blob: 4fbe3f83319bd061880e570451631e356be9b716 [file] [log] [blame]
Eric Moore635374e2009-03-09 01:21:12 -06001/*
2 * Management Module Support for MPT (Message Passing Technology) based
3 * controllers
4 *
5 * This code is based on drivers/scsi/mpt2sas/mpt2_ctl.c
6 * Copyright (C) 2007-2008 LSI Corporation
7 * (mailto:DL-MPTFusionLinux@lsi.com)
8 *
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License
11 * as published by the Free Software Foundation; either version 2
12 * of the License, or (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * NO WARRANTY
20 * THE PROGRAM IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR
21 * CONDITIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED INCLUDING, WITHOUT
22 * LIMITATION, ANY WARRANTIES OR CONDITIONS OF TITLE, NON-INFRINGEMENT,
23 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Each Recipient is
24 * solely responsible for determining the appropriateness of using and
25 * distributing the Program and assumes all risks associated with its
26 * exercise of rights under this Agreement, including but not limited to
27 * the risks and costs of program errors, damage to or loss of data,
28 * programs or equipment, and unavailability or interruption of operations.
29
30 * DISCLAIMER OF LIABILITY
31 * NEITHER RECIPIENT NOR ANY CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY
32 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33 * DAMAGES (INCLUDING WITHOUT LIMITATION LOST PROFITS), HOWEVER CAUSED AND
34 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
35 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
36 * USE OR DISTRIBUTION OF THE PROGRAM OR THE EXERCISE OF ANY RIGHTS GRANTED
37 * HEREUNDER, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES
38
39 * You should have received a copy of the GNU General Public License
40 * along with this program; if not, write to the Free Software
41 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,
42 * USA.
43 */
44
45#include <linux/version.h>
46#include <linux/kernel.h>
47#include <linux/module.h>
48#include <linux/errno.h>
49#include <linux/init.h>
50#include <linux/slab.h>
51#include <linux/types.h>
52#include <linux/pci.h>
53#include <linux/delay.h>
54#include <linux/smp_lock.h>
55#include <linux/compat.h>
56#include <linux/poll.h>
57
58#include <linux/io.h>
59#include <linux/uaccess.h>
60
61#include "mpt2sas_base.h"
62#include "mpt2sas_ctl.h"
63
64static struct fasync_struct *async_queue;
65static DECLARE_WAIT_QUEUE_HEAD(ctl_poll_wait);
66
67/**
68 * enum block_state - blocking state
69 * @NON_BLOCKING: non blocking
70 * @BLOCKING: blocking
71 *
72 * These states are for ioctls that need to wait for a response
73 * from firmware, so they probably require sleep.
74 */
75enum block_state {
76 NON_BLOCKING,
77 BLOCKING,
78};
79
80#ifdef CONFIG_SCSI_MPT2SAS_LOGGING
81/**
82 * _ctl_display_some_debug - debug routine
83 * @ioc: per adapter object
84 * @smid: system request message index
85 * @calling_function_name: string pass from calling function
86 * @mpi_reply: reply message frame
87 * Context: none.
88 *
89 * Function for displaying debug info helpfull when debugging issues
90 * in this module.
91 */
92static void
93_ctl_display_some_debug(struct MPT2SAS_ADAPTER *ioc, u16 smid,
94 char *calling_function_name, MPI2DefaultReply_t *mpi_reply)
95{
96 Mpi2ConfigRequest_t *mpi_request;
97 char *desc = NULL;
98
99 if (!(ioc->logging_level & MPT_DEBUG_IOCTL))
100 return;
101
102 mpi_request = mpt2sas_base_get_msg_frame(ioc, smid);
103 switch (mpi_request->Function) {
104 case MPI2_FUNCTION_SCSI_IO_REQUEST:
105 {
106 Mpi2SCSIIORequest_t *scsi_request =
107 (Mpi2SCSIIORequest_t *)mpi_request;
108
109 snprintf(ioc->tmp_string, MPT_STRING_LENGTH,
110 "scsi_io, cmd(0x%02x), cdb_len(%d)",
111 scsi_request->CDB.CDB32[0],
112 le16_to_cpu(scsi_request->IoFlags) & 0xF);
113 desc = ioc->tmp_string;
114 break;
115 }
116 case MPI2_FUNCTION_SCSI_TASK_MGMT:
117 desc = "task_mgmt";
118 break;
119 case MPI2_FUNCTION_IOC_INIT:
120 desc = "ioc_init";
121 break;
122 case MPI2_FUNCTION_IOC_FACTS:
123 desc = "ioc_facts";
124 break;
125 case MPI2_FUNCTION_CONFIG:
126 {
127 Mpi2ConfigRequest_t *config_request =
128 (Mpi2ConfigRequest_t *)mpi_request;
129
130 snprintf(ioc->tmp_string, MPT_STRING_LENGTH,
131 "config, type(0x%02x), ext_type(0x%02x), number(%d)",
132 (config_request->Header.PageType &
133 MPI2_CONFIG_PAGETYPE_MASK), config_request->ExtPageType,
134 config_request->Header.PageNumber);
135 desc = ioc->tmp_string;
136 break;
137 }
138 case MPI2_FUNCTION_PORT_FACTS:
139 desc = "port_facts";
140 break;
141 case MPI2_FUNCTION_PORT_ENABLE:
142 desc = "port_enable";
143 break;
144 case MPI2_FUNCTION_EVENT_NOTIFICATION:
145 desc = "event_notification";
146 break;
147 case MPI2_FUNCTION_FW_DOWNLOAD:
148 desc = "fw_download";
149 break;
150 case MPI2_FUNCTION_FW_UPLOAD:
151 desc = "fw_upload";
152 break;
153 case MPI2_FUNCTION_RAID_ACTION:
154 desc = "raid_action";
155 break;
156 case MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH:
157 {
158 Mpi2SCSIIORequest_t *scsi_request =
159 (Mpi2SCSIIORequest_t *)mpi_request;
160
161 snprintf(ioc->tmp_string, MPT_STRING_LENGTH,
162 "raid_pass, cmd(0x%02x), cdb_len(%d)",
163 scsi_request->CDB.CDB32[0],
164 le16_to_cpu(scsi_request->IoFlags) & 0xF);
165 desc = ioc->tmp_string;
166 break;
167 }
168 case MPI2_FUNCTION_SAS_IO_UNIT_CONTROL:
169 desc = "sas_iounit_cntl";
170 break;
171 case MPI2_FUNCTION_SATA_PASSTHROUGH:
172 desc = "sata_pass";
173 break;
174 case MPI2_FUNCTION_DIAG_BUFFER_POST:
175 desc = "diag_buffer_post";
176 break;
177 case MPI2_FUNCTION_DIAG_RELEASE:
178 desc = "diag_release";
179 break;
180 case MPI2_FUNCTION_SMP_PASSTHROUGH:
181 desc = "smp_passthrough";
182 break;
183 }
184
185 if (!desc)
186 return;
187
188 printk(MPT2SAS_DEBUG_FMT "%s: %s, smid(%d)\n",
189 ioc->name, calling_function_name, desc, smid);
190
191 if (!mpi_reply)
192 return;
193
194 if (mpi_reply->IOCStatus || mpi_reply->IOCLogInfo)
195 printk(MPT2SAS_DEBUG_FMT
196 "\tiocstatus(0x%04x), loginfo(0x%08x)\n",
197 ioc->name, le16_to_cpu(mpi_reply->IOCStatus),
198 le32_to_cpu(mpi_reply->IOCLogInfo));
199
200 if (mpi_request->Function == MPI2_FUNCTION_SCSI_IO_REQUEST ||
201 mpi_request->Function ==
202 MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH) {
203 Mpi2SCSIIOReply_t *scsi_reply =
204 (Mpi2SCSIIOReply_t *)mpi_reply;
205 if (scsi_reply->SCSIState || scsi_reply->SCSIStatus)
206 printk(MPT2SAS_DEBUG_FMT
207 "\tscsi_state(0x%02x), scsi_status"
208 "(0x%02x)\n", ioc->name,
209 scsi_reply->SCSIState,
210 scsi_reply->SCSIStatus);
211 }
212}
213#endif
214
215/**
216 * mpt2sas_ctl_done - ctl module completion routine
217 * @ioc: per adapter object
218 * @smid: system request message index
219 * @VF_ID: virtual function id
220 * @reply: reply message frame(lower 32bit addr)
221 * Context: none.
222 *
223 * The callback handler when using ioc->ctl_cb_idx.
224 *
225 * Return nothing.
226 */
227void
228mpt2sas_ctl_done(struct MPT2SAS_ADAPTER *ioc, u16 smid, u8 VF_ID, u32 reply)
229{
230 MPI2DefaultReply_t *mpi_reply;
231
232 if (ioc->ctl_cmds.status == MPT2_CMD_NOT_USED)
233 return;
234 if (ioc->ctl_cmds.smid != smid)
235 return;
236 ioc->ctl_cmds.status |= MPT2_CMD_COMPLETE;
237 mpi_reply = mpt2sas_base_get_reply_virt_addr(ioc, reply);
238 if (mpi_reply) {
239 memcpy(ioc->ctl_cmds.reply, mpi_reply, mpi_reply->MsgLength*4);
240 ioc->ctl_cmds.status |= MPT2_CMD_REPLY_VALID;
241 }
242#ifdef CONFIG_SCSI_MPT2SAS_LOGGING
243 _ctl_display_some_debug(ioc, smid, "ctl_done", mpi_reply);
244#endif
245 ioc->ctl_cmds.status &= ~MPT2_CMD_PENDING;
246 complete(&ioc->ctl_cmds.done);
247}
248
249/**
250 * _ctl_check_event_type - determines when an event needs logging
251 * @ioc: per adapter object
252 * @event: firmware event
253 *
254 * The bitmask in ioc->event_type[] indicates which events should be
255 * be saved in the driver event_log. This bitmask is set by application.
256 *
257 * Returns 1 when event should be captured, or zero means no match.
258 */
259static int
260_ctl_check_event_type(struct MPT2SAS_ADAPTER *ioc, u16 event)
261{
262 u16 i;
263 u32 desired_event;
264
265 if (event >= 128 || !event || !ioc->event_log)
266 return 0;
267
268 desired_event = (1 << (event % 32));
269 if (!desired_event)
270 desired_event = 1;
271 i = event / 32;
272 return desired_event & ioc->event_type[i];
273}
274
275/**
276 * mpt2sas_ctl_add_to_event_log - add event
277 * @ioc: per adapter object
278 * @mpi_reply: reply message frame
279 *
280 * Return nothing.
281 */
282void
283mpt2sas_ctl_add_to_event_log(struct MPT2SAS_ADAPTER *ioc,
284 Mpi2EventNotificationReply_t *mpi_reply)
285{
286 struct MPT2_IOCTL_EVENTS *event_log;
287 u16 event;
288 int i;
289 u32 sz, event_data_sz;
290 u8 send_aen = 0;
291
292 if (!ioc->event_log)
293 return;
294
295 event = le16_to_cpu(mpi_reply->Event);
296
297 if (_ctl_check_event_type(ioc, event)) {
298
299 /* insert entry into circular event_log */
300 i = ioc->event_context % MPT2SAS_CTL_EVENT_LOG_SIZE;
301 event_log = ioc->event_log;
302 event_log[i].event = event;
303 event_log[i].context = ioc->event_context++;
304
305 event_data_sz = le16_to_cpu(mpi_reply->EventDataLength)*4;
306 sz = min_t(u32, event_data_sz, MPT2_EVENT_DATA_SIZE);
307 memset(event_log[i].data, 0, MPT2_EVENT_DATA_SIZE);
308 memcpy(event_log[i].data, mpi_reply->EventData, sz);
309 send_aen = 1;
310 }
311
312 /* This aen_event_read_flag flag is set until the
313 * application has read the event log.
314 * For MPI2_EVENT_LOG_ENTRY_ADDED, we always notify.
315 */
316 if (event == MPI2_EVENT_LOG_ENTRY_ADDED ||
317 (send_aen && !ioc->aen_event_read_flag)) {
318 ioc->aen_event_read_flag = 1;
319 wake_up_interruptible(&ctl_poll_wait);
320 if (async_queue)
321 kill_fasync(&async_queue, SIGIO, POLL_IN);
322 }
323}
324
325/**
326 * mpt2sas_ctl_event_callback - firmware event handler (called at ISR time)
327 * @ioc: per adapter object
328 * @VF_ID: virtual function id
329 * @reply: reply message frame(lower 32bit addr)
330 * Context: interrupt.
331 *
332 * This function merely adds a new work task into ioc->firmware_event_thread.
333 * The tasks are worked from _firmware_event_work in user context.
334 *
335 * Return nothing.
336 */
337void
338mpt2sas_ctl_event_callback(struct MPT2SAS_ADAPTER *ioc, u8 VF_ID, u32 reply)
339{
340 Mpi2EventNotificationReply_t *mpi_reply;
341
342 mpi_reply = mpt2sas_base_get_reply_virt_addr(ioc, reply);
343 mpt2sas_ctl_add_to_event_log(ioc, mpi_reply);
344}
345
346/**
347 * _ctl_verify_adapter - validates ioc_number passed from application
348 * @ioc: per adapter object
349 * @iocpp: The ioc pointer is returned in this.
350 *
351 * Return (-1) means error, else ioc_number.
352 */
353static int
354_ctl_verify_adapter(int ioc_number, struct MPT2SAS_ADAPTER **iocpp)
355{
356 struct MPT2SAS_ADAPTER *ioc;
357
358 list_for_each_entry(ioc, &ioc_list, list) {
359 if (ioc->id != ioc_number)
360 continue;
361 *iocpp = ioc;
362 return ioc_number;
363 }
364 *iocpp = NULL;
365 return -1;
366}
367
368/**
369 * mpt2sas_ctl_reset_handler - reset callback handler (for ctl)
370 * @ioc: per adapter object
371 * @reset_phase: phase
372 *
373 * The handler for doing any required cleanup or initialization.
374 *
375 * The reset phase can be MPT2_IOC_PRE_RESET, MPT2_IOC_AFTER_RESET,
376 * MPT2_IOC_DONE_RESET
377 */
378void
379mpt2sas_ctl_reset_handler(struct MPT2SAS_ADAPTER *ioc, int reset_phase)
380{
381 switch (reset_phase) {
382 case MPT2_IOC_PRE_RESET:
383 dtmprintk(ioc, printk(MPT2SAS_DEBUG_FMT "%s: "
384 "MPT2_IOC_PRE_RESET\n", ioc->name, __func__));
385 break;
386 case MPT2_IOC_AFTER_RESET:
387 dtmprintk(ioc, printk(MPT2SAS_DEBUG_FMT "%s: "
388 "MPT2_IOC_AFTER_RESET\n", ioc->name, __func__));
389 if (ioc->ctl_cmds.status & MPT2_CMD_PENDING) {
390 ioc->ctl_cmds.status |= MPT2_CMD_RESET;
391 mpt2sas_base_free_smid(ioc, ioc->ctl_cmds.smid);
392 complete(&ioc->ctl_cmds.done);
393 }
394 break;
395 case MPT2_IOC_DONE_RESET:
396 dtmprintk(ioc, printk(MPT2SAS_DEBUG_FMT "%s: "
397 "MPT2_IOC_DONE_RESET\n", ioc->name, __func__));
398 break;
399 }
400}
401
402/**
403 * _ctl_fasync -
404 * @fd -
405 * @filep -
406 * @mode -
407 *
408 * Called when application request fasyn callback handler.
409 */
410static int
411_ctl_fasync(int fd, struct file *filep, int mode)
412{
413 return fasync_helper(fd, filep, mode, &async_queue);
414}
415
416/**
417 * _ctl_release -
418 * @inode -
419 * @filep -
420 *
421 * Called when application releases the fasyn callback handler.
422 */
423static int
424_ctl_release(struct inode *inode, struct file *filep)
425{
426 return fasync_helper(-1, filep, 0, &async_queue);
427}
428
429/**
430 * _ctl_poll -
431 * @file -
432 * @wait -
433 *
434 */
435static unsigned int
436_ctl_poll(struct file *filep, poll_table *wait)
437{
438 struct MPT2SAS_ADAPTER *ioc;
439
440 poll_wait(filep, &ctl_poll_wait, wait);
441
442 list_for_each_entry(ioc, &ioc_list, list) {
443 if (ioc->aen_event_read_flag)
444 return POLLIN | POLLRDNORM;
445 }
446 return 0;
447}
448
449/**
450 * _ctl_do_task_abort - assign an active smid to the abort_task
451 * @ioc: per adapter object
452 * @karg - (struct mpt2_ioctl_command)
453 * @tm_request - pointer to mf from user space
454 *
455 * Returns 0 when an smid if found, else fail.
456 * during failure, the reply frame is filled.
457 */
458static int
459_ctl_do_task_abort(struct MPT2SAS_ADAPTER *ioc, struct mpt2_ioctl_command *karg,
460 Mpi2SCSITaskManagementRequest_t *tm_request)
461{
462 u8 found = 0;
463 u16 i;
464 u16 handle;
465 struct scsi_cmnd *scmd;
466 struct MPT2SAS_DEVICE *priv_data;
467 unsigned long flags;
468 Mpi2SCSITaskManagementReply_t *tm_reply;
469 u32 sz;
470 u32 lun;
471
472 lun = scsilun_to_int((struct scsi_lun *)tm_request->LUN);
473
474 handle = le16_to_cpu(tm_request->DevHandle);
475 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
476 for (i = ioc->request_depth; i && !found; i--) {
477 scmd = ioc->scsi_lookup[i - 1].scmd;
478 if (scmd == NULL || scmd->device == NULL ||
479 scmd->device->hostdata == NULL)
480 continue;
481 if (lun != scmd->device->lun)
482 continue;
483 priv_data = scmd->device->hostdata;
484 if (priv_data->sas_target == NULL)
485 continue;
486 if (priv_data->sas_target->handle != handle)
487 continue;
488 tm_request->TaskMID = cpu_to_le16(ioc->scsi_lookup[i - 1].smid);
489 found = 1;
490 }
491 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
492
493 if (!found) {
494 dctlprintk(ioc, printk(MPT2SAS_DEBUG_FMT "ABORT_TASK: "
495 "DevHandle(0x%04x), lun(%d), no active mid!!\n", ioc->name,
496 tm_request->DevHandle, lun));
497 tm_reply = ioc->ctl_cmds.reply;
498 tm_reply->DevHandle = tm_request->DevHandle;
499 tm_reply->Function = MPI2_FUNCTION_SCSI_TASK_MGMT;
500 tm_reply->TaskType = MPI2_SCSITASKMGMT_TASKTYPE_ABORT_TASK;
501 tm_reply->MsgLength = sizeof(Mpi2SCSITaskManagementReply_t)/4;
502 tm_reply->VP_ID = tm_request->VP_ID;
503 tm_reply->VF_ID = tm_request->VF_ID;
504 sz = min_t(u32, karg->max_reply_bytes, ioc->reply_sz);
505 if (copy_to_user(karg->reply_frame_buf_ptr, ioc->ctl_cmds.reply,
506 sz))
507 printk(KERN_ERR "failure at %s:%d/%s()!\n", __FILE__,
508 __LINE__, __func__);
509 return 1;
510 }
511
512 dctlprintk(ioc, printk(MPT2SAS_DEBUG_FMT "ABORT_TASK: "
513 "DevHandle(0x%04x), lun(%d), smid(%d)\n", ioc->name,
514 tm_request->DevHandle, lun, tm_request->TaskMID));
515 return 0;
516}
517
518/**
519 * _ctl_do_mpt_command - main handler for MPT2COMMAND opcode
520 * @ioc: per adapter object
521 * @karg - (struct mpt2_ioctl_command)
522 * @mf - pointer to mf in user space
523 * @state - NON_BLOCKING or BLOCKING
524 */
525static long
526_ctl_do_mpt_command(struct MPT2SAS_ADAPTER *ioc,
527 struct mpt2_ioctl_command karg, void __user *mf, enum block_state state)
528{
529 MPI2RequestHeader_t *mpi_request;
530 MPI2DefaultReply_t *mpi_reply;
531 u32 ioc_state;
532 u16 ioc_status;
533 u16 smid;
534 unsigned long timeout, timeleft;
535 u8 issue_reset;
536 u32 sz;
537 void *psge;
538 void *priv_sense = NULL;
539 void *data_out = NULL;
540 dma_addr_t data_out_dma;
541 size_t data_out_sz = 0;
542 void *data_in = NULL;
543 dma_addr_t data_in_dma;
544 size_t data_in_sz = 0;
545 u32 sgl_flags;
546 long ret;
547 u16 wait_state_count;
548
549 issue_reset = 0;
550
551 if (state == NON_BLOCKING && !mutex_trylock(&ioc->ctl_cmds.mutex))
552 return -EAGAIN;
553 else if (mutex_lock_interruptible(&ioc->ctl_cmds.mutex))
554 return -ERESTARTSYS;
555
556 if (ioc->ctl_cmds.status != MPT2_CMD_NOT_USED) {
557 printk(MPT2SAS_ERR_FMT "%s: ctl_cmd in use\n",
558 ioc->name, __func__);
559 ret = -EAGAIN;
560 goto out;
561 }
562
563 wait_state_count = 0;
564 ioc_state = mpt2sas_base_get_iocstate(ioc, 1);
565 while (ioc_state != MPI2_IOC_STATE_OPERATIONAL) {
566 if (wait_state_count++ == 10) {
567 printk(MPT2SAS_ERR_FMT
568 "%s: failed due to ioc not operational\n",
569 ioc->name, __func__);
570 ret = -EFAULT;
571 goto out;
572 }
573 ssleep(1);
574 ioc_state = mpt2sas_base_get_iocstate(ioc, 1);
575 printk(MPT2SAS_INFO_FMT "%s: waiting for "
576 "operational state(count=%d)\n", ioc->name,
577 __func__, wait_state_count);
578 }
579 if (wait_state_count)
580 printk(MPT2SAS_INFO_FMT "%s: ioc is operational\n",
581 ioc->name, __func__);
582
583 smid = mpt2sas_base_get_smid(ioc, ioc->ctl_cb_idx);
584 if (!smid) {
585 printk(MPT2SAS_ERR_FMT "%s: failed obtaining a smid\n",
586 ioc->name, __func__);
587 ret = -EAGAIN;
588 goto out;
589 }
590
591 ret = 0;
592 ioc->ctl_cmds.status = MPT2_CMD_PENDING;
593 memset(ioc->ctl_cmds.reply, 0, ioc->reply_sz);
594 mpi_request = mpt2sas_base_get_msg_frame(ioc, smid);
595 ioc->ctl_cmds.smid = smid;
596 data_out_sz = karg.data_out_size;
597 data_in_sz = karg.data_in_size;
598
599 /* copy in request message frame from user */
600 if (copy_from_user(mpi_request, mf, karg.data_sge_offset*4)) {
601 printk(KERN_ERR "failure at %s:%d/%s()!\n", __FILE__, __LINE__,
602 __func__);
603 ret = -EFAULT;
604 mpt2sas_base_free_smid(ioc, smid);
605 goto out;
606 }
607
608 if (mpi_request->Function == MPI2_FUNCTION_SCSI_IO_REQUEST ||
609 mpi_request->Function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH) {
610 if (!mpi_request->FunctionDependent1 ||
611 mpi_request->FunctionDependent1 >
612 cpu_to_le16(ioc->facts.MaxDevHandle)) {
613 ret = -EINVAL;
614 mpt2sas_base_free_smid(ioc, smid);
615 goto out;
616 }
617 }
618
619 /* obtain dma-able memory for data transfer */
620 if (data_out_sz) /* WRITE */ {
621 data_out = pci_alloc_consistent(ioc->pdev, data_out_sz,
622 &data_out_dma);
623 if (!data_out) {
624 printk(KERN_ERR "failure at %s:%d/%s()!\n", __FILE__,
625 __LINE__, __func__);
626 ret = -ENOMEM;
627 mpt2sas_base_free_smid(ioc, smid);
628 goto out;
629 }
630 if (copy_from_user(data_out, karg.data_out_buf_ptr,
631 data_out_sz)) {
632 printk(KERN_ERR "failure at %s:%d/%s()!\n", __FILE__,
633 __LINE__, __func__);
634 ret = -EFAULT;
635 mpt2sas_base_free_smid(ioc, smid);
636 goto out;
637 }
638 }
639
640 if (data_in_sz) /* READ */ {
641 data_in = pci_alloc_consistent(ioc->pdev, data_in_sz,
642 &data_in_dma);
643 if (!data_in) {
644 printk(KERN_ERR "failure at %s:%d/%s()!\n", __FILE__,
645 __LINE__, __func__);
646 ret = -ENOMEM;
647 mpt2sas_base_free_smid(ioc, smid);
648 goto out;
649 }
650 }
651
652 /* add scatter gather elements */
653 psge = (void *)mpi_request + (karg.data_sge_offset*4);
654
655 if (!data_out_sz && !data_in_sz) {
656 mpt2sas_base_build_zero_len_sge(ioc, psge);
657 } else if (data_out_sz && data_in_sz) {
658 /* WRITE sgel first */
659 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
660 MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_HOST_TO_IOC);
661 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
662 ioc->base_add_sg_single(psge, sgl_flags |
663 data_out_sz, data_out_dma);
664
665 /* incr sgel */
666 psge += ioc->sge_size;
667
668 /* READ sgel last */
669 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
670 MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
671 MPI2_SGE_FLAGS_END_OF_LIST);
672 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
673 ioc->base_add_sg_single(psge, sgl_flags |
674 data_in_sz, data_in_dma);
675 } else if (data_out_sz) /* WRITE */ {
676 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
677 MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
678 MPI2_SGE_FLAGS_END_OF_LIST | MPI2_SGE_FLAGS_HOST_TO_IOC);
679 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
680 ioc->base_add_sg_single(psge, sgl_flags |
681 data_out_sz, data_out_dma);
682 } else if (data_in_sz) /* READ */ {
683 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
684 MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
685 MPI2_SGE_FLAGS_END_OF_LIST);
686 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
687 ioc->base_add_sg_single(psge, sgl_flags |
688 data_in_sz, data_in_dma);
689 }
690
691 /* send command to firmware */
692#ifdef CONFIG_SCSI_MPT2SAS_LOGGING
693 _ctl_display_some_debug(ioc, smid, "ctl_request", NULL);
694#endif
695
696 switch (mpi_request->Function) {
697 case MPI2_FUNCTION_SCSI_IO_REQUEST:
698 case MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH:
699 {
700 Mpi2SCSIIORequest_t *scsiio_request =
701 (Mpi2SCSIIORequest_t *)mpi_request;
702 scsiio_request->SenseBufferLowAddress =
703 (u32)mpt2sas_base_get_sense_buffer_dma(ioc, smid);
704 priv_sense = mpt2sas_base_get_sense_buffer(ioc, smid);
705 memset(priv_sense, 0, SCSI_SENSE_BUFFERSIZE);
706 mpt2sas_base_put_smid_scsi_io(ioc, smid, 0,
707 le16_to_cpu(mpi_request->FunctionDependent1));
708 break;
709 }
710 case MPI2_FUNCTION_SCSI_TASK_MGMT:
711 {
712 Mpi2SCSITaskManagementRequest_t *tm_request =
713 (Mpi2SCSITaskManagementRequest_t *)mpi_request;
714
715 if (tm_request->TaskType ==
716 MPI2_SCSITASKMGMT_TASKTYPE_ABORT_TASK) {
717 if (_ctl_do_task_abort(ioc, &karg, tm_request))
718 goto out;
719 }
720
721 mutex_lock(&ioc->tm_cmds.mutex);
722 mpt2sas_scsih_set_tm_flag(ioc, le16_to_cpu(
723 tm_request->DevHandle));
724 mpt2sas_base_put_smid_hi_priority(ioc, smid,
725 mpi_request->VF_ID);
726 break;
727 }
728 case MPI2_FUNCTION_SMP_PASSTHROUGH:
729 {
730 Mpi2SmpPassthroughRequest_t *smp_request =
731 (Mpi2SmpPassthroughRequest_t *)mpi_request;
732 u8 *data;
733
734 /* ioc determines which port to use */
735 smp_request->PhysicalPort = 0xFF;
736 if (smp_request->PassthroughFlags &
737 MPI2_SMP_PT_REQ_PT_FLAGS_IMMEDIATE)
738 data = (u8 *)&smp_request->SGL;
739 else
740 data = data_out;
741
742 if (data[1] == 0x91 && (data[10] == 1 || data[10] == 2)) {
743 ioc->ioc_link_reset_in_progress = 1;
744 ioc->ignore_loginfos = 1;
745 }
746 mpt2sas_base_put_smid_default(ioc, smid, mpi_request->VF_ID);
747 break;
748 }
749 case MPI2_FUNCTION_SAS_IO_UNIT_CONTROL:
750 {
751 Mpi2SasIoUnitControlRequest_t *sasiounit_request =
752 (Mpi2SasIoUnitControlRequest_t *)mpi_request;
753
754 if (sasiounit_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET
755 || sasiounit_request->Operation ==
756 MPI2_SAS_OP_PHY_LINK_RESET) {
757 ioc->ioc_link_reset_in_progress = 1;
758 ioc->ignore_loginfos = 1;
759 }
760 mpt2sas_base_put_smid_default(ioc, smid, mpi_request->VF_ID);
761 break;
762 }
763 default:
764 mpt2sas_base_put_smid_default(ioc, smid, mpi_request->VF_ID);
765 break;
766 }
767
768 if (karg.timeout < MPT2_IOCTL_DEFAULT_TIMEOUT)
769 timeout = MPT2_IOCTL_DEFAULT_TIMEOUT;
770 else
771 timeout = karg.timeout;
772 timeleft = wait_for_completion_timeout(&ioc->ctl_cmds.done,
773 timeout*HZ);
774 if (mpi_request->Function == MPI2_FUNCTION_SCSI_TASK_MGMT) {
775 Mpi2SCSITaskManagementRequest_t *tm_request =
776 (Mpi2SCSITaskManagementRequest_t *)mpi_request;
777 mutex_unlock(&ioc->tm_cmds.mutex);
778 mpt2sas_scsih_clear_tm_flag(ioc, le16_to_cpu(
779 tm_request->DevHandle));
780 } else if ((mpi_request->Function == MPI2_FUNCTION_SMP_PASSTHROUGH ||
781 mpi_request->Function == MPI2_FUNCTION_SAS_IO_UNIT_CONTROL) &&
782 ioc->ioc_link_reset_in_progress) {
783 ioc->ioc_link_reset_in_progress = 0;
784 ioc->ignore_loginfos = 0;
785 }
786 if (!(ioc->ctl_cmds.status & MPT2_CMD_COMPLETE)) {
787 printk(MPT2SAS_ERR_FMT "%s: timeout\n", ioc->name,
788 __func__);
789 _debug_dump_mf(mpi_request, karg.data_sge_offset);
790 if (!(ioc->ctl_cmds.status & MPT2_CMD_RESET))
791 issue_reset = 1;
792 goto issue_host_reset;
793 }
794
795 mpi_reply = ioc->ctl_cmds.reply;
796 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK;
797
798#ifdef CONFIG_SCSI_MPT2SAS_LOGGING
799 if (mpi_reply->Function == MPI2_FUNCTION_SCSI_TASK_MGMT &&
800 (ioc->logging_level & MPT_DEBUG_TM)) {
801 Mpi2SCSITaskManagementReply_t *tm_reply =
802 (Mpi2SCSITaskManagementReply_t *)mpi_reply;
803
804 printk(MPT2SAS_DEBUG_FMT "TASK_MGMT: "
805 "IOCStatus(0x%04x), IOCLogInfo(0x%08x), "
806 "TerminationCount(0x%08x)\n", ioc->name,
807 tm_reply->IOCStatus, tm_reply->IOCLogInfo,
808 tm_reply->TerminationCount);
809 }
810#endif
811 /* copy out xdata to user */
812 if (data_in_sz) {
813 if (copy_to_user(karg.data_in_buf_ptr, data_in,
814 data_in_sz)) {
815 printk(KERN_ERR "failure at %s:%d/%s()!\n", __FILE__,
816 __LINE__, __func__);
817 ret = -ENODATA;
818 goto out;
819 }
820 }
821
822 /* copy out reply message frame to user */
823 if (karg.max_reply_bytes) {
824 sz = min_t(u32, karg.max_reply_bytes, ioc->reply_sz);
825 if (copy_to_user(karg.reply_frame_buf_ptr, ioc->ctl_cmds.reply,
826 sz)) {
827 printk(KERN_ERR "failure at %s:%d/%s()!\n", __FILE__,
828 __LINE__, __func__);
829 ret = -ENODATA;
830 goto out;
831 }
832 }
833
834 /* copy out sense to user */
835 if (karg.max_sense_bytes && (mpi_request->Function ==
836 MPI2_FUNCTION_SCSI_IO_REQUEST || mpi_request->Function ==
837 MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH)) {
838 sz = min_t(u32, karg.max_sense_bytes, SCSI_SENSE_BUFFERSIZE);
839 if (copy_to_user(karg.sense_data_ptr, priv_sense, sz)) {
840 printk(KERN_ERR "failure at %s:%d/%s()!\n", __FILE__,
841 __LINE__, __func__);
842 ret = -ENODATA;
843 goto out;
844 }
845 }
846
847 issue_host_reset:
848 if (issue_reset) {
849 if ((mpi_request->Function == MPI2_FUNCTION_SCSI_IO_REQUEST ||
850 mpi_request->Function ==
851 MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH)) {
852 printk(MPT2SAS_INFO_FMT "issue target reset: handle "
853 "= (0x%04x)\n", ioc->name,
854 mpi_request->FunctionDependent1);
855 mutex_lock(&ioc->tm_cmds.mutex);
856 mpt2sas_scsih_issue_tm(ioc,
857 mpi_request->FunctionDependent1, 0,
858 MPI2_SCSITASKMGMT_TASKTYPE_TARGET_RESET, 0, 10);
859 ioc->tm_cmds.status = MPT2_CMD_NOT_USED;
860 mutex_unlock(&ioc->tm_cmds.mutex);
861 } else
862 mpt2sas_base_hard_reset_handler(ioc, CAN_SLEEP,
863 FORCE_BIG_HAMMER);
864 }
865
866 out:
867
868 /* free memory associated with sg buffers */
869 if (data_in)
870 pci_free_consistent(ioc->pdev, data_in_sz, data_in,
871 data_in_dma);
872
873 if (data_out)
874 pci_free_consistent(ioc->pdev, data_out_sz, data_out,
875 data_out_dma);
876
877 ioc->ctl_cmds.status = MPT2_CMD_NOT_USED;
878 mutex_unlock(&ioc->ctl_cmds.mutex);
879 return ret;
880}
881
882/**
883 * _ctl_getiocinfo - main handler for MPT2IOCINFO opcode
884 * @arg - user space buffer containing ioctl content
885 */
886static long
887_ctl_getiocinfo(void __user *arg)
888{
889 struct mpt2_ioctl_iocinfo karg;
890 struct MPT2SAS_ADAPTER *ioc;
891 u8 revision;
892
893 if (copy_from_user(&karg, arg, sizeof(karg))) {
894 printk(KERN_ERR "failure at %s:%d/%s()!\n",
895 __FILE__, __LINE__, __func__);
896 return -EFAULT;
897 }
898 if (_ctl_verify_adapter(karg.hdr.ioc_number, &ioc) == -1 || !ioc)
899 return -ENODEV;
900
901 dctlprintk(ioc, printk(MPT2SAS_DEBUG_FMT "%s: enter\n", ioc->name,
902 __func__));
903
904 memset(&karg, 0 , sizeof(karg));
905 karg.adapter_type = MPT2_IOCTL_INTERFACE_SAS2;
906 if (ioc->pfacts)
907 karg.port_number = ioc->pfacts[0].PortNumber;
908 pci_read_config_byte(ioc->pdev, PCI_CLASS_REVISION, &revision);
909 karg.hw_rev = revision;
910 karg.pci_id = ioc->pdev->device;
911 karg.subsystem_device = ioc->pdev->subsystem_device;
912 karg.subsystem_vendor = ioc->pdev->subsystem_vendor;
913 karg.pci_information.u.bits.bus = ioc->pdev->bus->number;
914 karg.pci_information.u.bits.device = PCI_SLOT(ioc->pdev->devfn);
915 karg.pci_information.u.bits.function = PCI_FUNC(ioc->pdev->devfn);
916 karg.pci_information.segment_id = pci_domain_nr(ioc->pdev->bus);
917 karg.firmware_version = ioc->facts.FWVersion.Word;
918 strncpy(karg.driver_version, MPT2SAS_DRIVER_VERSION,
919 MPT2_IOCTL_VERSION_LENGTH);
920 karg.driver_version[MPT2_IOCTL_VERSION_LENGTH - 1] = '\0';
921 karg.bios_version = le32_to_cpu(ioc->bios_pg3.BiosVersion);
922
923 if (copy_to_user(arg, &karg, sizeof(karg))) {
924 printk(KERN_ERR "failure at %s:%d/%s()!\n",
925 __FILE__, __LINE__, __func__);
926 return -EFAULT;
927 }
928 return 0;
929}
930
931/**
932 * _ctl_eventquery - main handler for MPT2EVENTQUERY opcode
933 * @arg - user space buffer containing ioctl content
934 */
935static long
936_ctl_eventquery(void __user *arg)
937{
938 struct mpt2_ioctl_eventquery karg;
939 struct MPT2SAS_ADAPTER *ioc;
940
941 if (copy_from_user(&karg, arg, sizeof(karg))) {
942 printk(KERN_ERR "failure at %s:%d/%s()!\n",
943 __FILE__, __LINE__, __func__);
944 return -EFAULT;
945 }
946 if (_ctl_verify_adapter(karg.hdr.ioc_number, &ioc) == -1 || !ioc)
947 return -ENODEV;
948
949 dctlprintk(ioc, printk(MPT2SAS_DEBUG_FMT "%s: enter\n", ioc->name,
950 __func__));
951
952 karg.event_entries = MPT2SAS_CTL_EVENT_LOG_SIZE;
953 memcpy(karg.event_types, ioc->event_type,
954 MPI2_EVENT_NOTIFY_EVENTMASK_WORDS * sizeof(u32));
955
956 if (copy_to_user(arg, &karg, sizeof(karg))) {
957 printk(KERN_ERR "failure at %s:%d/%s()!\n",
958 __FILE__, __LINE__, __func__);
959 return -EFAULT;
960 }
961 return 0;
962}
963
964/**
965 * _ctl_eventenable - main handler for MPT2EVENTENABLE opcode
966 * @arg - user space buffer containing ioctl content
967 */
968static long
969_ctl_eventenable(void __user *arg)
970{
971 struct mpt2_ioctl_eventenable karg;
972 struct MPT2SAS_ADAPTER *ioc;
973
974 if (copy_from_user(&karg, arg, sizeof(karg))) {
975 printk(KERN_ERR "failure at %s:%d/%s()!\n",
976 __FILE__, __LINE__, __func__);
977 return -EFAULT;
978 }
979 if (_ctl_verify_adapter(karg.hdr.ioc_number, &ioc) == -1 || !ioc)
980 return -ENODEV;
981
982 dctlprintk(ioc, printk(MPT2SAS_DEBUG_FMT "%s: enter\n", ioc->name,
983 __func__));
984
985 if (ioc->event_log)
986 return 0;
987 memcpy(ioc->event_type, karg.event_types,
988 MPI2_EVENT_NOTIFY_EVENTMASK_WORDS * sizeof(u32));
989 mpt2sas_base_validate_event_type(ioc, ioc->event_type);
990
991 /* initialize event_log */
992 ioc->event_context = 0;
993 ioc->aen_event_read_flag = 0;
994 ioc->event_log = kcalloc(MPT2SAS_CTL_EVENT_LOG_SIZE,
995 sizeof(struct MPT2_IOCTL_EVENTS), GFP_KERNEL);
996 if (!ioc->event_log) {
997 printk(KERN_ERR "failure at %s:%d/%s()!\n",
998 __FILE__, __LINE__, __func__);
999 return -ENOMEM;
1000 }
1001 return 0;
1002}
1003
1004/**
1005 * _ctl_eventreport - main handler for MPT2EVENTREPORT opcode
1006 * @arg - user space buffer containing ioctl content
1007 */
1008static long
1009_ctl_eventreport(void __user *arg)
1010{
1011 struct mpt2_ioctl_eventreport karg;
1012 struct MPT2SAS_ADAPTER *ioc;
1013 u32 number_bytes, max_events, max;
1014 struct mpt2_ioctl_eventreport __user *uarg = arg;
1015
1016 if (copy_from_user(&karg, arg, sizeof(karg))) {
1017 printk(KERN_ERR "failure at %s:%d/%s()!\n",
1018 __FILE__, __LINE__, __func__);
1019 return -EFAULT;
1020 }
1021 if (_ctl_verify_adapter(karg.hdr.ioc_number, &ioc) == -1 || !ioc)
1022 return -ENODEV;
1023
1024 dctlprintk(ioc, printk(MPT2SAS_DEBUG_FMT "%s: enter\n", ioc->name,
1025 __func__));
1026
1027 number_bytes = karg.hdr.max_data_size -
1028 sizeof(struct mpt2_ioctl_header);
1029 max_events = number_bytes/sizeof(struct MPT2_IOCTL_EVENTS);
1030 max = min_t(u32, MPT2SAS_CTL_EVENT_LOG_SIZE, max_events);
1031
1032 /* If fewer than 1 event is requested, there must have
1033 * been some type of error.
1034 */
1035 if (!max || !ioc->event_log)
1036 return -ENODATA;
1037
1038 number_bytes = max * sizeof(struct MPT2_IOCTL_EVENTS);
1039 if (copy_to_user(uarg->event_data, ioc->event_log, number_bytes)) {
1040 printk(KERN_ERR "failure at %s:%d/%s()!\n",
1041 __FILE__, __LINE__, __func__);
1042 return -EFAULT;
1043 }
1044
1045 /* reset flag so SIGIO can restart */
1046 ioc->aen_event_read_flag = 0;
1047 return 0;
1048}
1049
1050/**
1051 * _ctl_do_reset - main handler for MPT2HARDRESET opcode
1052 * @arg - user space buffer containing ioctl content
1053 */
1054static long
1055_ctl_do_reset(void __user *arg)
1056{
1057 struct mpt2_ioctl_diag_reset karg;
1058 struct MPT2SAS_ADAPTER *ioc;
1059 int retval;
1060
1061 if (copy_from_user(&karg, arg, sizeof(karg))) {
1062 printk(KERN_ERR "failure at %s:%d/%s()!\n",
1063 __FILE__, __LINE__, __func__);
1064 return -EFAULT;
1065 }
1066 if (_ctl_verify_adapter(karg.hdr.ioc_number, &ioc) == -1 || !ioc)
1067 return -ENODEV;
1068
1069 dctlprintk(ioc, printk(MPT2SAS_DEBUG_FMT "%s: enter\n", ioc->name,
1070 __func__));
1071
1072 retval = mpt2sas_base_hard_reset_handler(ioc, CAN_SLEEP,
1073 FORCE_BIG_HAMMER);
1074 printk(MPT2SAS_INFO_FMT "host reset: %s\n",
1075 ioc->name, ((!retval) ? "SUCCESS" : "FAILED"));
1076 return 0;
1077}
1078
1079/**
1080 * _ctl_btdh_search_sas_device - searching for sas device
1081 * @ioc: per adapter object
1082 * @btdh: btdh ioctl payload
1083 */
1084static int
1085_ctl_btdh_search_sas_device(struct MPT2SAS_ADAPTER *ioc,
1086 struct mpt2_ioctl_btdh_mapping *btdh)
1087{
1088 struct _sas_device *sas_device;
1089 unsigned long flags;
1090 int rc = 0;
1091
1092 if (list_empty(&ioc->sas_device_list))
1093 return rc;
1094
1095 spin_lock_irqsave(&ioc->sas_device_lock, flags);
1096 list_for_each_entry(sas_device, &ioc->sas_device_list, list) {
1097 if (btdh->bus == 0xFFFFFFFF && btdh->id == 0xFFFFFFFF &&
1098 btdh->handle == sas_device->handle) {
1099 btdh->bus = sas_device->channel;
1100 btdh->id = sas_device->id;
1101 rc = 1;
1102 goto out;
1103 } else if (btdh->bus == sas_device->channel && btdh->id ==
1104 sas_device->id && btdh->handle == 0xFFFF) {
1105 btdh->handle = sas_device->handle;
1106 rc = 1;
1107 goto out;
1108 }
1109 }
1110 out:
1111 spin_unlock_irqrestore(&ioc->sas_device_lock, flags);
1112 return rc;
1113}
1114
1115/**
1116 * _ctl_btdh_search_raid_device - searching for raid device
1117 * @ioc: per adapter object
1118 * @btdh: btdh ioctl payload
1119 */
1120static int
1121_ctl_btdh_search_raid_device(struct MPT2SAS_ADAPTER *ioc,
1122 struct mpt2_ioctl_btdh_mapping *btdh)
1123{
1124 struct _raid_device *raid_device;
1125 unsigned long flags;
1126 int rc = 0;
1127
1128 if (list_empty(&ioc->raid_device_list))
1129 return rc;
1130
1131 spin_lock_irqsave(&ioc->raid_device_lock, flags);
1132 list_for_each_entry(raid_device, &ioc->raid_device_list, list) {
1133 if (btdh->bus == 0xFFFFFFFF && btdh->id == 0xFFFFFFFF &&
1134 btdh->handle == raid_device->handle) {
1135 btdh->bus = raid_device->channel;
1136 btdh->id = raid_device->id;
1137 rc = 1;
1138 goto out;
1139 } else if (btdh->bus == raid_device->channel && btdh->id ==
1140 raid_device->id && btdh->handle == 0xFFFF) {
1141 btdh->handle = raid_device->handle;
1142 rc = 1;
1143 goto out;
1144 }
1145 }
1146 out:
1147 spin_unlock_irqrestore(&ioc->raid_device_lock, flags);
1148 return rc;
1149}
1150
1151/**
1152 * _ctl_btdh_mapping - main handler for MPT2BTDHMAPPING opcode
1153 * @arg - user space buffer containing ioctl content
1154 */
1155static long
1156_ctl_btdh_mapping(void __user *arg)
1157{
1158 struct mpt2_ioctl_btdh_mapping karg;
1159 struct MPT2SAS_ADAPTER *ioc;
1160 int rc;
1161
1162 if (copy_from_user(&karg, arg, sizeof(karg))) {
1163 printk(KERN_ERR "failure at %s:%d/%s()!\n",
1164 __FILE__, __LINE__, __func__);
1165 return -EFAULT;
1166 }
1167 if (_ctl_verify_adapter(karg.hdr.ioc_number, &ioc) == -1 || !ioc)
1168 return -ENODEV;
1169
1170 dctlprintk(ioc, printk(MPT2SAS_DEBUG_FMT "%s\n", ioc->name,
1171 __func__));
1172
1173 rc = _ctl_btdh_search_sas_device(ioc, &karg);
1174 if (!rc)
1175 _ctl_btdh_search_raid_device(ioc, &karg);
1176
1177 if (copy_to_user(arg, &karg, sizeof(karg))) {
1178 printk(KERN_ERR "failure at %s:%d/%s()!\n",
1179 __FILE__, __LINE__, __func__);
1180 return -EFAULT;
1181 }
1182 return 0;
1183}
1184
1185/**
1186 * _ctl_diag_capability - return diag buffer capability
1187 * @ioc: per adapter object
1188 * @buffer_type: specifies either TRACE or SNAPSHOT
1189 *
1190 * returns 1 when diag buffer support is enabled in firmware
1191 */
1192static u8
1193_ctl_diag_capability(struct MPT2SAS_ADAPTER *ioc, u8 buffer_type)
1194{
1195 u8 rc = 0;
1196
1197 switch (buffer_type) {
1198 case MPI2_DIAG_BUF_TYPE_TRACE:
1199 if (ioc->facts.IOCCapabilities &
1200 MPI2_IOCFACTS_CAPABILITY_DIAG_TRACE_BUFFER)
1201 rc = 1;
1202 break;
1203 case MPI2_DIAG_BUF_TYPE_SNAPSHOT:
1204 if (ioc->facts.IOCCapabilities &
1205 MPI2_IOCFACTS_CAPABILITY_SNAPSHOT_BUFFER)
1206 rc = 1;
1207 break;
1208 }
1209
1210 return rc;
1211}
1212
1213/**
1214 * _ctl_diag_register - application register with driver
1215 * @arg - user space buffer containing ioctl content
1216 * @state - NON_BLOCKING or BLOCKING
1217 *
1218 * This will allow the driver to setup any required buffers that will be
1219 * needed by firmware to communicate with the driver.
1220 */
1221static long
1222_ctl_diag_register(void __user *arg, enum block_state state)
1223{
1224 struct mpt2_diag_register karg;
1225 struct MPT2SAS_ADAPTER *ioc;
1226 int rc, i;
1227 void *request_data = NULL;
1228 dma_addr_t request_data_dma;
1229 u32 request_data_sz = 0;
1230 Mpi2DiagBufferPostRequest_t *mpi_request;
1231 Mpi2DiagBufferPostReply_t *mpi_reply;
1232 u8 buffer_type;
1233 unsigned long timeleft;
1234 u16 smid;
1235 u16 ioc_status;
1236 u8 issue_reset = 0;
1237
1238 if (copy_from_user(&karg, arg, sizeof(karg))) {
1239 printk(KERN_ERR "failure at %s:%d/%s()!\n",
1240 __FILE__, __LINE__, __func__);
1241 return -EFAULT;
1242 }
1243 if (_ctl_verify_adapter(karg.hdr.ioc_number, &ioc) == -1 || !ioc)
1244 return -ENODEV;
1245
1246 dctlprintk(ioc, printk(MPT2SAS_DEBUG_FMT "%s\n", ioc->name,
1247 __func__));
1248
1249 buffer_type = karg.buffer_type;
1250 if (!_ctl_diag_capability(ioc, buffer_type)) {
1251 printk(MPT2SAS_ERR_FMT "%s: doesn't have capability for "
1252 "buffer_type(0x%02x)\n", ioc->name, __func__, buffer_type);
1253 return -EPERM;
1254 }
1255
1256 if (ioc->diag_buffer_status[buffer_type] &
1257 MPT2_DIAG_BUFFER_IS_REGISTERED) {
1258 printk(MPT2SAS_ERR_FMT "%s: already has a registered "
1259 "buffer for buffer_type(0x%02x)\n", ioc->name, __func__,
1260 buffer_type);
1261 return -EINVAL;
1262 }
1263
1264 if (karg.requested_buffer_size % 4) {
1265 printk(MPT2SAS_ERR_FMT "%s: the requested_buffer_size "
1266 "is not 4 byte aligned\n", ioc->name, __func__);
1267 return -EINVAL;
1268 }
1269
1270 if (state == NON_BLOCKING && !mutex_trylock(&ioc->ctl_cmds.mutex))
1271 return -EAGAIN;
1272 else if (mutex_lock_interruptible(&ioc->ctl_cmds.mutex))
1273 return -ERESTARTSYS;
1274
1275 if (ioc->ctl_cmds.status != MPT2_CMD_NOT_USED) {
1276 printk(MPT2SAS_ERR_FMT "%s: ctl_cmd in use\n",
1277 ioc->name, __func__);
1278 rc = -EAGAIN;
1279 goto out;
1280 }
1281
1282 smid = mpt2sas_base_get_smid(ioc, ioc->ctl_cb_idx);
1283 if (!smid) {
1284 printk(MPT2SAS_ERR_FMT "%s: failed obtaining a smid\n",
1285 ioc->name, __func__);
1286 rc = -EAGAIN;
1287 goto out;
1288 }
1289
1290 rc = 0;
1291 ioc->ctl_cmds.status = MPT2_CMD_PENDING;
1292 memset(ioc->ctl_cmds.reply, 0, ioc->reply_sz);
1293 mpi_request = mpt2sas_base_get_msg_frame(ioc, smid);
1294 ioc->ctl_cmds.smid = smid;
1295
1296 request_data = ioc->diag_buffer[buffer_type];
1297 request_data_sz = karg.requested_buffer_size;
1298 ioc->unique_id[buffer_type] = karg.unique_id;
1299 ioc->diag_buffer_status[buffer_type] = 0;
1300 memcpy(ioc->product_specific[buffer_type], karg.product_specific,
1301 MPT2_PRODUCT_SPECIFIC_DWORDS);
1302 ioc->diagnostic_flags[buffer_type] = karg.diagnostic_flags;
1303
1304 if (request_data) {
1305 request_data_dma = ioc->diag_buffer_dma[buffer_type];
1306 if (request_data_sz != ioc->diag_buffer_sz[buffer_type]) {
1307 pci_free_consistent(ioc->pdev,
1308 ioc->diag_buffer_sz[buffer_type],
1309 request_data, request_data_dma);
1310 request_data = NULL;
1311 }
1312 }
1313
1314 if (request_data == NULL) {
1315 ioc->diag_buffer_sz[buffer_type] = 0;
1316 ioc->diag_buffer_dma[buffer_type] = 0;
1317 request_data = pci_alloc_consistent(
1318 ioc->pdev, request_data_sz, &request_data_dma);
1319 if (request_data == NULL) {
1320 printk(MPT2SAS_ERR_FMT "%s: failed allocating memory"
1321 " for diag buffers, requested size(%d)\n",
1322 ioc->name, __func__, request_data_sz);
1323 mpt2sas_base_free_smid(ioc, smid);
1324 return -ENOMEM;
1325 }
1326 ioc->diag_buffer[buffer_type] = request_data;
1327 ioc->diag_buffer_sz[buffer_type] = request_data_sz;
1328 ioc->diag_buffer_dma[buffer_type] = request_data_dma;
1329 }
1330
1331 mpi_request->Function = MPI2_FUNCTION_DIAG_BUFFER_POST;
1332 mpi_request->BufferType = karg.buffer_type;
1333 mpi_request->Flags = cpu_to_le32(karg.diagnostic_flags);
1334 mpi_request->BufferAddress = cpu_to_le64(request_data_dma);
1335 mpi_request->BufferLength = cpu_to_le32(request_data_sz);
1336
1337 dctlprintk(ioc, printk(MPT2SAS_DEBUG_FMT "%s: diag_buffer(0x%p), "
1338 "dma(0x%llx), sz(%d)\n", ioc->name, __func__, request_data,
1339 (unsigned long long)request_data_dma, mpi_request->BufferLength));
1340
1341 for (i = 0; i < MPT2_PRODUCT_SPECIFIC_DWORDS; i++)
1342 mpi_request->ProductSpecific[i] =
1343 cpu_to_le32(ioc->product_specific[buffer_type][i]);
1344
1345 mpt2sas_base_put_smid_default(ioc, smid, mpi_request->VF_ID);
1346 timeleft = wait_for_completion_timeout(&ioc->ctl_cmds.done,
1347 MPT2_IOCTL_DEFAULT_TIMEOUT*HZ);
1348
1349 if (!(ioc->ctl_cmds.status & MPT2_CMD_COMPLETE)) {
1350 printk(MPT2SAS_ERR_FMT "%s: timeout\n", ioc->name,
1351 __func__);
1352 _debug_dump_mf(mpi_request,
1353 sizeof(Mpi2DiagBufferPostRequest_t)/4);
1354 if (!(ioc->ctl_cmds.status & MPT2_CMD_RESET))
1355 issue_reset = 1;
1356 goto issue_host_reset;
1357 }
1358
1359 /* process the completed Reply Message Frame */
1360 if ((ioc->ctl_cmds.status & MPT2_CMD_REPLY_VALID) == 0) {
1361 printk(MPT2SAS_ERR_FMT "%s: no reply message\n",
1362 ioc->name, __func__);
1363 rc = -EFAULT;
1364 goto out;
1365 }
1366
1367 mpi_reply = ioc->ctl_cmds.reply;
1368 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK;
1369
1370 if (ioc_status == MPI2_IOCSTATUS_SUCCESS) {
1371 ioc->diag_buffer_status[buffer_type] |=
1372 MPT2_DIAG_BUFFER_IS_REGISTERED;
1373 dctlprintk(ioc, printk(MPT2SAS_DEBUG_FMT "%s: success\n",
1374 ioc->name, __func__));
1375 } else {
1376 printk(MPT2SAS_DEBUG_FMT "%s: ioc_status(0x%04x) "
1377 "log_info(0x%08x)\n", ioc->name, __func__,
1378 ioc_status, mpi_reply->IOCLogInfo);
1379 rc = -EFAULT;
1380 }
1381
1382 issue_host_reset:
1383 if (issue_reset)
1384 mpt2sas_base_hard_reset_handler(ioc, CAN_SLEEP,
1385 FORCE_BIG_HAMMER);
1386
1387 out:
1388
1389 if (rc && request_data)
1390 pci_free_consistent(ioc->pdev, request_data_sz,
1391 request_data, request_data_dma);
1392
1393 ioc->ctl_cmds.status = MPT2_CMD_NOT_USED;
1394 mutex_unlock(&ioc->ctl_cmds.mutex);
1395 return rc;
1396}
1397
1398/**
1399 * _ctl_diag_unregister - application unregister with driver
1400 * @arg - user space buffer containing ioctl content
1401 *
1402 * This will allow the driver to cleanup any memory allocated for diag
1403 * messages and to free up any resources.
1404 */
1405static long
1406_ctl_diag_unregister(void __user *arg)
1407{
1408 struct mpt2_diag_unregister karg;
1409 struct MPT2SAS_ADAPTER *ioc;
1410 void *request_data;
1411 dma_addr_t request_data_dma;
1412 u32 request_data_sz;
1413 u8 buffer_type;
1414
1415 if (copy_from_user(&karg, arg, sizeof(karg))) {
1416 printk(KERN_ERR "failure at %s:%d/%s()!\n",
1417 __FILE__, __LINE__, __func__);
1418 return -EFAULT;
1419 }
1420 if (_ctl_verify_adapter(karg.hdr.ioc_number, &ioc) == -1 || !ioc)
1421 return -ENODEV;
1422
1423 dctlprintk(ioc, printk(MPT2SAS_DEBUG_FMT "%s\n", ioc->name,
1424 __func__));
1425
1426 buffer_type = karg.unique_id & 0x000000ff;
1427 if (!_ctl_diag_capability(ioc, buffer_type)) {
1428 printk(MPT2SAS_ERR_FMT "%s: doesn't have capability for "
1429 "buffer_type(0x%02x)\n", ioc->name, __func__, buffer_type);
1430 return -EPERM;
1431 }
1432
1433 if ((ioc->diag_buffer_status[buffer_type] &
1434 MPT2_DIAG_BUFFER_IS_REGISTERED) == 0) {
1435 printk(MPT2SAS_ERR_FMT "%s: buffer_type(0x%02x) is not "
1436 "registered\n", ioc->name, __func__, buffer_type);
1437 return -EINVAL;
1438 }
1439 if ((ioc->diag_buffer_status[buffer_type] &
1440 MPT2_DIAG_BUFFER_IS_RELEASED) == 0) {
1441 printk(MPT2SAS_ERR_FMT "%s: buffer_type(0x%02x) has not been "
1442 "released\n", ioc->name, __func__, buffer_type);
1443 return -EINVAL;
1444 }
1445
1446 if (karg.unique_id != ioc->unique_id[buffer_type]) {
1447 printk(MPT2SAS_ERR_FMT "%s: unique_id(0x%08x) is not "
1448 "registered\n", ioc->name, __func__, karg.unique_id);
1449 return -EINVAL;
1450 }
1451
1452 request_data = ioc->diag_buffer[buffer_type];
1453 if (!request_data) {
1454 printk(MPT2SAS_ERR_FMT "%s: doesn't have memory allocated for "
1455 "buffer_type(0x%02x)\n", ioc->name, __func__, buffer_type);
1456 return -ENOMEM;
1457 }
1458
1459 request_data_sz = ioc->diag_buffer_sz[buffer_type];
1460 request_data_dma = ioc->diag_buffer_dma[buffer_type];
1461 pci_free_consistent(ioc->pdev, request_data_sz,
1462 request_data, request_data_dma);
1463 ioc->diag_buffer[buffer_type] = NULL;
1464 ioc->diag_buffer_status[buffer_type] = 0;
1465 return 0;
1466}
1467
1468/**
1469 * _ctl_diag_query - query relevant info associated with diag buffers
1470 * @arg - user space buffer containing ioctl content
1471 *
1472 * The application will send only buffer_type and unique_id. Driver will
1473 * inspect unique_id first, if valid, fill in all the info. If unique_id is
1474 * 0x00, the driver will return info specified by Buffer Type.
1475 */
1476static long
1477_ctl_diag_query(void __user *arg)
1478{
1479 struct mpt2_diag_query karg;
1480 struct MPT2SAS_ADAPTER *ioc;
1481 void *request_data;
1482 int i;
1483 u8 buffer_type;
1484
1485 if (copy_from_user(&karg, arg, sizeof(karg))) {
1486 printk(KERN_ERR "failure at %s:%d/%s()!\n",
1487 __FILE__, __LINE__, __func__);
1488 return -EFAULT;
1489 }
1490 if (_ctl_verify_adapter(karg.hdr.ioc_number, &ioc) == -1 || !ioc)
1491 return -ENODEV;
1492
1493 dctlprintk(ioc, printk(MPT2SAS_DEBUG_FMT "%s\n", ioc->name,
1494 __func__));
1495
1496 karg.application_flags = 0;
1497 buffer_type = karg.buffer_type;
1498
1499 if (!_ctl_diag_capability(ioc, buffer_type)) {
1500 printk(MPT2SAS_ERR_FMT "%s: doesn't have capability for "
1501 "buffer_type(0x%02x)\n", ioc->name, __func__, buffer_type);
1502 return -EPERM;
1503 }
1504
1505 if ((ioc->diag_buffer_status[buffer_type] &
1506 MPT2_DIAG_BUFFER_IS_REGISTERED) == 0) {
1507 printk(MPT2SAS_ERR_FMT "%s: buffer_type(0x%02x) is not "
1508 "registered\n", ioc->name, __func__, buffer_type);
1509 return -EINVAL;
1510 }
1511
1512 if (karg.unique_id & 0xffffff00) {
1513 if (karg.unique_id != ioc->unique_id[buffer_type]) {
1514 printk(MPT2SAS_ERR_FMT "%s: unique_id(0x%08x) is not "
1515 "registered\n", ioc->name, __func__,
1516 karg.unique_id);
1517 return -EINVAL;
1518 }
1519 }
1520
1521 request_data = ioc->diag_buffer[buffer_type];
1522 if (!request_data) {
1523 printk(MPT2SAS_ERR_FMT "%s: doesn't have buffer for "
1524 "buffer_type(0x%02x)\n", ioc->name, __func__, buffer_type);
1525 return -ENOMEM;
1526 }
1527
1528 if (ioc->diag_buffer_status[buffer_type] & MPT2_DIAG_BUFFER_IS_RELEASED)
1529 karg.application_flags = (MPT2_APP_FLAGS_APP_OWNED |
1530 MPT2_APP_FLAGS_BUFFER_VALID);
1531 else
1532 karg.application_flags = (MPT2_APP_FLAGS_APP_OWNED |
1533 MPT2_APP_FLAGS_BUFFER_VALID |
1534 MPT2_APP_FLAGS_FW_BUFFER_ACCESS);
1535
1536 for (i = 0; i < MPT2_PRODUCT_SPECIFIC_DWORDS; i++)
1537 karg.product_specific[i] =
1538 ioc->product_specific[buffer_type][i];
1539
1540 karg.total_buffer_size = ioc->diag_buffer_sz[buffer_type];
1541 karg.driver_added_buffer_size = 0;
1542 karg.unique_id = ioc->unique_id[buffer_type];
1543 karg.diagnostic_flags = ioc->diagnostic_flags[buffer_type];
1544
1545 if (copy_to_user(arg, &karg, sizeof(struct mpt2_diag_query))) {
1546 printk(MPT2SAS_ERR_FMT "%s: unable to write mpt2_diag_query "
1547 "data @ %p\n", ioc->name, __func__, arg);
1548 return -EFAULT;
1549 }
1550 return 0;
1551}
1552
1553/**
1554 * _ctl_diag_release - request to send Diag Release Message to firmware
1555 * @arg - user space buffer containing ioctl content
1556 * @state - NON_BLOCKING or BLOCKING
1557 *
1558 * This allows ownership of the specified buffer to returned to the driver,
1559 * allowing an application to read the buffer without fear that firmware is
1560 * overwritting information in the buffer.
1561 */
1562static long
1563_ctl_diag_release(void __user *arg, enum block_state state)
1564{
1565 struct mpt2_diag_release karg;
1566 struct MPT2SAS_ADAPTER *ioc;
1567 void *request_data;
1568 int rc;
1569 Mpi2DiagReleaseRequest_t *mpi_request;
1570 Mpi2DiagReleaseReply_t *mpi_reply;
1571 u8 buffer_type;
1572 unsigned long timeleft;
1573 u16 smid;
1574 u16 ioc_status;
1575 u8 issue_reset = 0;
1576
1577 if (copy_from_user(&karg, arg, sizeof(karg))) {
1578 printk(KERN_ERR "failure at %s:%d/%s()!\n",
1579 __FILE__, __LINE__, __func__);
1580 return -EFAULT;
1581 }
1582 if (_ctl_verify_adapter(karg.hdr.ioc_number, &ioc) == -1 || !ioc)
1583 return -ENODEV;
1584
1585 dctlprintk(ioc, printk(MPT2SAS_DEBUG_FMT "%s\n", ioc->name,
1586 __func__));
1587
1588 buffer_type = karg.unique_id & 0x000000ff;
1589 if (!_ctl_diag_capability(ioc, buffer_type)) {
1590 printk(MPT2SAS_ERR_FMT "%s: doesn't have capability for "
1591 "buffer_type(0x%02x)\n", ioc->name, __func__, buffer_type);
1592 return -EPERM;
1593 }
1594
1595 if ((ioc->diag_buffer_status[buffer_type] &
1596 MPT2_DIAG_BUFFER_IS_REGISTERED) == 0) {
1597 printk(MPT2SAS_ERR_FMT "%s: buffer_type(0x%02x) is not "
1598 "registered\n", ioc->name, __func__, buffer_type);
1599 return -EINVAL;
1600 }
1601
1602 if (karg.unique_id != ioc->unique_id[buffer_type]) {
1603 printk(MPT2SAS_ERR_FMT "%s: unique_id(0x%08x) is not "
1604 "registered\n", ioc->name, __func__, karg.unique_id);
1605 return -EINVAL;
1606 }
1607
1608 if (ioc->diag_buffer_status[buffer_type] &
1609 MPT2_DIAG_BUFFER_IS_RELEASED) {
1610 printk(MPT2SAS_ERR_FMT "%s: buffer_type(0x%02x) "
1611 "is already released\n", ioc->name, __func__,
1612 buffer_type);
1613 return 0;
1614 }
1615
1616 request_data = ioc->diag_buffer[buffer_type];
1617
1618 if (!request_data) {
1619 printk(MPT2SAS_ERR_FMT "%s: doesn't have memory allocated for "
1620 "buffer_type(0x%02x)\n", ioc->name, __func__, buffer_type);
1621 return -ENOMEM;
1622 }
1623
1624 if (state == NON_BLOCKING && !mutex_trylock(&ioc->ctl_cmds.mutex))
1625 return -EAGAIN;
1626 else if (mutex_lock_interruptible(&ioc->ctl_cmds.mutex))
1627 return -ERESTARTSYS;
1628
1629 if (ioc->ctl_cmds.status != MPT2_CMD_NOT_USED) {
1630 printk(MPT2SAS_ERR_FMT "%s: ctl_cmd in use\n",
1631 ioc->name, __func__);
1632 rc = -EAGAIN;
1633 goto out;
1634 }
1635
1636 smid = mpt2sas_base_get_smid(ioc, ioc->ctl_cb_idx);
1637 if (!smid) {
1638 printk(MPT2SAS_ERR_FMT "%s: failed obtaining a smid\n",
1639 ioc->name, __func__);
1640 rc = -EAGAIN;
1641 goto out;
1642 }
1643
1644 rc = 0;
1645 ioc->ctl_cmds.status = MPT2_CMD_PENDING;
1646 memset(ioc->ctl_cmds.reply, 0, ioc->reply_sz);
1647 mpi_request = mpt2sas_base_get_msg_frame(ioc, smid);
1648 ioc->ctl_cmds.smid = smid;
1649
1650 mpi_request->Function = MPI2_FUNCTION_DIAG_RELEASE;
1651 mpi_request->BufferType = buffer_type;
1652
1653 mpt2sas_base_put_smid_default(ioc, smid, mpi_request->VF_ID);
1654 timeleft = wait_for_completion_timeout(&ioc->ctl_cmds.done,
1655 MPT2_IOCTL_DEFAULT_TIMEOUT*HZ);
1656
1657 if (!(ioc->ctl_cmds.status & MPT2_CMD_COMPLETE)) {
1658 printk(MPT2SAS_ERR_FMT "%s: timeout\n", ioc->name,
1659 __func__);
1660 _debug_dump_mf(mpi_request,
1661 sizeof(Mpi2DiagReleaseRequest_t)/4);
1662 if (!(ioc->ctl_cmds.status & MPT2_CMD_RESET))
1663 issue_reset = 1;
1664 goto issue_host_reset;
1665 }
1666
1667 /* process the completed Reply Message Frame */
1668 if ((ioc->ctl_cmds.status & MPT2_CMD_REPLY_VALID) == 0) {
1669 printk(MPT2SAS_ERR_FMT "%s: no reply message\n",
1670 ioc->name, __func__);
1671 rc = -EFAULT;
1672 goto out;
1673 }
1674
1675 mpi_reply = ioc->ctl_cmds.reply;
1676 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK;
1677
1678 if (ioc_status == MPI2_IOCSTATUS_SUCCESS) {
1679 ioc->diag_buffer_status[buffer_type] |=
1680 MPT2_DIAG_BUFFER_IS_RELEASED;
1681 dctlprintk(ioc, printk(MPT2SAS_DEBUG_FMT "%s: success\n",
1682 ioc->name, __func__));
1683 } else {
1684 printk(MPT2SAS_DEBUG_FMT "%s: ioc_status(0x%04x) "
1685 "log_info(0x%08x)\n", ioc->name, __func__,
1686 ioc_status, mpi_reply->IOCLogInfo);
1687 rc = -EFAULT;
1688 }
1689
1690 issue_host_reset:
1691 if (issue_reset)
1692 mpt2sas_base_hard_reset_handler(ioc, CAN_SLEEP,
1693 FORCE_BIG_HAMMER);
1694
1695 out:
1696
1697 ioc->ctl_cmds.status = MPT2_CMD_NOT_USED;
1698 mutex_unlock(&ioc->ctl_cmds.mutex);
1699 return rc;
1700}
1701
1702/**
1703 * _ctl_diag_read_buffer - request for copy of the diag buffer
1704 * @arg - user space buffer containing ioctl content
1705 * @state - NON_BLOCKING or BLOCKING
1706 */
1707static long
1708_ctl_diag_read_buffer(void __user *arg, enum block_state state)
1709{
1710 struct mpt2_diag_read_buffer karg;
1711 struct mpt2_diag_read_buffer __user *uarg = arg;
1712 struct MPT2SAS_ADAPTER *ioc;
1713 void *request_data, *diag_data;
1714 Mpi2DiagBufferPostRequest_t *mpi_request;
1715 Mpi2DiagBufferPostReply_t *mpi_reply;
1716 int rc, i;
1717 u8 buffer_type;
1718 unsigned long timeleft;
1719 u16 smid;
1720 u16 ioc_status;
1721 u8 issue_reset = 0;
1722
1723 if (copy_from_user(&karg, arg, sizeof(karg))) {
1724 printk(KERN_ERR "failure at %s:%d/%s()!\n",
1725 __FILE__, __LINE__, __func__);
1726 return -EFAULT;
1727 }
1728 if (_ctl_verify_adapter(karg.hdr.ioc_number, &ioc) == -1 || !ioc)
1729 return -ENODEV;
1730
1731 dctlprintk(ioc, printk(MPT2SAS_DEBUG_FMT "%s\n", ioc->name,
1732 __func__));
1733
1734 buffer_type = karg.unique_id & 0x000000ff;
1735 if (!_ctl_diag_capability(ioc, buffer_type)) {
1736 printk(MPT2SAS_ERR_FMT "%s: doesn't have capability for "
1737 "buffer_type(0x%02x)\n", ioc->name, __func__, buffer_type);
1738 return -EPERM;
1739 }
1740
1741 if (karg.unique_id != ioc->unique_id[buffer_type]) {
1742 printk(MPT2SAS_ERR_FMT "%s: unique_id(0x%08x) is not "
1743 "registered\n", ioc->name, __func__, karg.unique_id);
1744 return -EINVAL;
1745 }
1746
1747 request_data = ioc->diag_buffer[buffer_type];
1748 if (!request_data) {
1749 printk(MPT2SAS_ERR_FMT "%s: doesn't have buffer for "
1750 "buffer_type(0x%02x)\n", ioc->name, __func__, buffer_type);
1751 return -ENOMEM;
1752 }
1753
1754 if ((karg.starting_offset % 4) || (karg.bytes_to_read % 4)) {
1755 printk(MPT2SAS_ERR_FMT "%s: either the starting_offset "
1756 "or bytes_to_read are not 4 byte aligned\n", ioc->name,
1757 __func__);
1758 return -EINVAL;
1759 }
1760
1761 diag_data = (void *)(request_data + karg.starting_offset);
1762 dctlprintk(ioc, printk(MPT2SAS_DEBUG_FMT "%s: diag_buffer(%p), "
1763 "offset(%d), sz(%d)\n", ioc->name, __func__,
1764 diag_data, karg.starting_offset, karg.bytes_to_read));
1765
1766 if (copy_to_user((void __user *)uarg->diagnostic_data,
1767 diag_data, karg.bytes_to_read)) {
1768 printk(MPT2SAS_ERR_FMT "%s: Unable to write "
1769 "mpt_diag_read_buffer_t data @ %p\n", ioc->name,
1770 __func__, diag_data);
1771 return -EFAULT;
1772 }
1773
1774 if ((karg.flags & MPT2_FLAGS_REREGISTER) == 0)
1775 return 0;
1776
1777 dctlprintk(ioc, printk(MPT2SAS_DEBUG_FMT "%s: Reregister "
1778 "buffer_type(0x%02x)\n", ioc->name, __func__, buffer_type));
1779 if ((ioc->diag_buffer_status[buffer_type] &
1780 MPT2_DIAG_BUFFER_IS_RELEASED) == 0) {
1781 dctlprintk(ioc, printk(MPT2SAS_DEBUG_FMT "%s: "
1782 "buffer_type(0x%02x) is still registered\n", ioc->name,
1783 __func__, buffer_type));
1784 return 0;
1785 }
1786 /* Get a free request frame and save the message context.
1787 */
1788 if (state == NON_BLOCKING && !mutex_trylock(&ioc->ctl_cmds.mutex))
1789 return -EAGAIN;
1790 else if (mutex_lock_interruptible(&ioc->ctl_cmds.mutex))
1791 return -ERESTARTSYS;
1792
1793 if (ioc->ctl_cmds.status != MPT2_CMD_NOT_USED) {
1794 printk(MPT2SAS_ERR_FMT "%s: ctl_cmd in use\n",
1795 ioc->name, __func__);
1796 rc = -EAGAIN;
1797 goto out;
1798 }
1799
1800 smid = mpt2sas_base_get_smid(ioc, ioc->ctl_cb_idx);
1801 if (!smid) {
1802 printk(MPT2SAS_ERR_FMT "%s: failed obtaining a smid\n",
1803 ioc->name, __func__);
1804 rc = -EAGAIN;
1805 goto out;
1806 }
1807
1808 rc = 0;
1809 ioc->ctl_cmds.status = MPT2_CMD_PENDING;
1810 memset(ioc->ctl_cmds.reply, 0, ioc->reply_sz);
1811 mpi_request = mpt2sas_base_get_msg_frame(ioc, smid);
1812 ioc->ctl_cmds.smid = smid;
1813
1814 mpi_request->Function = MPI2_FUNCTION_DIAG_BUFFER_POST;
1815 mpi_request->BufferType = buffer_type;
1816 mpi_request->BufferLength =
1817 cpu_to_le32(ioc->diag_buffer_sz[buffer_type]);
1818 mpi_request->BufferAddress =
1819 cpu_to_le64(ioc->diag_buffer_dma[buffer_type]);
1820 for (i = 0; i < MPT2_PRODUCT_SPECIFIC_DWORDS; i++)
1821 mpi_request->ProductSpecific[i] =
1822 cpu_to_le32(ioc->product_specific[buffer_type][i]);
1823
1824 mpt2sas_base_put_smid_default(ioc, smid, mpi_request->VF_ID);
1825 timeleft = wait_for_completion_timeout(&ioc->ctl_cmds.done,
1826 MPT2_IOCTL_DEFAULT_TIMEOUT*HZ);
1827
1828 if (!(ioc->ctl_cmds.status & MPT2_CMD_COMPLETE)) {
1829 printk(MPT2SAS_ERR_FMT "%s: timeout\n", ioc->name,
1830 __func__);
1831 _debug_dump_mf(mpi_request,
1832 sizeof(Mpi2DiagBufferPostRequest_t)/4);
1833 if (!(ioc->ctl_cmds.status & MPT2_CMD_RESET))
1834 issue_reset = 1;
1835 goto issue_host_reset;
1836 }
1837
1838 /* process the completed Reply Message Frame */
1839 if ((ioc->ctl_cmds.status & MPT2_CMD_REPLY_VALID) == 0) {
1840 printk(MPT2SAS_ERR_FMT "%s: no reply message\n",
1841 ioc->name, __func__);
1842 rc = -EFAULT;
1843 goto out;
1844 }
1845
1846 mpi_reply = ioc->ctl_cmds.reply;
1847 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK;
1848
1849 if (ioc_status == MPI2_IOCSTATUS_SUCCESS) {
1850 ioc->diag_buffer_status[buffer_type] |=
1851 MPT2_DIAG_BUFFER_IS_REGISTERED;
1852 dctlprintk(ioc, printk(MPT2SAS_DEBUG_FMT "%s: success\n",
1853 ioc->name, __func__));
1854 } else {
1855 printk(MPT2SAS_DEBUG_FMT "%s: ioc_status(0x%04x) "
1856 "log_info(0x%08x)\n", ioc->name, __func__,
1857 ioc_status, mpi_reply->IOCLogInfo);
1858 rc = -EFAULT;
1859 }
1860
1861 issue_host_reset:
1862 if (issue_reset)
1863 mpt2sas_base_hard_reset_handler(ioc, CAN_SLEEP,
1864 FORCE_BIG_HAMMER);
1865
1866 out:
1867
1868 ioc->ctl_cmds.status = MPT2_CMD_NOT_USED;
1869 mutex_unlock(&ioc->ctl_cmds.mutex);
1870 return rc;
1871}
1872
1873/**
1874 * _ctl_ioctl_main - main ioctl entry point
1875 * @file - (struct file)
1876 * @cmd - ioctl opcode
1877 * @arg -
1878 */
1879static long
1880_ctl_ioctl_main(struct file *file, unsigned int cmd, void __user *arg)
1881{
1882 enum block_state state;
1883 long ret = -EINVAL;
1884 unsigned long flags;
1885
1886 state = (file->f_flags & O_NONBLOCK) ? NON_BLOCKING :
1887 BLOCKING;
1888
1889 switch (cmd) {
1890 case MPT2IOCINFO:
1891 if (_IOC_SIZE(cmd) == sizeof(struct mpt2_ioctl_iocinfo))
1892 ret = _ctl_getiocinfo(arg);
1893 break;
1894 case MPT2COMMAND:
1895 {
1896 struct mpt2_ioctl_command karg;
1897 struct mpt2_ioctl_command __user *uarg;
1898 struct MPT2SAS_ADAPTER *ioc;
1899
1900 if (copy_from_user(&karg, arg, sizeof(karg))) {
1901 printk(KERN_ERR "failure at %s:%d/%s()!\n",
1902 __FILE__, __LINE__, __func__);
1903 return -EFAULT;
1904 }
1905
1906 if (_ctl_verify_adapter(karg.hdr.ioc_number, &ioc) == -1 ||
1907 !ioc)
1908 return -ENODEV;
1909
1910 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
1911 if (ioc->shost_recovery) {
1912 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock,
1913 flags);
1914 return -EAGAIN;
1915 }
1916 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
1917
1918 if (_IOC_SIZE(cmd) == sizeof(struct mpt2_ioctl_command)) {
1919 uarg = arg;
1920 ret = _ctl_do_mpt_command(ioc, karg, &uarg->mf, state);
1921 }
1922 break;
1923 }
1924 case MPT2EVENTQUERY:
1925 if (_IOC_SIZE(cmd) == sizeof(struct mpt2_ioctl_eventquery))
1926 ret = _ctl_eventquery(arg);
1927 break;
1928 case MPT2EVENTENABLE:
1929 if (_IOC_SIZE(cmd) == sizeof(struct mpt2_ioctl_eventenable))
1930 ret = _ctl_eventenable(arg);
1931 break;
1932 case MPT2EVENTREPORT:
1933 ret = _ctl_eventreport(arg);
1934 break;
1935 case MPT2HARDRESET:
1936 if (_IOC_SIZE(cmd) == sizeof(struct mpt2_ioctl_diag_reset))
1937 ret = _ctl_do_reset(arg);
1938 break;
1939 case MPT2BTDHMAPPING:
1940 if (_IOC_SIZE(cmd) == sizeof(struct mpt2_ioctl_btdh_mapping))
1941 ret = _ctl_btdh_mapping(arg);
1942 break;
1943 case MPT2DIAGREGISTER:
1944 if (_IOC_SIZE(cmd) == sizeof(struct mpt2_diag_register))
1945 ret = _ctl_diag_register(arg, state);
1946 break;
1947 case MPT2DIAGUNREGISTER:
1948 if (_IOC_SIZE(cmd) == sizeof(struct mpt2_diag_unregister))
1949 ret = _ctl_diag_unregister(arg);
1950 break;
1951 case MPT2DIAGQUERY:
1952 if (_IOC_SIZE(cmd) == sizeof(struct mpt2_diag_query))
1953 ret = _ctl_diag_query(arg);
1954 break;
1955 case MPT2DIAGRELEASE:
1956 if (_IOC_SIZE(cmd) == sizeof(struct mpt2_diag_release))
1957 ret = _ctl_diag_release(arg, state);
1958 break;
1959 case MPT2DIAGREADBUFFER:
1960 if (_IOC_SIZE(cmd) == sizeof(struct mpt2_diag_read_buffer))
1961 ret = _ctl_diag_read_buffer(arg, state);
1962 break;
1963 default:
1964 {
1965 struct mpt2_ioctl_command karg;
1966 struct MPT2SAS_ADAPTER *ioc;
1967
1968 if (copy_from_user(&karg, arg, sizeof(karg))) {
1969 printk(KERN_ERR "failure at %s:%d/%s()!\n",
1970 __FILE__, __LINE__, __func__);
1971 return -EFAULT;
1972 }
1973
1974 if (_ctl_verify_adapter(karg.hdr.ioc_number, &ioc) == -1 ||
1975 !ioc)
1976 return -ENODEV;
1977
1978 dctlprintk(ioc, printk(MPT2SAS_DEBUG_FMT
1979 "unsupported ioctl opcode(0x%08x)\n", ioc->name, cmd));
1980 break;
1981 }
1982 }
1983 return ret;
1984}
1985
1986/**
1987 * _ctl_ioctl - main ioctl entry point (unlocked)
1988 * @file - (struct file)
1989 * @cmd - ioctl opcode
1990 * @arg -
1991 */
1992static long
1993_ctl_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1994{
1995 long ret;
1996 lock_kernel();
1997 ret = _ctl_ioctl_main(file, cmd, (void __user *)arg);
1998 unlock_kernel();
1999 return ret;
2000}
2001
2002#ifdef CONFIG_COMPAT
2003/**
2004 * _ctl_compat_mpt_command - convert 32bit pointers to 64bit.
2005 * @file - (struct file)
2006 * @cmd - ioctl opcode
2007 * @arg - (struct mpt2_ioctl_command32)
2008 *
2009 * MPT2COMMAND32 - Handle 32bit applications running on 64bit os.
2010 */
2011static long
2012_ctl_compat_mpt_command(struct file *file, unsigned cmd, unsigned long arg)
2013{
2014 struct mpt2_ioctl_command32 karg32;
2015 struct mpt2_ioctl_command32 __user *uarg;
2016 struct mpt2_ioctl_command karg;
2017 struct MPT2SAS_ADAPTER *ioc;
2018 enum block_state state;
2019 unsigned long flags;
2020
2021 if (_IOC_SIZE(cmd) != sizeof(struct mpt2_ioctl_command32))
2022 return -EINVAL;
2023
2024 uarg = (struct mpt2_ioctl_command32 __user *) arg;
2025
2026 if (copy_from_user(&karg32, (char __user *)arg, sizeof(karg32))) {
2027 printk(KERN_ERR "failure at %s:%d/%s()!\n",
2028 __FILE__, __LINE__, __func__);
2029 return -EFAULT;
2030 }
2031 if (_ctl_verify_adapter(karg32.hdr.ioc_number, &ioc) == -1 || !ioc)
2032 return -ENODEV;
2033
2034 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
2035 if (ioc->shost_recovery) {
2036 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock,
2037 flags);
2038 return -EAGAIN;
2039 }
2040 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
2041
2042 memset(&karg, 0, sizeof(struct mpt2_ioctl_command));
2043 karg.hdr.ioc_number = karg32.hdr.ioc_number;
2044 karg.hdr.port_number = karg32.hdr.port_number;
2045 karg.hdr.max_data_size = karg32.hdr.max_data_size;
2046 karg.timeout = karg32.timeout;
2047 karg.max_reply_bytes = karg32.max_reply_bytes;
2048 karg.data_in_size = karg32.data_in_size;
2049 karg.data_out_size = karg32.data_out_size;
2050 karg.max_sense_bytes = karg32.max_sense_bytes;
2051 karg.data_sge_offset = karg32.data_sge_offset;
2052 memcpy(&karg.reply_frame_buf_ptr, &karg32.reply_frame_buf_ptr,
2053 sizeof(uint32_t));
2054 memcpy(&karg.data_in_buf_ptr, &karg32.data_in_buf_ptr,
2055 sizeof(uint32_t));
2056 memcpy(&karg.data_out_buf_ptr, &karg32.data_out_buf_ptr,
2057 sizeof(uint32_t));
2058 memcpy(&karg.sense_data_ptr, &karg32.sense_data_ptr,
2059 sizeof(uint32_t));
2060 state = (file->f_flags & O_NONBLOCK) ? NON_BLOCKING : BLOCKING;
2061 return _ctl_do_mpt_command(ioc, karg, &uarg->mf, state);
2062}
2063
2064/**
2065 * _ctl_ioctl_compat - main ioctl entry point (compat)
2066 * @file -
2067 * @cmd -
2068 * @arg -
2069 *
2070 * This routine handles 32 bit applications in 64bit os.
2071 */
2072static long
2073_ctl_ioctl_compat(struct file *file, unsigned cmd, unsigned long arg)
2074{
2075 long ret;
2076 lock_kernel();
2077 if (cmd == MPT2COMMAND32)
2078 ret = _ctl_compat_mpt_command(file, cmd, arg);
2079 else
2080 ret = _ctl_ioctl_main(file, cmd, (void __user *)arg);
2081 unlock_kernel();
2082 return ret;
2083}
2084#endif
2085
2086/* scsi host attributes */
2087
2088/**
2089 * _ctl_version_fw_show - firmware version
2090 * @cdev - pointer to embedded class device
2091 * @buf - the buffer returned
2092 *
2093 * A sysfs 'read-only' shost attribute.
2094 */
2095static ssize_t
2096_ctl_version_fw_show(struct device *cdev, struct device_attribute *attr,
2097 char *buf)
2098{
2099 struct Scsi_Host *shost = class_to_shost(cdev);
2100 struct MPT2SAS_ADAPTER *ioc = shost_priv(shost);
2101
2102 return snprintf(buf, PAGE_SIZE, "%02d.%02d.%02d.%02d\n",
2103 (ioc->facts.FWVersion.Word & 0xFF000000) >> 24,
2104 (ioc->facts.FWVersion.Word & 0x00FF0000) >> 16,
2105 (ioc->facts.FWVersion.Word & 0x0000FF00) >> 8,
2106 ioc->facts.FWVersion.Word & 0x000000FF);
2107}
2108static DEVICE_ATTR(version_fw, S_IRUGO, _ctl_version_fw_show, NULL);
2109
2110/**
2111 * _ctl_version_bios_show - bios version
2112 * @cdev - pointer to embedded class device
2113 * @buf - the buffer returned
2114 *
2115 * A sysfs 'read-only' shost attribute.
2116 */
2117static ssize_t
2118_ctl_version_bios_show(struct device *cdev, struct device_attribute *attr,
2119 char *buf)
2120{
2121 struct Scsi_Host *shost = class_to_shost(cdev);
2122 struct MPT2SAS_ADAPTER *ioc = shost_priv(shost);
2123
2124 u32 version = le32_to_cpu(ioc->bios_pg3.BiosVersion);
2125
2126 return snprintf(buf, PAGE_SIZE, "%02d.%02d.%02d.%02d\n",
2127 (version & 0xFF000000) >> 24,
2128 (version & 0x00FF0000) >> 16,
2129 (version & 0x0000FF00) >> 8,
2130 version & 0x000000FF);
2131}
2132static DEVICE_ATTR(version_bios, S_IRUGO, _ctl_version_bios_show, NULL);
2133
2134/**
2135 * _ctl_version_mpi_show - MPI (message passing interface) version
2136 * @cdev - pointer to embedded class device
2137 * @buf - the buffer returned
2138 *
2139 * A sysfs 'read-only' shost attribute.
2140 */
2141static ssize_t
2142_ctl_version_mpi_show(struct device *cdev, struct device_attribute *attr,
2143 char *buf)
2144{
2145 struct Scsi_Host *shost = class_to_shost(cdev);
2146 struct MPT2SAS_ADAPTER *ioc = shost_priv(shost);
2147
2148 return snprintf(buf, PAGE_SIZE, "%03x.%02x\n",
2149 ioc->facts.MsgVersion, ioc->facts.HeaderVersion >> 8);
2150}
2151static DEVICE_ATTR(version_mpi, S_IRUGO, _ctl_version_mpi_show, NULL);
2152
2153/**
2154 * _ctl_version_product_show - product name
2155 * @cdev - pointer to embedded class device
2156 * @buf - the buffer returned
2157 *
2158 * A sysfs 'read-only' shost attribute.
2159 */
2160static ssize_t
2161_ctl_version_product_show(struct device *cdev, struct device_attribute *attr,
2162 char *buf)
2163{
2164 struct Scsi_Host *shost = class_to_shost(cdev);
2165 struct MPT2SAS_ADAPTER *ioc = shost_priv(shost);
2166
2167 return snprintf(buf, 16, "%s\n", ioc->manu_pg0.ChipName);
2168}
2169static DEVICE_ATTR(version_product, S_IRUGO,
2170 _ctl_version_product_show, NULL);
2171
2172/**
2173 * _ctl_version_nvdata_persistent_show - ndvata persistent version
2174 * @cdev - pointer to embedded class device
2175 * @buf - the buffer returned
2176 *
2177 * A sysfs 'read-only' shost attribute.
2178 */
2179static ssize_t
2180_ctl_version_nvdata_persistent_show(struct device *cdev,
2181 struct device_attribute *attr, char *buf)
2182{
2183 struct Scsi_Host *shost = class_to_shost(cdev);
2184 struct MPT2SAS_ADAPTER *ioc = shost_priv(shost);
2185
2186 return snprintf(buf, PAGE_SIZE, "%02xh\n",
2187 le16_to_cpu(ioc->iounit_pg0.NvdataVersionPersistent.Word));
2188}
2189static DEVICE_ATTR(version_nvdata_persistent, S_IRUGO,
2190 _ctl_version_nvdata_persistent_show, NULL);
2191
2192/**
2193 * _ctl_version_nvdata_default_show - nvdata default version
2194 * @cdev - pointer to embedded class device
2195 * @buf - the buffer returned
2196 *
2197 * A sysfs 'read-only' shost attribute.
2198 */
2199static ssize_t
2200_ctl_version_nvdata_default_show(struct device *cdev,
2201 struct device_attribute *attr, char *buf)
2202{
2203 struct Scsi_Host *shost = class_to_shost(cdev);
2204 struct MPT2SAS_ADAPTER *ioc = shost_priv(shost);
2205
2206 return snprintf(buf, PAGE_SIZE, "%02xh\n",
2207 le16_to_cpu(ioc->iounit_pg0.NvdataVersionDefault.Word));
2208}
2209static DEVICE_ATTR(version_nvdata_default, S_IRUGO,
2210 _ctl_version_nvdata_default_show, NULL);
2211
2212/**
2213 * _ctl_board_name_show - board name
2214 * @cdev - pointer to embedded class device
2215 * @buf - the buffer returned
2216 *
2217 * A sysfs 'read-only' shost attribute.
2218 */
2219static ssize_t
2220_ctl_board_name_show(struct device *cdev, struct device_attribute *attr,
2221 char *buf)
2222{
2223 struct Scsi_Host *shost = class_to_shost(cdev);
2224 struct MPT2SAS_ADAPTER *ioc = shost_priv(shost);
2225
2226 return snprintf(buf, 16, "%s\n", ioc->manu_pg0.BoardName);
2227}
2228static DEVICE_ATTR(board_name, S_IRUGO, _ctl_board_name_show, NULL);
2229
2230/**
2231 * _ctl_board_assembly_show - board assembly name
2232 * @cdev - pointer to embedded class device
2233 * @buf - the buffer returned
2234 *
2235 * A sysfs 'read-only' shost attribute.
2236 */
2237static ssize_t
2238_ctl_board_assembly_show(struct device *cdev, struct device_attribute *attr,
2239 char *buf)
2240{
2241 struct Scsi_Host *shost = class_to_shost(cdev);
2242 struct MPT2SAS_ADAPTER *ioc = shost_priv(shost);
2243
2244 return snprintf(buf, 16, "%s\n", ioc->manu_pg0.BoardAssembly);
2245}
2246static DEVICE_ATTR(board_assembly, S_IRUGO,
2247 _ctl_board_assembly_show, NULL);
2248
2249/**
2250 * _ctl_board_tracer_show - board tracer number
2251 * @cdev - pointer to embedded class device
2252 * @buf - the buffer returned
2253 *
2254 * A sysfs 'read-only' shost attribute.
2255 */
2256static ssize_t
2257_ctl_board_tracer_show(struct device *cdev, struct device_attribute *attr,
2258 char *buf)
2259{
2260 struct Scsi_Host *shost = class_to_shost(cdev);
2261 struct MPT2SAS_ADAPTER *ioc = shost_priv(shost);
2262
2263 return snprintf(buf, 16, "%s\n", ioc->manu_pg0.BoardTracerNumber);
2264}
2265static DEVICE_ATTR(board_tracer, S_IRUGO,
2266 _ctl_board_tracer_show, NULL);
2267
2268/**
2269 * _ctl_io_delay_show - io missing delay
2270 * @cdev - pointer to embedded class device
2271 * @buf - the buffer returned
2272 *
2273 * This is for firmware implemention for deboucing device
2274 * removal events.
2275 *
2276 * A sysfs 'read-only' shost attribute.
2277 */
2278static ssize_t
2279_ctl_io_delay_show(struct device *cdev, struct device_attribute *attr,
2280 char *buf)
2281{
2282 struct Scsi_Host *shost = class_to_shost(cdev);
2283 struct MPT2SAS_ADAPTER *ioc = shost_priv(shost);
2284
2285 return snprintf(buf, PAGE_SIZE, "%02d\n", ioc->io_missing_delay);
2286}
2287static DEVICE_ATTR(io_delay, S_IRUGO,
2288 _ctl_io_delay_show, NULL);
2289
2290/**
2291 * _ctl_device_delay_show - device missing delay
2292 * @cdev - pointer to embedded class device
2293 * @buf - the buffer returned
2294 *
2295 * This is for firmware implemention for deboucing device
2296 * removal events.
2297 *
2298 * A sysfs 'read-only' shost attribute.
2299 */
2300static ssize_t
2301_ctl_device_delay_show(struct device *cdev, struct device_attribute *attr,
2302 char *buf)
2303{
2304 struct Scsi_Host *shost = class_to_shost(cdev);
2305 struct MPT2SAS_ADAPTER *ioc = shost_priv(shost);
2306
2307 return snprintf(buf, PAGE_SIZE, "%02d\n", ioc->device_missing_delay);
2308}
2309static DEVICE_ATTR(device_delay, S_IRUGO,
2310 _ctl_device_delay_show, NULL);
2311
2312/**
2313 * _ctl_fw_queue_depth_show - global credits
2314 * @cdev - pointer to embedded class device
2315 * @buf - the buffer returned
2316 *
2317 * This is firmware queue depth limit
2318 *
2319 * A sysfs 'read-only' shost attribute.
2320 */
2321static ssize_t
2322_ctl_fw_queue_depth_show(struct device *cdev, struct device_attribute *attr,
2323 char *buf)
2324{
2325 struct Scsi_Host *shost = class_to_shost(cdev);
2326 struct MPT2SAS_ADAPTER *ioc = shost_priv(shost);
2327
2328 return snprintf(buf, PAGE_SIZE, "%02d\n", ioc->facts.RequestCredit);
2329}
2330static DEVICE_ATTR(fw_queue_depth, S_IRUGO,
2331 _ctl_fw_queue_depth_show, NULL);
2332
2333/**
2334 * _ctl_sas_address_show - sas address
2335 * @cdev - pointer to embedded class device
2336 * @buf - the buffer returned
2337 *
2338 * This is the controller sas address
2339 *
2340 * A sysfs 'read-only' shost attribute.
2341 */
2342static ssize_t
2343_ctl_host_sas_address_show(struct device *cdev, struct device_attribute *attr,
2344 char *buf)
2345{
2346 struct Scsi_Host *shost = class_to_shost(cdev);
2347 struct MPT2SAS_ADAPTER *ioc = shost_priv(shost);
2348
2349 return snprintf(buf, PAGE_SIZE, "0x%016llx\n",
2350 (unsigned long long)ioc->sas_hba.sas_address);
2351}
2352static DEVICE_ATTR(host_sas_address, S_IRUGO,
2353 _ctl_host_sas_address_show, NULL);
2354
2355/**
2356 * _ctl_logging_level_show - logging level
2357 * @cdev - pointer to embedded class device
2358 * @buf - the buffer returned
2359 *
2360 * A sysfs 'read/write' shost attribute.
2361 */
2362static ssize_t
2363_ctl_logging_level_show(struct device *cdev, struct device_attribute *attr,
2364 char *buf)
2365{
2366 struct Scsi_Host *shost = class_to_shost(cdev);
2367 struct MPT2SAS_ADAPTER *ioc = shost_priv(shost);
2368
2369 return snprintf(buf, PAGE_SIZE, "%08xh\n", ioc->logging_level);
2370}
2371static ssize_t
2372_ctl_logging_level_store(struct device *cdev, struct device_attribute *attr,
2373 const char *buf, size_t count)
2374{
2375 struct Scsi_Host *shost = class_to_shost(cdev);
2376 struct MPT2SAS_ADAPTER *ioc = shost_priv(shost);
2377 int val = 0;
2378
2379 if (sscanf(buf, "%x", &val) != 1)
2380 return -EINVAL;
2381
2382 ioc->logging_level = val;
2383 printk(MPT2SAS_INFO_FMT "logging_level=%08xh\n", ioc->name,
2384 ioc->logging_level);
2385 return strlen(buf);
2386}
2387static DEVICE_ATTR(logging_level, S_IRUGO | S_IWUSR,
2388 _ctl_logging_level_show, _ctl_logging_level_store);
2389
2390struct device_attribute *mpt2sas_host_attrs[] = {
2391 &dev_attr_version_fw,
2392 &dev_attr_version_bios,
2393 &dev_attr_version_mpi,
2394 &dev_attr_version_product,
2395 &dev_attr_version_nvdata_persistent,
2396 &dev_attr_version_nvdata_default,
2397 &dev_attr_board_name,
2398 &dev_attr_board_assembly,
2399 &dev_attr_board_tracer,
2400 &dev_attr_io_delay,
2401 &dev_attr_device_delay,
2402 &dev_attr_logging_level,
2403 &dev_attr_fw_queue_depth,
2404 &dev_attr_host_sas_address,
2405 NULL,
2406};
2407
2408/* device attributes */
2409
2410/**
2411 * _ctl_device_sas_address_show - sas address
2412 * @cdev - pointer to embedded class device
2413 * @buf - the buffer returned
2414 *
2415 * This is the sas address for the target
2416 *
2417 * A sysfs 'read-only' shost attribute.
2418 */
2419static ssize_t
2420_ctl_device_sas_address_show(struct device *dev, struct device_attribute *attr,
2421 char *buf)
2422{
2423 struct scsi_device *sdev = to_scsi_device(dev);
2424 struct MPT2SAS_DEVICE *sas_device_priv_data = sdev->hostdata;
2425
2426 return snprintf(buf, PAGE_SIZE, "0x%016llx\n",
2427 (unsigned long long)sas_device_priv_data->sas_target->sas_address);
2428}
2429static DEVICE_ATTR(sas_address, S_IRUGO, _ctl_device_sas_address_show, NULL);
2430
2431/**
2432 * _ctl_device_handle_show - device handle
2433 * @cdev - pointer to embedded class device
2434 * @buf - the buffer returned
2435 *
2436 * This is the firmware assigned device handle
2437 *
2438 * A sysfs 'read-only' shost attribute.
2439 */
2440static ssize_t
2441_ctl_device_handle_show(struct device *dev, struct device_attribute *attr,
2442 char *buf)
2443{
2444 struct scsi_device *sdev = to_scsi_device(dev);
2445 struct MPT2SAS_DEVICE *sas_device_priv_data = sdev->hostdata;
2446
2447 return snprintf(buf, PAGE_SIZE, "0x%04x\n",
2448 sas_device_priv_data->sas_target->handle);
2449}
2450static DEVICE_ATTR(sas_device_handle, S_IRUGO, _ctl_device_handle_show, NULL);
2451
2452struct device_attribute *mpt2sas_dev_attrs[] = {
2453 &dev_attr_sas_address,
2454 &dev_attr_sas_device_handle,
2455 NULL,
2456};
2457
2458static const struct file_operations ctl_fops = {
2459 .owner = THIS_MODULE,
2460 .unlocked_ioctl = _ctl_ioctl,
2461 .release = _ctl_release,
2462 .poll = _ctl_poll,
2463 .fasync = _ctl_fasync,
2464#ifdef CONFIG_COMPAT
2465 .compat_ioctl = _ctl_ioctl_compat,
2466#endif
2467};
2468
2469static struct miscdevice ctl_dev = {
2470 .minor = MPT2SAS_MINOR,
2471 .name = MPT2SAS_DEV_NAME,
2472 .fops = &ctl_fops,
2473};
2474
2475/**
2476 * mpt2sas_ctl_init - main entry point for ctl.
2477 *
2478 */
2479void
2480mpt2sas_ctl_init(void)
2481{
2482 async_queue = NULL;
2483 if (misc_register(&ctl_dev) < 0)
2484 printk(KERN_ERR "%s can't register misc device [minor=%d]\n",
2485 MPT2SAS_DRIVER_NAME, MPT2SAS_MINOR);
2486
2487 init_waitqueue_head(&ctl_poll_wait);
2488}
2489
2490/**
2491 * mpt2sas_ctl_exit - exit point for ctl
2492 *
2493 */
2494void
2495mpt2sas_ctl_exit(void)
2496{
2497 struct MPT2SAS_ADAPTER *ioc;
2498 int i;
2499
2500 list_for_each_entry(ioc, &ioc_list, list) {
2501
2502 /* free memory associated to diag buffers */
2503 for (i = 0; i < MPI2_DIAG_BUF_TYPE_COUNT; i++) {
2504 if (!ioc->diag_buffer[i])
2505 continue;
2506 pci_free_consistent(ioc->pdev, ioc->diag_buffer_sz[i],
2507 ioc->diag_buffer[i], ioc->diag_buffer_dma[i]);
2508 ioc->diag_buffer[i] = NULL;
2509 ioc->diag_buffer_status[i] = 0;
2510 }
2511
2512 kfree(ioc->event_log);
2513 }
2514 misc_deregister(&ctl_dev);
2515}
2516