pointer to board information |
| 1621 | * |
| 1622 | * Functional Description: |
| 1623 | * This is the ISR which processes incoming adapter interrupts. |
| 1624 | * |
| 1625 | * Return Codes: |
| 1626 | * None |
| 1627 | * |
| 1628 | * Assumptions: |
| 1629 | * This routine assumes PDQ interrupts have not been disabled. |
| 1630 | * When interrupts are disabled at the PDQ, the Port Status register |
| 1631 | * is automatically cleared. This routine uses the Port Status |
| 1632 | * register value to determine whether a Type 0 interrupt occurred, |
| 1633 | * so it's important that adapter interrupts are not normally |
| 1634 | * enabled/disabled at the PDQ. |
| 1635 | * |
| 1636 | * It's vital that this routine is NOT reentered for the |
| 1637 | * same board and that the OS is not in another section of |
| 1638 | * code (eg. dfx_xmt_queue_pkt) for the same board on a |
| 1639 | * different thread. |
| 1640 | * |
| 1641 | * Side Effects: |
| 1642 | * Pending interrupts are serviced. Depending on the type of |
| 1643 | * interrupt, acknowledging and clearing the interrupt at the |
| 1644 | * PDQ involves writing a register to clear the interrupt bit |
| 1645 | * or updating completion indices. |
| 1646 | */ |
| 1647 | |
| 1648 | static void dfx_int_common(struct net_device *dev) |
| 1649 | { |
| 1650 | DFX_board_t *bp = dev->priv; |
| 1651 | PI_UINT32 port_status; /* Port Status register */ |
| 1652 | |
| 1653 | /* Process xmt interrupts - frequent case, so always call this routine */ |
| 1654 | |
| 1655 | if(dfx_xmt_done(bp)) /* free consumed xmt packets */ |
| 1656 | netif_wake_queue(dev); |
| 1657 | |
| 1658 | /* Process rcv interrupts - frequent case, so always call this routine */ |
| 1659 | |
| 1660 | dfx_rcv_queue_process(bp); /* service received LLC frames */ |
| 1661 | |
| 1662 | /* |
| 1663 | * Transmit and receive producer and completion indices are updated on the |
| 1664 | * adapter by writing to the Type 2 Producer register. Since the frequent |
| 1665 | * case is that we'll be processing either LLC transmit or receive buffers, |
| 1666 | * we'll optimize I/O writes by doing a single register write here. |
| 1667 | */ |
| 1668 | |
| 1669 | dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_2_PROD, bp->rcv_xmt_reg.lword); |
| 1670 | |
| 1671 | /* Read PDQ Port Status register to find out which interrupts need processing */ |
| 1672 | |
| 1673 | dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_STATUS, &port_status); |
| 1674 | |
| 1675 | /* Process Type 0 interrupts (if any) - infrequent, so only call when needed */ |
| 1676 | |
| 1677 | if (port_status & PI_PSTATUS_M_TYPE_0_PENDING) |
| 1678 | dfx_int_type_0_process(bp); /* process Type 0 interrupts */ |
| 1679 | } |
| 1680 | |
| 1681 | |
| 1682 | /* |
| 1683 | * ================= |
| 1684 | * = dfx_interrupt = |
| 1685 | * ================= |
Maciej W. Rozycki | feea1db | 2005-06-20 15:33:03 -0700 | [diff] [blame] | 1686 | * |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1687 | * Overview: |
| 1688 | * Interrupt processing routine |
Maciej W. Rozycki | feea1db | 2005-06-20 15:33:03 -0700 | [diff] [blame] | 1689 | * |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1690 | * Returns: |
Maciej W. Rozycki | feea1db | 2005-06-20 15:33:03 -0700 | [diff] [blame] | 1691 | * Whether a valid interrupt was seen. |
| 1692 | * |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1693 | * Arguments: |
| 1694 | * irq - interrupt vector |
| 1695 | * dev_id - pointer to device information |
| 1696 | * regs - pointer to registers structure |
| 1697 | * |
| 1698 | * Functional Description: |
| 1699 | * This routine calls the interrupt processing routine for this adapter. It |
| 1700 | * disables and reenables adapter interrupts, as appropriate. We can support |
| 1701 | * shared interrupts since the incoming dev_id pointer provides our device |
| 1702 | * structure context. |
| 1703 | * |
| 1704 | * Return Codes: |
Maciej W. Rozycki | feea1db | 2005-06-20 15:33:03 -0700 | [diff] [blame] | 1705 | * IRQ_HANDLED - an IRQ was handled. |
| 1706 | * IRQ_NONE - no IRQ was handled. |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1707 | * |
| 1708 | * Assumptions: |
| 1709 | * The interrupt acknowledgement at the hardware level (eg. ACKing the PIC |
| 1710 | * on Intel-based systems) is done by the operating system outside this |
| 1711 | * routine. |
| 1712 | * |
| 1713 | * System interrupts are enabled through this call. |
| 1714 | * |
| 1715 | * Side Effects: |
| 1716 | * Interrupts are disabled, then reenabled at the adapter. |
| 1717 | */ |
| 1718 | |
Maciej W. Rozycki | feea1db | 2005-06-20 15:33:03 -0700 | [diff] [blame] | 1719 | static irqreturn_t dfx_interrupt(int irq, void *dev_id, struct pt_regs *regs) |
| 1720 | { |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1721 | struct net_device *dev = dev_id; |
| 1722 | DFX_board_t *bp; /* private board structure pointer */ |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1723 | |
| 1724 | /* Get board pointer only if device structure is valid */ |
| 1725 | |
| 1726 | bp = dev->priv; |
| 1727 | |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1728 | /* See if we're already servicing an interrupt */ |
| 1729 | |
| 1730 | /* Service adapter interrupts */ |
| 1731 | |
Maciej W. Rozycki | feea1db | 2005-06-20 15:33:03 -0700 | [diff] [blame] | 1732 | if (bp->bus_type == DFX_BUS_TYPE_PCI) { |
| 1733 | u32 status; |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1734 | |
Maciej W. Rozycki | feea1db | 2005-06-20 15:33:03 -0700 | [diff] [blame] | 1735 | dfx_port_read_long(bp, PFI_K_REG_STATUS, &status); |
| 1736 | if (!(status & PFI_STATUS_M_PDQ_INT)) |
| 1737 | return IRQ_NONE; |
| 1738 | |
| 1739 | spin_lock(&bp->lock); |
| 1740 | |
| 1741 | /* Disable PDQ-PFI interrupts at PFI */ |
| 1742 | dfx_port_write_long(bp, PFI_K_REG_MODE_CTRL, |
| 1743 | PFI_MODE_M_DMA_ENB); |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1744 | |
| 1745 | /* Call interrupt service routine for this adapter */ |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1746 | dfx_int_common(dev); |
| 1747 | |
| 1748 | /* Clear PDQ interrupt status bit and reenable interrupts */ |
Maciej W. Rozycki | feea1db | 2005-06-20 15:33:03 -0700 | [diff] [blame] | 1749 | dfx_port_write_long(bp, PFI_K_REG_STATUS, |
| 1750 | PFI_STATUS_M_PDQ_INT); |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1751 | dfx_port_write_long(bp, PFI_K_REG_MODE_CTRL, |
Maciej W. Rozycki | feea1db | 2005-06-20 15:33:03 -0700 | [diff] [blame] | 1752 | (PFI_MODE_M_PDQ_INT_ENB | |
| 1753 | PFI_MODE_M_DMA_ENB)); |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1754 | |
Maciej W. Rozycki | feea1db | 2005-06-20 15:33:03 -0700 | [diff] [blame] | 1755 | spin_unlock(&bp->lock); |
| 1756 | } else { |
| 1757 | u8 status; |
| 1758 | |
| 1759 | dfx_port_read_byte(bp, PI_ESIC_K_IO_CONFIG_STAT_0, &status); |
| 1760 | if (!(status & PI_CONFIG_STAT_0_M_PEND)) |
| 1761 | return IRQ_NONE; |
| 1762 | |
| 1763 | spin_lock(&bp->lock); |
| 1764 | |
| 1765 | /* Disable interrupts at the ESIC */ |
| 1766 | status &= ~PI_CONFIG_STAT_0_M_INT_ENB; |
| 1767 | dfx_port_write_byte(bp, PI_ESIC_K_IO_CONFIG_STAT_0, status); |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1768 | |
| 1769 | /* Call interrupt service routine for this adapter */ |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1770 | dfx_int_common(dev); |
| 1771 | |
| 1772 | /* Reenable interrupts at the ESIC */ |
Maciej W. Rozycki | feea1db | 2005-06-20 15:33:03 -0700 | [diff] [blame] | 1773 | dfx_port_read_byte(bp, PI_ESIC_K_IO_CONFIG_STAT_0, &status); |
| 1774 | status |= PI_CONFIG_STAT_0_M_INT_ENB; |
| 1775 | dfx_port_write_byte(bp, PI_ESIC_K_IO_CONFIG_STAT_0, status); |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1776 | |
Maciej W. Rozycki | feea1db | 2005-06-20 15:33:03 -0700 | [diff] [blame] | 1777 | spin_unlock(&bp->lock); |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1778 | } |
| 1779 | |
Maciej W. Rozycki | feea1db | 2005-06-20 15:33:03 -0700 | [diff] [blame] | 1780 | return IRQ_HANDLED; |
| 1781 | } |
| 1782 | |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1783 | |
| 1784 | /* |
| 1785 | * ===================== |
| 1786 | * = dfx_ctl_get_stats = |
| 1787 | * ===================== |
| 1788 | * |
| 1789 | * Overview: |
| 1790 | * Get statistics for FDDI adapter |
| 1791 | * |
| 1792 | * Returns: |
| 1793 | * Pointer to FDDI statistics structure |
| 1794 | * |
| 1795 | * Arguments: |
| 1796 | * dev - pointer to device information |
| 1797 | * |
| 1798 | * Functional Description: |
| 1799 | * Gets current MIB objects from adapter, then |
| 1800 | * returns FDDI statistics structure as defined |
| 1801 | * in if_fddi.h. |
| 1802 | * |
| 1803 | * Note: Since the FDDI statistics structure is |
| 1804 | * still new and the device structure doesn't |
| 1805 | * have an FDDI-specific get statistics handler, |
| 1806 | * we'll return the FDDI statistics structure as |
| 1807 | * a pointer to an Ethernet statistics structure. |
| 1808 | * That way, at least the first part of the statistics |
| 1809 | * structure can be decoded properly, and it allows |
| 1810 | * "smart" applications to perform a second cast to |
| 1811 | * decode the FDDI-specific statistics. |
| 1812 | * |
| 1813 | * We'll have to pay attention to this routine as the |
| 1814 | * device structure becomes more mature and LAN media |
| 1815 | * independent. |
| 1816 | * |
| 1817 | * Return Codes: |
| 1818 | * None |
| 1819 | * |
| 1820 | * Assumptions: |
| 1821 | * None |
| 1822 | * |
| 1823 | * Side Effects: |
| 1824 | * None |
| 1825 | */ |
| 1826 | |
| 1827 | static struct net_device_stats *dfx_ctl_get_stats(struct net_device *dev) |
| 1828 | { |
| 1829 | DFX_board_t *bp = dev->priv; |
| 1830 | |
| 1831 | /* Fill the bp->stats structure with driver-maintained counters */ |
| 1832 | |
| 1833 | bp->stats.gen.rx_packets = bp->rcv_total_frames; |
| 1834 | bp->stats.gen.tx_packets = bp->xmt_total_frames; |
| 1835 | bp->stats.gen.rx_bytes = bp->rcv_total_bytes; |
| 1836 | bp->stats.gen.tx_bytes = bp->xmt_total_bytes; |
| 1837 | bp->stats.gen.rx_errors = bp->rcv_crc_errors + |
| 1838 | bp->rcv_frame_status_errors + |
| 1839 | bp->rcv_length_errors; |
| 1840 | bp->stats.gen.tx_errors = bp->xmt_length_errors; |
| 1841 | bp->stats.gen.rx_dropped = bp->rcv_discards; |
| 1842 | bp->stats.gen.tx_dropped = bp->xmt_discards; |
| 1843 | bp->stats.gen.multicast = bp->rcv_multicast_frames; |
| 1844 | bp->stats.gen.collisions = 0; /* always zero (0) for FDDI */ |
| 1845 | |
| 1846 | /* Get FDDI SMT MIB objects */ |
| 1847 | |
| 1848 | bp->cmd_req_virt->cmd_type = PI_CMD_K_SMT_MIB_GET; |
| 1849 | if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS) |
| 1850 | return((struct net_device_stats *) &bp->stats); |
| 1851 | |
| 1852 | /* Fill the bp->stats structure with the SMT MIB object values */ |
| 1853 | |
| 1854 | memcpy(bp->stats.smt_station_id, &bp->cmd_rsp_virt->smt_mib_get.smt_station_id, sizeof(bp->cmd_rsp_virt->smt_mib_get.smt_station_id)); |
| 1855 | bp->stats.smt_op_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_op_version_id; |
| 1856 | bp->stats.smt_hi_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_hi_version_id; |
| 1857 | bp->stats.smt_lo_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_lo_version_id; |
| 1858 | memcpy(bp->stats.smt_user_data, &bp->cmd_rsp_virt->smt_mib_get.smt_user_data, sizeof(bp->cmd_rsp_virt->smt_mib_get.smt_user_data)); |
| 1859 | bp->stats.smt_mib_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_mib_version_id; |
| 1860 | bp->stats.smt_mac_cts = bp->cmd_rsp_virt->smt_mib_get.smt_mac_ct; |
| 1861 | bp->stats.smt_non_master_cts = bp->cmd_rsp_virt->smt_mib_get.smt_non_master_ct; |
| 1862 | bp->stats.smt_master_cts = bp->cmd_rsp_virt->smt_mib_get.smt_master_ct; |
| 1863 | bp->stats.smt_available_paths = bp->cmd_rsp_virt->smt_mib_get.smt_available_paths; |
| 1864 | bp->stats.smt_config_capabilities = bp->cmd_rsp_virt->smt_mib_get.smt_config_capabilities; |
| 1865 | bp->stats.smt_config_policy = bp->cmd_rsp_virt->smt_mib_get.smt_config_policy; |
| 1866 | bp->stats.smt_connection_policy = bp->cmd_rsp_virt->smt_mib_get.smt_connection_policy; |
| 1867 | bp->stats.smt_t_notify = bp->cmd_rsp_virt->smt_mib_get.smt_t_notify; |
| 1868 | bp->stats.smt_stat_rpt_policy = bp->cmd_rsp_virt->smt_mib_get.smt_stat_rpt_policy; |
| 1869 | bp->stats.smt_trace_max_expiration = bp->cmd_rsp_virt->smt_mib_get.smt_trace_max_expiration; |
| 1870 | bp->stats.smt_bypass_present = bp->cmd_rsp_virt->smt_mib_get.smt_bypass_present; |
| 1871 | bp->stats.smt_ecm_state = bp->cmd_rsp_virt->smt_mib_get.smt_ecm_state; |
| 1872 | bp->stats.smt_cf_state = bp->cmd_rsp_virt->smt_mib_get.smt_cf_state; |
| 1873 | bp->stats.smt_remote_disconnect_flag = bp->cmd_rsp_virt->smt_mib_get.smt_remote_disconnect_flag; |
| 1874 | bp->stats.smt_station_status = bp->cmd_rsp_virt->smt_mib_get.smt_station_status; |
| 1875 | bp->stats.smt_peer_wrap_flag = bp->cmd_rsp_virt->smt_mib_get.smt_peer_wrap_flag; |
| 1876 | bp->stats.smt_time_stamp = bp->cmd_rsp_virt->smt_mib_get.smt_msg_time_stamp.ls; |
| 1877 | bp->stats.smt_transition_time_stamp = bp->cmd_rsp_virt->smt_mib_get.smt_transition_time_stamp.ls; |
| 1878 | bp->stats.mac_frame_status_functions = bp->cmd_rsp_virt->smt_mib_get.mac_frame_status_functions; |
| 1879 | bp->stats.mac_t_max_capability = bp->cmd_rsp_virt->smt_mib_get.mac_t_max_capability; |
| 1880 | bp->stats.mac_tvx_capability = bp->cmd_rsp_virt->smt_mib_get.mac_tvx_capability; |
| 1881 | bp->stats.mac_available_paths = bp->cmd_rsp_virt->smt_mib_get.mac_available_paths; |
| 1882 | bp->stats.mac_current_path = bp->cmd_rsp_virt->smt_mib_get.mac_current_path; |
| 1883 | memcpy(bp->stats.mac_upstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_upstream_nbr, FDDI_K_ALEN); |
| 1884 | memcpy(bp->stats.mac_downstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_downstream_nbr, FDDI_K_ALEN); |
| 1885 | memcpy(bp->stats.mac_old_upstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_old_upstream_nbr, FDDI_K_ALEN); |
| 1886 | memcpy(bp->stats.mac_old_downstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_old_downstream_nbr, FDDI_K_ALEN); |
| 1887 | bp->stats.mac_dup_address_test = bp->cmd_rsp_virt->smt_mib_get.mac_dup_address_test; |
| 1888 | bp->stats.mac_requested_paths = bp->cmd_rsp_virt->smt_mib_get.mac_requested_paths; |
| 1889 | bp->stats.mac_downstream_port_type = bp->cmd_rsp_virt->smt_mib_get.mac_downstream_port_type; |
| 1890 | memcpy(bp->stats.mac_smt_address, &bp->cmd_rsp_virt->smt_mib_get.mac_smt_address, FDDI_K_ALEN); |
| 1891 | bp->stats.mac_t_req = bp->cmd_rsp_virt->smt_mib_get.mac_t_req; |
| 1892 | bp->stats.mac_t_neg = bp->cmd_rsp_virt->smt_mib_get.mac_t_neg; |
| 1893 | bp->stats.mac_t_max = bp->cmd_rsp_virt->smt_mib_get.mac_t_max; |
| 1894 | bp->stats.mac_tvx_value = bp->cmd_rsp_virt->smt_mib_get.mac_tvx_value; |
| 1895 | bp->stats.mac_frame_error_threshold = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_threshold; |
| 1896 | bp->stats.mac_frame_error_ratio = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_ratio; |
| 1897 | bp->stats.mac_rmt_state = bp->cmd_rsp_virt->smt_mib_get.mac_rmt_state; |
| 1898 | bp->stats.mac_da_flag = bp->cmd_rsp_virt->smt_mib_get.mac_da_flag; |
| 1899 | bp->stats.mac_una_da_flag = bp->cmd_rsp_virt->smt_mib_get.mac_unda_flag; |
| 1900 | bp->stats.mac_frame_error_flag = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_flag; |
| 1901 | bp->stats.mac_ma_unitdata_available = bp->cmd_rsp_virt->smt_mib_get.mac_ma_unitdata_available; |
| 1902 | bp->stats.mac_hardware_present = bp->cmd_rsp_virt->smt_mib_get.mac_hardware_present; |
| 1903 | bp->stats.mac_ma_unitdata_enable = bp->cmd_rsp_virt->smt_mib_get.mac_ma_unitdata_enable; |
| 1904 | bp->stats.path_tvx_lower_bound = bp->cmd_rsp_virt->smt_mib_get.path_tvx_lower_bound; |
| 1905 | bp->stats.path_t_max_lower_bound = bp->cmd_rsp_virt->smt_mib_get.path_t_max_lower_bound; |
| 1906 | bp->stats.path_max_t_req = bp->cmd_rsp_virt->smt_mib_get.path_max_t_req; |
| 1907 | memcpy(bp->stats.path_configuration, &bp->cmd_rsp_virt->smt_mib_get.path_configuration, sizeof(bp->cmd_rsp_virt->smt_mib_get.path_configuration)); |
| 1908 | bp->stats.port_my_type[0] = bp->cmd_rsp_virt->smt_mib_get.port_my_type[0]; |
| 1909 | bp->stats.port_my_type[1] = bp->cmd_rsp_virt->smt_mib_get.port_my_type[1]; |
| 1910 | bp->stats.port_neighbor_type[0] = bp->cmd_rsp_virt->smt_mib_get.port_neighbor_type[0]; |
| 1911 | bp->stats.port_neighbor_type[1] = bp->cmd_rsp_virt->smt_mib_get.port_neighbor_type[1]; |
| 1912 | bp->stats.port_connection_policies[0] = bp->cmd_rsp_virt->smt_mib_get.port_connection_policies[0]; |
| 1913 | bp->stats.port_connection_policies[1] = bp->cmd_rsp_virt->smt_mib_get.port_connection_policies[1]; |
| 1914 | bp->stats.port_mac_indicated[0] = bp->cmd_rsp_virt->smt_mib_get.port_mac_indicated[0]; |
| 1915 | bp->stats.port_mac_indicated[1] = bp->cmd_rsp_virt->smt_mib_get.port_mac_indicated[1]; |
| 1916 | bp->stats.port_current_path[0] = bp->cmd_rsp_virt->smt_mib_get.port_current_path[0]; |
| 1917 | bp->stats.port_current_path[1] = bp->cmd_rsp_virt->smt_mib_get.port_current_path[1]; |
| 1918 | memcpy(&bp->stats.port_requested_paths[0*3], &bp->cmd_rsp_virt->smt_mib_get.port_requested_paths[0], 3); |
| 1919 | memcpy(&bp->stats.port_requested_paths[1*3], &bp->cmd_rsp_virt->smt_mib_get.port_requested_paths[1], 3); |
| 1920 | bp->stats.port_mac_placement[0] = bp->cmd_rsp_virt->smt_mib_get.port_mac_placement[0]; |
| 1921 | bp->stats.port_mac_placement[1] = bp->cmd_rsp_virt->smt_mib_get.port_mac_placement[1]; |
| 1922 | bp->stats.port_available_paths[0] = bp->cmd_rsp_virt->smt_mib_get.port_available_paths[0]; |
| 1923 | bp->stats.port_available_paths[1] = bp->cmd_rsp_virt->smt_mib_get.port_available_paths[1]; |
| 1924 | bp->stats.port_pmd_class[0] = bp->cmd_rsp_virt->smt_mib_get.port_pmd_class[0]; |
| 1925 | bp->stats.port_pmd_class[1] = bp->cmd_rsp_virt->smt_mib_get.port_pmd_class[1]; |
| 1926 | bp->stats.port_connection_capabilities[0] = bp->cmd_rsp_virt->smt_mib_get.port_connection_capabilities[0]; |
| 1927 | bp->stats.port_connection_capabilities[1] = bp->cmd_rsp_virt->smt_mib_get.port_connection_capabilities[1]; |
| 1928 | bp->stats.port_bs_flag[0] = bp->cmd_rsp_virt->smt_mib_get.port_bs_flag[0]; |
| 1929 | bp->stats.port_bs_flag[1] = bp->cmd_rsp_virt->smt_mib_get.port_bs_flag[1]; |
| 1930 | bp->stats.port_ler_estimate[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_estimate[0]; |
| 1931 | bp->stats.port_ler_estimate[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_estimate[1]; |
| 1932 | bp->stats.port_ler_cutoff[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_cutoff[0]; |
| 1933 | bp->stats.port_ler_cutoff[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_cutoff[1]; |
| 1934 | bp->stats.port_ler_alarm[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_alarm[0]; |
| 1935 | bp->stats.port_ler_alarm[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_alarm[1]; |
| 1936 | bp->stats.port_connect_state[0] = bp->cmd_rsp_virt->smt_mib_get.port_connect_state[0]; |
| 1937 | bp->stats.port_connect_state[1] = bp->cmd_rsp_virt->smt_mib_get.port_connect_state[1]; |
| 1938 | bp->stats.port_pcm_state[0] = bp->cmd_rsp_virt->smt_mib_get.port_pcm_state[0]; |
| 1939 | bp->stats.port_pcm_state[1] = bp->cmd_rsp_virt->smt_mib_get.port_pcm_state[1]; |
| 1940 | bp->stats.port_pc_withhold[0] = bp->cmd_rsp_virt->smt_mib_get.port_pc_withhold[0]; |
| 1941 | bp->stats.port_pc_withhold[1] = bp->cmd_rsp_virt->smt_mib_get.port_pc_withhold[1]; |
| 1942 | bp->stats.port_ler_flag[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_flag[0]; |
| 1943 | bp->stats.port_ler_flag[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_flag[1]; |
| 1944 | bp->stats.port_hardware_present[0] = bp->cmd_rsp_virt->smt_mib_get.port_hardware_present[0]; |
| 1945 | bp->stats.port_hardware_present[1] = bp->cmd_rsp_virt->smt_mib_get.port_hardware_present[1]; |
| 1946 | |
| 1947 | /* Get FDDI counters */ |
| 1948 | |
| 1949 | bp->cmd_req_virt->cmd_type = PI_CMD_K_CNTRS_GET; |
| 1950 | if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS) |
| 1951 | return((struct net_device_stats *) &bp->stats); |
| 1952 | |
| 1953 | /* Fill the bp->stats structure with the FDDI counter values */ |
| 1954 | |
| 1955 | bp->stats.mac_frame_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.frame_cnt.ls; |
| 1956 | bp->stats.mac_copied_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.copied_cnt.ls; |
| 1957 | bp->stats.mac_transmit_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.transmit_cnt.ls; |
| 1958 | bp->stats.mac_error_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.error_cnt.ls; |
| 1959 | bp->stats.mac_lost_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.lost_cnt.ls; |
| 1960 | bp->stats.port_lct_fail_cts[0] = bp->cmd_rsp_virt->cntrs_get.cntrs.lct_rejects[0].ls; |
| 1961 | bp->stats.port_lct_fail_cts[1] = bp->cmd_rsp_virt->cntrs_get.cntrs.lct_rejects[1].ls; |
| 1962 | bp->stats.port_lem_reject_cts[0] = bp->cmd_rsp_virt->cntrs_get.cntrs.lem_rejects[0].ls; |
| 1963 | bp->stats.port_lem_reject_cts[1] = bp->cmd_rsp_virt->cntrs_get.cntrs.lem_rejects[1].ls; |
| 1964 | bp->stats.port_lem_cts[0] = bp->cmd_rsp_virt->cntrs_get.cntrs.link_errors[0].ls; |
| 1965 | bp->stats.port_lem_cts[1] = bp->cmd_rsp_virt->cntrs_get.cntrs.link_errors[1].ls; |
| 1966 | |
| 1967 | return((struct net_device_stats *) &bp->stats); |
| 1968 | } |
| 1969 | |
| 1970 | |
| 1971 | /* |
| 1972 | * ============================== |
| 1973 | * = dfx_ctl_set_multicast_list = |
| 1974 | * ============================== |
| 1975 | * |
| 1976 | * Overview: |
| 1977 | * Enable/Disable LLC frame promiscuous mode reception |
| 1978 | * on the adapter and/or update multicast address table. |
| 1979 | * |
| 1980 | * Returns: |
| 1981 | * None |
| 1982 | * |
| 1983 | * Arguments: |
| 1984 | * dev - pointer to device information |
| 1985 | * |
| 1986 | * Functional Description: |
| 1987 | * This routine follows a fairly simple algorithm for setting the |
| 1988 | * adapter filters and CAM: |
| 1989 | * |
| 1990 | * if IFF_PROMISC flag is set |
| 1991 | * enable LLC individual/group promiscuous mode |
| 1992 | * else |
| 1993 | * disable LLC individual/group promiscuous mode |
| 1994 | * if number of incoming multicast addresses > |
| 1995 | * (CAM max size - number of unicast addresses in CAM) |
| 1996 | * enable LLC group promiscuous mode |
| 1997 | * set driver-maintained multicast address count to zero |
| 1998 | * else |
| 1999 | * disable LLC group promiscuous mode |
| 2000 | * set driver-maintained multicast address count to incoming count |
| 2001 | * update adapter CAM |
| 2002 | * update adapter filters |
| 2003 | * |
| 2004 | * Return Codes: |
| 2005 | * None |
| 2006 | * |
| 2007 | * Assumptions: |
| 2008 | * Multicast addresses are presented in canonical (LSB) format. |
| 2009 | * |
| 2010 | * Side Effects: |
| 2011 | * On-board adapter CAM and filters are updated. |
| 2012 | */ |
| 2013 | |
| 2014 | static void dfx_ctl_set_multicast_list(struct net_device *dev) |
| 2015 | { |
| 2016 | DFX_board_t *bp = dev->priv; |
| 2017 | int i; /* used as index in for loop */ |
| 2018 | struct dev_mc_list *dmi; /* ptr to multicast addr entry */ |
| 2019 | |
| 2020 | /* Enable LLC frame promiscuous mode, if necessary */ |
| 2021 | |
| 2022 | if (dev->flags & IFF_PROMISC) |
| 2023 | bp->ind_group_prom = PI_FSTATE_K_PASS; /* Enable LLC ind/group prom mode */ |
| 2024 | |
| 2025 | /* Else, update multicast address table */ |
| 2026 | |
| 2027 | else |
| 2028 | { |
| 2029 | bp->ind_group_prom = PI_FSTATE_K_BLOCK; /* Disable LLC ind/group prom mode */ |
| 2030 | /* |
| 2031 | * Check whether incoming multicast address count exceeds table size |
| 2032 | * |
| 2033 | * Note: The adapters utilize an on-board 64 entry CAM for |
| 2034 | * supporting perfect filtering of multicast packets |
| 2035 | * and bridge functions when adding unicast addresses. |
| 2036 | * There is no hash function available. To support |
| 2037 | * additional multicast addresses, the all multicast |
| 2038 | * filter (LLC group promiscuous mode) must be enabled. |
| 2039 | * |
| 2040 | * The firmware reserves two CAM entries for SMT-related |
| 2041 | * multicast addresses, which leaves 62 entries available. |
| 2042 | * The following code ensures that we're not being asked |
| 2043 | * to add more than 62 addresses to the CAM. If we are, |
| 2044 | * the driver will enable the all multicast filter. |
| 2045 | * Should the number of multicast addresses drop below |
| 2046 | * the high water mark, the filter will be disabled and |
| 2047 | * perfect filtering will be used. |
| 2048 | */ |
| 2049 | |
| 2050 | if (dev->mc_count > (PI_CMD_ADDR_FILTER_K_SIZE - bp->uc_count)) |
| 2051 | { |
| 2052 | bp->group_prom = PI_FSTATE_K_PASS; /* Enable LLC group prom mode */ |
| 2053 | bp->mc_count = 0; /* Don't add mc addrs to CAM */ |
| 2054 | } |
| 2055 | else |
| 2056 | { |
| 2057 | bp->group_prom = PI_FSTATE_K_BLOCK; /* Disable LLC group prom mode */ |
| 2058 | bp->mc_count = dev->mc_count; /* Add mc addrs to CAM */ |
| 2059 | } |
| 2060 | |
| 2061 | /* Copy addresses to multicast address table, then update adapter CAM */ |
| 2062 | |
| 2063 | dmi = dev->mc_list; /* point to first multicast addr */ |
| 2064 | for (i=0; i < bp->mc_count; i++) |
| 2065 | { |
| 2066 | memcpy(&bp->mc_table[i*FDDI_K_ALEN], dmi->dmi_addr, FDDI_K_ALEN); |
| 2067 | dmi = dmi->next; /* point to next multicast addr */ |
| 2068 | } |
| 2069 | if (dfx_ctl_update_cam(bp) != DFX_K_SUCCESS) |
| 2070 | { |
| 2071 | DBG_printk("%s: Could not update multicast address table!\n", dev->name); |
| 2072 | } |
| 2073 | else |
| 2074 | { |
| 2075 | DBG_printk("%s: Multicast address table updated! Added %d addresses.\n", dev->name, bp->mc_count); |
| 2076 | } |
| 2077 | } |
| 2078 | |
| 2079 | /* Update adapter filters */ |
| 2080 | |
| 2081 | if (dfx_ctl_update_filters(bp) != DFX_K_SUCCESS) |
| 2082 | { |
| 2083 | DBG_printk("%s: Could not update adapter filters!\n", dev->name); |
| 2084 | } |
| 2085 | else |
| 2086 | { |
| 2087 | DBG_printk("%s: Adapter filters updated!\n", dev->name); |
| 2088 | } |
| 2089 | } |
| 2090 | |
| 2091 | |
| 2092 | /* |
| 2093 | * =========================== |
| 2094 | * = dfx_ctl_set_mac_address = |
| 2095 | * =========================== |
| 2096 | * |
| 2097 | * Overview: |
| 2098 | * Add node address override (unicast address) to adapter |
| 2099 | * CAM and update dev_addr field in device table. |
| 2100 | * |
| 2101 | * Returns: |
| 2102 | * None |
| 2103 | * |
| 2104 | * Arguments: |
| 2105 | * dev - pointer to device information |
| 2106 | * addr - pointer to sockaddr structure containing unicast address to add |
| 2107 | * |
| 2108 | * Functional Description: |
| 2109 | * The adapter supports node address overrides by adding one or more |
| 2110 | * unicast addresses to the adapter CAM. This is similar to adding |
| 2111 | * multicast addresses. In this routine we'll update the driver and |
| 2112 | * device structures with the new address, then update the adapter CAM |
| 2113 | * to ensure that the adapter will copy and strip frames destined and |
| 2114 | * sourced by that address. |
| 2115 | * |
| 2116 | * Return Codes: |
| 2117 | * Always returns zero. |
| 2118 | * |
| 2119 | * Assumptions: |
| 2120 | * The address pointed to by addr->sa_data is a valid unicast |
| 2121 | * address and is presented in canonical (LSB) format. |
| 2122 | * |
| 2123 | * Side Effects: |
| 2124 | * On-board adapter CAM is updated. On-board adapter filters |
| 2125 | * may be updated. |
| 2126 | */ |
| 2127 | |
| 2128 | static int dfx_ctl_set_mac_address(struct net_device *dev, void *addr) |
| 2129 | { |
| 2130 | DFX_board_t *bp = dev->priv; |
| 2131 | struct sockaddr *p_sockaddr = (struct sockaddr *)addr; |
| 2132 | |
| 2133 | /* Copy unicast address to driver-maintained structs and update count */ |
| 2134 | |
| 2135 | memcpy(dev->dev_addr, p_sockaddr->sa_data, FDDI_K_ALEN); /* update device struct */ |
| 2136 | memcpy(&bp->uc_table[0], p_sockaddr->sa_data, FDDI_K_ALEN); /* update driver struct */ |
| 2137 | bp->uc_count = 1; |
| 2138 | |
| 2139 | /* |
| 2140 | * Verify we're not exceeding the CAM size by adding unicast address |
| 2141 | * |
| 2142 | * Note: It's possible that before entering this routine we've |
| 2143 | * already filled the CAM with 62 multicast addresses. |
| 2144 | * Since we need to place the node address override into |
| 2145 | * the CAM, we have to check to see that we're not |
| 2146 | * exceeding the CAM size. If we are, we have to enable |
| 2147 | * the LLC group (multicast) promiscuous mode filter as |
| 2148 | * in dfx_ctl_set_multicast_list. |
| 2149 | */ |
| 2150 | |
| 2151 | if ((bp->uc_count + bp->mc_count) > PI_CMD_ADDR_FILTER_K_SIZE) |
| 2152 | { |
| 2153 | bp->group_prom = PI_FSTATE_K_PASS; /* Enable LLC group prom mode */ |
| 2154 | bp->mc_count = 0; /* Don't add mc addrs to CAM */ |
| 2155 | |
| 2156 | /* Update adapter filters */ |
| 2157 | |
| 2158 | if (dfx_ctl_update_filters(bp) != DFX_K_SUCCESS) |
| 2159 | { |
| 2160 | DBG_printk("%s: Could not update adapter filters!\n", dev->name); |
| 2161 | } |
| 2162 | else |
| 2163 | { |
| 2164 | DBG_printk("%s: Adapter filters updated!\n", dev->name); |
| 2165 | } |
| 2166 | } |
| 2167 | |
| 2168 | /* Update adapter CAM with new unicast address */ |
| 2169 | |
| 2170 | if (dfx_ctl_update_cam(bp) != DFX_K_SUCCESS) |
| 2171 | { |
| 2172 | DBG_printk("%s: Could not set new MAC address!\n", dev->name); |
| 2173 | } |
| 2174 | else |
| 2175 | { |
| 2176 | DBG_printk("%s: Adapter CAM updated with new MAC address\n", dev->name); |
| 2177 | } |
| 2178 | return(0); /* always return zero */ |
| 2179 | } |
| 2180 | |
| 2181 | |
| 2182 | /* |
| 2183 | * ====================== |
| 2184 | * = dfx_ctl_update_cam = |
| 2185 | * ====================== |
| 2186 | * |
| 2187 | * Overview: |
| 2188 | * Procedure to update adapter CAM (Content Addressable Memory) |
| 2189 | * with desired unicast and multicast address entries. |
| 2190 | * |
| 2191 | * Returns: |
| 2192 | * Condition code |
| 2193 | * |
| 2194 | * Arguments: |
| 2195 | * bp - pointer to board information |
| 2196 | * |
| 2197 | * Functional Description: |
| 2198 | * Updates adapter CAM with current contents of board structure |
| 2199 | * unicast and multicast address tables. Since there are only 62 |
| 2200 | * free entries in CAM, this routine ensures that the command |
| 2201 | * request buffer is not overrun. |
| 2202 | * |
| 2203 | * Return Codes: |
| 2204 | * DFX_K_SUCCESS - Request succeeded |
| 2205 | * DFX_K_FAILURE - Request failed |
| 2206 | * |
| 2207 | * Assumptions: |
| 2208 | * All addresses being added (unicast and multicast) are in canonical |
| 2209 | * order. |
| 2210 | * |
| 2211 | * Side Effects: |
| 2212 | * On-board adapter CAM is updated. |
| 2213 | */ |
| 2214 | |
| 2215 | static int dfx_ctl_update_cam(DFX_board_t *bp) |
| 2216 | { |
| 2217 | int i; /* used as index */ |
| 2218 | PI_LAN_ADDR *p_addr; /* pointer to CAM entry */ |
| 2219 | |
| 2220 | /* |
| 2221 | * Fill in command request information |
| 2222 | * |
| 2223 | * Note: Even though both the unicast and multicast address |
| 2224 | * table entries are stored as contiguous 6 byte entries, |
| 2225 | * the firmware address filter set command expects each |
| 2226 | * entry to be two longwords (8 bytes total). We must be |
| 2227 | * careful to only copy the six bytes of each unicast and |
| 2228 | * multicast table entry into each command entry. This |
| 2229 | * is also why we must first clear the entire command |
| 2230 | * request buffer. |
| 2231 | */ |
| 2232 | |
| 2233 | memset(bp->cmd_req_virt, 0, PI_CMD_REQ_K_SIZE_MAX); /* first clear buffer */ |
| 2234 | bp->cmd_req_virt->cmd_type = PI_CMD_K_ADDR_FILTER_SET; |
| 2235 | p_addr = &bp->cmd_req_virt->addr_filter_set.entry[0]; |
| 2236 | |
| 2237 | /* Now add unicast addresses to command request buffer, if any */ |
| 2238 | |
| 2239 | for (i=0; i < (int)bp->uc_count; i++) |
| 2240 | { |
| 2241 | if (i < PI_CMD_ADDR_FILTER_K_SIZE) |
| 2242 | { |
| 2243 | memcpy(p_addr, &bp->uc_table[i*FDDI_K_ALEN], FDDI_K_ALEN); |
| 2244 | p_addr++; /* point to next command entry */ |
| 2245 | } |
| 2246 | } |
| 2247 | |
| 2248 | /* Now add multicast addresses to command request buffer, if any */ |
| 2249 | |
| 2250 | for (i=0; i < (int)bp->mc_count; i++) |
| 2251 | { |
| 2252 | if ((i + bp->uc_count) < PI_CMD_ADDR_FILTER_K_SIZE) |
| 2253 | { |
| 2254 | memcpy(p_addr, &bp->mc_table[i*FDDI_K_ALEN], FDDI_K_ALEN); |
| 2255 | p_addr++; /* point to next command entry */ |
| 2256 | } |
| 2257 | } |
| 2258 | |
| 2259 | /* Issue command to update adapter CAM, then return */ |
| 2260 | |
| 2261 | if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS) |
| 2262 | return(DFX_K_FAILURE); |
| 2263 | return(DFX_K_SUCCESS); |
| 2264 | } |
| 2265 | |
| 2266 | |
| 2267 | /* |
| 2268 | * ========================== |
| 2269 | * = dfx_ctl_update_filters = |
| 2270 | * ========================== |
| 2271 | * |
| 2272 | * Overview: |
| 2273 | * Procedure to update adapter filters with desired |
| 2274 | * filter settings. |
| 2275 | * |
| 2276 | * Returns: |
| 2277 | * Condition code |
| 2278 | * |
| 2279 | * Arguments: |
| 2280 | * bp - pointer to board information |
| 2281 | * |
| 2282 | * Functional Description: |
| 2283 | * Enables or disables filter using current filter settings. |
| 2284 | * |
| 2285 | * Return Codes: |
| 2286 | * DFX_K_SUCCESS - Request succeeded. |
| 2287 | * DFX_K_FAILURE - Request failed. |
| 2288 | * |
| 2289 | * Assumptions: |
| 2290 | * We must always pass up packets destined to the broadcast |
| 2291 | * address (FF-FF-FF-FF-FF-FF), so we'll always keep the |
| 2292 | * broadcast filter enabled. |
| 2293 | * |
| 2294 | * Side Effects: |
| 2295 | * On-board adapter filters are updated. |
| 2296 | */ |
| 2297 | |
| 2298 | static int dfx_ctl_update_filters(DFX_board_t *bp) |
| 2299 | { |
| 2300 | int i = 0; /* used as index */ |
| 2301 | |
| 2302 | /* Fill in command request information */ |
| 2303 | |
| 2304 | bp->cmd_req_virt->cmd_type = PI_CMD_K_FILTERS_SET; |
| 2305 | |
| 2306 | /* Initialize Broadcast filter - * ALWAYS ENABLED * */ |
| 2307 | |
| 2308 | bp->cmd_req_virt->filter_set.item[i].item_code = PI_ITEM_K_BROADCAST; |
| 2309 | bp->cmd_req_virt->filter_set.item[i++].value = PI_FSTATE_K_PASS; |
| 2310 | |
| 2311 | /* Initialize LLC Individual/Group Promiscuous filter */ |
| 2312 | |
| 2313 | bp->cmd_req_virt->filter_set.item[i].item_code = PI_ITEM_K_IND_GROUP_PROM; |
| 2314 | bp->cmd_req_virt->filter_set.item[i++].value = bp->ind_group_prom; |
| 2315 | |
| 2316 | /* Initialize LLC Group Promiscuous filter */ |
| 2317 | |
| 2318 | bp->cmd_req_virt->filter_set.item[i].item_code = PI_ITEM_K_GROUP_PROM; |
| 2319 | bp->cmd_req_virt->filter_set.item[i++].value = bp->group_prom; |
| 2320 | |
| 2321 | /* Terminate the item code list */ |
| 2322 | |
| 2323 | bp->cmd_req_virt->filter_set.item[i].item_code = PI_ITEM_K_EOL; |
| 2324 | |
| 2325 | /* Issue command to update adapter filters, then return */ |
| 2326 | |
| 2327 | if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS) |
| 2328 | return(DFX_K_FAILURE); |
| 2329 | return(DFX_K_SUCCESS); |
| 2330 | } |
| 2331 | |
| 2332 | |
| 2333 | /* |
| 2334 | * ====================== |
| 2335 | * = dfx_hw_dma_cmd_req = |
| 2336 | * ====================== |
| 2337 | * |
| 2338 | * Overview: |
| 2339 | * Sends PDQ DMA command to adapter firmware |
| 2340 | * |
| 2341 | * Returns: |
| 2342 | * Condition code |
| 2343 | * |
| 2344 | * Arguments: |
| 2345 | * bp - pointer to board information |
| 2346 | * |
| 2347 | * Functional Description: |
| 2348 | * The command request and response buffers are posted to the adapter in the manner |
| 2349 | * described in the PDQ Port Specification: |
| 2350 | * |
| 2351 | * 1. Command Response Buffer is posted to adapter. |
| 2352 | * 2. Command Request Buffer is posted to adapter. |
| 2353 | * 3. Command Request consumer index is polled until it indicates that request |
| 2354 | * buffer has been DMA'd to adapter. |
| 2355 | * 4. Command Response consumer index is polled until it indicates that response |
| 2356 | * buffer has been DMA'd from adapter. |
| 2357 | * |
| 2358 | * This ordering ensures that a response buffer is already available for the firmware |
| 2359 | * to use once it's done processing the request buffer. |
| 2360 | * |
| 2361 | * Return Codes: |
| 2362 | * DFX_K_SUCCESS - DMA command succeeded |
| 2363 | * DFX_K_OUTSTATE - Adapter is NOT in proper state |
| 2364 | * DFX_K_HW_TIMEOUT - DMA command timed out |
| 2365 | * |
| 2366 | * Assumptions: |
| 2367 | * Command request buffer has already been filled with desired DMA command. |
| 2368 | * |
| 2369 | * Side Effects: |
| 2370 | * None |
| 2371 | */ |
| 2372 | |
| 2373 | static int dfx_hw_dma_cmd_req(DFX_board_t *bp) |
| 2374 | { |
| 2375 | int status; /* adapter status */ |
| 2376 | int timeout_cnt; /* used in for loops */ |
| 2377 | |
| 2378 | /* Make sure the adapter is in a state that we can issue the DMA command in */ |
| 2379 | |
| 2380 | status = dfx_hw_adap_state_rd(bp); |
| 2381 | if ((status == PI_STATE_K_RESET) || |
| 2382 | (status == PI_STATE_K_HALTED) || |
| 2383 | (status == PI_STATE_K_DMA_UNAVAIL) || |
| 2384 | (status == PI_STATE_K_UPGRADE)) |
| 2385 | return(DFX_K_OUTSTATE); |
| 2386 | |
| 2387 | /* Put response buffer on the command response queue */ |
| 2388 | |
| 2389 | bp->descr_block_virt->cmd_rsp[bp->cmd_rsp_reg.index.prod].long_0 = (u32) (PI_RCV_DESCR_M_SOP | |
| 2390 | ((PI_CMD_RSP_K_SIZE_MAX / PI_ALIGN_K_CMD_RSP_BUFF) << PI_RCV_DESCR_V_SEG_LEN)); |
| 2391 | bp->descr_block_virt->cmd_rsp[bp->cmd_rsp_reg.index.prod].long_1 = bp->cmd_rsp_phys; |
| 2392 | |
| 2393 | /* Bump (and wrap) the producer index and write out to register */ |
| 2394 | |
| 2395 | bp->cmd_rsp_reg.index.prod += 1; |
| 2396 | bp->cmd_rsp_reg.index.prod &= PI_CMD_RSP_K_NUM_ENTRIES-1; |
| 2397 | dfx_port_write_long(bp, PI_PDQ_K_REG_CMD_RSP_PROD, bp->cmd_rsp_reg.lword); |
| 2398 | |
| 2399 | /* Put request buffer on the command request queue */ |
| 2400 | |
| 2401 | bp->descr_block_virt->cmd_req[bp->cmd_req_reg.index.prod].long_0 = (u32) (PI_XMT_DESCR_M_SOP | |
| 2402 | PI_XMT_DESCR_M_EOP | (PI_CMD_REQ_K_SIZE_MAX << PI_XMT_DESCR_V_SEG_LEN)); |
| 2403 | bp->descr_block_virt->cmd_req[bp->cmd_req_reg.index.prod].long_1 = bp->cmd_req_phys; |
| 2404 | |
| 2405 | /* Bump (and wrap) the producer index and write out to register */ |
| 2406 | |
| 2407 | bp->cmd_req_reg.index.prod += 1; |
| 2408 | bp->cmd_req_reg.index.prod &= PI_CMD_REQ_K_NUM_ENTRIES-1; |
| 2409 | dfx_port_write_long(bp, PI_PDQ_K_REG_CMD_REQ_PROD, bp->cmd_req_reg.lword); |
| 2410 | |
| 2411 | /* |
| 2412 | * Here we wait for the command request consumer index to be equal |
| 2413 | * to the producer, indicating that the adapter has DMAed the request. |
| 2414 | */ |
| 2415 | |
| 2416 | for (timeout_cnt = 20000; timeout_cnt > 0; timeout_cnt--) |
| 2417 | { |
| 2418 | if (bp->cmd_req_reg.index.prod == (u8)(bp->cons_block_virt->cmd_req)) |
| 2419 | break; |
| 2420 | udelay(100); /* wait for 100 microseconds */ |
| 2421 | } |
| 2422 | if (timeout_cnt == 0) |
| 2423 | return(DFX_K_HW_TIMEOUT); |
| 2424 | |
| 2425 | /* Bump (and wrap) the completion index and write out to register */ |
| 2426 | |
| 2427 | bp->cmd_req_reg.index.comp += 1; |
| 2428 | bp->cmd_req_reg.index.comp &= PI_CMD_REQ_K_NUM_ENTRIES-1; |
| 2429 | dfx_port_write_long(bp, PI_PDQ_K_REG_CMD_REQ_PROD, bp->cmd_req_reg.lword); |
| 2430 | |
| 2431 | /* |
| 2432 | * Here we wait for the command response consumer index to be equal |
| 2433 | * to the producer, indicating that the adapter has DMAed the response. |
| 2434 | */ |
| 2435 | |
| 2436 | for (timeout_cnt = 20000; timeout_cnt > 0; timeout_cnt--) |
| 2437 | { |
| 2438 | if (bp->cmd_rsp_reg.index.prod == (u8)(bp->cons_block_virt->cmd_rsp)) |
| 2439 | break; |
| 2440 | udelay(100); /* wait for 100 microseconds */ |
| 2441 | } |
| 2442 | if (timeout_cnt == 0) |
| 2443 | return(DFX_K_HW_TIMEOUT); |
| 2444 | |
| 2445 | /* Bump (and wrap) the completion index and write out to register */ |
| 2446 | |
| 2447 | bp->cmd_rsp_reg.index.comp += 1; |
| 2448 | bp->cmd_rsp_reg.index.comp &= PI_CMD_RSP_K_NUM_ENTRIES-1; |
| 2449 | dfx_port_write_long(bp, PI_PDQ_K_REG_CMD_RSP_PROD, bp->cmd_rsp_reg.lword); |
| 2450 | return(DFX_K_SUCCESS); |
| 2451 | } |
| 2452 | |
| 2453 | |
| 2454 | /* |
| 2455 | * ======================== |
| 2456 | * = dfx_hw_port_ctrl_req = |
| 2457 | * ======================== |
| 2458 | * |
| 2459 | * Overview: |
| 2460 | * Sends PDQ port control command to adapter firmware |
| 2461 | * |
| 2462 | * Returns: |
| 2463 | * Host data register value in host_data if ptr is not NULL |
| 2464 | * |
| 2465 | * Arguments: |
| 2466 | * bp - pointer to board information |
| 2467 | * command - port control command |
| 2468 | * data_a - port data A register value |
| 2469 | * data_b - port data B register value |
| 2470 | * host_data - ptr to host data register value |
| 2471 | * |
| 2472 | * Functional Description: |
| 2473 | * Send generic port control command to adapter by writing |
| 2474 | * to various PDQ port registers, then polling for completion. |
| 2475 | * |
| 2476 | * Return Codes: |
| 2477 | * DFX_K_SUCCESS - port control command succeeded |
| 2478 | * DFX_K_HW_TIMEOUT - port control command timed out |
| 2479 | * |
| 2480 | * Assumptions: |
| 2481 | * None |
| 2482 | * |
| 2483 | * Side Effects: |
| 2484 | * None |
| 2485 | */ |
| 2486 | |
| 2487 | static int dfx_hw_port_ctrl_req( |
| 2488 | DFX_board_t *bp, |
| 2489 | PI_UINT32 command, |
| 2490 | PI_UINT32 data_a, |
| 2491 | PI_UINT32 data_b, |
| 2492 | PI_UINT32 *host_data |
| 2493 | ) |
| 2494 | |
| 2495 | { |
| 2496 | PI_UINT32 port_cmd; /* Port Control command register value */ |
| 2497 | int timeout_cnt; /* used in for loops */ |
| 2498 | |
| 2499 | /* Set Command Error bit in command longword */ |
| 2500 | |
| 2501 | port_cmd = (PI_UINT32) (command | PI_PCTRL_M_CMD_ERROR); |
| 2502 | |
| 2503 | /* Issue port command to the adapter */ |
| 2504 | |
| 2505 | dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_DATA_A, data_a); |
| 2506 | dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_DATA_B, data_b); |
| 2507 | dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_CTRL, port_cmd); |
| 2508 | |
| 2509 | /* Now wait for command to complete */ |
| 2510 | |
| 2511 | if (command == PI_PCTRL_M_BLAST_FLASH) |
| 2512 | timeout_cnt = 600000; /* set command timeout count to 60 seconds */ |
| 2513 | else |
| 2514 | timeout_cnt = 20000; /* set command timeout count to 2 seconds */ |
| 2515 | |
| 2516 | for (; timeout_cnt > 0; timeout_cnt--) |
| 2517 | { |
| 2518 | dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_CTRL, &port_cmd); |
| 2519 | if (!(port_cmd & PI_PCTRL_M_CMD_ERROR)) |
| 2520 | break; |
| 2521 | udelay(100); /* wait for 100 microseconds */ |
| 2522 | } |
| 2523 | if (timeout_cnt == 0) |
| 2524 | return(DFX_K_HW_TIMEOUT); |
| 2525 | |
| 2526 | /* |
| 2527 | * If the address of host_data is non-zero, assume caller has supplied a |
| 2528 | * non NULL pointer, and return the contents of the HOST_DATA register in |
| 2529 | * it. |
| 2530 | */ |
| 2531 | |
| 2532 | if (host_data != NULL) |
| 2533 | dfx_port_read_long(bp, PI_PDQ_K_REG_HOST_DATA, host_data); |
| 2534 | return(DFX_K_SUCCESS); |
| 2535 | } |
| 2536 | |
| 2537 | |
| 2538 | /* |
| 2539 | * ===================== |
| 2540 | * = dfx_hw_adap_reset = |
| 2541 | * ===================== |
| 2542 | * |
| 2543 | * Overview: |
| 2544 | * Resets adapter |
| 2545 | * |
| 2546 | * Returns: |
| 2547 | * None |
| 2548 | * |
| 2549 | * Arguments: |
| 2550 | * bp - pointer to board information |
| 2551 | * type - type of reset to perform |
| 2552 | * |
| 2553 | * Functional Description: |
| 2554 | * Issue soft reset to adapter by writing to PDQ Port Reset |
| 2555 | * register. Use incoming reset type to tell adapter what |
| 2556 | * kind of reset operation to perform. |
| 2557 | * |
| 2558 | * Return Codes: |
| 2559 | * None |
| 2560 | * |
| 2561 | * Assumptions: |
| 2562 | * This routine merely issues a soft reset to the adapter. |
| 2563 | * It is expected that after this routine returns, the caller |
| 2564 | * will appropriately poll the Port Status register for the |
| 2565 | * adapter to enter the proper state. |
| 2566 | * |
| 2567 | * Side Effects: |
| 2568 | * Internal adapter registers are cleared. |
| 2569 | */ |
| 2570 | |
| 2571 | static void dfx_hw_adap_reset( |
| 2572 | DFX_board_t *bp, |
| 2573 | PI_UINT32 type |
| 2574 | ) |
| 2575 | |
| 2576 | { |
| 2577 | /* Set Reset type and assert reset */ |
| 2578 | |
| 2579 | dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_DATA_A, type); /* tell adapter type of reset */ |
| 2580 | dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_RESET, PI_RESET_M_ASSERT_RESET); |
| 2581 | |
| 2582 | /* Wait for at least 1 Microsecond according to the spec. We wait 20 just to be safe */ |
| 2583 | |
| 2584 | udelay(20); |
| 2585 | |
| 2586 | /* Deassert reset */ |
| 2587 | |
| 2588 | dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_RESET, 0); |
| 2589 | } |
| 2590 | |
| 2591 | |
| 2592 | /* |
| 2593 | * ======================== |
| 2594 | * = dfx_hw_adap_state_rd = |
| 2595 | * ======================== |
| 2596 | * |
| 2597 | * Overview: |
| 2598 | * Returns current adapter state |
| 2599 | * |
| 2600 | * Returns: |
| 2601 | * Adapter state per PDQ Port Specification |
| 2602 | * |
| 2603 | * Arguments: |
| 2604 | * bp - pointer to board information |
| 2605 | * |
| 2606 | * Functional Description: |
| 2607 | * Reads PDQ Port Status register and returns adapter state. |
| 2608 | * |
| 2609 | * Return Codes: |
| 2610 | * None |
| 2611 | * |
| 2612 | * Assumptions: |
| 2613 | * None |
| 2614 | * |
| 2615 | * Side Effects: |
| 2616 | * None |
| 2617 | */ |
| 2618 | |
| 2619 | static int dfx_hw_adap_state_rd(DFX_board_t *bp) |
| 2620 | { |
| 2621 | PI_UINT32 port_status; /* Port Status register value */ |
| 2622 | |
| 2623 | dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_STATUS, &port_status); |
| 2624 | return((port_status & PI_PSTATUS_M_STATE) >> PI_PSTATUS_V_STATE); |
| 2625 | } |
| 2626 | |
| 2627 | |
| 2628 | /* |
| 2629 | * ===================== |
| 2630 | * = dfx_hw_dma_uninit = |
| 2631 | * ===================== |
| 2632 | * |
| 2633 | * Overview: |
| 2634 | * Brings adapter to DMA_UNAVAILABLE state |
| 2635 | * |
| 2636 | * Returns: |
| 2637 | * Condition code |
| 2638 | * |
| 2639 | * Arguments: |
| 2640 | * bp - pointer to board information |
| 2641 | * type - type of reset to perform |
| 2642 | * |
| 2643 | * Functional Description: |
| 2644 | * Bring adapter to DMA_UNAVAILABLE state by performing the following: |
| 2645 | * 1. Set reset type bit in Port Data A Register then reset adapter. |
| 2646 | * 2. Check that adapter is in DMA_UNAVAILABLE state. |
| 2647 | * |
| 2648 | * Return Codes: |
| 2649 | * DFX_K_SUCCESS - adapter is in DMA_UNAVAILABLE state |
| 2650 | * DFX_K_HW_TIMEOUT - adapter did not reset properly |
| 2651 | * |
| 2652 | * Assumptions: |
| 2653 | * None |
| 2654 | * |
| 2655 | * Side Effects: |
| 2656 | * Internal adapter registers are cleared. |
| 2657 | */ |
| 2658 | |
| 2659 | static int dfx_hw_dma_uninit(DFX_board_t *bp, PI_UINT32 type) |
| 2660 | { |
| 2661 | int timeout_cnt; /* used in for loops */ |
| 2662 | |
| 2663 | /* Set reset type bit and reset adapter */ |
| 2664 | |
| 2665 | dfx_hw_adap_reset(bp, type); |
| 2666 | |
| 2667 | /* Now wait for adapter to enter DMA_UNAVAILABLE state */ |
| 2668 | |
| 2669 | for (timeout_cnt = 100000; timeout_cnt > 0; timeout_cnt--) |
| 2670 | { |
| 2671 | if (dfx_hw_adap_state_rd(bp) == PI_STATE_K_DMA_UNAVAIL) |
| 2672 | break; |
| 2673 | udelay(100); /* wait for 100 microseconds */ |
| 2674 | } |
| 2675 | if (timeout_cnt == 0) |
| 2676 | return(DFX_K_HW_TIMEOUT); |
| 2677 | return(DFX_K_SUCCESS); |
| 2678 | } |
| 2679 | |
| 2680 | /* |
| 2681 | * Align an sk_buff to a boundary power of 2 |
| 2682 | * |
| 2683 | */ |
| 2684 | |
| 2685 | static void my_skb_align(struct sk_buff *skb, int n) |
| 2686 | { |
| 2687 | unsigned long x = (unsigned long)skb->data; |
| 2688 | unsigned long v; |
| 2689 | |
| 2690 | v = ALIGN(x, n); /* Where we want to be */ |
| 2691 | |
| 2692 | skb_reserve(skb, v - x); |
| 2693 | } |
| 2694 | |
| 2695 | |
| 2696 | /* |
| 2697 | * ================ |
| 2698 | * = dfx_rcv_init = |
| 2699 | * ================ |
| 2700 | * |
| 2701 | * Overview: |
| 2702 | * Produces buffers to adapter LLC Host receive descriptor block |
| 2703 | * |
| 2704 | * Returns: |
| 2705 | * None |
| 2706 | * |
| 2707 | * Arguments: |
| 2708 | * bp - pointer to board information |
| 2709 | * get_buffers - non-zero if buffers to be allocated |
| 2710 | * |
| 2711 | * Functional Description: |
| 2712 | * This routine can be called during dfx_adap_init() or during an adapter |
| 2713 | * reset. It initializes the descriptor block and produces all allocated |
| 2714 | * LLC Host queue receive buffers. |
| 2715 | * |
| 2716 | * Return Codes: |
| 2717 | * Return 0 on success or -ENOMEM if buffer allocation failed (when using |
| 2718 | * dynamic buffer allocation). If the buffer allocation failed, the |
| 2719 | * already allocated buffers will not be released and the caller should do |
| 2720 | * this. |
| 2721 | * |
| 2722 | * Assumptions: |
| 2723 | * The PDQ has been reset and the adapter and driver maintained Type 2 |
| 2724 | * register indices are cleared. |
| 2725 | * |
| 2726 | * Side Effects: |
| 2727 | * Receive buffers are posted to the adapter LLC queue and the adapter |
| 2728 | * is notified. |
| 2729 | */ |
| 2730 | |
| 2731 | static int dfx_rcv_init(DFX_board_t *bp, int get_buffers) |
| 2732 | { |
| 2733 | int i, j; /* used in for loop */ |
| 2734 | |
| 2735 | /* |
| 2736 | * Since each receive buffer is a single fragment of same length, initialize |
| 2737 | * first longword in each receive descriptor for entire LLC Host descriptor |
| 2738 | * block. Also initialize second longword in each receive descriptor with |
| 2739 | * physical address of receive buffer. We'll always allocate receive |
| 2740 | * buffers in powers of 2 so that we can easily fill the 256 entry descriptor |
| 2741 | * block and produce new receive buffers by simply updating the receive |
| 2742 | * producer index. |
| 2743 | * |
| 2744 | * Assumptions: |
| 2745 | * To support all shipping versions of PDQ, the receive buffer size |
| 2746 | * must be mod 128 in length and the physical address must be 128 byte |
| 2747 | * aligned. In other words, bits 0-6 of the length and address must |
| 2748 | * be zero for the following descriptor field entries to be correct on |
| 2749 | * all PDQ-based boards. We guaranteed both requirements during |
| 2750 | * driver initialization when we allocated memory for the receive buffers. |
| 2751 | */ |
| 2752 | |
| 2753 | if (get_buffers) { |
| 2754 | #ifdef DYNAMIC_BUFFERS |
| 2755 | for (i = 0; i < (int)(bp->rcv_bufs_to_post); i++) |
| 2756 | for (j = 0; (i + j) < (int)PI_RCV_DATA_K_NUM_ENTRIES; j += bp->rcv_bufs_to_post) |
| 2757 | { |
| 2758 | struct sk_buff *newskb = __dev_alloc_skb(NEW_SKB_SIZE, GFP_NOIO); |
| 2759 | if (!newskb) |
| 2760 | return -ENOMEM; |
| 2761 | bp->descr_block_virt->rcv_data[i+j].long_0 = (u32) (PI_RCV_DESCR_M_SOP | |
| 2762 | ((PI_RCV_DATA_K_SIZE_MAX / PI_ALIGN_K_RCV_DATA_BUFF) << PI_RCV_DESCR_V_SEG_LEN)); |
| 2763 | /* |
| 2764 | * align to 128 bytes for compatibility with |
| 2765 | * the old EISA boards. |
| 2766 | */ |
| 2767 | |
| 2768 | my_skb_align(newskb, 128); |
| 2769 | bp->descr_block_virt->rcv_data[i + j].long_1 = |
| 2770 | (u32)pci_map_single(bp->pci_dev, newskb->data, |
| 2771 | NEW_SKB_SIZE, |
| 2772 | PCI_DMA_FROMDEVICE); |
| 2773 | /* |
| 2774 | * p_rcv_buff_va is only used inside the |
| 2775 | * kernel so we put the skb pointer here. |
| 2776 | */ |
| 2777 | bp->p_rcv_buff_va[i+j] = (char *) newskb; |
| 2778 | } |
| 2779 | #else |
| 2780 | for (i=0; i < (int)(bp->rcv_bufs_to_post); i++) |
| 2781 | for (j=0; (i + j) < (int)PI_RCV_DATA_K_NUM_ENTRIES; j += bp->rcv_bufs_to_post) |
| 2782 | { |
| 2783 | bp->descr_block_virt->rcv_data[i+j].long_0 = (u32) (PI_RCV_DESCR_M_SOP | |
| 2784 | ((PI_RCV_DATA_K_SIZE_MAX / PI_ALIGN_K_RCV_DATA_BUFF) << PI_RCV_DESCR_V_SEG_LEN)); |
| 2785 | bp->descr_block_virt->rcv_data[i+j].long_1 = (u32) (bp->rcv_block_phys + (i * PI_RCV_DATA_K_SIZE_MAX)); |
| 2786 | bp->p_rcv_buff_va[i+j] = (char *) (bp->rcv_block_virt + (i * PI_RCV_DATA_K_SIZE_MAX)); |
| 2787 | } |
| 2788 | #endif |
| 2789 | } |
| 2790 | |
| 2791 | /* Update receive producer and Type 2 register */ |
| 2792 | |
| 2793 | bp->rcv_xmt_reg.index.rcv_prod = bp->rcv_bufs_to_post; |
| 2794 | dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_2_PROD, bp->rcv_xmt_reg.lword); |
| 2795 | return 0; |
| 2796 | } |
| 2797 | |
| 2798 | |
| 2799 | /* |
| 2800 | * ========================= |
| 2801 | * = dfx_rcv_queue_process = |
| 2802 | * ========================= |
| 2803 | * |
| 2804 | * Overview: |
| 2805 | * Process received LLC frames. |
| 2806 | * |
| 2807 | * Returns: |
| 2808 | * None |
| 2809 | * |
| 2810 | * Arguments: |
| 2811 | * bp - pointer to board information |
| 2812 | * |
| 2813 | * Functional Description: |
| 2814 | * Received LLC frames are processed until there are no more consumed frames. |
| 2815 | * Once all frames are processed, the receive buffers are returned to the |
| 2816 | * adapter. Note that this algorithm fixes the length of time that can be spent |
| 2817 | * in this routine, because there are a fixed number of receive buffers to |
| 2818 | * process and buffers are not produced until this routine exits and returns |
| 2819 | * to the ISR. |
| 2820 | * |
| 2821 | * Return Codes: |
| 2822 | * None |
| 2823 | * |
| 2824 | * Assumptions: |
| 2825 | * None |
| 2826 | * |
| 2827 | * Side Effects: |
| 2828 | * None |
| 2829 | */ |
| 2830 | |
| 2831 | static void dfx_rcv_queue_process( |
| 2832 | DFX_board_t *bp |
| 2833 | ) |
| 2834 | |
| 2835 | { |
| 2836 | PI_TYPE_2_CONSUMER *p_type_2_cons; /* ptr to rcv/xmt consumer block register */ |
| 2837 | char *p_buff; /* ptr to start of packet receive buffer (FMC descriptor) */ |
| 2838 | u32 descr, pkt_len; /* FMC descriptor field and packet length */ |
| 2839 | struct sk_buff *skb; /* pointer to a sk_buff to hold incoming packet data */ |
| 2840 | |
| 2841 | /* Service all consumed LLC receive frames */ |
| 2842 | |
| 2843 | p_type_2_cons = (PI_TYPE_2_CONSUMER *)(&bp->cons_block_virt->xmt_rcv_data); |
| 2844 | while (bp->rcv_xmt_reg.index.rcv_comp != p_type_2_cons->index.rcv_cons) |
| 2845 | { |
| 2846 | /* Process any errors */ |
| 2847 | |
| 2848 | int entry; |
| 2849 | |
| 2850 | entry = bp->rcv_xmt_reg.index.rcv_comp; |
| 2851 | #ifdef DYNAMIC_BUFFERS |
| 2852 | p_buff = (char *) (((struct sk_buff *)bp->p_rcv_buff_va[entry])->data); |
| 2853 | #else |
| 2854 | p_buff = (char *) bp->p_rcv_buff_va[entry]; |
| 2855 | #endif |
| 2856 | memcpy(&descr, p_buff + RCV_BUFF_K_DESCR, sizeof(u32)); |
| 2857 | |
| 2858 | if (descr & PI_FMC_DESCR_M_RCC_FLUSH) |
| 2859 | { |
| 2860 | if (descr & PI_FMC_DESCR_M_RCC_CRC) |
| 2861 | bp->rcv_crc_errors++; |
| 2862 | else |
| 2863 | bp->rcv_frame_status_errors++; |
| 2864 | } |
| 2865 | else |
| 2866 | { |
| 2867 | int rx_in_place = 0; |
| 2868 | |
| 2869 | /* The frame was received without errors - verify packet length */ |
| 2870 | |
| 2871 | pkt_len = (u32)((descr & PI_FMC_DESCR_M_LEN) >> PI_FMC_DESCR_V_LEN); |
| 2872 | pkt_len -= 4; /* subtract 4 byte CRC */ |
| 2873 | if (!IN_RANGE(pkt_len, FDDI_K_LLC_ZLEN, FDDI_K_LLC_LEN)) |
| 2874 | bp->rcv_length_errors++; |
| 2875 | else{ |
| 2876 | #ifdef DYNAMIC_BUFFERS |
| 2877 | if (pkt_len > SKBUFF_RX_COPYBREAK) { |
| 2878 | struct sk_buff *newskb; |
| 2879 | |
| 2880 | newskb = dev_alloc_skb(NEW_SKB_SIZE); |
| 2881 | if (newskb){ |
| 2882 | rx_in_place = 1; |
| 2883 | |
| 2884 | my_skb_align(newskb, 128); |
| 2885 | skb = (struct sk_buff *)bp->p_rcv_buff_va[entry]; |
| 2886 | pci_unmap_single(bp->pci_dev, |
| 2887 | bp->descr_block_virt->rcv_data[entry].long_1, |
| 2888 | NEW_SKB_SIZE, |
| 2889 | PCI_DMA_FROMDEVICE); |
| 2890 | skb_reserve(skb, RCV_BUFF_K_PADDING); |
| 2891 | bp->p_rcv_buff_va[entry] = (char *)newskb; |
| 2892 | bp->descr_block_virt->rcv_data[entry].long_1 = |
| 2893 | (u32)pci_map_single(bp->pci_dev, |
| 2894 | newskb->data, |
| 2895 | NEW_SKB_SIZE, |
| 2896 | PCI_DMA_FROMDEVICE); |
| 2897 | } else |
| 2898 | skb = NULL; |
| 2899 | } else |
| 2900 | #endif |
| 2901 | skb = dev_alloc_skb(pkt_len+3); /* alloc new buffer to pass up, add room for PRH */ |
| 2902 | if (skb == NULL) |
| 2903 | { |
| 2904 | printk("%s: Could not allocate receive buffer. Dropping packet.\n", bp->dev->name); |
| 2905 | bp->rcv_discards++; |
| 2906 | break; |
| 2907 | } |
| 2908 | else { |
| 2909 | #ifndef DYNAMIC_BUFFERS |
| 2910 | if (! rx_in_place) |
| 2911 | #endif |
| 2912 | { |
| 2913 | /* Receive buffer allocated, pass receive packet up */ |
| 2914 | |
| 2915 | memcpy(skb->data, p_buff + RCV_BUFF_K_PADDING, pkt_len+3); |
| 2916 | } |
| 2917 | |
| 2918 | skb_reserve(skb,3); /* adjust data field so that it points to FC byte */ |
| 2919 | skb_put(skb, pkt_len); /* pass up packet length, NOT including CRC */ |
| 2920 | skb->dev = bp->dev; /* pass up device pointer */ |
| 2921 | |
| 2922 | skb->protocol = fddi_type_trans(skb, bp->dev); |
| 2923 | bp->rcv_total_bytes += skb->len; |
| 2924 | netif_rx(skb); |
| 2925 | |
| 2926 | /* Update the rcv counters */ |
| 2927 | bp->dev->last_rx = jiffies; |
| 2928 | bp->rcv_total_frames++; |
| 2929 | if (*(p_buff + RCV_BUFF_K_DA) & 0x01) |
| 2930 | bp->rcv_multicast_frames++; |
| 2931 | } |
| 2932 | } |
| 2933 | } |
| 2934 | |
| 2935 | /* |
| 2936 | * Advance the producer (for recycling) and advance the completion |
| 2937 | * (for servicing received frames). Note that it is okay to |
| 2938 | * advance the producer without checking that it passes the |
| 2939 | * completion index because they are both advanced at the same |
| 2940 | * rate. |
| 2941 | */ |
| 2942 | |
| 2943 | bp->rcv_xmt_reg.index.rcv_prod += 1; |
| 2944 | bp->rcv_xmt_reg.index.rcv_comp += 1; |
| 2945 | } |
| 2946 | } |
| 2947 | |
| 2948 | |
| 2949 | /* |
| 2950 | * ===================== |
| 2951 | * = dfx_xmt_queue_pkt = |
| 2952 | * ===================== |
| 2953 | * |
| 2954 | * Overview: |
| 2955 | * Queues packets for transmission |
| 2956 | * |
| 2957 | * Returns: |
| 2958 | * Condition code |
| 2959 | * |
| 2960 | * Arguments: |
| 2961 | * skb - pointer to sk_buff to queue for transmission |
| 2962 | * dev - pointer to device information |
| 2963 | * |
| 2964 | * Functional Description: |
| 2965 | * Here we assume that an incoming skb transmit request |
| 2966 | * is contained in a single physically contiguous buffer |
| 2967 | * in which the virtual address of the start of packet |
| 2968 | * (skb->data) can be converted to a physical address |
| 2969 | * by using pci_map_single(). |
| 2970 | * |
| 2971 | * Since the adapter architecture requires a three byte |
| 2972 | * packet request header to prepend the start of packet, |
| 2973 | * we'll write the three byte field immediately prior to |
| 2974 | * the FC byte. This assumption is valid because we've |
| 2975 | * ensured that dev->hard_header_len includes three pad |
| 2976 | * bytes. By posting a single fragment to the adapter, |
| 2977 | * we'll reduce the number of descriptor fetches and |
| 2978 | * bus traffic needed to send the request. |
| 2979 | * |
| 2980 | * Also, we can't free the skb until after it's been DMA'd |
| 2981 | * out by the adapter, so we'll queue it in the driver and |
| 2982 | * return it in dfx_xmt_done. |
| 2983 | * |
| 2984 | * Return Codes: |
| 2985 | * 0 - driver queued packet, link is unavailable, or skbuff was bad |
| 2986 | * 1 - caller should requeue the sk_buff for later transmission |
| 2987 | * |
| 2988 | * Assumptions: |
| 2989 | * First and foremost, we assume the incoming skb pointer |
| 2990 | * is NOT NULL and is pointing to a valid sk_buff structure. |
| 2991 | * |
| 2992 | * The outgoing packet is complete, starting with the |
| 2993 | * frame control byte including the last byte of data, |
| 2994 | * but NOT including the 4 byte CRC. We'll let the |
| 2995 | * adapter hardware generate and append the CRC. |
| 2996 | * |
| 2997 | * The entire packet is stored in one physically |
| 2998 | * contiguous buffer which is not cached and whose |
| 2999 | * 32-bit physical address can be determined. |
| 3000 | * |
| 3001 | * It's vital that this routine is NOT reentered for the |
| 3002 | * same board and that the OS is not in another section of |
| 3003 | * code (eg. dfx_int_common) for the same board on a |
| 3004 | * different thread. |
| 3005 | * |
| 3006 | * Side Effects: |
| 3007 | * None |
| 3008 | */ |
| 3009 | |
| 3010 | static int dfx_xmt_queue_pkt( |
| 3011 | struct sk_buff *skb, |
| 3012 | struct net_device *dev |
| 3013 | ) |
| 3014 | |
| 3015 | { |
| 3016 | DFX_board_t *bp = dev->priv; |
| 3017 | u8 prod; /* local transmit producer index */ |
| 3018 | PI_XMT_DESCR *p_xmt_descr; /* ptr to transmit descriptor block entry */ |
| 3019 | XMT_DRIVER_DESCR *p_xmt_drv_descr; /* ptr to transmit driver descriptor */ |
| 3020 | unsigned long flags; |
| 3021 | |
| 3022 | netif_stop_queue(dev); |
| 3023 | |
| 3024 | /* |
| 3025 | * Verify that incoming transmit request is OK |
| 3026 | * |
| 3027 | * Note: The packet size check is consistent with other |
| 3028 | * Linux device drivers, although the correct packet |
| 3029 | * size should be verified before calling the |
| 3030 | * transmit routine. |
| 3031 | */ |
| 3032 | |
| 3033 | if (!IN_RANGE(skb->len, FDDI_K_LLC_ZLEN, FDDI_K_LLC_LEN)) |
| 3034 | { |
| 3035 | printk("%s: Invalid packet length - %u bytes\n", |
| 3036 | dev->name, skb->len); |
| 3037 | bp->xmt_length_errors++; /* bump error counter */ |
| 3038 | netif_wake_queue(dev); |
| 3039 | dev_kfree_skb(skb); |
| 3040 | return(0); /* return "success" */ |
| 3041 | } |
| 3042 | /* |
| 3043 | * See if adapter link is available, if not, free buffer |
| 3044 | * |
| 3045 | * Note: If the link isn't available, free buffer and return 0 |
| 3046 | * rather than tell the upper layer to requeue the packet. |
| 3047 | * The methodology here is that by the time the link |
| 3048 | * becomes available, the packet to be sent will be |
| 3049 | * fairly stale. By simply dropping the packet, the |
| 3050 | * higher layer protocols will eventually time out |
| 3051 | * waiting for response packets which it won't receive. |
| 3052 | */ |
| 3053 | |
| 3054 | if (bp->link_available == PI_K_FALSE) |
| 3055 | { |
| 3056 | if (dfx_hw_adap_state_rd(bp) == PI_STATE_K_LINK_AVAIL) /* is link really available? */ |
| 3057 | bp->link_available = PI_K_TRUE; /* if so, set flag and continue */ |
| 3058 | else |
| 3059 | { |
| 3060 | bp->xmt_discards++; /* bump error counter */ |
| 3061 | dev_kfree_skb(skb); /* free sk_buff now */ |
| 3062 | netif_wake_queue(dev); |
| 3063 | return(0); /* return "success" */ |
| 3064 | } |
| 3065 | } |
| 3066 | |
| 3067 | spin_lock_irqsave(&bp->lock, flags); |
| 3068 | |
| 3069 | /* Get the current producer and the next free xmt data descriptor */ |
| 3070 | |
| 3071 | prod = bp->rcv_xmt_reg.index.xmt_prod; |
| 3072 | p_xmt_descr = &(bp->descr_block_virt->xmt_data[prod]); |
| 3073 | |
| 3074 | /* |
| 3075 | * Get pointer to auxiliary queue entry to contain information |
| 3076 | * for this packet. |
| 3077 | * |
| 3078 | * Note: The current xmt producer index will become the |
| 3079 | * current xmt completion index when we complete this |
| 3080 | * packet later on. So, we'll get the pointer to the |
| 3081 | * next auxiliary queue entry now before we bump the |
| 3082 | * producer index. |
| 3083 | */ |
| 3084 | |
| 3085 | p_xmt_drv_descr = &(bp->xmt_drv_descr_blk[prod++]); /* also bump producer index */ |
| 3086 | |
| 3087 | /* Write the three PRH bytes immediately before the FC byte */ |
| 3088 | |
| 3089 | skb_push(skb,3); |
| 3090 | skb->data[0] = DFX_PRH0_BYTE; /* these byte values are defined */ |
| 3091 | skb->data[1] = DFX_PRH1_BYTE; /* in the Motorola FDDI MAC chip */ |
| 3092 | skb->data[2] = DFX_PRH2_BYTE; /* specification */ |
| 3093 | |
| 3094 | /* |
| 3095 | * Write the descriptor with buffer info and bump producer |
| 3096 | * |
| 3097 | * Note: Since we need to start DMA from the packet request |
| 3098 | * header, we'll add 3 bytes to the DMA buffer length, |
| 3099 | * and we'll determine the physical address of the |
| 3100 | * buffer from the PRH, not skb->data. |
| 3101 | * |
| 3102 | * Assumptions: |
| 3103 | * 1. Packet starts with the frame control (FC) byte |
| 3104 | * at skb->data. |
| 3105 | * 2. The 4-byte CRC is not appended to the buffer or |
| 3106 | * included in the length. |
| 3107 | * 3. Packet length (skb->len) is from FC to end of |
| 3108 | * data, inclusive. |
| 3109 | * 4. The packet length does not exceed the maximum |
| 3110 | * FDDI LLC frame length of 4491 bytes. |
| 3111 | * 5. The entire packet is contained in a physically |
| 3112 | * contiguous, non-cached, locked memory space |
| 3113 | * comprised of a single buffer pointed to by |
| 3114 | * skb->data. |
| 3115 | * 6. The physical address of the start of packet |
| 3116 | * can be determined from the virtual address |
| 3117 | * by using pci_map_single() and is only 32-bits |
| 3118 | * wide. |
| 3119 | */ |
| 3120 | |
| 3121 | p_xmt_descr->long_0 = (u32) (PI_XMT_DESCR_M_SOP | PI_XMT_DESCR_M_EOP | ((skb->len) << PI_XMT_DESCR_V_SEG_LEN)); |
| 3122 | p_xmt_descr->long_1 = (u32)pci_map_single(bp->pci_dev, skb->data, |
| 3123 | skb->len, PCI_DMA_TODEVICE); |
| 3124 | |
| 3125 | /* |
| 3126 | * Verify that descriptor is actually available |
| 3127 | * |
| 3128 | * Note: If descriptor isn't available, return 1 which tells |
| 3129 | * the upper layer to requeue the packet for later |
| 3130 | * transmission. |
| 3131 | * |
| 3132 | * We need to ensure that the producer never reaches the |
| 3133 | * completion, except to indicate that the queue is empty. |
| 3134 | */ |
| 3135 | |
| 3136 | if (prod == bp->rcv_xmt_reg.index.xmt_comp) |
| 3137 | { |
| 3138 | skb_pull(skb,3); |
| 3139 | spin_unlock_irqrestore(&bp->lock, flags); |
| 3140 | return(1); /* requeue packet for later */ |
| 3141 | } |
| 3142 | |
| 3143 | /* |
| 3144 | * Save info for this packet for xmt done indication routine |
| 3145 | * |
| 3146 | * Normally, we'd save the producer index in the p_xmt_drv_descr |
| 3147 | * structure so that we'd have it handy when we complete this |
| 3148 | * packet later (in dfx_xmt_done). However, since the current |
| 3149 | * transmit architecture guarantees a single fragment for the |
| 3150 | * entire packet, we can simply bump the completion index by |
| 3151 | * one (1) for each completed packet. |
| 3152 | * |
| 3153 | * Note: If this assumption changes and we're presented with |
| 3154 | * an inconsistent number of transmit fragments for packet |
| 3155 | * data, we'll need to modify this code to save the current |
| 3156 | * transmit producer index. |
| 3157 | */ |
| 3158 | |
| 3159 | p_xmt_drv_descr->p_skb = skb; |
| 3160 | |
| 3161 | /* Update Type 2 register */ |
| 3162 | |
| 3163 | bp->rcv_xmt_reg.index.xmt_prod = prod; |
| 3164 | dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_2_PROD, bp->rcv_xmt_reg.lword); |
| 3165 | spin_unlock_irqrestore(&bp->lock, flags); |
| 3166 | netif_wake_queue(dev); |
| 3167 | return(0); /* packet queued to adapter */ |
| 3168 | } |
| 3169 | |
| 3170 | |
| 3171 | /* |
| 3172 | * ================ |
| 3173 | * = dfx_xmt_done = |
| 3174 | * ================ |
| 3175 | * |
| 3176 | * Overview: |
| 3177 | * Processes all frames that have been transmitted. |
| 3178 | * |
| 3179 | * Returns: |
| 3180 | * None |
| 3181 | * |
| 3182 | * Arguments: |
| 3183 | * bp - pointer to board information |
| 3184 | * |
| 3185 | * Functional Description: |
| 3186 | * For all consumed transmit descriptors that have not |
| 3187 | * yet been completed, we'll free the skb we were holding |
| 3188 | * onto using dev_kfree_skb and bump the appropriate |
| 3189 | * counters. |
| 3190 | * |
| 3191 | * Return Codes: |
| 3192 | * None |
| 3193 | * |
| 3194 | * Assumptions: |
| 3195 | * The Type 2 register is not updated in this routine. It is |
| 3196 | * assumed that it will be updated in the ISR when dfx_xmt_done |
| 3197 | * returns. |
| 3198 | * |
| 3199 | * Side Effects: |
| 3200 | * None |
| 3201 | */ |
| 3202 | |
| 3203 | static int dfx_xmt_done(DFX_board_t *bp) |
| 3204 | { |
| 3205 | XMT_DRIVER_DESCR *p_xmt_drv_descr; /* ptr to transmit driver descriptor */ |
| 3206 | PI_TYPE_2_CONSUMER *p_type_2_cons; /* ptr to rcv/xmt consumer block register */ |
| 3207 | u8 comp; /* local transmit completion index */ |
| 3208 | int freed = 0; /* buffers freed */ |
| 3209 | |
| 3210 | /* Service all consumed transmit frames */ |
| 3211 | |
| 3212 | p_type_2_cons = (PI_TYPE_2_CONSUMER *)(&bp->cons_block_virt->xmt_rcv_data); |
| 3213 | while (bp->rcv_xmt_reg.index.xmt_comp != p_type_2_cons->index.xmt_cons) |
| 3214 | { |
| 3215 | /* Get pointer to the transmit driver descriptor block information */ |
| 3216 | |
| 3217 | p_xmt_drv_descr = &(bp->xmt_drv_descr_blk[bp->rcv_xmt_reg.index.xmt_comp]); |
| 3218 | |
| 3219 | /* Increment transmit counters */ |
| 3220 | |
| 3221 | bp->xmt_total_frames++; |
| 3222 | bp->xmt_total_bytes += p_xmt_drv_descr->p_skb->len; |
| 3223 | |
| 3224 | /* Return skb to operating system */ |
| 3225 | comp = bp->rcv_xmt_reg.index.xmt_comp; |
| 3226 | pci_unmap_single(bp->pci_dev, |
| 3227 | bp->descr_block_virt->xmt_data[comp].long_1, |
| 3228 | p_xmt_drv_descr->p_skb->len, |
| 3229 | PCI_DMA_TODEVICE); |
| 3230 | dev_kfree_skb_irq(p_xmt_drv_descr->p_skb); |
| 3231 | |
| 3232 | /* |
| 3233 | * Move to start of next packet by updating completion index |
| 3234 | * |
| 3235 | * Here we assume that a transmit packet request is always |
| 3236 | * serviced by posting one fragment. We can therefore |
| 3237 | * simplify the completion code by incrementing the |
| 3238 | * completion index by one. This code will need to be |
| 3239 | * modified if this assumption changes. See comments |
| 3240 | * in dfx_xmt_queue_pkt for more details. |
| 3241 | */ |
| 3242 | |
| 3243 | bp->rcv_xmt_reg.index.xmt_comp += 1; |
| 3244 | freed++; |
| 3245 | } |
| 3246 | return freed; |
| 3247 | } |
| 3248 | |
| 3249 | |
| 3250 | /* |
| 3251 | * ================= |
| 3252 | * = dfx_rcv_flush = |
| 3253 | * ================= |
| 3254 | * |
| 3255 | * Overview: |
| 3256 | * Remove all skb's in the receive ring. |
| 3257 | * |
| 3258 | * Returns: |
| 3259 | * None |
| 3260 | * |
| 3261 | * Arguments: |
| 3262 | * bp - pointer to board information |
| 3263 | * |
| 3264 | * Functional Description: |
| 3265 | * Free's all the dynamically allocated skb's that are |
| 3266 | * currently attached to the device receive ring. This |
| 3267 | * function is typically only used when the device is |
| 3268 | * initialized or reinitialized. |
| 3269 | * |
| 3270 | * Return Codes: |
| 3271 | * None |
| 3272 | * |
| 3273 | * Side Effects: |
| 3274 | * None |
| 3275 | */ |
| 3276 | #ifdef DYNAMIC_BUFFERS |
| 3277 | static void dfx_rcv_flush( DFX_board_t *bp ) |
| 3278 | { |
| 3279 | int i, j; |
| 3280 | |
| 3281 | for (i = 0; i < (int)(bp->rcv_bufs_to_post); i++) |
| 3282 | for (j = 0; (i + j) < (int)PI_RCV_DATA_K_NUM_ENTRIES; j += bp->rcv_bufs_to_post) |
| 3283 | { |
| 3284 | struct sk_buff *skb; |
| 3285 | skb = (struct sk_buff *)bp->p_rcv_buff_va[i+j]; |
| 3286 | if (skb) |
| 3287 | dev_kfree_skb(skb); |
| 3288 | bp->p_rcv_buff_va[i+j] = NULL; |
| 3289 | } |
| 3290 | |
| 3291 | } |
| 3292 | #else |
| 3293 | static inline void dfx_rcv_flush( DFX_board_t *bp ) |
| 3294 | { |
| 3295 | } |
| 3296 | #endif /* DYNAMIC_BUFFERS */ |
| 3297 | |
| 3298 | /* |
| 3299 | * ================= |
| 3300 | * = dfx_xmt_flush = |
| 3301 | * ================= |
| 3302 | * |
| 3303 | * Overview: |
| 3304 | * Processes all frames whether they've been transmitted |
| 3305 | * or not. |
| 3306 | * |
| 3307 | * Returns: |
| 3308 | * None |
| 3309 | * |
| 3310 | * Arguments: |
| 3311 | * bp - pointer to board information |
| 3312 | * |
| 3313 | * Functional Description: |
| 3314 | * For all produced transmit descriptors that have not |
| 3315 | * yet been completed, we'll free the skb we were holding |
| 3316 | * onto using dev_kfree_skb and bump the appropriate |
| 3317 | * counters. Of course, it's possible that some of |
| 3318 | * these transmit requests actually did go out, but we |
| 3319 | * won't make that distinction here. Finally, we'll |
| 3320 | * update the consumer index to match the producer. |
| 3321 | * |
| 3322 | * Return Codes: |
| 3323 | * None |
| 3324 | * |
| 3325 | * Assumptions: |
| 3326 | * This routine does NOT update the Type 2 register. It |
| 3327 | * is assumed that this routine is being called during a |
| 3328 | * transmit flush interrupt, or a shutdown or close routine. |
| 3329 | * |
| 3330 | * Side Effects: |
| 3331 | * None |
| 3332 | */ |
| 3333 | |
| 3334 | static void dfx_xmt_flush( DFX_board_t *bp ) |
| 3335 | { |
| 3336 | u32 prod_cons; /* rcv/xmt consumer block longword */ |
| 3337 | XMT_DRIVER_DESCR *p_xmt_drv_descr; /* ptr to transmit driver descriptor */ |
| 3338 | u8 comp; /* local transmit completion index */ |
| 3339 | |
| 3340 | /* Flush all outstanding transmit frames */ |
| 3341 | |
| 3342 | while (bp->rcv_xmt_reg.index.xmt_comp != bp->rcv_xmt_reg.index.xmt_prod) |
| 3343 | { |
| 3344 | /* Get pointer to the transmit driver descriptor block information */ |
| 3345 | |
| 3346 | p_xmt_drv_descr = &(bp->xmt_drv_descr_blk[bp->rcv_xmt_reg.index.xmt_comp]); |
| 3347 | |
| 3348 | /* Return skb to operating system */ |
| 3349 | comp = bp->rcv_xmt_reg.index.xmt_comp; |
| 3350 | pci_unmap_single(bp->pci_dev, |
| 3351 | bp->descr_block_virt->xmt_data[comp].long_1, |
| 3352 | p_xmt_drv_descr->p_skb->len, |
| 3353 | PCI_DMA_TODEVICE); |
| 3354 | dev_kfree_skb(p_xmt_drv_descr->p_skb); |
| 3355 | |
| 3356 | /* Increment transmit error counter */ |
| 3357 | |
| 3358 | bp->xmt_discards++; |
| 3359 | |
| 3360 | /* |
| 3361 | * Move to start of next packet by updating completion index |
| 3362 | * |
| 3363 | * Here we assume that a transmit packet request is always |
| 3364 | * serviced by posting one fragment. We can therefore |
| 3365 | * simplify the completion code by incrementing the |
| 3366 | * completion index by one. This code will need to be |
| 3367 | * modified if this assumption changes. See comments |
| 3368 | * in dfx_xmt_queue_pkt for more details. |
| 3369 | */ |
| 3370 | |
| 3371 | bp->rcv_xmt_reg.index.xmt_comp += 1; |
| 3372 | } |
| 3373 | |
| 3374 | /* Update the transmit consumer index in the consumer block */ |
| 3375 | |
| 3376 | prod_cons = (u32)(bp->cons_block_virt->xmt_rcv_data & ~PI_CONS_M_XMT_INDEX); |
| 3377 | prod_cons |= (u32)(bp->rcv_xmt_reg.index.xmt_prod << PI_CONS_V_XMT_INDEX); |
| 3378 | bp->cons_block_virt->xmt_rcv_data = prod_cons; |
| 3379 | } |
| 3380 | |
| 3381 | static void __devexit dfx_remove_one_pci_or_eisa(struct pci_dev *pdev, struct net_device *dev) |
| 3382 | { |
| 3383 | DFX_board_t *bp = dev->priv; |
| 3384 | int alloc_size; /* total buffer size used */ |
| 3385 | |
| 3386 | unregister_netdev(dev); |
| 3387 | release_region(dev->base_addr, pdev ? PFI_K_CSR_IO_LEN : PI_ESIC_K_CSR_IO_LEN ); |
| 3388 | |
| 3389 | alloc_size = sizeof(PI_DESCR_BLOCK) + |
| 3390 | PI_CMD_REQ_K_SIZE_MAX + PI_CMD_RSP_K_SIZE_MAX + |
| 3391 | #ifndef DYNAMIC_BUFFERS |
| 3392 | (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX) + |
| 3393 | #endif |
| 3394 | sizeof(PI_CONSUMER_BLOCK) + |
| 3395 | (PI_ALIGN_K_DESC_BLK - 1); |
| 3396 | if (bp->kmalloced) |
| 3397 | pci_free_consistent(pdev, alloc_size, bp->kmalloced, |
| 3398 | bp->kmalloced_dma); |
| 3399 | free_netdev(dev); |
| 3400 | } |
| 3401 | |
| 3402 | static void __devexit dfx_remove_one (struct pci_dev *pdev) |
| 3403 | { |
| 3404 | struct net_device *dev = pci_get_drvdata(pdev); |
| 3405 | |
| 3406 | dfx_remove_one_pci_or_eisa(pdev, dev); |
| 3407 | pci_set_drvdata(pdev, NULL); |
| 3408 | } |
| 3409 | |
| 3410 | static struct pci_device_id dfx_pci_tbl[] = { |
| 3411 | { PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_FDDI, PCI_ANY_ID, PCI_ANY_ID, }, |
| 3412 | { 0, } |
| 3413 | }; |
| 3414 | MODULE_DEVICE_TABLE(pci, dfx_pci_tbl); |
| 3415 | |
| 3416 | static struct pci_driver dfx_driver = { |
| 3417 | .name = "defxx", |
| 3418 | .probe = dfx_init_one, |
| 3419 | .remove = __devexit_p(dfx_remove_one), |
| 3420 | .id_table = dfx_pci_tbl, |
| 3421 | }; |
| 3422 | |
| 3423 | static int dfx_have_pci; |
| 3424 | static int dfx_have_eisa; |
| 3425 | |
| 3426 | |
| 3427 | static void __exit dfx_eisa_cleanup(void) |
| 3428 | { |
| 3429 | struct net_device *dev = root_dfx_eisa_dev; |
| 3430 | |
| 3431 | while (dev) |
| 3432 | { |
| 3433 | struct net_device *tmp; |
| 3434 | DFX_board_t *bp; |
| 3435 | |
| 3436 | bp = (DFX_board_t*)dev->priv; |
| 3437 | tmp = bp->next; |
| 3438 | dfx_remove_one_pci_or_eisa(NULL, dev); |
| 3439 | dev = tmp; |
| 3440 | } |
| 3441 | } |
| 3442 | |
| 3443 | static int __init dfx_init(void) |
| 3444 | { |
| 3445 | int rc_pci, rc_eisa; |
| 3446 | |
| 3447 | rc_pci = pci_module_init(&dfx_driver); |
| 3448 | if (rc_pci >= 0) dfx_have_pci = 1; |
| 3449 | |
| 3450 | rc_eisa = dfx_eisa_init(); |
| 3451 | if (rc_eisa >= 0) dfx_have_eisa = 1; |
| 3452 | |
| 3453 | return ((rc_eisa < 0) ? 0 : rc_eisa) + ((rc_pci < 0) ? 0 : rc_pci); |
| 3454 | } |
| 3455 | |
| 3456 | static void __exit dfx_cleanup(void) |
| 3457 | { |
| 3458 | if (dfx_have_pci) |
| 3459 | pci_unregister_driver(&dfx_driver); |
| 3460 | if (dfx_have_eisa) |
| 3461 | dfx_eisa_cleanup(); |
| 3462 | |
| 3463 | } |
| 3464 | |
| 3465 | module_init(dfx_init); |
| 3466 | module_exit(dfx_cleanup); |
| 3467 | MODULE_AUTHOR("Lawrence V. Stefani"); |
| 3468 | MODULE_DESCRIPTION("DEC FDDIcontroller EISA/PCI (DEFEA/DEFPA) driver " |
| 3469 | DRV_VERSION " " DRV_RELDATE); |
| 3470 | MODULE_LICENSE("GPL"); |
| 3471 | |
| 3472 | |
| 3473 | /* |
| 3474 | * Local variables: |
| 3475 | * kernel-compile-command: "gcc -D__KERNEL__ -I/root/linux/include -Wall -Wstrict-prototypes -O2 -pipe -fomit-frame-pointer -fno-strength-reduce -m486 -malign-loops=2 -malign-jumps=2 -malign-functions=2 -c defxx.c" |
| 3476 | * End: |
| 3477 | */ |