Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* -*- c-basic-offset: 8 -*- |
| 2 | * |
| 3 | * amdtp.c - Audio and Music Data Transmission Protocol Driver |
| 4 | * Copyright (C) 2001 Kristian Høgsberg |
| 5 | * |
| 6 | * This program is free software; you can redistribute it and/or modify |
| 7 | * it under the terms of the GNU General Public License as published by |
| 8 | * the Free Software Foundation; either version 2 of the License, or |
| 9 | * (at your option) any later version. |
| 10 | * |
| 11 | * This program is distributed in the hope that it will be useful, |
| 12 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 13 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 14 | * GNU General Public License for more details. |
| 15 | * |
| 16 | * You should have received a copy of the GNU General Public License |
| 17 | * along with this program; if not, write to the Free Software Foundation, |
| 18 | * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. |
| 19 | */ |
| 20 | |
| 21 | /* OVERVIEW |
| 22 | * -------- |
| 23 | * |
| 24 | * The AMDTP driver is designed to expose the IEEE1394 bus as a |
| 25 | * regular OSS soundcard, i.e. you can link /dev/dsp to /dev/amdtp and |
| 26 | * then your favourite MP3 player, game or whatever sound program will |
| 27 | * output to an IEEE1394 isochronous channel. The signal destination |
| 28 | * could be a set of IEEE1394 loudspeakers (if and when such things |
| 29 | * become available) or an amplifier with IEEE1394 input (like the |
| 30 | * Sony STR-LSA1). The driver only handles the actual streaming, some |
| 31 | * connection management is also required for this to actually work. |
| 32 | * That is outside the scope of this driver, and furthermore it is not |
| 33 | * really standardized yet. |
| 34 | * |
| 35 | * The Audio and Music Data Tranmission Protocol is available at |
| 36 | * |
| 37 | * http://www.1394ta.org/Download/Technology/Specifications/2001/AM20Final-jf2.pdf |
| 38 | * |
| 39 | * |
| 40 | * TODO |
| 41 | * ---- |
| 42 | * |
| 43 | * - We should be able to change input sample format between LE/BE, as |
| 44 | * we already shift the bytes around when we construct the iso |
| 45 | * packets. |
| 46 | * |
| 47 | * - Fix DMA stop after bus reset! |
| 48 | * |
| 49 | * - Clean up iso context handling in ohci1394. |
| 50 | * |
| 51 | * |
| 52 | * MAYBE TODO |
| 53 | * ---------- |
| 54 | * |
| 55 | * - Receive data for local playback or recording. Playback requires |
| 56 | * soft syncing with the sound card. |
| 57 | * |
| 58 | * - Signal processing, i.e. receive packets, do some processing, and |
| 59 | * transmit them again using the same packet structure and timestamps |
| 60 | * offset by processing time. |
| 61 | * |
| 62 | * - Maybe make an ALSA interface, that is, create a file_ops |
| 63 | * implementation that recognizes ALSA ioctls and uses defaults for |
| 64 | * things that can't be controlled through ALSA (iso channel). |
| 65 | * |
| 66 | * Changes: |
| 67 | * |
| 68 | * - Audit copy_from_user in amdtp_write. |
| 69 | * Daniele Bellucci <bellucda@tiscali.it> |
| 70 | * |
| 71 | */ |
| 72 | |
| 73 | #include <linux/module.h> |
| 74 | #include <linux/list.h> |
| 75 | #include <linux/sched.h> |
| 76 | #include <linux/types.h> |
| 77 | #include <linux/fs.h> |
| 78 | #include <linux/ioctl.h> |
| 79 | #include <linux/wait.h> |
| 80 | #include <linux/pci.h> |
| 81 | #include <linux/interrupt.h> |
| 82 | #include <linux/poll.h> |
| 83 | #include <linux/ioctl32.h> |
| 84 | #include <linux/compat.h> |
| 85 | #include <linux/cdev.h> |
| 86 | #include <asm/uaccess.h> |
| 87 | #include <asm/atomic.h> |
| 88 | |
| 89 | #include "hosts.h" |
| 90 | #include "highlevel.h" |
| 91 | #include "ieee1394.h" |
| 92 | #include "ieee1394_core.h" |
| 93 | #include "ohci1394.h" |
| 94 | |
| 95 | #include "amdtp.h" |
| 96 | #include "cmp.h" |
| 97 | |
| 98 | #define FMT_AMDTP 0x10 |
| 99 | #define FDF_AM824 0x00 |
| 100 | #define FDF_SFC_32KHZ 0x00 |
| 101 | #define FDF_SFC_44K1HZ 0x01 |
| 102 | #define FDF_SFC_48KHZ 0x02 |
| 103 | #define FDF_SFC_88K2HZ 0x03 |
| 104 | #define FDF_SFC_96KHZ 0x04 |
| 105 | #define FDF_SFC_176K4HZ 0x05 |
| 106 | #define FDF_SFC_192KHZ 0x06 |
| 107 | |
| 108 | struct descriptor_block { |
| 109 | struct output_more_immediate { |
| 110 | u32 control; |
| 111 | u32 pad0; |
| 112 | u32 skip; |
| 113 | u32 pad1; |
| 114 | u32 header[4]; |
| 115 | } header_desc; |
| 116 | |
| 117 | struct output_last { |
| 118 | u32 control; |
| 119 | u32 data_address; |
| 120 | u32 branch; |
| 121 | u32 status; |
| 122 | } payload_desc; |
| 123 | }; |
| 124 | |
| 125 | struct packet { |
| 126 | struct descriptor_block *db; |
| 127 | dma_addr_t db_bus; |
| 128 | struct iso_packet *payload; |
| 129 | dma_addr_t payload_bus; |
| 130 | }; |
| 131 | |
| 132 | #include <asm/byteorder.h> |
| 133 | |
| 134 | #if defined __BIG_ENDIAN_BITFIELD |
| 135 | |
| 136 | struct iso_packet { |
| 137 | /* First quadlet */ |
| 138 | unsigned int dbs : 8; |
| 139 | unsigned int eoh0 : 2; |
| 140 | unsigned int sid : 6; |
| 141 | |
| 142 | unsigned int dbc : 8; |
| 143 | unsigned int fn : 2; |
| 144 | unsigned int qpc : 3; |
| 145 | unsigned int sph : 1; |
| 146 | unsigned int reserved : 2; |
| 147 | |
| 148 | /* Second quadlet */ |
| 149 | unsigned int fdf : 8; |
| 150 | unsigned int eoh1 : 2; |
| 151 | unsigned int fmt : 6; |
| 152 | |
| 153 | unsigned int syt : 16; |
| 154 | |
| 155 | quadlet_t data[0]; |
| 156 | }; |
| 157 | |
| 158 | #elif defined __LITTLE_ENDIAN_BITFIELD |
| 159 | |
| 160 | struct iso_packet { |
| 161 | /* First quadlet */ |
| 162 | unsigned int sid : 6; |
| 163 | unsigned int eoh0 : 2; |
| 164 | unsigned int dbs : 8; |
| 165 | |
| 166 | unsigned int reserved : 2; |
| 167 | unsigned int sph : 1; |
| 168 | unsigned int qpc : 3; |
| 169 | unsigned int fn : 2; |
| 170 | unsigned int dbc : 8; |
| 171 | |
| 172 | /* Second quadlet */ |
| 173 | unsigned int fmt : 6; |
| 174 | unsigned int eoh1 : 2; |
| 175 | unsigned int fdf : 8; |
| 176 | |
| 177 | unsigned int syt : 16; |
| 178 | |
| 179 | quadlet_t data[0]; |
| 180 | }; |
| 181 | |
| 182 | #else |
| 183 | |
| 184 | #error Unknown bitfield type |
| 185 | |
| 186 | #endif |
| 187 | |
| 188 | struct fraction { |
| 189 | int integer; |
| 190 | int numerator; |
| 191 | int denominator; |
| 192 | }; |
| 193 | |
| 194 | #define PACKET_LIST_SIZE 256 |
| 195 | #define MAX_PACKET_LISTS 4 |
| 196 | |
| 197 | struct packet_list { |
| 198 | struct list_head link; |
| 199 | int last_cycle_count; |
| 200 | struct packet packets[PACKET_LIST_SIZE]; |
| 201 | }; |
| 202 | |
| 203 | #define BUFFER_SIZE 128 |
| 204 | |
| 205 | /* This implements a circular buffer for incoming samples. */ |
| 206 | |
| 207 | struct buffer { |
| 208 | size_t head, tail, length, size; |
| 209 | unsigned char data[0]; |
| 210 | }; |
| 211 | |
| 212 | struct stream { |
| 213 | int iso_channel; |
| 214 | int format; |
| 215 | int rate; |
| 216 | int dimension; |
| 217 | int fdf; |
| 218 | int mode; |
| 219 | int sample_format; |
| 220 | struct cmp_pcr *opcr; |
| 221 | |
| 222 | /* Input samples are copied here. */ |
| 223 | struct buffer *input; |
| 224 | |
| 225 | /* ISO Packer state */ |
| 226 | unsigned char dbc; |
| 227 | struct packet_list *current_packet_list; |
| 228 | int current_packet; |
| 229 | struct fraction ready_samples, samples_per_cycle; |
| 230 | |
| 231 | /* We use these to generate control bits when we are packing |
| 232 | * iec958 data. |
| 233 | */ |
| 234 | int iec958_frame_count; |
| 235 | int iec958_rate_code; |
| 236 | |
| 237 | /* The cycle_count and cycle_offset fields are used for the |
| 238 | * synchronization timestamps (syt) in the cip header. They |
| 239 | * are incremented by at least a cycle every time we put a |
| 240 | * time stamp in a packet. As we don't time stamp all |
| 241 | * packages, cycle_count isn't updated in every cycle, and |
| 242 | * sometimes it's incremented by 2. Thus, we have |
| 243 | * cycle_count2, which is simply incremented by one with each |
| 244 | * packet, so we can compare it to the transmission time |
| 245 | * written back in the dma programs. |
| 246 | */ |
| 247 | atomic_t cycle_count, cycle_count2; |
| 248 | struct fraction cycle_offset, ticks_per_syt_offset; |
| 249 | int syt_interval; |
| 250 | int stale_count; |
| 251 | |
| 252 | /* Theses fields control the sample output to the DMA engine. |
| 253 | * The dma_packet_lists list holds packet lists currently |
| 254 | * queued for dma; the head of the list is currently being |
| 255 | * processed. The last program in a packet list generates an |
| 256 | * interrupt, which removes the head from dma_packet_lists and |
| 257 | * puts it back on the free list. |
| 258 | */ |
| 259 | struct list_head dma_packet_lists; |
| 260 | struct list_head free_packet_lists; |
| 261 | wait_queue_head_t packet_list_wait; |
| 262 | spinlock_t packet_list_lock; |
| 263 | struct ohci1394_iso_tasklet iso_tasklet; |
| 264 | struct pci_pool *descriptor_pool, *packet_pool; |
| 265 | |
| 266 | /* Streams at a host controller are chained through this field. */ |
| 267 | struct list_head link; |
| 268 | struct amdtp_host *host; |
| 269 | }; |
| 270 | |
| 271 | struct amdtp_host { |
| 272 | struct hpsb_host *host; |
| 273 | struct ti_ohci *ohci; |
| 274 | struct list_head stream_list; |
| 275 | spinlock_t stream_list_lock; |
| 276 | }; |
| 277 | |
| 278 | static struct hpsb_highlevel amdtp_highlevel; |
| 279 | |
| 280 | |
| 281 | /* FIXME: This doesn't belong here... */ |
| 282 | |
| 283 | #define OHCI1394_CONTEXT_CYCLE_MATCH 0x80000000 |
| 284 | #define OHCI1394_CONTEXT_RUN 0x00008000 |
| 285 | #define OHCI1394_CONTEXT_WAKE 0x00001000 |
| 286 | #define OHCI1394_CONTEXT_DEAD 0x00000800 |
| 287 | #define OHCI1394_CONTEXT_ACTIVE 0x00000400 |
| 288 | |
| 289 | static void ohci1394_start_it_ctx(struct ti_ohci *ohci, int ctx, |
| 290 | dma_addr_t first_cmd, int z, int cycle_match) |
| 291 | { |
| 292 | reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << ctx); |
| 293 | reg_write(ohci, OHCI1394_IsoXmitCommandPtr + ctx * 16, first_cmd | z); |
| 294 | reg_write(ohci, OHCI1394_IsoXmitContextControlClear + ctx * 16, ~0); |
| 295 | wmb(); |
| 296 | reg_write(ohci, OHCI1394_IsoXmitContextControlSet + ctx * 16, |
| 297 | OHCI1394_CONTEXT_CYCLE_MATCH | (cycle_match << 16) | |
| 298 | OHCI1394_CONTEXT_RUN); |
| 299 | } |
| 300 | |
| 301 | static void ohci1394_wake_it_ctx(struct ti_ohci *ohci, int ctx) |
| 302 | { |
| 303 | reg_write(ohci, OHCI1394_IsoXmitContextControlSet + ctx * 16, |
| 304 | OHCI1394_CONTEXT_WAKE); |
| 305 | } |
| 306 | |
| 307 | static void ohci1394_stop_it_ctx(struct ti_ohci *ohci, int ctx, int synchronous) |
| 308 | { |
| 309 | u32 control; |
| 310 | int wait; |
| 311 | |
| 312 | reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << ctx); |
| 313 | reg_write(ohci, OHCI1394_IsoXmitContextControlClear + ctx * 16, |
| 314 | OHCI1394_CONTEXT_RUN); |
| 315 | wmb(); |
| 316 | |
| 317 | if (synchronous) { |
| 318 | for (wait = 0; wait < 5; wait++) { |
| 319 | control = reg_read(ohci, OHCI1394_IsoXmitContextControlSet + ctx * 16); |
| 320 | if ((control & OHCI1394_CONTEXT_ACTIVE) == 0) |
| 321 | break; |
| 322 | |
Nishanth Aravamudan | 4de4ebc | 2005-11-07 01:01:15 -0800 | [diff] [blame] | 323 | schedule_timeout_interruptible(1); |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 324 | } |
| 325 | } |
| 326 | } |
| 327 | |
| 328 | /* Note: we can test if free_packet_lists is empty without aquiring |
| 329 | * the packet_list_lock. The interrupt handler only adds to the free |
| 330 | * list, there is no race condition between testing the list non-empty |
| 331 | * and acquiring the lock. |
| 332 | */ |
| 333 | |
| 334 | static struct packet_list *stream_get_free_packet_list(struct stream *s) |
| 335 | { |
| 336 | struct packet_list *pl; |
| 337 | unsigned long flags; |
| 338 | |
| 339 | if (list_empty(&s->free_packet_lists)) |
| 340 | return NULL; |
| 341 | |
| 342 | spin_lock_irqsave(&s->packet_list_lock, flags); |
| 343 | pl = list_entry(s->free_packet_lists.next, struct packet_list, link); |
| 344 | list_del(&pl->link); |
| 345 | spin_unlock_irqrestore(&s->packet_list_lock, flags); |
| 346 | |
| 347 | return pl; |
| 348 | } |
| 349 | |
| 350 | static void stream_start_dma(struct stream *s, struct packet_list *pl) |
| 351 | { |
| 352 | u32 syt_cycle, cycle_count, start_cycle; |
| 353 | |
| 354 | cycle_count = reg_read(s->host->ohci, |
| 355 | OHCI1394_IsochronousCycleTimer) >> 12; |
| 356 | syt_cycle = (pl->last_cycle_count - PACKET_LIST_SIZE + 1) & 0x0f; |
| 357 | |
| 358 | /* We program the DMA controller to start transmission at |
| 359 | * least 17 cycles from now - this happens when the lower four |
| 360 | * bits of cycle_count is 0x0f and syt_cycle is 0, in this |
| 361 | * case the start cycle is cycle_count - 15 + 32. */ |
| 362 | start_cycle = (cycle_count & ~0x0f) + 32 + syt_cycle; |
| 363 | if ((start_cycle & 0x1fff) >= 8000) |
| 364 | start_cycle = start_cycle - 8000 + 0x2000; |
| 365 | |
| 366 | ohci1394_start_it_ctx(s->host->ohci, s->iso_tasklet.context, |
| 367 | pl->packets[0].db_bus, 3, |
| 368 | start_cycle & 0x7fff); |
| 369 | } |
| 370 | |
| 371 | static void stream_put_dma_packet_list(struct stream *s, |
| 372 | struct packet_list *pl) |
| 373 | { |
| 374 | unsigned long flags; |
| 375 | struct packet_list *prev; |
| 376 | |
| 377 | /* Remember the cycle_count used for timestamping the last packet. */ |
| 378 | pl->last_cycle_count = atomic_read(&s->cycle_count2) - 1; |
| 379 | pl->packets[PACKET_LIST_SIZE - 1].db->payload_desc.branch = 0; |
| 380 | |
| 381 | spin_lock_irqsave(&s->packet_list_lock, flags); |
| 382 | list_add_tail(&pl->link, &s->dma_packet_lists); |
| 383 | spin_unlock_irqrestore(&s->packet_list_lock, flags); |
| 384 | |
| 385 | prev = list_entry(pl->link.prev, struct packet_list, link); |
| 386 | if (pl->link.prev != &s->dma_packet_lists) { |
| 387 | struct packet *last = &prev->packets[PACKET_LIST_SIZE - 1]; |
| 388 | last->db->payload_desc.branch = pl->packets[0].db_bus | 3; |
| 389 | last->db->header_desc.skip = pl->packets[0].db_bus | 3; |
| 390 | ohci1394_wake_it_ctx(s->host->ohci, s->iso_tasklet.context); |
| 391 | } |
| 392 | else |
| 393 | stream_start_dma(s, pl); |
| 394 | } |
| 395 | |
| 396 | static void stream_shift_packet_lists(unsigned long l) |
| 397 | { |
| 398 | struct stream *s = (struct stream *) l; |
| 399 | struct packet_list *pl; |
| 400 | struct packet *last; |
| 401 | int diff; |
| 402 | |
| 403 | if (list_empty(&s->dma_packet_lists)) { |
| 404 | HPSB_ERR("empty dma_packet_lists in %s", __FUNCTION__); |
| 405 | return; |
| 406 | } |
| 407 | |
| 408 | /* Now that we know the list is non-empty, we can get the head |
| 409 | * of the list without locking, because the process context |
| 410 | * only adds to the tail. |
| 411 | */ |
| 412 | pl = list_entry(s->dma_packet_lists.next, struct packet_list, link); |
| 413 | last = &pl->packets[PACKET_LIST_SIZE - 1]; |
| 414 | |
| 415 | /* This is weird... if we stop dma processing in the middle of |
| 416 | * a packet list, the dma context immediately generates an |
| 417 | * interrupt if we enable it again later. This only happens |
| 418 | * when amdtp_release is interrupted while waiting for dma to |
| 419 | * complete, though. Anyway, we detect this by seeing that |
| 420 | * the status of the dma descriptor that we expected an |
| 421 | * interrupt from is still 0. |
| 422 | */ |
| 423 | if (last->db->payload_desc.status == 0) { |
| 424 | HPSB_INFO("weird interrupt..."); |
| 425 | return; |
| 426 | } |
| 427 | |
| 428 | /* If the last descriptor block does not specify a branch |
| 429 | * address, we have a sample underflow. |
| 430 | */ |
| 431 | if (last->db->payload_desc.branch == 0) |
| 432 | HPSB_INFO("FIXME: sample underflow..."); |
| 433 | |
| 434 | /* Here we check when (which cycle) the last packet was sent |
| 435 | * and compare it to what the iso packer was using at the |
| 436 | * time. If there is a mismatch, we adjust the cycle count in |
| 437 | * the iso packer. However, there are still up to |
| 438 | * MAX_PACKET_LISTS packet lists queued with bad time stamps, |
| 439 | * so we disable time stamp monitoring for the next |
| 440 | * MAX_PACKET_LISTS packet lists. |
| 441 | */ |
| 442 | diff = (last->db->payload_desc.status - pl->last_cycle_count) & 0xf; |
| 443 | if (diff > 0 && s->stale_count == 0) { |
| 444 | atomic_add(diff, &s->cycle_count); |
| 445 | atomic_add(diff, &s->cycle_count2); |
| 446 | s->stale_count = MAX_PACKET_LISTS; |
| 447 | } |
| 448 | |
| 449 | if (s->stale_count > 0) |
| 450 | s->stale_count--; |
| 451 | |
| 452 | /* Finally, we move the packet list that was just processed |
| 453 | * back to the free list, and notify any waiters. |
| 454 | */ |
| 455 | spin_lock(&s->packet_list_lock); |
| 456 | list_del(&pl->link); |
| 457 | list_add_tail(&pl->link, &s->free_packet_lists); |
| 458 | spin_unlock(&s->packet_list_lock); |
| 459 | |
| 460 | wake_up_interruptible(&s->packet_list_wait); |
| 461 | } |
| 462 | |
| 463 | static struct packet *stream_current_packet(struct stream *s) |
| 464 | { |
| 465 | if (s->current_packet_list == NULL && |
| 466 | (s->current_packet_list = stream_get_free_packet_list(s)) == NULL) |
| 467 | return NULL; |
| 468 | |
| 469 | return &s->current_packet_list->packets[s->current_packet]; |
| 470 | } |
| 471 | |
| 472 | static void stream_queue_packet(struct stream *s) |
| 473 | { |
| 474 | s->current_packet++; |
| 475 | if (s->current_packet == PACKET_LIST_SIZE) { |
| 476 | stream_put_dma_packet_list(s, s->current_packet_list); |
| 477 | s->current_packet_list = NULL; |
| 478 | s->current_packet = 0; |
| 479 | } |
| 480 | } |
| 481 | |
| 482 | /* Integer fractional math. When we transmit a 44k1Hz signal we must |
| 483 | * send 5 41/80 samples per isochronous cycle, as these occur 8000 |
| 484 | * times a second. Of course, we must send an integral number of |
| 485 | * samples in a packet, so we use the integer math to alternate |
| 486 | * between sending 5 and 6 samples per packet. |
| 487 | */ |
| 488 | |
| 489 | static void fraction_init(struct fraction *f, int numerator, int denominator) |
| 490 | { |
| 491 | f->integer = numerator / denominator; |
| 492 | f->numerator = numerator % denominator; |
| 493 | f->denominator = denominator; |
| 494 | } |
| 495 | |
| 496 | static __inline__ void fraction_add(struct fraction *dst, |
| 497 | struct fraction *src1, |
| 498 | struct fraction *src2) |
| 499 | { |
| 500 | /* assert: src1->denominator == src2->denominator */ |
| 501 | |
| 502 | int sum, denom; |
| 503 | |
| 504 | /* We use these two local variables to allow gcc to optimize |
| 505 | * the division and the modulo into only one division. */ |
| 506 | |
| 507 | sum = src1->numerator + src2->numerator; |
| 508 | denom = src1->denominator; |
| 509 | dst->integer = src1->integer + src2->integer + sum / denom; |
| 510 | dst->numerator = sum % denom; |
| 511 | dst->denominator = denom; |
| 512 | } |
| 513 | |
| 514 | static __inline__ void fraction_sub_int(struct fraction *dst, |
| 515 | struct fraction *src, int integer) |
| 516 | { |
| 517 | dst->integer = src->integer - integer; |
| 518 | dst->numerator = src->numerator; |
| 519 | dst->denominator = src->denominator; |
| 520 | } |
| 521 | |
| 522 | static __inline__ int fraction_floor(struct fraction *frac) |
| 523 | { |
| 524 | return frac->integer; |
| 525 | } |
| 526 | |
| 527 | static __inline__ int fraction_ceil(struct fraction *frac) |
| 528 | { |
| 529 | return frac->integer + (frac->numerator > 0 ? 1 : 0); |
| 530 | } |
| 531 | |
| 532 | static void packet_initialize(struct packet *p, struct packet *next) |
| 533 | { |
| 534 | /* Here we initialize the dma descriptor block for |
| 535 | * transferring one iso packet. We use two descriptors per |
| 536 | * packet: an OUTPUT_MORE_IMMMEDIATE descriptor for the |
| 537 | * IEEE1394 iso packet header and an OUTPUT_LAST descriptor |
| 538 | * for the payload. |
| 539 | */ |
| 540 | |
| 541 | p->db->header_desc.control = |
| 542 | DMA_CTL_OUTPUT_MORE | DMA_CTL_IMMEDIATE | 8; |
| 543 | |
| 544 | if (next) { |
| 545 | p->db->payload_desc.control = |
| 546 | DMA_CTL_OUTPUT_LAST | DMA_CTL_BRANCH; |
| 547 | p->db->payload_desc.branch = next->db_bus | 3; |
| 548 | p->db->header_desc.skip = next->db_bus | 3; |
| 549 | } |
| 550 | else { |
| 551 | p->db->payload_desc.control = |
| 552 | DMA_CTL_OUTPUT_LAST | DMA_CTL_BRANCH | |
| 553 | DMA_CTL_UPDATE | DMA_CTL_IRQ; |
| 554 | p->db->payload_desc.branch = 0; |
| 555 | p->db->header_desc.skip = 0; |
| 556 | } |
| 557 | p->db->payload_desc.data_address = p->payload_bus; |
| 558 | p->db->payload_desc.status = 0; |
| 559 | } |
| 560 | |
| 561 | static struct packet_list *packet_list_alloc(struct stream *s) |
| 562 | { |
| 563 | int i; |
| 564 | struct packet_list *pl; |
| 565 | struct packet *next; |
| 566 | |
| 567 | pl = kmalloc(sizeof *pl, SLAB_KERNEL); |
| 568 | if (pl == NULL) |
| 569 | return NULL; |
| 570 | |
| 571 | for (i = 0; i < PACKET_LIST_SIZE; i++) { |
| 572 | struct packet *p = &pl->packets[i]; |
| 573 | p->db = pci_pool_alloc(s->descriptor_pool, SLAB_KERNEL, |
| 574 | &p->db_bus); |
| 575 | p->payload = pci_pool_alloc(s->packet_pool, SLAB_KERNEL, |
| 576 | &p->payload_bus); |
| 577 | } |
| 578 | |
| 579 | for (i = 0; i < PACKET_LIST_SIZE; i++) { |
| 580 | if (i < PACKET_LIST_SIZE - 1) |
| 581 | next = &pl->packets[i + 1]; |
| 582 | else |
| 583 | next = NULL; |
| 584 | packet_initialize(&pl->packets[i], next); |
| 585 | } |
| 586 | |
| 587 | return pl; |
| 588 | } |
| 589 | |
| 590 | static void packet_list_free(struct packet_list *pl, struct stream *s) |
| 591 | { |
| 592 | int i; |
| 593 | |
| 594 | for (i = 0; i < PACKET_LIST_SIZE; i++) { |
| 595 | struct packet *p = &pl->packets[i]; |
| 596 | pci_pool_free(s->descriptor_pool, p->db, p->db_bus); |
| 597 | pci_pool_free(s->packet_pool, p->payload, p->payload_bus); |
| 598 | } |
| 599 | kfree(pl); |
| 600 | } |
| 601 | |
| 602 | static struct buffer *buffer_alloc(int size) |
| 603 | { |
| 604 | struct buffer *b; |
| 605 | |
| 606 | b = kmalloc(sizeof *b + size, SLAB_KERNEL); |
| 607 | if (b == NULL) |
| 608 | return NULL; |
| 609 | b->head = 0; |
| 610 | b->tail = 0; |
| 611 | b->length = 0; |
| 612 | b->size = size; |
| 613 | |
| 614 | return b; |
| 615 | } |
| 616 | |
| 617 | static unsigned char *buffer_get_bytes(struct buffer *buffer, int size) |
| 618 | { |
| 619 | unsigned char *p; |
| 620 | |
| 621 | if (buffer->head + size > buffer->size) |
| 622 | BUG(); |
| 623 | |
| 624 | p = &buffer->data[buffer->head]; |
| 625 | buffer->head += size; |
| 626 | if (buffer->head == buffer->size) |
| 627 | buffer->head = 0; |
| 628 | buffer->length -= size; |
| 629 | |
| 630 | return p; |
| 631 | } |
| 632 | |
| 633 | static unsigned char *buffer_put_bytes(struct buffer *buffer, |
| 634 | size_t max, size_t *actual) |
| 635 | { |
| 636 | size_t length; |
| 637 | unsigned char *p; |
| 638 | |
| 639 | p = &buffer->data[buffer->tail]; |
| 640 | length = min(buffer->size - buffer->length, max); |
| 641 | if (buffer->tail + length < buffer->size) { |
| 642 | *actual = length; |
| 643 | buffer->tail += length; |
| 644 | } |
| 645 | else { |
| 646 | *actual = buffer->size - buffer->tail; |
| 647 | buffer->tail = 0; |
| 648 | } |
| 649 | |
| 650 | buffer->length += *actual; |
| 651 | return p; |
| 652 | } |
| 653 | |
| 654 | static u32 get_iec958_header_bits(struct stream *s, int sub_frame, u32 sample) |
| 655 | { |
| 656 | int csi, parity, shift; |
| 657 | int block_start; |
| 658 | u32 bits; |
| 659 | |
| 660 | switch (s->iec958_frame_count) { |
| 661 | case 1: |
| 662 | csi = s->format == AMDTP_FORMAT_IEC958_AC3; |
| 663 | break; |
| 664 | case 2: |
| 665 | case 9: |
| 666 | csi = 1; |
| 667 | break; |
| 668 | case 24 ... 27: |
| 669 | csi = (s->iec958_rate_code >> (27 - s->iec958_frame_count)) & 0x01; |
| 670 | break; |
| 671 | default: |
| 672 | csi = 0; |
| 673 | break; |
| 674 | } |
| 675 | |
| 676 | block_start = (s->iec958_frame_count == 0 && sub_frame == 0); |
| 677 | |
| 678 | /* The parity bit is the xor of the sample bits and the |
| 679 | * channel status info bit. */ |
| 680 | for (shift = 16, parity = sample ^ csi; shift > 0; shift >>= 1) |
| 681 | parity ^= (parity >> shift); |
| 682 | |
| 683 | bits = (block_start << 5) | /* Block start bit */ |
| 684 | ((sub_frame == 0) << 4) | /* Subframe bit */ |
| 685 | ((parity & 1) << 3) | /* Parity bit */ |
| 686 | (csi << 2); /* Channel status info bit */ |
| 687 | |
| 688 | return bits; |
| 689 | } |
| 690 | |
| 691 | static u32 get_header_bits(struct stream *s, int sub_frame, u32 sample) |
| 692 | { |
| 693 | switch (s->format) { |
| 694 | case AMDTP_FORMAT_IEC958_PCM: |
| 695 | case AMDTP_FORMAT_IEC958_AC3: |
| 696 | return get_iec958_header_bits(s, sub_frame, sample); |
| 697 | |
| 698 | case AMDTP_FORMAT_RAW: |
| 699 | return 0x40; |
| 700 | |
| 701 | default: |
| 702 | return 0; |
| 703 | } |
| 704 | } |
| 705 | |
| 706 | static void fill_payload_le16(struct stream *s, quadlet_t *data, int nevents) |
| 707 | { |
| 708 | quadlet_t *event, sample, bits; |
| 709 | unsigned char *p; |
| 710 | int i, j; |
| 711 | |
| 712 | for (i = 0, event = data; i < nevents; i++) { |
| 713 | |
| 714 | for (j = 0; j < s->dimension; j++) { |
| 715 | p = buffer_get_bytes(s->input, 2); |
| 716 | sample = (p[1] << 16) | (p[0] << 8); |
| 717 | bits = get_header_bits(s, j, sample); |
| 718 | event[j] = cpu_to_be32((bits << 24) | sample); |
| 719 | } |
| 720 | |
| 721 | event += s->dimension; |
| 722 | if (++s->iec958_frame_count == 192) |
| 723 | s->iec958_frame_count = 0; |
| 724 | } |
| 725 | } |
| 726 | |
| 727 | static void fill_packet(struct stream *s, struct packet *packet, int nevents) |
| 728 | { |
| 729 | int syt_index, syt, size; |
| 730 | u32 control; |
| 731 | |
| 732 | size = (nevents * s->dimension + 2) * sizeof(quadlet_t); |
| 733 | |
| 734 | /* Update DMA descriptors */ |
| 735 | packet->db->payload_desc.status = 0; |
| 736 | control = packet->db->payload_desc.control & 0xffff0000; |
| 737 | packet->db->payload_desc.control = control | size; |
| 738 | |
| 739 | /* Fill IEEE1394 headers */ |
| 740 | packet->db->header_desc.header[0] = |
| 741 | (IEEE1394_SPEED_100 << 16) | (0x01 << 14) | |
| 742 | (s->iso_channel << 8) | (TCODE_ISO_DATA << 4); |
| 743 | packet->db->header_desc.header[1] = size << 16; |
| 744 | |
| 745 | /* Calculate synchronization timestamp (syt). First we |
| 746 | * determine syt_index, that is, the index in the packet of |
| 747 | * the sample for which the timestamp is valid. */ |
| 748 | syt_index = (s->syt_interval - s->dbc) & (s->syt_interval - 1); |
| 749 | if (syt_index < nevents) { |
| 750 | syt = ((atomic_read(&s->cycle_count) << 12) | |
| 751 | s->cycle_offset.integer) & 0xffff; |
| 752 | fraction_add(&s->cycle_offset, |
| 753 | &s->cycle_offset, &s->ticks_per_syt_offset); |
| 754 | |
| 755 | /* This next addition should be modulo 8000 (0x1f40), |
| 756 | * but we only use the lower 4 bits of cycle_count, so |
| 757 | * we don't need the modulo. */ |
| 758 | atomic_add(s->cycle_offset.integer / 3072, &s->cycle_count); |
| 759 | s->cycle_offset.integer %= 3072; |
| 760 | } |
| 761 | else |
| 762 | syt = 0xffff; |
| 763 | |
| 764 | atomic_inc(&s->cycle_count2); |
| 765 | |
| 766 | /* Fill cip header */ |
| 767 | packet->payload->eoh0 = 0; |
| 768 | packet->payload->sid = s->host->host->node_id & 0x3f; |
| 769 | packet->payload->dbs = s->dimension; |
| 770 | packet->payload->fn = 0; |
| 771 | packet->payload->qpc = 0; |
| 772 | packet->payload->sph = 0; |
| 773 | packet->payload->reserved = 0; |
| 774 | packet->payload->dbc = s->dbc; |
| 775 | packet->payload->eoh1 = 2; |
| 776 | packet->payload->fmt = FMT_AMDTP; |
| 777 | packet->payload->fdf = s->fdf; |
| 778 | packet->payload->syt = cpu_to_be16(syt); |
| 779 | |
| 780 | switch (s->sample_format) { |
| 781 | case AMDTP_INPUT_LE16: |
| 782 | fill_payload_le16(s, packet->payload->data, nevents); |
| 783 | break; |
| 784 | } |
| 785 | |
| 786 | s->dbc += nevents; |
| 787 | } |
| 788 | |
| 789 | static void stream_flush(struct stream *s) |
| 790 | { |
| 791 | struct packet *p; |
| 792 | int nevents; |
| 793 | struct fraction next; |
| 794 | |
| 795 | /* The AMDTP specifies two transmission modes: blocking and |
| 796 | * non-blocking. In blocking mode you always transfer |
| 797 | * syt_interval or zero samples, whereas in non-blocking mode |
| 798 | * you send as many samples as you have available at transfer |
| 799 | * time. |
| 800 | * |
| 801 | * The fraction samples_per_cycle specifies the number of |
| 802 | * samples that become available per cycle. We add this to |
| 803 | * the fraction ready_samples, which specifies the number of |
| 804 | * leftover samples from the previous transmission. The sum, |
| 805 | * stored in the fraction next, specifies the number of |
| 806 | * samples available for transmission, and from this we |
| 807 | * determine the number of samples to actually transmit. |
| 808 | */ |
| 809 | |
| 810 | while (1) { |
| 811 | fraction_add(&next, &s->ready_samples, &s->samples_per_cycle); |
| 812 | if (s->mode == AMDTP_MODE_BLOCKING) { |
| 813 | if (fraction_floor(&next) >= s->syt_interval) |
| 814 | nevents = s->syt_interval; |
| 815 | else |
| 816 | nevents = 0; |
| 817 | } |
| 818 | else |
| 819 | nevents = fraction_floor(&next); |
| 820 | |
| 821 | p = stream_current_packet(s); |
| 822 | if (s->input->length < nevents * s->dimension * 2 || p == NULL) |
| 823 | break; |
| 824 | |
| 825 | fill_packet(s, p, nevents); |
| 826 | stream_queue_packet(s); |
| 827 | |
| 828 | /* Now that we have successfully queued the packet for |
| 829 | * transmission, we update the fraction ready_samples. */ |
| 830 | fraction_sub_int(&s->ready_samples, &next, nevents); |
| 831 | } |
| 832 | } |
| 833 | |
| 834 | static int stream_alloc_packet_lists(struct stream *s) |
| 835 | { |
| 836 | int max_nevents, max_packet_size, i; |
| 837 | |
| 838 | if (s->mode == AMDTP_MODE_BLOCKING) |
| 839 | max_nevents = s->syt_interval; |
| 840 | else |
| 841 | max_nevents = fraction_ceil(&s->samples_per_cycle); |
| 842 | |
| 843 | max_packet_size = max_nevents * s->dimension * 4 + 8; |
| 844 | s->packet_pool = pci_pool_create("packet pool", s->host->ohci->dev, |
| 845 | max_packet_size, 0, 0); |
| 846 | |
| 847 | if (s->packet_pool == NULL) |
| 848 | return -1; |
| 849 | |
| 850 | INIT_LIST_HEAD(&s->free_packet_lists); |
| 851 | INIT_LIST_HEAD(&s->dma_packet_lists); |
| 852 | for (i = 0; i < MAX_PACKET_LISTS; i++) { |
| 853 | struct packet_list *pl = packet_list_alloc(s); |
| 854 | if (pl == NULL) |
| 855 | break; |
| 856 | list_add_tail(&pl->link, &s->free_packet_lists); |
| 857 | } |
| 858 | |
| 859 | return i < MAX_PACKET_LISTS ? -1 : 0; |
| 860 | } |
| 861 | |
| 862 | static void stream_free_packet_lists(struct stream *s) |
| 863 | { |
| 864 | struct packet_list *packet_l, *packet_l_next; |
| 865 | |
| 866 | if (s->current_packet_list != NULL) |
| 867 | packet_list_free(s->current_packet_list, s); |
| 868 | list_for_each_entry_safe(packet_l, packet_l_next, &s->dma_packet_lists, link) |
| 869 | packet_list_free(packet_l, s); |
| 870 | list_for_each_entry_safe(packet_l, packet_l_next, &s->free_packet_lists, link) |
| 871 | packet_list_free(packet_l, s); |
| 872 | if (s->packet_pool != NULL) |
| 873 | pci_pool_destroy(s->packet_pool); |
| 874 | |
| 875 | s->current_packet_list = NULL; |
| 876 | INIT_LIST_HEAD(&s->free_packet_lists); |
| 877 | INIT_LIST_HEAD(&s->dma_packet_lists); |
| 878 | s->packet_pool = NULL; |
| 879 | } |
| 880 | |
| 881 | static void plug_update(struct cmp_pcr *plug, void *data) |
| 882 | { |
| 883 | struct stream *s = data; |
| 884 | |
| 885 | HPSB_INFO("plug update: p2p_count=%d, channel=%d", |
| 886 | plug->p2p_count, plug->channel); |
| 887 | s->iso_channel = plug->channel; |
| 888 | if (plug->p2p_count > 0) { |
| 889 | struct packet_list *pl; |
| 890 | |
| 891 | pl = list_entry(s->dma_packet_lists.next, struct packet_list, link); |
| 892 | stream_start_dma(s, pl); |
| 893 | } |
| 894 | else { |
| 895 | ohci1394_stop_it_ctx(s->host->ohci, s->iso_tasklet.context, 0); |
| 896 | } |
| 897 | } |
| 898 | |
| 899 | static int stream_configure(struct stream *s, int cmd, struct amdtp_ioctl *cfg) |
| 900 | { |
| 901 | const int transfer_delay = 9000; |
| 902 | |
| 903 | if (cfg->format <= AMDTP_FORMAT_IEC958_AC3) |
| 904 | s->format = cfg->format; |
| 905 | else |
| 906 | return -EINVAL; |
| 907 | |
| 908 | switch (cfg->rate) { |
| 909 | case 32000: |
| 910 | s->syt_interval = 8; |
| 911 | s->fdf = FDF_SFC_32KHZ; |
| 912 | s->iec958_rate_code = 0x0c; |
| 913 | break; |
| 914 | case 44100: |
| 915 | s->syt_interval = 8; |
| 916 | s->fdf = FDF_SFC_44K1HZ; |
| 917 | s->iec958_rate_code = 0x00; |
| 918 | break; |
| 919 | case 48000: |
| 920 | s->syt_interval = 8; |
| 921 | s->fdf = FDF_SFC_48KHZ; |
| 922 | s->iec958_rate_code = 0x04; |
| 923 | break; |
| 924 | case 88200: |
| 925 | s->syt_interval = 16; |
| 926 | s->fdf = FDF_SFC_88K2HZ; |
| 927 | s->iec958_rate_code = 0x00; |
| 928 | break; |
| 929 | case 96000: |
| 930 | s->syt_interval = 16; |
| 931 | s->fdf = FDF_SFC_96KHZ; |
| 932 | s->iec958_rate_code = 0x00; |
| 933 | break; |
| 934 | case 176400: |
| 935 | s->syt_interval = 32; |
| 936 | s->fdf = FDF_SFC_176K4HZ; |
| 937 | s->iec958_rate_code = 0x00; |
| 938 | break; |
| 939 | case 192000: |
| 940 | s->syt_interval = 32; |
| 941 | s->fdf = FDF_SFC_192KHZ; |
| 942 | s->iec958_rate_code = 0x00; |
| 943 | break; |
| 944 | |
| 945 | default: |
| 946 | return -EINVAL; |
| 947 | } |
| 948 | |
| 949 | s->rate = cfg->rate; |
| 950 | fraction_init(&s->samples_per_cycle, s->rate, 8000); |
| 951 | fraction_init(&s->ready_samples, 0, 8000); |
| 952 | |
| 953 | /* The ticks_per_syt_offset is initialized to the number of |
| 954 | * ticks between syt_interval events. The number of ticks per |
| 955 | * second is 24.576e6, so the number of ticks between |
| 956 | * syt_interval events is 24.576e6 * syt_interval / rate. |
| 957 | */ |
| 958 | fraction_init(&s->ticks_per_syt_offset, |
| 959 | 24576000 * s->syt_interval, s->rate); |
| 960 | fraction_init(&s->cycle_offset, (transfer_delay % 3072) * s->rate, s->rate); |
| 961 | atomic_set(&s->cycle_count, transfer_delay / 3072); |
| 962 | atomic_set(&s->cycle_count2, 0); |
| 963 | |
| 964 | s->mode = cfg->mode; |
| 965 | s->sample_format = AMDTP_INPUT_LE16; |
| 966 | |
| 967 | /* When using the AM824 raw subformat we can stream signals of |
| 968 | * any dimension. The IEC958 subformat, however, only |
| 969 | * supports 2 channels. |
| 970 | */ |
| 971 | if (s->format == AMDTP_FORMAT_RAW || cfg->dimension == 2) |
| 972 | s->dimension = cfg->dimension; |
| 973 | else |
| 974 | return -EINVAL; |
| 975 | |
| 976 | if (s->opcr != NULL) { |
| 977 | cmp_unregister_opcr(s->host->host, s->opcr); |
| 978 | s->opcr = NULL; |
| 979 | } |
| 980 | |
| 981 | switch(cmd) { |
| 982 | case AMDTP_IOC_PLUG: |
| 983 | s->opcr = cmp_register_opcr(s->host->host, cfg->u.plug, |
| 984 | /*payload*/ 12, plug_update, s); |
| 985 | if (s->opcr == NULL) |
| 986 | return -EINVAL; |
| 987 | s->iso_channel = s->opcr->channel; |
| 988 | break; |
| 989 | |
| 990 | case AMDTP_IOC_CHANNEL: |
| 991 | if (cfg->u.channel >= 0 && cfg->u.channel < 64) |
| 992 | s->iso_channel = cfg->u.channel; |
| 993 | else |
| 994 | return -EINVAL; |
| 995 | break; |
| 996 | } |
| 997 | |
| 998 | /* The ioctl settings were all valid, so we realloc the packet |
| 999 | * lists to make sure the packet size is big enough. |
| 1000 | */ |
| 1001 | if (s->packet_pool != NULL) |
| 1002 | stream_free_packet_lists(s); |
| 1003 | |
| 1004 | if (stream_alloc_packet_lists(s) < 0) { |
| 1005 | stream_free_packet_lists(s); |
| 1006 | return -ENOMEM; |
| 1007 | } |
| 1008 | |
| 1009 | return 0; |
| 1010 | } |
| 1011 | |
| 1012 | static struct stream *stream_alloc(struct amdtp_host *host) |
| 1013 | { |
| 1014 | struct stream *s; |
| 1015 | unsigned long flags; |
| 1016 | |
| 1017 | s = kmalloc(sizeof(struct stream), SLAB_KERNEL); |
| 1018 | if (s == NULL) |
| 1019 | return NULL; |
| 1020 | |
| 1021 | memset(s, 0, sizeof(struct stream)); |
| 1022 | s->host = host; |
| 1023 | |
| 1024 | s->input = buffer_alloc(BUFFER_SIZE); |
| 1025 | if (s->input == NULL) { |
| 1026 | kfree(s); |
| 1027 | return NULL; |
| 1028 | } |
| 1029 | |
| 1030 | s->descriptor_pool = pci_pool_create("descriptor pool", host->ohci->dev, |
| 1031 | sizeof(struct descriptor_block), |
| 1032 | 16, 0); |
| 1033 | |
| 1034 | if (s->descriptor_pool == NULL) { |
| 1035 | kfree(s->input); |
| 1036 | kfree(s); |
| 1037 | return NULL; |
| 1038 | } |
| 1039 | |
| 1040 | INIT_LIST_HEAD(&s->free_packet_lists); |
| 1041 | INIT_LIST_HEAD(&s->dma_packet_lists); |
| 1042 | |
| 1043 | init_waitqueue_head(&s->packet_list_wait); |
| 1044 | spin_lock_init(&s->packet_list_lock); |
| 1045 | |
| 1046 | ohci1394_init_iso_tasklet(&s->iso_tasklet, OHCI_ISO_TRANSMIT, |
| 1047 | stream_shift_packet_lists, |
| 1048 | (unsigned long) s); |
| 1049 | |
| 1050 | if (ohci1394_register_iso_tasklet(host->ohci, &s->iso_tasklet) < 0) { |
| 1051 | pci_pool_destroy(s->descriptor_pool); |
| 1052 | kfree(s->input); |
| 1053 | kfree(s); |
| 1054 | return NULL; |
| 1055 | } |
| 1056 | |
| 1057 | spin_lock_irqsave(&host->stream_list_lock, flags); |
| 1058 | list_add_tail(&s->link, &host->stream_list); |
| 1059 | spin_unlock_irqrestore(&host->stream_list_lock, flags); |
| 1060 | |
| 1061 | return s; |
| 1062 | } |
| 1063 | |
| 1064 | static void stream_free(struct stream *s) |
| 1065 | { |
| 1066 | unsigned long flags; |
| 1067 | |
| 1068 | /* Stop the DMA. We wait for the dma packet list to become |
| 1069 | * empty and let the dma controller run out of programs. This |
| 1070 | * seems to be more reliable than stopping it directly, since |
| 1071 | * that sometimes generates an it transmit interrupt if we |
| 1072 | * later re-enable the context. |
| 1073 | */ |
| 1074 | wait_event_interruptible(s->packet_list_wait, |
| 1075 | list_empty(&s->dma_packet_lists)); |
| 1076 | |
| 1077 | ohci1394_stop_it_ctx(s->host->ohci, s->iso_tasklet.context, 1); |
| 1078 | ohci1394_unregister_iso_tasklet(s->host->ohci, &s->iso_tasklet); |
| 1079 | |
| 1080 | if (s->opcr != NULL) |
| 1081 | cmp_unregister_opcr(s->host->host, s->opcr); |
| 1082 | |
| 1083 | spin_lock_irqsave(&s->host->stream_list_lock, flags); |
| 1084 | list_del(&s->link); |
| 1085 | spin_unlock_irqrestore(&s->host->stream_list_lock, flags); |
| 1086 | |
| 1087 | kfree(s->input); |
| 1088 | |
| 1089 | stream_free_packet_lists(s); |
| 1090 | pci_pool_destroy(s->descriptor_pool); |
| 1091 | |
| 1092 | kfree(s); |
| 1093 | } |
| 1094 | |
| 1095 | /* File operations */ |
| 1096 | |
| 1097 | static ssize_t amdtp_write(struct file *file, const char __user *buffer, size_t count, |
| 1098 | loff_t *offset_is_ignored) |
| 1099 | { |
| 1100 | struct stream *s = file->private_data; |
| 1101 | unsigned char *p; |
| 1102 | int i; |
| 1103 | size_t length; |
| 1104 | |
| 1105 | if (s->packet_pool == NULL) |
| 1106 | return -EBADFD; |
| 1107 | |
| 1108 | /* Fill the circular buffer from the input buffer and call the |
| 1109 | * iso packer when the buffer is full. The iso packer may |
| 1110 | * leave bytes in the buffer for two reasons: either the |
| 1111 | * remaining bytes wasn't enough to build a new packet, or |
| 1112 | * there were no free packet lists. In the first case we |
| 1113 | * re-fill the buffer and call the iso packer again or return |
| 1114 | * if we used all the data from userspace. In the second |
| 1115 | * case, the wait_event_interruptible will block until the irq |
| 1116 | * handler frees a packet list. |
| 1117 | */ |
| 1118 | |
| 1119 | for (i = 0; i < count; i += length) { |
| 1120 | p = buffer_put_bytes(s->input, count - i, &length); |
| 1121 | if (copy_from_user(p, buffer + i, length)) |
| 1122 | return -EFAULT; |
| 1123 | if (s->input->length < s->input->size) |
| 1124 | continue; |
| 1125 | |
| 1126 | stream_flush(s); |
| 1127 | |
| 1128 | if (s->current_packet_list != NULL) |
| 1129 | continue; |
| 1130 | |
| 1131 | if (file->f_flags & O_NONBLOCK) |
| 1132 | return i + length > 0 ? i + length : -EAGAIN; |
| 1133 | |
| 1134 | if (wait_event_interruptible(s->packet_list_wait, |
| 1135 | !list_empty(&s->free_packet_lists))) |
| 1136 | return -EINTR; |
| 1137 | } |
| 1138 | |
| 1139 | return count; |
| 1140 | } |
| 1141 | |
| 1142 | static long amdtp_ioctl(struct file *file, unsigned int cmd, unsigned long arg) |
| 1143 | { |
| 1144 | struct stream *s = file->private_data; |
| 1145 | struct amdtp_ioctl cfg; |
| 1146 | int err; |
| 1147 | lock_kernel(); |
| 1148 | switch(cmd) |
| 1149 | { |
| 1150 | case AMDTP_IOC_PLUG: |
| 1151 | case AMDTP_IOC_CHANNEL: |
| 1152 | if (copy_from_user(&cfg, (struct amdtp_ioctl __user *) arg, sizeof cfg)) |
| 1153 | err = -EFAULT; |
| 1154 | else |
| 1155 | err = stream_configure(s, cmd, &cfg); |
| 1156 | break; |
| 1157 | |
| 1158 | default: |
| 1159 | err = -EINVAL; |
| 1160 | break; |
| 1161 | } |
| 1162 | unlock_kernel(); |
| 1163 | return err; |
| 1164 | } |
| 1165 | |
| 1166 | static unsigned int amdtp_poll(struct file *file, poll_table *pt) |
| 1167 | { |
| 1168 | struct stream *s = file->private_data; |
| 1169 | |
| 1170 | poll_wait(file, &s->packet_list_wait, pt); |
| 1171 | |
| 1172 | if (!list_empty(&s->free_packet_lists)) |
| 1173 | return POLLOUT | POLLWRNORM; |
| 1174 | else |
| 1175 | return 0; |
| 1176 | } |
| 1177 | |
| 1178 | static int amdtp_open(struct inode *inode, struct file *file) |
| 1179 | { |
| 1180 | struct amdtp_host *host; |
| 1181 | int i = ieee1394_file_to_instance(file); |
| 1182 | |
| 1183 | host = hpsb_get_hostinfo_bykey(&amdtp_highlevel, i); |
| 1184 | if (host == NULL) |
| 1185 | return -ENODEV; |
| 1186 | |
| 1187 | file->private_data = stream_alloc(host); |
| 1188 | if (file->private_data == NULL) |
| 1189 | return -ENOMEM; |
| 1190 | |
| 1191 | return 0; |
| 1192 | } |
| 1193 | |
| 1194 | static int amdtp_release(struct inode *inode, struct file *file) |
| 1195 | { |
| 1196 | struct stream *s = file->private_data; |
| 1197 | |
| 1198 | stream_free(s); |
| 1199 | |
| 1200 | return 0; |
| 1201 | } |
| 1202 | |
| 1203 | static struct cdev amdtp_cdev; |
| 1204 | static struct file_operations amdtp_fops = |
| 1205 | { |
| 1206 | .owner = THIS_MODULE, |
| 1207 | .write = amdtp_write, |
| 1208 | .poll = amdtp_poll, |
| 1209 | .unlocked_ioctl = amdtp_ioctl, |
| 1210 | .compat_ioctl = amdtp_ioctl, /* All amdtp ioctls are compatible */ |
| 1211 | .open = amdtp_open, |
| 1212 | .release = amdtp_release |
| 1213 | }; |
| 1214 | |
| 1215 | /* IEEE1394 Subsystem functions */ |
| 1216 | |
| 1217 | static void amdtp_add_host(struct hpsb_host *host) |
| 1218 | { |
| 1219 | struct amdtp_host *ah; |
| 1220 | int minor; |
| 1221 | |
| 1222 | if (strcmp(host->driver->name, OHCI1394_DRIVER_NAME) != 0) |
| 1223 | return; |
| 1224 | |
| 1225 | ah = hpsb_create_hostinfo(&amdtp_highlevel, host, sizeof(*ah)); |
| 1226 | if (!ah) { |
| 1227 | HPSB_ERR("amdtp: Unable able to alloc hostinfo"); |
| 1228 | return; |
| 1229 | } |
| 1230 | |
| 1231 | ah->host = host; |
| 1232 | ah->ohci = host->hostdata; |
| 1233 | |
| 1234 | hpsb_set_hostinfo_key(&amdtp_highlevel, host, ah->host->id); |
| 1235 | |
| 1236 | minor = IEEE1394_MINOR_BLOCK_AMDTP * 16 + ah->host->id; |
| 1237 | |
| 1238 | INIT_LIST_HEAD(&ah->stream_list); |
| 1239 | spin_lock_init(&ah->stream_list_lock); |
| 1240 | |
| 1241 | devfs_mk_cdev(MKDEV(IEEE1394_MAJOR, minor), |
| 1242 | S_IFCHR|S_IRUSR|S_IWUSR, "amdtp/%d", ah->host->id); |
| 1243 | } |
| 1244 | |
| 1245 | static void amdtp_remove_host(struct hpsb_host *host) |
| 1246 | { |
| 1247 | struct amdtp_host *ah = hpsb_get_hostinfo(&amdtp_highlevel, host); |
| 1248 | |
| 1249 | if (ah) |
| 1250 | devfs_remove("amdtp/%d", ah->host->id); |
| 1251 | |
| 1252 | return; |
| 1253 | } |
| 1254 | |
| 1255 | static struct hpsb_highlevel amdtp_highlevel = { |
| 1256 | .name = "amdtp", |
| 1257 | .add_host = amdtp_add_host, |
| 1258 | .remove_host = amdtp_remove_host, |
| 1259 | }; |
| 1260 | |
| 1261 | /* Module interface */ |
| 1262 | |
| 1263 | MODULE_AUTHOR("Kristian Hogsberg <hogsberg@users.sf.net>"); |
| 1264 | MODULE_DESCRIPTION("Driver for Audio & Music Data Transmission Protocol " |
| 1265 | "on OHCI boards."); |
| 1266 | MODULE_SUPPORTED_DEVICE("amdtp"); |
| 1267 | MODULE_LICENSE("GPL"); |
| 1268 | |
| 1269 | static int __init amdtp_init_module (void) |
| 1270 | { |
| 1271 | cdev_init(&amdtp_cdev, &amdtp_fops); |
| 1272 | amdtp_cdev.owner = THIS_MODULE; |
| 1273 | kobject_set_name(&amdtp_cdev.kobj, "amdtp"); |
| 1274 | if (cdev_add(&amdtp_cdev, IEEE1394_AMDTP_DEV, 16)) { |
| 1275 | HPSB_ERR("amdtp: unable to add char device"); |
| 1276 | return -EIO; |
| 1277 | } |
| 1278 | |
| 1279 | devfs_mk_dir("amdtp"); |
| 1280 | |
| 1281 | hpsb_register_highlevel(&amdtp_highlevel); |
| 1282 | |
| 1283 | HPSB_INFO("Loaded AMDTP driver"); |
| 1284 | |
| 1285 | return 0; |
| 1286 | } |
| 1287 | |
| 1288 | static void __exit amdtp_exit_module (void) |
| 1289 | { |
| 1290 | hpsb_unregister_highlevel(&amdtp_highlevel); |
| 1291 | devfs_remove("amdtp"); |
| 1292 | cdev_del(&amdtp_cdev); |
| 1293 | |
| 1294 | HPSB_INFO("Unloaded AMDTP driver"); |
| 1295 | } |
| 1296 | |
| 1297 | module_init(amdtp_init_module); |
| 1298 | module_exit(amdtp_exit_module); |