blob: 24f068c33b4871f8366b8af899e2f176a24ea928 [file] [log] [blame]
Al Virof466c6f2012-03-17 01:16:43 -04001/*
2 * Copyright 1996, 1997, 1998 Hans Reiser, see reiserfs/README for licensing and copyright details
3 */
4
5#include <linux/reiserfs_fs.h>
6
7#include <linux/slab.h>
8#include <linux/interrupt.h>
9#include <linux/sched.h>
Linus Torvaldsed2d2652012-03-24 10:08:39 -070010#include <linux/bug.h>
Al Virof466c6f2012-03-17 01:16:43 -040011#include <linux/workqueue.h>
12#include <asm/unaligned.h>
13#include <linux/bitops.h>
14#include <linux/proc_fs.h>
15#include <linux/buffer_head.h>
Al Virof466c6f2012-03-17 01:16:43 -040016
17/* the 32 bit compat definitions with int argument */
18#define REISERFS_IOC32_UNPACK _IOW(0xCD, 1, int)
19#define REISERFS_IOC32_GETFLAGS FS_IOC32_GETFLAGS
20#define REISERFS_IOC32_SETFLAGS FS_IOC32_SETFLAGS
21#define REISERFS_IOC32_GETVERSION FS_IOC32_GETVERSION
22#define REISERFS_IOC32_SETVERSION FS_IOC32_SETVERSION
23
Al Viro765fd6b2012-03-17 01:19:24 -040024struct reiserfs_journal_list;
25
26/** bitmasks for i_flags field in reiserfs-specific part of inode */
27typedef enum {
28 /** this says what format of key do all items (but stat data) of
29 an object have. If this is set, that format is 3.6 otherwise
30 - 3.5 */
31 i_item_key_version_mask = 0x0001,
32 /** If this is unset, object has 3.5 stat data, otherwise, it has
33 3.6 stat data with 64bit size, 32bit nlink etc. */
34 i_stat_data_version_mask = 0x0002,
35 /** file might need tail packing on close */
36 i_pack_on_close_mask = 0x0004,
37 /** don't pack tail of file */
38 i_nopack_mask = 0x0008,
39 /** If those is set, "safe link" was created for this file during
40 truncate or unlink. Safe link is used to avoid leakage of disk
41 space on crash with some files open, but unlinked. */
42 i_link_saved_unlink_mask = 0x0010,
43 i_link_saved_truncate_mask = 0x0020,
44 i_has_xattr_dir = 0x0040,
45 i_data_log = 0x0080,
46} reiserfs_inode_flags;
47
48struct reiserfs_inode_info {
49 __u32 i_key[4]; /* key is still 4 32 bit integers */
50 /** transient inode flags that are never stored on disk. Bitmasks
51 for this field are defined above. */
52 __u32 i_flags;
53
54 __u32 i_first_direct_byte; // offset of first byte stored in direct item.
55
56 /* copy of persistent inode flags read from sd_attrs. */
57 __u32 i_attrs;
58
59 int i_prealloc_block; /* first unused block of a sequence of unused blocks */
60 int i_prealloc_count; /* length of that sequence */
61 struct list_head i_prealloc_list; /* per-transaction list of inodes which
62 * have preallocated blocks */
63
64 unsigned new_packing_locality:1; /* new_packig_locality is created; new blocks
65 * for the contents of this directory should be
66 * displaced */
67
68 /* we use these for fsync or O_SYNC to decide which transaction
69 ** needs to be committed in order for this inode to be properly
70 ** flushed */
71 unsigned int i_trans_id;
72 struct reiserfs_journal_list *i_jl;
73 atomic_t openers;
74 struct mutex tailpack;
75#ifdef CONFIG_REISERFS_FS_XATTR
76 struct rw_semaphore i_xattr_sem;
77#endif
78 struct inode vfs_inode;
79};
80
81typedef enum {
82 reiserfs_attrs_cleared = 0x00000001,
83} reiserfs_super_block_flags;
84
85/* struct reiserfs_super_block accessors/mutators
86 * since this is a disk structure, it will always be in
87 * little endian format. */
88#define sb_block_count(sbp) (le32_to_cpu((sbp)->s_v1.s_block_count))
89#define set_sb_block_count(sbp,v) ((sbp)->s_v1.s_block_count = cpu_to_le32(v))
90#define sb_free_blocks(sbp) (le32_to_cpu((sbp)->s_v1.s_free_blocks))
91#define set_sb_free_blocks(sbp,v) ((sbp)->s_v1.s_free_blocks = cpu_to_le32(v))
92#define sb_root_block(sbp) (le32_to_cpu((sbp)->s_v1.s_root_block))
93#define set_sb_root_block(sbp,v) ((sbp)->s_v1.s_root_block = cpu_to_le32(v))
94
95#define sb_jp_journal_1st_block(sbp) \
96 (le32_to_cpu((sbp)->s_v1.s_journal.jp_journal_1st_block))
97#define set_sb_jp_journal_1st_block(sbp,v) \
98 ((sbp)->s_v1.s_journal.jp_journal_1st_block = cpu_to_le32(v))
99#define sb_jp_journal_dev(sbp) \
100 (le32_to_cpu((sbp)->s_v1.s_journal.jp_journal_dev))
101#define set_sb_jp_journal_dev(sbp,v) \
102 ((sbp)->s_v1.s_journal.jp_journal_dev = cpu_to_le32(v))
103#define sb_jp_journal_size(sbp) \
104 (le32_to_cpu((sbp)->s_v1.s_journal.jp_journal_size))
105#define set_sb_jp_journal_size(sbp,v) \
106 ((sbp)->s_v1.s_journal.jp_journal_size = cpu_to_le32(v))
107#define sb_jp_journal_trans_max(sbp) \
108 (le32_to_cpu((sbp)->s_v1.s_journal.jp_journal_trans_max))
109#define set_sb_jp_journal_trans_max(sbp,v) \
110 ((sbp)->s_v1.s_journal.jp_journal_trans_max = cpu_to_le32(v))
111#define sb_jp_journal_magic(sbp) \
112 (le32_to_cpu((sbp)->s_v1.s_journal.jp_journal_magic))
113#define set_sb_jp_journal_magic(sbp,v) \
114 ((sbp)->s_v1.s_journal.jp_journal_magic = cpu_to_le32(v))
115#define sb_jp_journal_max_batch(sbp) \
116 (le32_to_cpu((sbp)->s_v1.s_journal.jp_journal_max_batch))
117#define set_sb_jp_journal_max_batch(sbp,v) \
118 ((sbp)->s_v1.s_journal.jp_journal_max_batch = cpu_to_le32(v))
119#define sb_jp_jourmal_max_commit_age(sbp) \
120 (le32_to_cpu((sbp)->s_v1.s_journal.jp_journal_max_commit_age))
121#define set_sb_jp_journal_max_commit_age(sbp,v) \
122 ((sbp)->s_v1.s_journal.jp_journal_max_commit_age = cpu_to_le32(v))
123
124#define sb_blocksize(sbp) (le16_to_cpu((sbp)->s_v1.s_blocksize))
125#define set_sb_blocksize(sbp,v) ((sbp)->s_v1.s_blocksize = cpu_to_le16(v))
126#define sb_oid_maxsize(sbp) (le16_to_cpu((sbp)->s_v1.s_oid_maxsize))
127#define set_sb_oid_maxsize(sbp,v) ((sbp)->s_v1.s_oid_maxsize = cpu_to_le16(v))
128#define sb_oid_cursize(sbp) (le16_to_cpu((sbp)->s_v1.s_oid_cursize))
129#define set_sb_oid_cursize(sbp,v) ((sbp)->s_v1.s_oid_cursize = cpu_to_le16(v))
130#define sb_umount_state(sbp) (le16_to_cpu((sbp)->s_v1.s_umount_state))
131#define set_sb_umount_state(sbp,v) ((sbp)->s_v1.s_umount_state = cpu_to_le16(v))
132#define sb_fs_state(sbp) (le16_to_cpu((sbp)->s_v1.s_fs_state))
133#define set_sb_fs_state(sbp,v) ((sbp)->s_v1.s_fs_state = cpu_to_le16(v))
134#define sb_hash_function_code(sbp) \
135 (le32_to_cpu((sbp)->s_v1.s_hash_function_code))
136#define set_sb_hash_function_code(sbp,v) \
137 ((sbp)->s_v1.s_hash_function_code = cpu_to_le32(v))
138#define sb_tree_height(sbp) (le16_to_cpu((sbp)->s_v1.s_tree_height))
139#define set_sb_tree_height(sbp,v) ((sbp)->s_v1.s_tree_height = cpu_to_le16(v))
140#define sb_bmap_nr(sbp) (le16_to_cpu((sbp)->s_v1.s_bmap_nr))
141#define set_sb_bmap_nr(sbp,v) ((sbp)->s_v1.s_bmap_nr = cpu_to_le16(v))
142#define sb_version(sbp) (le16_to_cpu((sbp)->s_v1.s_version))
143#define set_sb_version(sbp,v) ((sbp)->s_v1.s_version = cpu_to_le16(v))
144
145#define sb_mnt_count(sbp) (le16_to_cpu((sbp)->s_mnt_count))
146#define set_sb_mnt_count(sbp, v) ((sbp)->s_mnt_count = cpu_to_le16(v))
147
148#define sb_reserved_for_journal(sbp) \
149 (le16_to_cpu((sbp)->s_v1.s_reserved_for_journal))
150#define set_sb_reserved_for_journal(sbp,v) \
151 ((sbp)->s_v1.s_reserved_for_journal = cpu_to_le16(v))
152
153/* LOGGING -- */
154
155/* These all interelate for performance.
156**
157** If the journal block count is smaller than n transactions, you lose speed.
158** I don't know what n is yet, I'm guessing 8-16.
159**
160** typical transaction size depends on the application, how often fsync is
161** called, and how many metadata blocks you dirty in a 30 second period.
162** The more small files (<16k) you use, the larger your transactions will
163** be.
164**
165** If your journal fills faster than dirty buffers get flushed to disk, it must flush them before allowing the journal
166** to wrap, which slows things down. If you need high speed meta data updates, the journal should be big enough
167** to prevent wrapping before dirty meta blocks get to disk.
168**
169** If the batch max is smaller than the transaction max, you'll waste space at the end of the journal
170** because journal_end sets the next transaction to start at 0 if the next transaction has any chance of wrapping.
171**
172** The large the batch max age, the better the speed, and the more meta data changes you'll lose after a crash.
173**
174*/
175
176/* don't mess with these for a while */
177 /* we have a node size define somewhere in reiserfs_fs.h. -Hans */
178#define JOURNAL_BLOCK_SIZE 4096 /* BUG gotta get rid of this */
179#define JOURNAL_MAX_CNODE 1500 /* max cnodes to allocate. */
180#define JOURNAL_HASH_SIZE 8192
181#define JOURNAL_NUM_BITMAPS 5 /* number of copies of the bitmaps to have floating. Must be >= 2 */
182
183/* One of these for every block in every transaction
184** Each one is in two hash tables. First, a hash of the current transaction, and after journal_end, a
185** hash of all the in memory transactions.
186** next and prev are used by the current transaction (journal_hash).
187** hnext and hprev are used by journal_list_hash. If a block is in more than one transaction, the journal_list_hash
188** links it in multiple times. This allows flush_journal_list to remove just the cnode belonging
189** to a given transaction.
190*/
191struct reiserfs_journal_cnode {
192 struct buffer_head *bh; /* real buffer head */
193 struct super_block *sb; /* dev of real buffer head */
194 __u32 blocknr; /* block number of real buffer head, == 0 when buffer on disk */
195 unsigned long state;
196 struct reiserfs_journal_list *jlist; /* journal list this cnode lives in */
197 struct reiserfs_journal_cnode *next; /* next in transaction list */
198 struct reiserfs_journal_cnode *prev; /* prev in transaction list */
199 struct reiserfs_journal_cnode *hprev; /* prev in hash list */
200 struct reiserfs_journal_cnode *hnext; /* next in hash list */
201};
202
203struct reiserfs_bitmap_node {
204 int id;
205 char *data;
206 struct list_head list;
207};
208
209struct reiserfs_list_bitmap {
210 struct reiserfs_journal_list *journal_list;
211 struct reiserfs_bitmap_node **bitmaps;
212};
213
214/*
215** one of these for each transaction. The most important part here is the j_realblock.
216** this list of cnodes is used to hash all the blocks in all the commits, to mark all the
217** real buffer heads dirty once all the commits hit the disk,
218** and to make sure every real block in a transaction is on disk before allowing the log area
219** to be overwritten */
220struct reiserfs_journal_list {
221 unsigned long j_start;
222 unsigned long j_state;
223 unsigned long j_len;
224 atomic_t j_nonzerolen;
225 atomic_t j_commit_left;
226 atomic_t j_older_commits_done; /* all commits older than this on disk */
227 struct mutex j_commit_mutex;
228 unsigned int j_trans_id;
229 time_t j_timestamp;
230 struct reiserfs_list_bitmap *j_list_bitmap;
231 struct buffer_head *j_commit_bh; /* commit buffer head */
232 struct reiserfs_journal_cnode *j_realblock;
233 struct reiserfs_journal_cnode *j_freedlist; /* list of buffers that were freed during this trans. free each of these on flush */
234 /* time ordered list of all active transactions */
235 struct list_head j_list;
236
237 /* time ordered list of all transactions we haven't tried to flush yet */
238 struct list_head j_working_list;
239
240 /* list of tail conversion targets in need of flush before commit */
241 struct list_head j_tail_bh_list;
242 /* list of data=ordered buffers in need of flush before commit */
243 struct list_head j_bh_list;
244 int j_refcount;
245};
246
247struct reiserfs_journal {
248 struct buffer_head **j_ap_blocks; /* journal blocks on disk */
249 struct reiserfs_journal_cnode *j_last; /* newest journal block */
250 struct reiserfs_journal_cnode *j_first; /* oldest journal block. start here for traverse */
251
252 struct block_device *j_dev_bd;
253 fmode_t j_dev_mode;
254 int j_1st_reserved_block; /* first block on s_dev of reserved area journal */
255
256 unsigned long j_state;
257 unsigned int j_trans_id;
258 unsigned long j_mount_id;
259 unsigned long j_start; /* start of current waiting commit (index into j_ap_blocks) */
260 unsigned long j_len; /* length of current waiting commit */
261 unsigned long j_len_alloc; /* number of buffers requested by journal_begin() */
262 atomic_t j_wcount; /* count of writers for current commit */
263 unsigned long j_bcount; /* batch count. allows turning X transactions into 1 */
264 unsigned long j_first_unflushed_offset; /* first unflushed transactions offset */
265 unsigned j_last_flush_trans_id; /* last fully flushed journal timestamp */
266 struct buffer_head *j_header_bh;
267
268 time_t j_trans_start_time; /* time this transaction started */
269 struct mutex j_mutex;
270 struct mutex j_flush_mutex;
271 wait_queue_head_t j_join_wait; /* wait for current transaction to finish before starting new one */
272 atomic_t j_jlock; /* lock for j_join_wait */
273 int j_list_bitmap_index; /* number of next list bitmap to use */
274 int j_must_wait; /* no more journal begins allowed. MUST sleep on j_join_wait */
275 int j_next_full_flush; /* next journal_end will flush all journal list */
276 int j_next_async_flush; /* next journal_end will flush all async commits */
277
278 int j_cnode_used; /* number of cnodes on the used list */
279 int j_cnode_free; /* number of cnodes on the free list */
280
281 unsigned int j_trans_max; /* max number of blocks in a transaction. */
282 unsigned int j_max_batch; /* max number of blocks to batch into a trans */
283 unsigned int j_max_commit_age; /* in seconds, how old can an async commit be */
284 unsigned int j_max_trans_age; /* in seconds, how old can a transaction be */
285 unsigned int j_default_max_commit_age; /* the default for the max commit age */
286
287 struct reiserfs_journal_cnode *j_cnode_free_list;
288 struct reiserfs_journal_cnode *j_cnode_free_orig; /* orig pointer returned from vmalloc */
289
290 struct reiserfs_journal_list *j_current_jl;
291 int j_free_bitmap_nodes;
292 int j_used_bitmap_nodes;
293
294 int j_num_lists; /* total number of active transactions */
295 int j_num_work_lists; /* number that need attention from kreiserfsd */
296
297 /* debugging to make sure things are flushed in order */
298 unsigned int j_last_flush_id;
299
300 /* debugging to make sure things are committed in order */
301 unsigned int j_last_commit_id;
302
303 struct list_head j_bitmap_nodes;
304 struct list_head j_dirty_buffers;
305 spinlock_t j_dirty_buffers_lock; /* protects j_dirty_buffers */
306
307 /* list of all active transactions */
308 struct list_head j_journal_list;
309 /* lists that haven't been touched by writeback attempts */
310 struct list_head j_working_list;
311
312 struct reiserfs_list_bitmap j_list_bitmap[JOURNAL_NUM_BITMAPS]; /* array of bitmaps to record the deleted blocks */
313 struct reiserfs_journal_cnode *j_hash_table[JOURNAL_HASH_SIZE]; /* hash table for real buffer heads in current trans */
314 struct reiserfs_journal_cnode *j_list_hash_table[JOURNAL_HASH_SIZE]; /* hash table for all the real buffer heads in all
315 the transactions */
316 struct list_head j_prealloc_list; /* list of inodes which have preallocated blocks */
317 int j_persistent_trans;
318 unsigned long j_max_trans_size;
319 unsigned long j_max_batch_size;
320
321 int j_errno;
322
323 /* when flushing ordered buffers, throttle new ordered writers */
324 struct delayed_work j_work;
325 struct super_block *j_work_sb;
326 atomic_t j_async_throttle;
327};
328
329enum journal_state_bits {
330 J_WRITERS_BLOCKED = 1, /* set when new writers not allowed */
331 J_WRITERS_QUEUED, /* set when log is full due to too many writers */
332 J_ABORTED, /* set when log is aborted */
333};
334
335#define JOURNAL_DESC_MAGIC "ReIsErLB" /* ick. magic string to find desc blocks in the journal */
336
337typedef __u32(*hashf_t) (const signed char *, int);
338
339struct reiserfs_bitmap_info {
340 __u32 free_count;
341};
342
343struct proc_dir_entry;
344
345#if defined( CONFIG_PROC_FS ) && defined( CONFIG_REISERFS_PROC_INFO )
346typedef unsigned long int stat_cnt_t;
347typedef struct reiserfs_proc_info_data {
348 spinlock_t lock;
349 int exiting;
350 int max_hash_collisions;
351
352 stat_cnt_t breads;
353 stat_cnt_t bread_miss;
354 stat_cnt_t search_by_key;
355 stat_cnt_t search_by_key_fs_changed;
356 stat_cnt_t search_by_key_restarted;
357
358 stat_cnt_t insert_item_restarted;
359 stat_cnt_t paste_into_item_restarted;
360 stat_cnt_t cut_from_item_restarted;
361 stat_cnt_t delete_solid_item_restarted;
362 stat_cnt_t delete_item_restarted;
363
364 stat_cnt_t leaked_oid;
365 stat_cnt_t leaves_removable;
366
367 /* balances per level. Use explicit 5 as MAX_HEIGHT is not visible yet. */
368 stat_cnt_t balance_at[5]; /* XXX */
369 /* sbk == search_by_key */
370 stat_cnt_t sbk_read_at[5]; /* XXX */
371 stat_cnt_t sbk_fs_changed[5];
372 stat_cnt_t sbk_restarted[5];
373 stat_cnt_t items_at[5]; /* XXX */
374 stat_cnt_t free_at[5]; /* XXX */
375 stat_cnt_t can_node_be_removed[5]; /* XXX */
376 long int lnum[5]; /* XXX */
377 long int rnum[5]; /* XXX */
378 long int lbytes[5]; /* XXX */
379 long int rbytes[5]; /* XXX */
380 stat_cnt_t get_neighbors[5];
381 stat_cnt_t get_neighbors_restart[5];
382 stat_cnt_t need_l_neighbor[5];
383 stat_cnt_t need_r_neighbor[5];
384
385 stat_cnt_t free_block;
386 struct __scan_bitmap_stats {
387 stat_cnt_t call;
388 stat_cnt_t wait;
389 stat_cnt_t bmap;
390 stat_cnt_t retry;
391 stat_cnt_t in_journal_hint;
392 stat_cnt_t in_journal_nohint;
393 stat_cnt_t stolen;
394 } scan_bitmap;
395 struct __journal_stats {
396 stat_cnt_t in_journal;
397 stat_cnt_t in_journal_bitmap;
398 stat_cnt_t in_journal_reusable;
399 stat_cnt_t lock_journal;
400 stat_cnt_t lock_journal_wait;
401 stat_cnt_t journal_being;
402 stat_cnt_t journal_relock_writers;
403 stat_cnt_t journal_relock_wcount;
404 stat_cnt_t mark_dirty;
405 stat_cnt_t mark_dirty_already;
406 stat_cnt_t mark_dirty_notjournal;
407 stat_cnt_t restore_prepared;
408 stat_cnt_t prepare;
409 stat_cnt_t prepare_retry;
410 } journal;
411} reiserfs_proc_info_data_t;
412#else
413typedef struct reiserfs_proc_info_data {
414} reiserfs_proc_info_data_t;
415#endif
416
417/* reiserfs union of in-core super block data */
418struct reiserfs_sb_info {
419 struct buffer_head *s_sbh; /* Buffer containing the super block */
420 /* both the comment and the choice of
421 name are unclear for s_rs -Hans */
422 struct reiserfs_super_block *s_rs; /* Pointer to the super block in the buffer */
423 struct reiserfs_bitmap_info *s_ap_bitmap;
424 struct reiserfs_journal *s_journal; /* pointer to journal information */
425 unsigned short s_mount_state; /* reiserfs state (valid, invalid) */
426
427 /* Serialize writers access, replace the old bkl */
428 struct mutex lock;
429 /* Owner of the lock (can be recursive) */
430 struct task_struct *lock_owner;
431 /* Depth of the lock, start from -1 like the bkl */
432 int lock_depth;
433
434 /* Comment? -Hans */
435 void (*end_io_handler) (struct buffer_head *, int);
436 hashf_t s_hash_function; /* pointer to function which is used
437 to sort names in directory. Set on
438 mount */
439 unsigned long s_mount_opt; /* reiserfs's mount options are set
440 here (currently - NOTAIL, NOLOG,
441 REPLAYONLY) */
442
443 struct { /* This is a structure that describes block allocator options */
444 unsigned long bits; /* Bitfield for enable/disable kind of options */
445 unsigned long large_file_size; /* size started from which we consider file to be a large one(in blocks) */
446 int border; /* percentage of disk, border takes */
447 int preallocmin; /* Minimal file size (in blocks) starting from which we do preallocations */
448 int preallocsize; /* Number of blocks we try to prealloc when file
449 reaches preallocmin size (in blocks) or
450 prealloc_list is empty. */
451 } s_alloc_options;
452
453 /* Comment? -Hans */
454 wait_queue_head_t s_wait;
455 /* To be obsoleted soon by per buffer seals.. -Hans */
456 atomic_t s_generation_counter; // increased by one every time the
457 // tree gets re-balanced
458 unsigned long s_properties; /* File system properties. Currently holds
459 on-disk FS format */
460
461 /* session statistics */
462 int s_disk_reads;
463 int s_disk_writes;
464 int s_fix_nodes;
465 int s_do_balance;
466 int s_unneeded_left_neighbor;
467 int s_good_search_by_key_reada;
468 int s_bmaps;
469 int s_bmaps_without_search;
470 int s_direct2indirect;
471 int s_indirect2direct;
472 /* set up when it's ok for reiserfs_read_inode2() to read from
473 disk inode with nlink==0. Currently this is only used during
474 finish_unfinished() processing at mount time */
475 int s_is_unlinked_ok;
476 reiserfs_proc_info_data_t s_proc_info_data;
477 struct proc_dir_entry *procdir;
478 int reserved_blocks; /* amount of blocks reserved for further allocations */
479 spinlock_t bitmap_lock; /* this lock on now only used to protect reserved_blocks variable */
480 struct dentry *priv_root; /* root of /.reiserfs_priv */
481 struct dentry *xattr_root; /* root of /.reiserfs_priv/xattrs */
482 int j_errno;
Artem Bityutskiy033369d2012-06-01 17:18:08 +0300483
484 int work_queued; /* non-zero delayed work is queued */
485 struct delayed_work old_work; /* old transactions flush delayed work */
486 spinlock_t old_work_lock; /* protects old_work and work_queued */
487
Al Viro765fd6b2012-03-17 01:19:24 -0400488#ifdef CONFIG_QUOTA
489 char *s_qf_names[MAXQUOTAS];
490 int s_jquota_fmt;
491#endif
492 char *s_jdev; /* Stored jdev for mount option showing */
493#ifdef CONFIG_REISERFS_CHECK
494
495 struct tree_balance *cur_tb; /*
496 * Detects whether more than one
497 * copy of tb exists per superblock
498 * as a means of checking whether
499 * do_balance is executing concurrently
500 * against another tree reader/writer
501 * on a same mount point.
502 */
503#endif
504};
505
506/* Definitions of reiserfs on-disk properties: */
507#define REISERFS_3_5 0
508#define REISERFS_3_6 1
509#define REISERFS_OLD_FORMAT 2
510
511enum reiserfs_mount_options {
512/* Mount options */
513 REISERFS_LARGETAIL, /* large tails will be created in a session */
514 REISERFS_SMALLTAIL, /* small (for files less than block size) tails will be created in a session */
515 REPLAYONLY, /* replay journal and return 0. Use by fsck */
516 REISERFS_CONVERT, /* -o conv: causes conversion of old
517 format super block to the new
518 format. If not specified - old
519 partition will be dealt with in a
520 manner of 3.5.x */
521
522/* -o hash={tea, rupasov, r5, detect} is meant for properly mounting
523** reiserfs disks from 3.5.19 or earlier. 99% of the time, this option
524** is not required. If the normal autodection code can't determine which
525** hash to use (because both hashes had the same value for a file)
526** use this option to force a specific hash. It won't allow you to override
527** the existing hash on the FS, so if you have a tea hash disk, and mount
528** with -o hash=rupasov, the mount will fail.
529*/
530 FORCE_TEA_HASH, /* try to force tea hash on mount */
531 FORCE_RUPASOV_HASH, /* try to force rupasov hash on mount */
532 FORCE_R5_HASH, /* try to force rupasov hash on mount */
533 FORCE_HASH_DETECT, /* try to detect hash function on mount */
534
535 REISERFS_DATA_LOG,
536 REISERFS_DATA_ORDERED,
537 REISERFS_DATA_WRITEBACK,
538
539/* used for testing experimental features, makes benchmarking new
540 features with and without more convenient, should never be used by
541 users in any code shipped to users (ideally) */
542
543 REISERFS_NO_BORDER,
544 REISERFS_NO_UNHASHED_RELOCATION,
545 REISERFS_HASHED_RELOCATION,
546 REISERFS_ATTRS,
547 REISERFS_XATTRS_USER,
548 REISERFS_POSIXACL,
549 REISERFS_EXPOSE_PRIVROOT,
550 REISERFS_BARRIER_NONE,
551 REISERFS_BARRIER_FLUSH,
552
553 /* Actions on error */
554 REISERFS_ERROR_PANIC,
555 REISERFS_ERROR_RO,
556 REISERFS_ERROR_CONTINUE,
557
558 REISERFS_USRQUOTA, /* User quota option specified */
559 REISERFS_GRPQUOTA, /* Group quota option specified */
560
561 REISERFS_TEST1,
562 REISERFS_TEST2,
563 REISERFS_TEST3,
564 REISERFS_TEST4,
565 REISERFS_UNSUPPORTED_OPT,
566};
567
568#define reiserfs_r5_hash(s) (REISERFS_SB(s)->s_mount_opt & (1 << FORCE_R5_HASH))
569#define reiserfs_rupasov_hash(s) (REISERFS_SB(s)->s_mount_opt & (1 << FORCE_RUPASOV_HASH))
570#define reiserfs_tea_hash(s) (REISERFS_SB(s)->s_mount_opt & (1 << FORCE_TEA_HASH))
571#define reiserfs_hash_detect(s) (REISERFS_SB(s)->s_mount_opt & (1 << FORCE_HASH_DETECT))
572#define reiserfs_no_border(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_NO_BORDER))
573#define reiserfs_no_unhashed_relocation(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_NO_UNHASHED_RELOCATION))
574#define reiserfs_hashed_relocation(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_HASHED_RELOCATION))
575#define reiserfs_test4(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_TEST4))
576
577#define have_large_tails(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_LARGETAIL))
578#define have_small_tails(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_SMALLTAIL))
579#define replay_only(s) (REISERFS_SB(s)->s_mount_opt & (1 << REPLAYONLY))
580#define reiserfs_attrs(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_ATTRS))
581#define old_format_only(s) (REISERFS_SB(s)->s_properties & (1 << REISERFS_3_5))
582#define convert_reiserfs(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_CONVERT))
583#define reiserfs_data_log(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_DATA_LOG))
584#define reiserfs_data_ordered(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_DATA_ORDERED))
585#define reiserfs_data_writeback(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_DATA_WRITEBACK))
586#define reiserfs_xattrs_user(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_XATTRS_USER))
587#define reiserfs_posixacl(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_POSIXACL))
588#define reiserfs_expose_privroot(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_EXPOSE_PRIVROOT))
589#define reiserfs_xattrs_optional(s) (reiserfs_xattrs_user(s) || reiserfs_posixacl(s))
590#define reiserfs_barrier_none(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_BARRIER_NONE))
591#define reiserfs_barrier_flush(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_BARRIER_FLUSH))
592
593#define reiserfs_error_panic(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_ERROR_PANIC))
594#define reiserfs_error_ro(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_ERROR_RO))
595
596void reiserfs_file_buffer(struct buffer_head *bh, int list);
597extern struct file_system_type reiserfs_fs_type;
598int reiserfs_resize(struct super_block *, unsigned long);
599
600#define CARRY_ON 0
601#define SCHEDULE_OCCURRED 1
602
603#define SB_BUFFER_WITH_SB(s) (REISERFS_SB(s)->s_sbh)
604#define SB_JOURNAL(s) (REISERFS_SB(s)->s_journal)
605#define SB_JOURNAL_1st_RESERVED_BLOCK(s) (SB_JOURNAL(s)->j_1st_reserved_block)
606#define SB_JOURNAL_LEN_FREE(s) (SB_JOURNAL(s)->j_journal_len_free)
607#define SB_AP_BITMAP(s) (REISERFS_SB(s)->s_ap_bitmap)
608
609#define SB_DISK_JOURNAL_HEAD(s) (SB_JOURNAL(s)->j_header_bh->)
610
Al Viro765fd6b2012-03-17 01:19:24 -0400611#define reiserfs_is_journal_aborted(journal) (unlikely (__reiserfs_is_journal_aborted (journal)))
612static inline int __reiserfs_is_journal_aborted(struct reiserfs_journal
613 *journal)
614{
615 return test_bit(J_ABORTED, &journal->j_state);
616}
617
Al Virof466c6f2012-03-17 01:16:43 -0400618/*
619 * Locking primitives. The write lock is a per superblock
620 * special mutex that has properties close to the Big Kernel Lock
621 * which was used in the previous locking scheme.
622 */
623void reiserfs_write_lock(struct super_block *s);
624void reiserfs_write_unlock(struct super_block *s);
Jeff Mahoney278f6672013-08-08 17:34:46 -0400625int __must_check reiserfs_write_unlock_nested(struct super_block *s);
626void reiserfs_write_lock_nested(struct super_block *s, int depth);
Al Virof466c6f2012-03-17 01:16:43 -0400627
628#ifdef CONFIG_REISERFS_CHECK
629void reiserfs_lock_check_recursive(struct super_block *s);
630#else
631static inline void reiserfs_lock_check_recursive(struct super_block *s) { }
632#endif
633
634/*
635 * Several mutexes depend on the write lock.
636 * However sometimes we want to relax the write lock while we hold
637 * these mutexes, according to the release/reacquire on schedule()
638 * properties of the Bkl that were used.
639 * Reiserfs performances and locking were based on this scheme.
640 * Now that the write lock is a mutex and not the bkl anymore, doing so
641 * may result in a deadlock:
642 *
643 * A acquire write_lock
644 * A acquire j_commit_mutex
645 * A release write_lock and wait for something
646 * B acquire write_lock
647 * B can't acquire j_commit_mutex and sleep
648 * A can't acquire write lock anymore
649 * deadlock
650 *
651 * What we do here is avoiding such deadlock by playing the same game
652 * than the Bkl: if we can't acquire a mutex that depends on the write lock,
653 * we release the write lock, wait a bit and then retry.
654 *
655 * The mutexes concerned by this hack are:
656 * - The commit mutex of a journal list
657 * - The flush mutex
658 * - The journal lock
659 * - The inode mutex
660 */
661static inline void reiserfs_mutex_lock_safe(struct mutex *m,
Jeff Mahoney278f6672013-08-08 17:34:46 -0400662 struct super_block *s)
Al Virof466c6f2012-03-17 01:16:43 -0400663{
Jeff Mahoney278f6672013-08-08 17:34:46 -0400664 int depth;
665
666 depth = reiserfs_write_unlock_nested(s);
Al Virof466c6f2012-03-17 01:16:43 -0400667 mutex_lock(m);
Jeff Mahoney278f6672013-08-08 17:34:46 -0400668 reiserfs_write_lock_nested(s, depth);
Al Virof466c6f2012-03-17 01:16:43 -0400669}
670
671static inline void
672reiserfs_mutex_lock_nested_safe(struct mutex *m, unsigned int subclass,
Jeff Mahoney278f6672013-08-08 17:34:46 -0400673 struct super_block *s)
Al Virof466c6f2012-03-17 01:16:43 -0400674{
Jeff Mahoney278f6672013-08-08 17:34:46 -0400675 int depth;
676
677 depth = reiserfs_write_unlock_nested(s);
Al Virof466c6f2012-03-17 01:16:43 -0400678 mutex_lock_nested(m, subclass);
Jeff Mahoney278f6672013-08-08 17:34:46 -0400679 reiserfs_write_lock_nested(s, depth);
Al Virof466c6f2012-03-17 01:16:43 -0400680}
681
682static inline void
683reiserfs_down_read_safe(struct rw_semaphore *sem, struct super_block *s)
684{
Jeff Mahoney278f6672013-08-08 17:34:46 -0400685 int depth;
686 depth = reiserfs_write_unlock_nested(s);
687 down_read(sem);
688 reiserfs_write_lock_nested(s, depth);
Al Virof466c6f2012-03-17 01:16:43 -0400689}
690
691/*
692 * When we schedule, we usually want to also release the write lock,
693 * according to the previous bkl based locking scheme of reiserfs.
694 */
695static inline void reiserfs_cond_resched(struct super_block *s)
696{
697 if (need_resched()) {
Jeff Mahoney278f6672013-08-08 17:34:46 -0400698 int depth;
699
700 depth = reiserfs_write_unlock_nested(s);
Al Virof466c6f2012-03-17 01:16:43 -0400701 schedule();
Jeff Mahoney278f6672013-08-08 17:34:46 -0400702 reiserfs_write_lock_nested(s, depth);
Al Virof466c6f2012-03-17 01:16:43 -0400703 }
704}
705
706struct fid;
707
708/* in reading the #defines, it may help to understand that they employ
709 the following abbreviations:
710
711 B = Buffer
712 I = Item header
713 H = Height within the tree (should be changed to LEV)
714 N = Number of the item in the node
715 STAT = stat data
716 DEH = Directory Entry Header
717 EC = Entry Count
718 E = Entry number
719 UL = Unsigned Long
720 BLKH = BLocK Header
721 UNFM = UNForMatted node
722 DC = Disk Child
723 P = Path
724
725 These #defines are named by concatenating these abbreviations,
726 where first comes the arguments, and last comes the return value,
727 of the macro.
728
729*/
730
731#define USE_INODE_GENERATION_COUNTER
732
733#define REISERFS_PREALLOCATE
734#define DISPLACE_NEW_PACKING_LOCALITIES
735#define PREALLOCATION_SIZE 9
736
737/* n must be power of 2 */
738#define _ROUND_UP(x,n) (((x)+(n)-1u) & ~((n)-1u))
739
740// to be ok for alpha and others we have to align structures to 8 byte
741// boundary.
742// FIXME: do not change 4 by anything else: there is code which relies on that
743#define ROUND_UP(x) _ROUND_UP(x,8LL)
744
745/* debug levels. Right now, CONFIG_REISERFS_CHECK means print all debug
746** messages.
747*/
748#define REISERFS_DEBUG_CODE 5 /* extra messages to help find/debug errors */
749
750void __reiserfs_warning(struct super_block *s, const char *id,
751 const char *func, const char *fmt, ...);
752#define reiserfs_warning(s, id, fmt, args...) \
753 __reiserfs_warning(s, id, __func__, fmt, ##args)
754/* assertions handling */
755
756/** always check a condition and panic if it's false. */
757#define __RASSERT(cond, scond, format, args...) \
758do { \
759 if (!(cond)) \
760 reiserfs_panic(NULL, "assertion failure", "(" #cond ") at " \
761 __FILE__ ":%i:%s: " format "\n", \
762 in_interrupt() ? -1 : task_pid_nr(current), \
763 __LINE__, __func__ , ##args); \
764} while (0)
765
766#define RASSERT(cond, format, args...) __RASSERT(cond, #cond, format, ##args)
767
768#if defined( CONFIG_REISERFS_CHECK )
769#define RFALSE(cond, format, args...) __RASSERT(!(cond), "!(" #cond ")", format, ##args)
770#else
771#define RFALSE( cond, format, args... ) do {;} while( 0 )
772#endif
773
774#define CONSTF __attribute_const__
775/*
776 * Disk Data Structures
777 */
778
779/***************************************************************************/
780/* SUPER BLOCK */
781/***************************************************************************/
782
783/*
784 * Structure of super block on disk, a version of which in RAM is often accessed as REISERFS_SB(s)->s_rs
785 * the version in RAM is part of a larger structure containing fields never written to disk.
786 */
787#define UNSET_HASH 0 // read_super will guess about, what hash names
788 // in directories were sorted with
789#define TEA_HASH 1
790#define YURA_HASH 2
791#define R5_HASH 3
792#define DEFAULT_HASH R5_HASH
793
794struct journal_params {
795 __le32 jp_journal_1st_block; /* where does journal start from on its
796 * device */
797 __le32 jp_journal_dev; /* journal device st_rdev */
798 __le32 jp_journal_size; /* size of the journal */
799 __le32 jp_journal_trans_max; /* max number of blocks in a transaction. */
800 __le32 jp_journal_magic; /* random value made on fs creation (this
801 * was sb_journal_block_count) */
802 __le32 jp_journal_max_batch; /* max number of blocks to batch into a
803 * trans */
804 __le32 jp_journal_max_commit_age; /* in seconds, how old can an async
805 * commit be */
806 __le32 jp_journal_max_trans_age; /* in seconds, how old can a transaction
807 * be */
808};
809
810/* this is the super from 3.5.X, where X >= 10 */
811struct reiserfs_super_block_v1 {
812 __le32 s_block_count; /* blocks count */
813 __le32 s_free_blocks; /* free blocks count */
814 __le32 s_root_block; /* root block number */
815 struct journal_params s_journal;
816 __le16 s_blocksize; /* block size */
817 __le16 s_oid_maxsize; /* max size of object id array, see
818 * get_objectid() commentary */
819 __le16 s_oid_cursize; /* current size of object id array */
820 __le16 s_umount_state; /* this is set to 1 when filesystem was
821 * umounted, to 2 - when not */
822 char s_magic[10]; /* reiserfs magic string indicates that
823 * file system is reiserfs:
824 * "ReIsErFs" or "ReIsEr2Fs" or "ReIsEr3Fs" */
825 __le16 s_fs_state; /* it is set to used by fsck to mark which
826 * phase of rebuilding is done */
827 __le32 s_hash_function_code; /* indicate, what hash function is being use
828 * to sort names in a directory*/
829 __le16 s_tree_height; /* height of disk tree */
830 __le16 s_bmap_nr; /* amount of bitmap blocks needed to address
831 * each block of file system */
832 __le16 s_version; /* this field is only reliable on filesystem
833 * with non-standard journal */
834 __le16 s_reserved_for_journal; /* size in blocks of journal area on main
835 * device, we need to keep after
836 * making fs with non-standard journal */
837} __attribute__ ((__packed__));
838
839#define SB_SIZE_V1 (sizeof(struct reiserfs_super_block_v1))
840
841/* this is the on disk super block */
842struct reiserfs_super_block {
843 struct reiserfs_super_block_v1 s_v1;
844 __le32 s_inode_generation;
845 __le32 s_flags; /* Right now used only by inode-attributes, if enabled */
846 unsigned char s_uuid[16]; /* filesystem unique identifier */
847 unsigned char s_label[16]; /* filesystem volume label */
848 __le16 s_mnt_count; /* Count of mounts since last fsck */
849 __le16 s_max_mnt_count; /* Maximum mounts before check */
850 __le32 s_lastcheck; /* Timestamp of last fsck */
851 __le32 s_check_interval; /* Interval between checks */
852 char s_unused[76]; /* zero filled by mkreiserfs and
853 * reiserfs_convert_objectid_map_v1()
854 * so any additions must be updated
855 * there as well. */
856} __attribute__ ((__packed__));
857
858#define SB_SIZE (sizeof(struct reiserfs_super_block))
859
860#define REISERFS_VERSION_1 0
861#define REISERFS_VERSION_2 2
862
863// on-disk super block fields converted to cpu form
864#define SB_DISK_SUPER_BLOCK(s) (REISERFS_SB(s)->s_rs)
865#define SB_V1_DISK_SUPER_BLOCK(s) (&(SB_DISK_SUPER_BLOCK(s)->s_v1))
866#define SB_BLOCKSIZE(s) \
867 le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_blocksize))
868#define SB_BLOCK_COUNT(s) \
869 le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_block_count))
870#define SB_FREE_BLOCKS(s) \
871 le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_free_blocks))
872#define SB_REISERFS_MAGIC(s) \
873 (SB_V1_DISK_SUPER_BLOCK(s)->s_magic)
874#define SB_ROOT_BLOCK(s) \
875 le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_root_block))
876#define SB_TREE_HEIGHT(s) \
877 le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_tree_height))
878#define SB_REISERFS_STATE(s) \
879 le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_umount_state))
880#define SB_VERSION(s) le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_version))
881#define SB_BMAP_NR(s) le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_bmap_nr))
882
883#define PUT_SB_BLOCK_COUNT(s, val) \
884 do { SB_V1_DISK_SUPER_BLOCK(s)->s_block_count = cpu_to_le32(val); } while (0)
885#define PUT_SB_FREE_BLOCKS(s, val) \
886 do { SB_V1_DISK_SUPER_BLOCK(s)->s_free_blocks = cpu_to_le32(val); } while (0)
887#define PUT_SB_ROOT_BLOCK(s, val) \
888 do { SB_V1_DISK_SUPER_BLOCK(s)->s_root_block = cpu_to_le32(val); } while (0)
889#define PUT_SB_TREE_HEIGHT(s, val) \
890 do { SB_V1_DISK_SUPER_BLOCK(s)->s_tree_height = cpu_to_le16(val); } while (0)
891#define PUT_SB_REISERFS_STATE(s, val) \
892 do { SB_V1_DISK_SUPER_BLOCK(s)->s_umount_state = cpu_to_le16(val); } while (0)
893#define PUT_SB_VERSION(s, val) \
894 do { SB_V1_DISK_SUPER_BLOCK(s)->s_version = cpu_to_le16(val); } while (0)
895#define PUT_SB_BMAP_NR(s, val) \
896 do { SB_V1_DISK_SUPER_BLOCK(s)->s_bmap_nr = cpu_to_le16 (val); } while (0)
897
898#define SB_ONDISK_JP(s) (&SB_V1_DISK_SUPER_BLOCK(s)->s_journal)
899#define SB_ONDISK_JOURNAL_SIZE(s) \
900 le32_to_cpu ((SB_ONDISK_JP(s)->jp_journal_size))
901#define SB_ONDISK_JOURNAL_1st_BLOCK(s) \
902 le32_to_cpu ((SB_ONDISK_JP(s)->jp_journal_1st_block))
903#define SB_ONDISK_JOURNAL_DEVICE(s) \
904 le32_to_cpu ((SB_ONDISK_JP(s)->jp_journal_dev))
905#define SB_ONDISK_RESERVED_FOR_JOURNAL(s) \
906 le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_reserved_for_journal))
907
908#define is_block_in_log_or_reserved_area(s, block) \
909 block >= SB_JOURNAL_1st_RESERVED_BLOCK(s) \
910 && block < SB_JOURNAL_1st_RESERVED_BLOCK(s) + \
911 ((!is_reiserfs_jr(SB_DISK_SUPER_BLOCK(s)) ? \
912 SB_ONDISK_JOURNAL_SIZE(s) + 1 : SB_ONDISK_RESERVED_FOR_JOURNAL(s)))
913
914int is_reiserfs_3_5(struct reiserfs_super_block *rs);
915int is_reiserfs_3_6(struct reiserfs_super_block *rs);
916int is_reiserfs_jr(struct reiserfs_super_block *rs);
917
918/* ReiserFS leaves the first 64k unused, so that partition labels have
919 enough space. If someone wants to write a fancy bootloader that
920 needs more than 64k, let us know, and this will be increased in size.
921 This number must be larger than than the largest block size on any
922 platform, or code will break. -Hans */
923#define REISERFS_DISK_OFFSET_IN_BYTES (64 * 1024)
924#define REISERFS_FIRST_BLOCK unused_define
925#define REISERFS_JOURNAL_OFFSET_IN_BYTES REISERFS_DISK_OFFSET_IN_BYTES
926
927/* the spot for the super in versions 3.5 - 3.5.10 (inclusive) */
928#define REISERFS_OLD_DISK_OFFSET_IN_BYTES (8 * 1024)
929
930/* reiserfs internal error code (used by search_by_key and fix_nodes)) */
931#define CARRY_ON 0
932#define REPEAT_SEARCH -1
933#define IO_ERROR -2
934#define NO_DISK_SPACE -3
935#define NO_BALANCING_NEEDED (-4)
936#define NO_MORE_UNUSED_CONTIGUOUS_BLOCKS (-5)
937#define QUOTA_EXCEEDED -6
938
939typedef __u32 b_blocknr_t;
940typedef __le32 unp_t;
941
942struct unfm_nodeinfo {
943 unp_t unfm_nodenum;
944 unsigned short unfm_freespace;
945};
946
947/* there are two formats of keys: 3.5 and 3.6
948 */
949#define KEY_FORMAT_3_5 0
950#define KEY_FORMAT_3_6 1
951
952/* there are two stat datas */
953#define STAT_DATA_V1 0
954#define STAT_DATA_V2 1
955
956static inline struct reiserfs_inode_info *REISERFS_I(const struct inode *inode)
957{
958 return container_of(inode, struct reiserfs_inode_info, vfs_inode);
959}
960
961static inline struct reiserfs_sb_info *REISERFS_SB(const struct super_block *sb)
962{
963 return sb->s_fs_info;
964}
965
966/* Don't trust REISERFS_SB(sb)->s_bmap_nr, it's a u16
967 * which overflows on large file systems. */
968static inline __u32 reiserfs_bmap_count(struct super_block *sb)
969{
970 return (SB_BLOCK_COUNT(sb) - 1) / (sb->s_blocksize * 8) + 1;
971}
972
973static inline int bmap_would_wrap(unsigned bmap_nr)
974{
975 return bmap_nr > ((1LL << 16) - 1);
976}
977
978/** this says about version of key of all items (but stat data) the
979 object consists of */
980#define get_inode_item_key_version( inode ) \
981 ((REISERFS_I(inode)->i_flags & i_item_key_version_mask) ? KEY_FORMAT_3_6 : KEY_FORMAT_3_5)
982
983#define set_inode_item_key_version( inode, version ) \
984 ({ if((version)==KEY_FORMAT_3_6) \
985 REISERFS_I(inode)->i_flags |= i_item_key_version_mask; \
986 else \
987 REISERFS_I(inode)->i_flags &= ~i_item_key_version_mask; })
988
989#define get_inode_sd_version(inode) \
990 ((REISERFS_I(inode)->i_flags & i_stat_data_version_mask) ? STAT_DATA_V2 : STAT_DATA_V1)
991
992#define set_inode_sd_version(inode, version) \
993 ({ if((version)==STAT_DATA_V2) \
994 REISERFS_I(inode)->i_flags |= i_stat_data_version_mask; \
995 else \
996 REISERFS_I(inode)->i_flags &= ~i_stat_data_version_mask; })
997
998/* This is an aggressive tail suppression policy, I am hoping it
999 improves our benchmarks. The principle behind it is that percentage
1000 space saving is what matters, not absolute space saving. This is
1001 non-intuitive, but it helps to understand it if you consider that the
1002 cost to access 4 blocks is not much more than the cost to access 1
1003 block, if you have to do a seek and rotate. A tail risks a
1004 non-linear disk access that is significant as a percentage of total
1005 time cost for a 4 block file and saves an amount of space that is
1006 less significant as a percentage of space, or so goes the hypothesis.
1007 -Hans */
1008#define STORE_TAIL_IN_UNFM_S1(n_file_size,n_tail_size,n_block_size) \
1009(\
1010 (!(n_tail_size)) || \
1011 (((n_tail_size) > MAX_DIRECT_ITEM_LEN(n_block_size)) || \
1012 ( (n_file_size) >= (n_block_size) * 4 ) || \
1013 ( ( (n_file_size) >= (n_block_size) * 3 ) && \
1014 ( (n_tail_size) >= (MAX_DIRECT_ITEM_LEN(n_block_size))/4) ) || \
1015 ( ( (n_file_size) >= (n_block_size) * 2 ) && \
1016 ( (n_tail_size) >= (MAX_DIRECT_ITEM_LEN(n_block_size))/2) ) || \
1017 ( ( (n_file_size) >= (n_block_size) ) && \
1018 ( (n_tail_size) >= (MAX_DIRECT_ITEM_LEN(n_block_size) * 3)/4) ) ) \
1019)
1020
1021/* Another strategy for tails, this one means only create a tail if all the
1022 file would fit into one DIRECT item.
1023 Primary intention for this one is to increase performance by decreasing
1024 seeking.
1025*/
1026#define STORE_TAIL_IN_UNFM_S2(n_file_size,n_tail_size,n_block_size) \
1027(\
1028 (!(n_tail_size)) || \
1029 (((n_file_size) > MAX_DIRECT_ITEM_LEN(n_block_size)) ) \
1030)
1031
1032/*
1033 * values for s_umount_state field
1034 */
1035#define REISERFS_VALID_FS 1
1036#define REISERFS_ERROR_FS 2
1037
1038//
1039// there are 5 item types currently
1040//
1041#define TYPE_STAT_DATA 0
1042#define TYPE_INDIRECT 1
1043#define TYPE_DIRECT 2
1044#define TYPE_DIRENTRY 3
1045#define TYPE_MAXTYPE 3
1046#define TYPE_ANY 15 // FIXME: comment is required
1047
1048/***************************************************************************/
1049/* KEY & ITEM HEAD */
1050/***************************************************************************/
1051
1052//
1053// directories use this key as well as old files
1054//
1055struct offset_v1 {
1056 __le32 k_offset;
1057 __le32 k_uniqueness;
1058} __attribute__ ((__packed__));
1059
1060struct offset_v2 {
1061 __le64 v;
1062} __attribute__ ((__packed__));
1063
1064static inline __u16 offset_v2_k_type(const struct offset_v2 *v2)
1065{
1066 __u8 type = le64_to_cpu(v2->v) >> 60;
1067 return (type <= TYPE_MAXTYPE) ? type : TYPE_ANY;
1068}
1069
1070static inline void set_offset_v2_k_type(struct offset_v2 *v2, int type)
1071{
1072 v2->v =
1073 (v2->v & cpu_to_le64(~0ULL >> 4)) | cpu_to_le64((__u64) type << 60);
1074}
1075
1076static inline loff_t offset_v2_k_offset(const struct offset_v2 *v2)
1077{
1078 return le64_to_cpu(v2->v) & (~0ULL >> 4);
1079}
1080
1081static inline void set_offset_v2_k_offset(struct offset_v2 *v2, loff_t offset)
1082{
1083 offset &= (~0ULL >> 4);
1084 v2->v = (v2->v & cpu_to_le64(15ULL << 60)) | cpu_to_le64(offset);
1085}
1086
1087/* Key of an item determines its location in the S+tree, and
1088 is composed of 4 components */
1089struct reiserfs_key {
1090 __le32 k_dir_id; /* packing locality: by default parent
1091 directory object id */
1092 __le32 k_objectid; /* object identifier */
1093 union {
1094 struct offset_v1 k_offset_v1;
1095 struct offset_v2 k_offset_v2;
1096 } __attribute__ ((__packed__)) u;
1097} __attribute__ ((__packed__));
1098
1099struct in_core_key {
1100 __u32 k_dir_id; /* packing locality: by default parent
1101 directory object id */
1102 __u32 k_objectid; /* object identifier */
1103 __u64 k_offset;
1104 __u8 k_type;
1105};
1106
1107struct cpu_key {
1108 struct in_core_key on_disk_key;
1109 int version;
1110 int key_length; /* 3 in all cases but direct2indirect and
1111 indirect2direct conversion */
1112};
1113
1114/* Our function for comparing keys can compare keys of different
1115 lengths. It takes as a parameter the length of the keys it is to
1116 compare. These defines are used in determining what is to be passed
1117 to it as that parameter. */
1118#define REISERFS_FULL_KEY_LEN 4
1119#define REISERFS_SHORT_KEY_LEN 2
1120
1121/* The result of the key compare */
1122#define FIRST_GREATER 1
1123#define SECOND_GREATER -1
1124#define KEYS_IDENTICAL 0
1125#define KEY_FOUND 1
1126#define KEY_NOT_FOUND 0
1127
1128#define KEY_SIZE (sizeof(struct reiserfs_key))
1129#define SHORT_KEY_SIZE (sizeof (__u32) + sizeof (__u32))
1130
1131/* return values for search_by_key and clones */
1132#define ITEM_FOUND 1
1133#define ITEM_NOT_FOUND 0
1134#define ENTRY_FOUND 1
1135#define ENTRY_NOT_FOUND 0
1136#define DIRECTORY_NOT_FOUND -1
1137#define REGULAR_FILE_FOUND -2
1138#define DIRECTORY_FOUND -3
1139#define BYTE_FOUND 1
1140#define BYTE_NOT_FOUND 0
1141#define FILE_NOT_FOUND -1
1142
1143#define POSITION_FOUND 1
1144#define POSITION_NOT_FOUND 0
1145
1146// return values for reiserfs_find_entry and search_by_entry_key
1147#define NAME_FOUND 1
1148#define NAME_NOT_FOUND 0
1149#define GOTO_PREVIOUS_ITEM 2
1150#define NAME_FOUND_INVISIBLE 3
1151
1152/* Everything in the filesystem is stored as a set of items. The
1153 item head contains the key of the item, its free space (for
1154 indirect items) and specifies the location of the item itself
1155 within the block. */
1156
1157struct item_head {
1158 /* Everything in the tree is found by searching for it based on
1159 * its key.*/
1160 struct reiserfs_key ih_key;
1161 union {
1162 /* The free space in the last unformatted node of an
1163 indirect item if this is an indirect item. This
1164 equals 0xFFFF iff this is a direct item or stat data
1165 item. Note that the key, not this field, is used to
1166 determine the item type, and thus which field this
1167 union contains. */
1168 __le16 ih_free_space_reserved;
1169 /* Iff this is a directory item, this field equals the
1170 number of directory entries in the directory item. */
1171 __le16 ih_entry_count;
1172 } __attribute__ ((__packed__)) u;
1173 __le16 ih_item_len; /* total size of the item body */
1174 __le16 ih_item_location; /* an offset to the item body
1175 * within the block */
1176 __le16 ih_version; /* 0 for all old items, 2 for new
1177 ones. Highest bit is set by fsck
1178 temporary, cleaned after all
1179 done */
1180} __attribute__ ((__packed__));
1181/* size of item header */
1182#define IH_SIZE (sizeof(struct item_head))
1183
1184#define ih_free_space(ih) le16_to_cpu((ih)->u.ih_free_space_reserved)
1185#define ih_version(ih) le16_to_cpu((ih)->ih_version)
1186#define ih_entry_count(ih) le16_to_cpu((ih)->u.ih_entry_count)
1187#define ih_location(ih) le16_to_cpu((ih)->ih_item_location)
1188#define ih_item_len(ih) le16_to_cpu((ih)->ih_item_len)
1189
1190#define put_ih_free_space(ih, val) do { (ih)->u.ih_free_space_reserved = cpu_to_le16(val); } while(0)
1191#define put_ih_version(ih, val) do { (ih)->ih_version = cpu_to_le16(val); } while (0)
1192#define put_ih_entry_count(ih, val) do { (ih)->u.ih_entry_count = cpu_to_le16(val); } while (0)
1193#define put_ih_location(ih, val) do { (ih)->ih_item_location = cpu_to_le16(val); } while (0)
1194#define put_ih_item_len(ih, val) do { (ih)->ih_item_len = cpu_to_le16(val); } while (0)
1195
1196#define unreachable_item(ih) (ih_version(ih) & (1 << 15))
1197
1198#define get_ih_free_space(ih) (ih_version (ih) == KEY_FORMAT_3_6 ? 0 : ih_free_space (ih))
1199#define set_ih_free_space(ih,val) put_ih_free_space((ih), ((ih_version(ih) == KEY_FORMAT_3_6) ? 0 : (val)))
1200
1201/* these operate on indirect items, where you've got an array of ints
1202** at a possibly unaligned location. These are a noop on ia32
1203**
1204** p is the array of __u32, i is the index into the array, v is the value
1205** to store there.
1206*/
1207#define get_block_num(p, i) get_unaligned_le32((p) + (i))
1208#define put_block_num(p, i, v) put_unaligned_le32((v), (p) + (i))
1209
1210//
1211// in old version uniqueness field shows key type
1212//
1213#define V1_SD_UNIQUENESS 0
1214#define V1_INDIRECT_UNIQUENESS 0xfffffffe
1215#define V1_DIRECT_UNIQUENESS 0xffffffff
1216#define V1_DIRENTRY_UNIQUENESS 500
1217#define V1_ANY_UNIQUENESS 555 // FIXME: comment is required
1218
1219//
1220// here are conversion routines
1221//
1222static inline int uniqueness2type(__u32 uniqueness) CONSTF;
1223static inline int uniqueness2type(__u32 uniqueness)
1224{
1225 switch ((int)uniqueness) {
1226 case V1_SD_UNIQUENESS:
1227 return TYPE_STAT_DATA;
1228 case V1_INDIRECT_UNIQUENESS:
1229 return TYPE_INDIRECT;
1230 case V1_DIRECT_UNIQUENESS:
1231 return TYPE_DIRECT;
1232 case V1_DIRENTRY_UNIQUENESS:
1233 return TYPE_DIRENTRY;
1234 case V1_ANY_UNIQUENESS:
1235 default:
1236 return TYPE_ANY;
1237 }
1238}
1239
1240static inline __u32 type2uniqueness(int type) CONSTF;
1241static inline __u32 type2uniqueness(int type)
1242{
1243 switch (type) {
1244 case TYPE_STAT_DATA:
1245 return V1_SD_UNIQUENESS;
1246 case TYPE_INDIRECT:
1247 return V1_INDIRECT_UNIQUENESS;
1248 case TYPE_DIRECT:
1249 return V1_DIRECT_UNIQUENESS;
1250 case TYPE_DIRENTRY:
1251 return V1_DIRENTRY_UNIQUENESS;
1252 case TYPE_ANY:
1253 default:
1254 return V1_ANY_UNIQUENESS;
1255 }
1256}
1257
1258//
1259// key is pointer to on disk key which is stored in le, result is cpu,
1260// there is no way to get version of object from key, so, provide
1261// version to these defines
1262//
1263static inline loff_t le_key_k_offset(int version,
1264 const struct reiserfs_key *key)
1265{
1266 return (version == KEY_FORMAT_3_5) ?
1267 le32_to_cpu(key->u.k_offset_v1.k_offset) :
1268 offset_v2_k_offset(&(key->u.k_offset_v2));
1269}
1270
1271static inline loff_t le_ih_k_offset(const struct item_head *ih)
1272{
1273 return le_key_k_offset(ih_version(ih), &(ih->ih_key));
1274}
1275
1276static inline loff_t le_key_k_type(int version, const struct reiserfs_key *key)
1277{
1278 return (version == KEY_FORMAT_3_5) ?
1279 uniqueness2type(le32_to_cpu(key->u.k_offset_v1.k_uniqueness)) :
1280 offset_v2_k_type(&(key->u.k_offset_v2));
1281}
1282
1283static inline loff_t le_ih_k_type(const struct item_head *ih)
1284{
1285 return le_key_k_type(ih_version(ih), &(ih->ih_key));
1286}
1287
1288static inline void set_le_key_k_offset(int version, struct reiserfs_key *key,
1289 loff_t offset)
1290{
1291 (version == KEY_FORMAT_3_5) ? (void)(key->u.k_offset_v1.k_offset = cpu_to_le32(offset)) : /* jdm check */
1292 (void)(set_offset_v2_k_offset(&(key->u.k_offset_v2), offset));
1293}
1294
1295static inline void set_le_ih_k_offset(struct item_head *ih, loff_t offset)
1296{
1297 set_le_key_k_offset(ih_version(ih), &(ih->ih_key), offset);
1298}
1299
1300static inline void set_le_key_k_type(int version, struct reiserfs_key *key,
1301 int type)
1302{
1303 (version == KEY_FORMAT_3_5) ?
1304 (void)(key->u.k_offset_v1.k_uniqueness =
1305 cpu_to_le32(type2uniqueness(type)))
1306 : (void)(set_offset_v2_k_type(&(key->u.k_offset_v2), type));
1307}
1308
1309static inline void set_le_ih_k_type(struct item_head *ih, int type)
1310{
1311 set_le_key_k_type(ih_version(ih), &(ih->ih_key), type);
1312}
1313
1314static inline int is_direntry_le_key(int version, struct reiserfs_key *key)
1315{
1316 return le_key_k_type(version, key) == TYPE_DIRENTRY;
1317}
1318
1319static inline int is_direct_le_key(int version, struct reiserfs_key *key)
1320{
1321 return le_key_k_type(version, key) == TYPE_DIRECT;
1322}
1323
1324static inline int is_indirect_le_key(int version, struct reiserfs_key *key)
1325{
1326 return le_key_k_type(version, key) == TYPE_INDIRECT;
1327}
1328
1329static inline int is_statdata_le_key(int version, struct reiserfs_key *key)
1330{
1331 return le_key_k_type(version, key) == TYPE_STAT_DATA;
1332}
1333
1334//
1335// item header has version.
1336//
1337static inline int is_direntry_le_ih(struct item_head *ih)
1338{
1339 return is_direntry_le_key(ih_version(ih), &ih->ih_key);
1340}
1341
1342static inline int is_direct_le_ih(struct item_head *ih)
1343{
1344 return is_direct_le_key(ih_version(ih), &ih->ih_key);
1345}
1346
1347static inline int is_indirect_le_ih(struct item_head *ih)
1348{
1349 return is_indirect_le_key(ih_version(ih), &ih->ih_key);
1350}
1351
1352static inline int is_statdata_le_ih(struct item_head *ih)
1353{
1354 return is_statdata_le_key(ih_version(ih), &ih->ih_key);
1355}
1356
1357//
1358// key is pointer to cpu key, result is cpu
1359//
1360static inline loff_t cpu_key_k_offset(const struct cpu_key *key)
1361{
1362 return key->on_disk_key.k_offset;
1363}
1364
1365static inline loff_t cpu_key_k_type(const struct cpu_key *key)
1366{
1367 return key->on_disk_key.k_type;
1368}
1369
1370static inline void set_cpu_key_k_offset(struct cpu_key *key, loff_t offset)
1371{
1372 key->on_disk_key.k_offset = offset;
1373}
1374
1375static inline void set_cpu_key_k_type(struct cpu_key *key, int type)
1376{
1377 key->on_disk_key.k_type = type;
1378}
1379
1380static inline void cpu_key_k_offset_dec(struct cpu_key *key)
1381{
1382 key->on_disk_key.k_offset--;
1383}
1384
1385#define is_direntry_cpu_key(key) (cpu_key_k_type (key) == TYPE_DIRENTRY)
1386#define is_direct_cpu_key(key) (cpu_key_k_type (key) == TYPE_DIRECT)
1387#define is_indirect_cpu_key(key) (cpu_key_k_type (key) == TYPE_INDIRECT)
1388#define is_statdata_cpu_key(key) (cpu_key_k_type (key) == TYPE_STAT_DATA)
1389
1390/* are these used ? */
1391#define is_direntry_cpu_ih(ih) (is_direntry_cpu_key (&((ih)->ih_key)))
1392#define is_direct_cpu_ih(ih) (is_direct_cpu_key (&((ih)->ih_key)))
1393#define is_indirect_cpu_ih(ih) (is_indirect_cpu_key (&((ih)->ih_key)))
1394#define is_statdata_cpu_ih(ih) (is_statdata_cpu_key (&((ih)->ih_key)))
1395
1396#define I_K_KEY_IN_ITEM(ih, key, n_blocksize) \
1397 (!COMP_SHORT_KEYS(ih, key) && \
1398 I_OFF_BYTE_IN_ITEM(ih, k_offset(key), n_blocksize))
1399
1400/* maximal length of item */
1401#define MAX_ITEM_LEN(block_size) (block_size - BLKH_SIZE - IH_SIZE)
1402#define MIN_ITEM_LEN 1
1403
1404/* object identifier for root dir */
1405#define REISERFS_ROOT_OBJECTID 2
1406#define REISERFS_ROOT_PARENT_OBJECTID 1
1407
1408extern struct reiserfs_key root_key;
1409
1410/*
1411 * Picture represents a leaf of the S+tree
1412 * ______________________________________________________
1413 * | | Array of | | |
1414 * |Block | Object-Item | F r e e | Objects- |
1415 * | head | Headers | S p a c e | Items |
1416 * |______|_______________|___________________|___________|
1417 */
1418
1419/* Header of a disk block. More precisely, header of a formatted leaf
1420 or internal node, and not the header of an unformatted node. */
1421struct block_head {
1422 __le16 blk_level; /* Level of a block in the tree. */
1423 __le16 blk_nr_item; /* Number of keys/items in a block. */
1424 __le16 blk_free_space; /* Block free space in bytes. */
1425 __le16 blk_reserved;
1426 /* dump this in v4/planA */
1427 struct reiserfs_key blk_right_delim_key; /* kept only for compatibility */
1428};
1429
1430#define BLKH_SIZE (sizeof(struct block_head))
1431#define blkh_level(p_blkh) (le16_to_cpu((p_blkh)->blk_level))
1432#define blkh_nr_item(p_blkh) (le16_to_cpu((p_blkh)->blk_nr_item))
1433#define blkh_free_space(p_blkh) (le16_to_cpu((p_blkh)->blk_free_space))
1434#define blkh_reserved(p_blkh) (le16_to_cpu((p_blkh)->blk_reserved))
1435#define set_blkh_level(p_blkh,val) ((p_blkh)->blk_level = cpu_to_le16(val))
1436#define set_blkh_nr_item(p_blkh,val) ((p_blkh)->blk_nr_item = cpu_to_le16(val))
1437#define set_blkh_free_space(p_blkh,val) ((p_blkh)->blk_free_space = cpu_to_le16(val))
1438#define set_blkh_reserved(p_blkh,val) ((p_blkh)->blk_reserved = cpu_to_le16(val))
1439#define blkh_right_delim_key(p_blkh) ((p_blkh)->blk_right_delim_key)
1440#define set_blkh_right_delim_key(p_blkh,val) ((p_blkh)->blk_right_delim_key = val)
1441
1442/*
1443 * values for blk_level field of the struct block_head
1444 */
1445
1446#define FREE_LEVEL 0 /* when node gets removed from the tree its
1447 blk_level is set to FREE_LEVEL. It is then
1448 used to see whether the node is still in the
1449 tree */
1450
1451#define DISK_LEAF_NODE_LEVEL 1 /* Leaf node level. */
1452
1453/* Given the buffer head of a formatted node, resolve to the block head of that node. */
1454#define B_BLK_HEAD(bh) ((struct block_head *)((bh)->b_data))
1455/* Number of items that are in buffer. */
1456#define B_NR_ITEMS(bh) (blkh_nr_item(B_BLK_HEAD(bh)))
1457#define B_LEVEL(bh) (blkh_level(B_BLK_HEAD(bh)))
1458#define B_FREE_SPACE(bh) (blkh_free_space(B_BLK_HEAD(bh)))
1459
1460#define PUT_B_NR_ITEMS(bh, val) do { set_blkh_nr_item(B_BLK_HEAD(bh), val); } while (0)
1461#define PUT_B_LEVEL(bh, val) do { set_blkh_level(B_BLK_HEAD(bh), val); } while (0)
1462#define PUT_B_FREE_SPACE(bh, val) do { set_blkh_free_space(B_BLK_HEAD(bh), val); } while (0)
1463
1464/* Get right delimiting key. -- little endian */
1465#define B_PRIGHT_DELIM_KEY(bh) (&(blk_right_delim_key(B_BLK_HEAD(bh))))
1466
1467/* Does the buffer contain a disk leaf. */
1468#define B_IS_ITEMS_LEVEL(bh) (B_LEVEL(bh) == DISK_LEAF_NODE_LEVEL)
1469
1470/* Does the buffer contain a disk internal node */
1471#define B_IS_KEYS_LEVEL(bh) (B_LEVEL(bh) > DISK_LEAF_NODE_LEVEL \
1472 && B_LEVEL(bh) <= MAX_HEIGHT)
1473
1474/***************************************************************************/
1475/* STAT DATA */
1476/***************************************************************************/
1477
1478//
1479// old stat data is 32 bytes long. We are going to distinguish new one by
1480// different size
1481//
1482struct stat_data_v1 {
1483 __le16 sd_mode; /* file type, permissions */
1484 __le16 sd_nlink; /* number of hard links */
1485 __le16 sd_uid; /* owner */
1486 __le16 sd_gid; /* group */
1487 __le32 sd_size; /* file size */
1488 __le32 sd_atime; /* time of last access */
1489 __le32 sd_mtime; /* time file was last modified */
1490 __le32 sd_ctime; /* time inode (stat data) was last changed (except changes to sd_atime and sd_mtime) */
1491 union {
1492 __le32 sd_rdev;
1493 __le32 sd_blocks; /* number of blocks file uses */
1494 } __attribute__ ((__packed__)) u;
1495 __le32 sd_first_direct_byte; /* first byte of file which is stored
1496 in a direct item: except that if it
1497 equals 1 it is a symlink and if it
1498 equals ~(__u32)0 there is no
1499 direct item. The existence of this
1500 field really grates on me. Let's
1501 replace it with a macro based on
1502 sd_size and our tail suppression
1503 policy. Someday. -Hans */
1504} __attribute__ ((__packed__));
1505
1506#define SD_V1_SIZE (sizeof(struct stat_data_v1))
1507#define stat_data_v1(ih) (ih_version (ih) == KEY_FORMAT_3_5)
1508#define sd_v1_mode(sdp) (le16_to_cpu((sdp)->sd_mode))
1509#define set_sd_v1_mode(sdp,v) ((sdp)->sd_mode = cpu_to_le16(v))
1510#define sd_v1_nlink(sdp) (le16_to_cpu((sdp)->sd_nlink))
1511#define set_sd_v1_nlink(sdp,v) ((sdp)->sd_nlink = cpu_to_le16(v))
1512#define sd_v1_uid(sdp) (le16_to_cpu((sdp)->sd_uid))
1513#define set_sd_v1_uid(sdp,v) ((sdp)->sd_uid = cpu_to_le16(v))
1514#define sd_v1_gid(sdp) (le16_to_cpu((sdp)->sd_gid))
1515#define set_sd_v1_gid(sdp,v) ((sdp)->sd_gid = cpu_to_le16(v))
1516#define sd_v1_size(sdp) (le32_to_cpu((sdp)->sd_size))
1517#define set_sd_v1_size(sdp,v) ((sdp)->sd_size = cpu_to_le32(v))
1518#define sd_v1_atime(sdp) (le32_to_cpu((sdp)->sd_atime))
1519#define set_sd_v1_atime(sdp,v) ((sdp)->sd_atime = cpu_to_le32(v))
1520#define sd_v1_mtime(sdp) (le32_to_cpu((sdp)->sd_mtime))
1521#define set_sd_v1_mtime(sdp,v) ((sdp)->sd_mtime = cpu_to_le32(v))
1522#define sd_v1_ctime(sdp) (le32_to_cpu((sdp)->sd_ctime))
1523#define set_sd_v1_ctime(sdp,v) ((sdp)->sd_ctime = cpu_to_le32(v))
1524#define sd_v1_rdev(sdp) (le32_to_cpu((sdp)->u.sd_rdev))
1525#define set_sd_v1_rdev(sdp,v) ((sdp)->u.sd_rdev = cpu_to_le32(v))
1526#define sd_v1_blocks(sdp) (le32_to_cpu((sdp)->u.sd_blocks))
1527#define set_sd_v1_blocks(sdp,v) ((sdp)->u.sd_blocks = cpu_to_le32(v))
1528#define sd_v1_first_direct_byte(sdp) \
1529 (le32_to_cpu((sdp)->sd_first_direct_byte))
1530#define set_sd_v1_first_direct_byte(sdp,v) \
1531 ((sdp)->sd_first_direct_byte = cpu_to_le32(v))
1532
1533/* inode flags stored in sd_attrs (nee sd_reserved) */
1534
1535/* we want common flags to have the same values as in ext2,
1536 so chattr(1) will work without problems */
1537#define REISERFS_IMMUTABLE_FL FS_IMMUTABLE_FL
1538#define REISERFS_APPEND_FL FS_APPEND_FL
1539#define REISERFS_SYNC_FL FS_SYNC_FL
1540#define REISERFS_NOATIME_FL FS_NOATIME_FL
1541#define REISERFS_NODUMP_FL FS_NODUMP_FL
1542#define REISERFS_SECRM_FL FS_SECRM_FL
1543#define REISERFS_UNRM_FL FS_UNRM_FL
1544#define REISERFS_COMPR_FL FS_COMPR_FL
1545#define REISERFS_NOTAIL_FL FS_NOTAIL_FL
1546
1547/* persistent flags that file inherits from the parent directory */
1548#define REISERFS_INHERIT_MASK ( REISERFS_IMMUTABLE_FL | \
1549 REISERFS_SYNC_FL | \
1550 REISERFS_NOATIME_FL | \
1551 REISERFS_NODUMP_FL | \
1552 REISERFS_SECRM_FL | \
1553 REISERFS_COMPR_FL | \
1554 REISERFS_NOTAIL_FL )
1555
1556/* Stat Data on disk (reiserfs version of UFS disk inode minus the
1557 address blocks) */
1558struct stat_data {
1559 __le16 sd_mode; /* file type, permissions */
1560 __le16 sd_attrs; /* persistent inode flags */
1561 __le32 sd_nlink; /* number of hard links */
1562 __le64 sd_size; /* file size */
1563 __le32 sd_uid; /* owner */
1564 __le32 sd_gid; /* group */
1565 __le32 sd_atime; /* time of last access */
1566 __le32 sd_mtime; /* time file was last modified */
1567 __le32 sd_ctime; /* time inode (stat data) was last changed (except changes to sd_atime and sd_mtime) */
1568 __le32 sd_blocks;
1569 union {
1570 __le32 sd_rdev;
1571 __le32 sd_generation;
1572 //__le32 sd_first_direct_byte;
1573 /* first byte of file which is stored in a
1574 direct item: except that if it equals 1
1575 it is a symlink and if it equals
1576 ~(__u32)0 there is no direct item. The
1577 existence of this field really grates
1578 on me. Let's replace it with a macro
1579 based on sd_size and our tail
1580 suppression policy? */
1581 } __attribute__ ((__packed__)) u;
1582} __attribute__ ((__packed__));
1583//
1584// this is 44 bytes long
1585//
1586#define SD_SIZE (sizeof(struct stat_data))
1587#define SD_V2_SIZE SD_SIZE
1588#define stat_data_v2(ih) (ih_version (ih) == KEY_FORMAT_3_6)
1589#define sd_v2_mode(sdp) (le16_to_cpu((sdp)->sd_mode))
1590#define set_sd_v2_mode(sdp,v) ((sdp)->sd_mode = cpu_to_le16(v))
1591/* sd_reserved */
1592/* set_sd_reserved */
1593#define sd_v2_nlink(sdp) (le32_to_cpu((sdp)->sd_nlink))
1594#define set_sd_v2_nlink(sdp,v) ((sdp)->sd_nlink = cpu_to_le32(v))
1595#define sd_v2_size(sdp) (le64_to_cpu((sdp)->sd_size))
1596#define set_sd_v2_size(sdp,v) ((sdp)->sd_size = cpu_to_le64(v))
1597#define sd_v2_uid(sdp) (le32_to_cpu((sdp)->sd_uid))
1598#define set_sd_v2_uid(sdp,v) ((sdp)->sd_uid = cpu_to_le32(v))
1599#define sd_v2_gid(sdp) (le32_to_cpu((sdp)->sd_gid))
1600#define set_sd_v2_gid(sdp,v) ((sdp)->sd_gid = cpu_to_le32(v))
1601#define sd_v2_atime(sdp) (le32_to_cpu((sdp)->sd_atime))
1602#define set_sd_v2_atime(sdp,v) ((sdp)->sd_atime = cpu_to_le32(v))
1603#define sd_v2_mtime(sdp) (le32_to_cpu((sdp)->sd_mtime))
1604#define set_sd_v2_mtime(sdp,v) ((sdp)->sd_mtime = cpu_to_le32(v))
1605#define sd_v2_ctime(sdp) (le32_to_cpu((sdp)->sd_ctime))
1606#define set_sd_v2_ctime(sdp,v) ((sdp)->sd_ctime = cpu_to_le32(v))
1607#define sd_v2_blocks(sdp) (le32_to_cpu((sdp)->sd_blocks))
1608#define set_sd_v2_blocks(sdp,v) ((sdp)->sd_blocks = cpu_to_le32(v))
1609#define sd_v2_rdev(sdp) (le32_to_cpu((sdp)->u.sd_rdev))
1610#define set_sd_v2_rdev(sdp,v) ((sdp)->u.sd_rdev = cpu_to_le32(v))
1611#define sd_v2_generation(sdp) (le32_to_cpu((sdp)->u.sd_generation))
1612#define set_sd_v2_generation(sdp,v) ((sdp)->u.sd_generation = cpu_to_le32(v))
1613#define sd_v2_attrs(sdp) (le16_to_cpu((sdp)->sd_attrs))
1614#define set_sd_v2_attrs(sdp,v) ((sdp)->sd_attrs = cpu_to_le16(v))
1615
1616/***************************************************************************/
1617/* DIRECTORY STRUCTURE */
1618/***************************************************************************/
1619/*
1620 Picture represents the structure of directory items
1621 ________________________________________________
1622 | Array of | | | | | |
1623 | directory |N-1| N-2 | .... | 1st |0th|
1624 | entry headers | | | | | |
1625 |_______________|___|_____|________|_______|___|
1626 <---- directory entries ------>
1627
1628 First directory item has k_offset component 1. We store "." and ".."
1629 in one item, always, we never split "." and ".." into differing
1630 items. This makes, among other things, the code for removing
1631 directories simpler. */
1632#define SD_OFFSET 0
1633#define SD_UNIQUENESS 0
1634#define DOT_OFFSET 1
1635#define DOT_DOT_OFFSET 2
1636#define DIRENTRY_UNIQUENESS 500
1637
1638/* */
1639#define FIRST_ITEM_OFFSET 1
1640
1641/*
1642 Q: How to get key of object pointed to by entry from entry?
1643
1644 A: Each directory entry has its header. This header has deh_dir_id and deh_objectid fields, those are key
1645 of object, entry points to */
1646
1647/* NOT IMPLEMENTED:
1648 Directory will someday contain stat data of object */
1649
1650struct reiserfs_de_head {
1651 __le32 deh_offset; /* third component of the directory entry key */
1652 __le32 deh_dir_id; /* objectid of the parent directory of the object, that is referenced
1653 by directory entry */
1654 __le32 deh_objectid; /* objectid of the object, that is referenced by directory entry */
1655 __le16 deh_location; /* offset of name in the whole item */
1656 __le16 deh_state; /* whether 1) entry contains stat data (for future), and 2) whether
1657 entry is hidden (unlinked) */
1658} __attribute__ ((__packed__));
1659#define DEH_SIZE sizeof(struct reiserfs_de_head)
1660#define deh_offset(p_deh) (le32_to_cpu((p_deh)->deh_offset))
1661#define deh_dir_id(p_deh) (le32_to_cpu((p_deh)->deh_dir_id))
1662#define deh_objectid(p_deh) (le32_to_cpu((p_deh)->deh_objectid))
1663#define deh_location(p_deh) (le16_to_cpu((p_deh)->deh_location))
1664#define deh_state(p_deh) (le16_to_cpu((p_deh)->deh_state))
1665
1666#define put_deh_offset(p_deh,v) ((p_deh)->deh_offset = cpu_to_le32((v)))
1667#define put_deh_dir_id(p_deh,v) ((p_deh)->deh_dir_id = cpu_to_le32((v)))
1668#define put_deh_objectid(p_deh,v) ((p_deh)->deh_objectid = cpu_to_le32((v)))
1669#define put_deh_location(p_deh,v) ((p_deh)->deh_location = cpu_to_le16((v)))
1670#define put_deh_state(p_deh,v) ((p_deh)->deh_state = cpu_to_le16((v)))
1671
1672/* empty directory contains two entries "." and ".." and their headers */
1673#define EMPTY_DIR_SIZE \
1674(DEH_SIZE * 2 + ROUND_UP (strlen (".")) + ROUND_UP (strlen ("..")))
1675
1676/* old format directories have this size when empty */
1677#define EMPTY_DIR_SIZE_V1 (DEH_SIZE * 2 + 3)
1678
1679#define DEH_Statdata 0 /* not used now */
1680#define DEH_Visible 2
1681
1682/* 64 bit systems (and the S/390) need to be aligned explicitly -jdm */
1683#if BITS_PER_LONG == 64 || defined(__s390__) || defined(__hppa__)
1684# define ADDR_UNALIGNED_BITS (3)
1685#endif
1686
1687/* These are only used to manipulate deh_state.
1688 * Because of this, we'll use the ext2_ bit routines,
1689 * since they are little endian */
1690#ifdef ADDR_UNALIGNED_BITS
1691
1692# define aligned_address(addr) ((void *)((long)(addr) & ~((1UL << ADDR_UNALIGNED_BITS) - 1)))
1693# define unaligned_offset(addr) (((int)((long)(addr) & ((1 << ADDR_UNALIGNED_BITS) - 1))) << 3)
1694
1695# define set_bit_unaligned(nr, addr) \
1696 __test_and_set_bit_le((nr) + unaligned_offset(addr), aligned_address(addr))
1697# define clear_bit_unaligned(nr, addr) \
1698 __test_and_clear_bit_le((nr) + unaligned_offset(addr), aligned_address(addr))
1699# define test_bit_unaligned(nr, addr) \
1700 test_bit_le((nr) + unaligned_offset(addr), aligned_address(addr))
1701
1702#else
1703
1704# define set_bit_unaligned(nr, addr) __test_and_set_bit_le(nr, addr)
1705# define clear_bit_unaligned(nr, addr) __test_and_clear_bit_le(nr, addr)
1706# define test_bit_unaligned(nr, addr) test_bit_le(nr, addr)
1707
1708#endif
1709
1710#define mark_de_with_sd(deh) set_bit_unaligned (DEH_Statdata, &((deh)->deh_state))
1711#define mark_de_without_sd(deh) clear_bit_unaligned (DEH_Statdata, &((deh)->deh_state))
1712#define mark_de_visible(deh) set_bit_unaligned (DEH_Visible, &((deh)->deh_state))
1713#define mark_de_hidden(deh) clear_bit_unaligned (DEH_Visible, &((deh)->deh_state))
1714
1715#define de_with_sd(deh) test_bit_unaligned (DEH_Statdata, &((deh)->deh_state))
1716#define de_visible(deh) test_bit_unaligned (DEH_Visible, &((deh)->deh_state))
1717#define de_hidden(deh) !test_bit_unaligned (DEH_Visible, &((deh)->deh_state))
1718
1719extern void make_empty_dir_item_v1(char *body, __le32 dirid, __le32 objid,
1720 __le32 par_dirid, __le32 par_objid);
1721extern void make_empty_dir_item(char *body, __le32 dirid, __le32 objid,
1722 __le32 par_dirid, __le32 par_objid);
1723
1724/* array of the entry headers */
1725 /* get item body */
1726#define B_I_PITEM(bh,ih) ( (bh)->b_data + ih_location(ih) )
1727#define B_I_DEH(bh,ih) ((struct reiserfs_de_head *)(B_I_PITEM(bh,ih)))
1728
1729/* length of the directory entry in directory item. This define
1730 calculates length of i-th directory entry using directory entry
1731 locations from dir entry head. When it calculates length of 0-th
1732 directory entry, it uses length of whole item in place of entry
1733 location of the non-existent following entry in the calculation.
1734 See picture above.*/
1735/*
1736#define I_DEH_N_ENTRY_LENGTH(ih,deh,i) \
1737((i) ? (deh_location((deh)-1) - deh_location((deh))) : (ih_item_len((ih)) - deh_location((deh))))
1738*/
1739static inline int entry_length(const struct buffer_head *bh,
1740 const struct item_head *ih, int pos_in_item)
1741{
1742 struct reiserfs_de_head *deh;
1743
1744 deh = B_I_DEH(bh, ih) + pos_in_item;
1745 if (pos_in_item)
1746 return deh_location(deh - 1) - deh_location(deh);
1747
1748 return ih_item_len(ih) - deh_location(deh);
1749}
1750
1751/* number of entries in the directory item, depends on ENTRY_COUNT being at the start of directory dynamic data. */
1752#define I_ENTRY_COUNT(ih) (ih_entry_count((ih)))
1753
1754/* name by bh, ih and entry_num */
1755#define B_I_E_NAME(bh,ih,entry_num) ((char *)(bh->b_data + ih_location(ih) + deh_location(B_I_DEH(bh,ih)+(entry_num))))
1756
1757// two entries per block (at least)
1758#define REISERFS_MAX_NAME(block_size) 255
1759
1760/* this structure is used for operations on directory entries. It is
1761 not a disk structure. */
1762/* When reiserfs_find_entry or search_by_entry_key find directory
1763 entry, they return filled reiserfs_dir_entry structure */
1764struct reiserfs_dir_entry {
1765 struct buffer_head *de_bh;
1766 int de_item_num;
1767 struct item_head *de_ih;
1768 int de_entry_num;
1769 struct reiserfs_de_head *de_deh;
1770 int de_entrylen;
1771 int de_namelen;
1772 char *de_name;
1773 unsigned long *de_gen_number_bit_string;
1774
1775 __u32 de_dir_id;
1776 __u32 de_objectid;
1777
1778 struct cpu_key de_entry_key;
1779};
1780
1781/* these defines are useful when a particular member of a reiserfs_dir_entry is needed */
1782
1783/* pointer to file name, stored in entry */
1784#define B_I_DEH_ENTRY_FILE_NAME(bh,ih,deh) (B_I_PITEM (bh, ih) + deh_location(deh))
1785
1786/* length of name */
1787#define I_DEH_N_ENTRY_FILE_NAME_LENGTH(ih,deh,entry_num) \
1788(I_DEH_N_ENTRY_LENGTH (ih, deh, entry_num) - (de_with_sd (deh) ? SD_SIZE : 0))
1789
1790/* hash value occupies bits from 7 up to 30 */
1791#define GET_HASH_VALUE(offset) ((offset) & 0x7fffff80LL)
1792/* generation number occupies 7 bits starting from 0 up to 6 */
1793#define GET_GENERATION_NUMBER(offset) ((offset) & 0x7fLL)
1794#define MAX_GENERATION_NUMBER 127
1795
1796#define SET_GENERATION_NUMBER(offset,gen_number) (GET_HASH_VALUE(offset)|(gen_number))
1797
1798/*
1799 * Picture represents an internal node of the reiserfs tree
1800 * ______________________________________________________
1801 * | | Array of | Array of | Free |
1802 * |block | keys | pointers | space |
1803 * | head | N | N+1 | |
1804 * |______|_______________|___________________|___________|
1805 */
1806
1807/***************************************************************************/
1808/* DISK CHILD */
1809/***************************************************************************/
1810/* Disk child pointer: The pointer from an internal node of the tree
1811 to a node that is on disk. */
1812struct disk_child {
1813 __le32 dc_block_number; /* Disk child's block number. */
1814 __le16 dc_size; /* Disk child's used space. */
1815 __le16 dc_reserved;
1816};
1817
1818#define DC_SIZE (sizeof(struct disk_child))
1819#define dc_block_number(dc_p) (le32_to_cpu((dc_p)->dc_block_number))
1820#define dc_size(dc_p) (le16_to_cpu((dc_p)->dc_size))
1821#define put_dc_block_number(dc_p, val) do { (dc_p)->dc_block_number = cpu_to_le32(val); } while(0)
1822#define put_dc_size(dc_p, val) do { (dc_p)->dc_size = cpu_to_le16(val); } while(0)
1823
1824/* Get disk child by buffer header and position in the tree node. */
1825#define B_N_CHILD(bh, n_pos) ((struct disk_child *)\
1826((bh)->b_data + BLKH_SIZE + B_NR_ITEMS(bh) * KEY_SIZE + DC_SIZE * (n_pos)))
1827
1828/* Get disk child number by buffer header and position in the tree node. */
1829#define B_N_CHILD_NUM(bh, n_pos) (dc_block_number(B_N_CHILD(bh, n_pos)))
1830#define PUT_B_N_CHILD_NUM(bh, n_pos, val) \
1831 (put_dc_block_number(B_N_CHILD(bh, n_pos), val))
1832
1833 /* maximal value of field child_size in structure disk_child */
1834 /* child size is the combined size of all items and their headers */
1835#define MAX_CHILD_SIZE(bh) ((int)( (bh)->b_size - BLKH_SIZE ))
1836
1837/* amount of used space in buffer (not including block head) */
1838#define B_CHILD_SIZE(cur) (MAX_CHILD_SIZE(cur)-(B_FREE_SPACE(cur)))
1839
1840/* max and min number of keys in internal node */
1841#define MAX_NR_KEY(bh) ( (MAX_CHILD_SIZE(bh)-DC_SIZE)/(KEY_SIZE+DC_SIZE) )
1842#define MIN_NR_KEY(bh) (MAX_NR_KEY(bh)/2)
1843
1844/***************************************************************************/
1845/* PATH STRUCTURES AND DEFINES */
1846/***************************************************************************/
1847
1848/* Search_by_key fills up the path from the root to the leaf as it descends the tree looking for the
1849 key. It uses reiserfs_bread to try to find buffers in the cache given their block number. If it
1850 does not find them in the cache it reads them from disk. For each node search_by_key finds using
1851 reiserfs_bread it then uses bin_search to look through that node. bin_search will find the
1852 position of the block_number of the next node if it is looking through an internal node. If it
1853 is looking through a leaf node bin_search will find the position of the item which has key either
1854 equal to given key, or which is the maximal key less than the given key. */
1855
1856struct path_element {
1857 struct buffer_head *pe_buffer; /* Pointer to the buffer at the path in the tree. */
1858 int pe_position; /* Position in the tree node which is placed in the */
1859 /* buffer above. */
1860};
1861
1862#define MAX_HEIGHT 5 /* maximal height of a tree. don't change this without changing JOURNAL_PER_BALANCE_CNT */
1863#define EXTENDED_MAX_HEIGHT 7 /* Must be equals MAX_HEIGHT + FIRST_PATH_ELEMENT_OFFSET */
1864#define FIRST_PATH_ELEMENT_OFFSET 2 /* Must be equal to at least 2. */
1865
1866#define ILLEGAL_PATH_ELEMENT_OFFSET 1 /* Must be equal to FIRST_PATH_ELEMENT_OFFSET - 1 */
1867#define MAX_FEB_SIZE 6 /* this MUST be MAX_HEIGHT + 1. See about FEB below */
1868
1869/* We need to keep track of who the ancestors of nodes are. When we
1870 perform a search we record which nodes were visited while
1871 descending the tree looking for the node we searched for. This list
1872 of nodes is called the path. This information is used while
1873 performing balancing. Note that this path information may become
1874 invalid, and this means we must check it when using it to see if it
1875 is still valid. You'll need to read search_by_key and the comments
1876 in it, especially about decrement_counters_in_path(), to understand
1877 this structure.
1878
1879Paths make the code so much harder to work with and debug.... An
1880enormous number of bugs are due to them, and trying to write or modify
1881code that uses them just makes my head hurt. They are based on an
1882excessive effort to avoid disturbing the precious VFS code.:-( The
1883gods only know how we are going to SMP the code that uses them.
1884znodes are the way! */
1885
1886#define PATH_READA 0x1 /* do read ahead */
1887#define PATH_READA_BACK 0x2 /* read backwards */
1888
1889struct treepath {
1890 int path_length; /* Length of the array above. */
1891 int reada;
1892 struct path_element path_elements[EXTENDED_MAX_HEIGHT]; /* Array of the path elements. */
1893 int pos_in_item;
1894};
1895
1896#define pos_in_item(path) ((path)->pos_in_item)
1897
1898#define INITIALIZE_PATH(var) \
1899struct treepath var = {.path_length = ILLEGAL_PATH_ELEMENT_OFFSET, .reada = 0,}
1900
1901/* Get path element by path and path position. */
1902#define PATH_OFFSET_PELEMENT(path, n_offset) ((path)->path_elements + (n_offset))
1903
1904/* Get buffer header at the path by path and path position. */
1905#define PATH_OFFSET_PBUFFER(path, n_offset) (PATH_OFFSET_PELEMENT(path, n_offset)->pe_buffer)
1906
1907/* Get position in the element at the path by path and path position. */
1908#define PATH_OFFSET_POSITION(path, n_offset) (PATH_OFFSET_PELEMENT(path, n_offset)->pe_position)
1909
1910#define PATH_PLAST_BUFFER(path) (PATH_OFFSET_PBUFFER((path), (path)->path_length))
1911 /* you know, to the person who didn't
1912 write this the macro name does not
1913 at first suggest what it does.
1914 Maybe POSITION_FROM_PATH_END? Or
1915 maybe we should just focus on
1916 dumping paths... -Hans */
1917#define PATH_LAST_POSITION(path) (PATH_OFFSET_POSITION((path), (path)->path_length))
1918
1919#define PATH_PITEM_HEAD(path) B_N_PITEM_HEAD(PATH_PLAST_BUFFER(path), PATH_LAST_POSITION(path))
1920
1921/* in do_balance leaf has h == 0 in contrast with path structure,
1922 where root has level == 0. That is why we need these defines */
1923#define PATH_H_PBUFFER(path, h) PATH_OFFSET_PBUFFER (path, path->path_length - (h)) /* tb->S[h] */
1924#define PATH_H_PPARENT(path, h) PATH_H_PBUFFER (path, (h) + 1) /* tb->F[h] or tb->S[0]->b_parent */
1925#define PATH_H_POSITION(path, h) PATH_OFFSET_POSITION (path, path->path_length - (h))
1926#define PATH_H_B_ITEM_ORDER(path, h) PATH_H_POSITION(path, h + 1) /* tb->S[h]->b_item_order */
1927
1928#define PATH_H_PATH_OFFSET(path, n_h) ((path)->path_length - (n_h))
1929
1930#define get_last_bh(path) PATH_PLAST_BUFFER(path)
1931#define get_ih(path) PATH_PITEM_HEAD(path)
1932#define get_item_pos(path) PATH_LAST_POSITION(path)
1933#define get_item(path) ((void *)B_N_PITEM(PATH_PLAST_BUFFER(path), PATH_LAST_POSITION (path)))
1934#define item_moved(ih,path) comp_items(ih, path)
1935#define path_changed(ih,path) comp_items (ih, path)
1936
1937/***************************************************************************/
1938/* MISC */
1939/***************************************************************************/
1940
1941/* Size of pointer to the unformatted node. */
1942#define UNFM_P_SIZE (sizeof(unp_t))
1943#define UNFM_P_SHIFT 2
1944
1945// in in-core inode key is stored on le form
1946#define INODE_PKEY(inode) ((struct reiserfs_key *)(REISERFS_I(inode)->i_key))
1947
1948#define MAX_UL_INT 0xffffffff
1949#define MAX_INT 0x7ffffff
1950#define MAX_US_INT 0xffff
1951
1952// reiserfs version 2 has max offset 60 bits. Version 1 - 32 bit offset
1953#define U32_MAX (~(__u32)0)
1954
1955static inline loff_t max_reiserfs_offset(struct inode *inode)
1956{
1957 if (get_inode_item_key_version(inode) == KEY_FORMAT_3_5)
1958 return (loff_t) U32_MAX;
1959
1960 return (loff_t) ((~(__u64) 0) >> 4);
1961}
1962
1963/*#define MAX_KEY_UNIQUENESS MAX_UL_INT*/
1964#define MAX_KEY_OBJECTID MAX_UL_INT
1965
1966#define MAX_B_NUM MAX_UL_INT
1967#define MAX_FC_NUM MAX_US_INT
1968
1969/* the purpose is to detect overflow of an unsigned short */
1970#define REISERFS_LINK_MAX (MAX_US_INT - 1000)
1971
1972/* The following defines are used in reiserfs_insert_item and reiserfs_append_item */
1973#define REISERFS_KERNEL_MEM 0 /* reiserfs kernel memory mode */
1974#define REISERFS_USER_MEM 1 /* reiserfs user memory mode */
1975
1976#define fs_generation(s) (REISERFS_SB(s)->s_generation_counter)
1977#define get_generation(s) atomic_read (&fs_generation(s))
1978#define FILESYSTEM_CHANGED_TB(tb) (get_generation((tb)->tb_sb) != (tb)->fs_gen)
1979#define __fs_changed(gen,s) (gen != get_generation (s))
1980#define fs_changed(gen,s) \
1981({ \
1982 reiserfs_cond_resched(s); \
1983 __fs_changed(gen, s); \
1984})
1985
1986/***************************************************************************/
1987/* FIXATE NODES */
1988/***************************************************************************/
1989
1990#define VI_TYPE_LEFT_MERGEABLE 1
1991#define VI_TYPE_RIGHT_MERGEABLE 2
1992
1993/* To make any changes in the tree we always first find node, that
1994 contains item to be changed/deleted or place to insert a new
1995 item. We call this node S. To do balancing we need to decide what
1996 we will shift to left/right neighbor, or to a new node, where new
1997 item will be etc. To make this analysis simpler we build virtual
1998 node. Virtual node is an array of items, that will replace items of
1999 node S. (For instance if we are going to delete an item, virtual
2000 node does not contain it). Virtual node keeps information about
2001 item sizes and types, mergeability of first and last items, sizes
2002 of all entries in directory item. We use this array of items when
2003 calculating what we can shift to neighbors and how many nodes we
2004 have to have if we do not any shiftings, if we shift to left/right
2005 neighbor or to both. */
2006struct virtual_item {
2007 int vi_index; // index in the array of item operations
2008 unsigned short vi_type; // left/right mergeability
2009 unsigned short vi_item_len; /* length of item that it will have after balancing */
2010 struct item_head *vi_ih;
2011 const char *vi_item; // body of item (old or new)
2012 const void *vi_new_data; // 0 always but paste mode
2013 void *vi_uarea; // item specific area
2014};
2015
2016struct virtual_node {
2017 char *vn_free_ptr; /* this is a pointer to the free space in the buffer */
2018 unsigned short vn_nr_item; /* number of items in virtual node */
2019 short vn_size; /* size of node , that node would have if it has unlimited size and no balancing is performed */
2020 short vn_mode; /* mode of balancing (paste, insert, delete, cut) */
2021 short vn_affected_item_num;
2022 short vn_pos_in_item;
2023 struct item_head *vn_ins_ih; /* item header of inserted item, 0 for other modes */
2024 const void *vn_data;
2025 struct virtual_item *vn_vi; /* array of items (including a new one, excluding item to be deleted) */
2026};
2027
2028/* used by directory items when creating virtual nodes */
2029struct direntry_uarea {
2030 int flags;
2031 __u16 entry_count;
2032 __u16 entry_sizes[1];
2033} __attribute__ ((__packed__));
2034
2035/***************************************************************************/
2036/* TREE BALANCE */
2037/***************************************************************************/
2038
2039/* This temporary structure is used in tree balance algorithms, and
2040 constructed as we go to the extent that its various parts are
2041 needed. It contains arrays of nodes that can potentially be
2042 involved in the balancing of node S, and parameters that define how
2043 each of the nodes must be balanced. Note that in these algorithms
2044 for balancing the worst case is to need to balance the current node
2045 S and the left and right neighbors and all of their parents plus
2046 create a new node. We implement S1 balancing for the leaf nodes
2047 and S0 balancing for the internal nodes (S1 and S0 are defined in
2048 our papers.)*/
2049
2050#define MAX_FREE_BLOCK 7 /* size of the array of buffers to free at end of do_balance */
2051
2052/* maximum number of FEB blocknrs on a single level */
2053#define MAX_AMOUNT_NEEDED 2
2054
2055/* someday somebody will prefix every field in this struct with tb_ */
2056struct tree_balance {
2057 int tb_mode;
2058 int need_balance_dirty;
2059 struct super_block *tb_sb;
2060 struct reiserfs_transaction_handle *transaction_handle;
2061 struct treepath *tb_path;
2062 struct buffer_head *L[MAX_HEIGHT]; /* array of left neighbors of nodes in the path */
2063 struct buffer_head *R[MAX_HEIGHT]; /* array of right neighbors of nodes in the path */
2064 struct buffer_head *FL[MAX_HEIGHT]; /* array of fathers of the left neighbors */
2065 struct buffer_head *FR[MAX_HEIGHT]; /* array of fathers of the right neighbors */
2066 struct buffer_head *CFL[MAX_HEIGHT]; /* array of common parents of center node and its left neighbor */
2067 struct buffer_head *CFR[MAX_HEIGHT]; /* array of common parents of center node and its right neighbor */
2068
2069 struct buffer_head *FEB[MAX_FEB_SIZE]; /* array of empty buffers. Number of buffers in array equals
2070 cur_blknum. */
2071 struct buffer_head *used[MAX_FEB_SIZE];
2072 struct buffer_head *thrown[MAX_FEB_SIZE];
2073 int lnum[MAX_HEIGHT]; /* array of number of items which must be
2074 shifted to the left in order to balance the
2075 current node; for leaves includes item that
2076 will be partially shifted; for internal
2077 nodes, it is the number of child pointers
2078 rather than items. It includes the new item
2079 being created. The code sometimes subtracts
2080 one to get the number of wholly shifted
2081 items for other purposes. */
2082 int rnum[MAX_HEIGHT]; /* substitute right for left in comment above */
2083 int lkey[MAX_HEIGHT]; /* array indexed by height h mapping the key delimiting L[h] and
2084 S[h] to its item number within the node CFL[h] */
2085 int rkey[MAX_HEIGHT]; /* substitute r for l in comment above */
2086 int insert_size[MAX_HEIGHT]; /* the number of bytes by we are trying to add or remove from
2087 S[h]. A negative value means removing. */
2088 int blknum[MAX_HEIGHT]; /* number of nodes that will replace node S[h] after
2089 balancing on the level h of the tree. If 0 then S is
2090 being deleted, if 1 then S is remaining and no new nodes
2091 are being created, if 2 or 3 then 1 or 2 new nodes is
2092 being created */
2093
2094 /* fields that are used only for balancing leaves of the tree */
2095 int cur_blknum; /* number of empty blocks having been already allocated */
2096 int s0num; /* number of items that fall into left most node when S[0] splits */
2097 int s1num; /* number of items that fall into first new node when S[0] splits */
2098 int s2num; /* number of items that fall into second new node when S[0] splits */
2099 int lbytes; /* number of bytes which can flow to the left neighbor from the left */
2100 /* most liquid item that cannot be shifted from S[0] entirely */
2101 /* if -1 then nothing will be partially shifted */
2102 int rbytes; /* number of bytes which will flow to the right neighbor from the right */
2103 /* most liquid item that cannot be shifted from S[0] entirely */
2104 /* if -1 then nothing will be partially shifted */
2105 int s1bytes; /* number of bytes which flow to the first new node when S[0] splits */
2106 /* note: if S[0] splits into 3 nodes, then items do not need to be cut */
2107 int s2bytes;
2108 struct buffer_head *buf_to_free[MAX_FREE_BLOCK]; /* buffers which are to be freed after do_balance finishes by unfix_nodes */
2109 char *vn_buf; /* kmalloced memory. Used to create
2110 virtual node and keep map of
2111 dirtied bitmap blocks */
2112 int vn_buf_size; /* size of the vn_buf */
2113 struct virtual_node *tb_vn; /* VN starts after bitmap of bitmap blocks */
2114
2115 int fs_gen; /* saved value of `reiserfs_generation' counter
2116 see FILESYSTEM_CHANGED() macro in reiserfs_fs.h */
2117#ifdef DISPLACE_NEW_PACKING_LOCALITIES
2118 struct in_core_key key; /* key pointer, to pass to block allocator or
2119 another low-level subsystem */
2120#endif
2121};
2122
2123/* These are modes of balancing */
2124
2125/* When inserting an item. */
2126#define M_INSERT 'i'
2127/* When inserting into (directories only) or appending onto an already
2128 existent item. */
2129#define M_PASTE 'p'
2130/* When deleting an item. */
2131#define M_DELETE 'd'
2132/* When truncating an item or removing an entry from a (directory) item. */
2133#define M_CUT 'c'
2134
2135/* used when balancing on leaf level skipped (in reiserfsck) */
2136#define M_INTERNAL 'n'
2137
2138/* When further balancing is not needed, then do_balance does not need
2139 to be called. */
2140#define M_SKIP_BALANCING 's'
2141#define M_CONVERT 'v'
2142
2143/* modes of leaf_move_items */
2144#define LEAF_FROM_S_TO_L 0
2145#define LEAF_FROM_S_TO_R 1
2146#define LEAF_FROM_R_TO_L 2
2147#define LEAF_FROM_L_TO_R 3
2148#define LEAF_FROM_S_TO_SNEW 4
2149
2150#define FIRST_TO_LAST 0
2151#define LAST_TO_FIRST 1
2152
2153/* used in do_balance for passing parent of node information that has
2154 been gotten from tb struct */
2155struct buffer_info {
2156 struct tree_balance *tb;
2157 struct buffer_head *bi_bh;
2158 struct buffer_head *bi_parent;
2159 int bi_position;
2160};
2161
2162static inline struct super_block *sb_from_tb(struct tree_balance *tb)
2163{
2164 return tb ? tb->tb_sb : NULL;
2165}
2166
2167static inline struct super_block *sb_from_bi(struct buffer_info *bi)
2168{
2169 return bi ? sb_from_tb(bi->tb) : NULL;
2170}
2171
2172/* there are 4 types of items: stat data, directory item, indirect, direct.
2173+-------------------+------------+--------------+------------+
2174| | k_offset | k_uniqueness | mergeable? |
2175+-------------------+------------+--------------+------------+
2176| stat data | 0 | 0 | no |
2177+-------------------+------------+--------------+------------+
2178| 1st directory item| DOT_OFFSET |DIRENTRY_UNIQUENESS| no |
2179| non 1st directory | hash value | | yes |
2180| item | | | |
2181+-------------------+------------+--------------+------------+
2182| indirect item | offset + 1 |TYPE_INDIRECT | if this is not the first indirect item of the object
2183+-------------------+------------+--------------+------------+
2184| direct item | offset + 1 |TYPE_DIRECT | if not this is not the first direct item of the object
2185+-------------------+------------+--------------+------------+
2186*/
2187
2188struct item_operations {
2189 int (*bytes_number) (struct item_head * ih, int block_size);
2190 void (*decrement_key) (struct cpu_key *);
2191 int (*is_left_mergeable) (struct reiserfs_key * ih,
2192 unsigned long bsize);
2193 void (*print_item) (struct item_head *, char *item);
2194 void (*check_item) (struct item_head *, char *item);
2195
2196 int (*create_vi) (struct virtual_node * vn, struct virtual_item * vi,
2197 int is_affected, int insert_size);
2198 int (*check_left) (struct virtual_item * vi, int free,
2199 int start_skip, int end_skip);
2200 int (*check_right) (struct virtual_item * vi, int free);
2201 int (*part_size) (struct virtual_item * vi, int from, int to);
2202 int (*unit_num) (struct virtual_item * vi);
2203 void (*print_vi) (struct virtual_item * vi);
2204};
2205
2206extern struct item_operations *item_ops[TYPE_ANY + 1];
2207
2208#define op_bytes_number(ih,bsize) item_ops[le_ih_k_type (ih)]->bytes_number (ih, bsize)
2209#define op_is_left_mergeable(key,bsize) item_ops[le_key_k_type (le_key_version (key), key)]->is_left_mergeable (key, bsize)
2210#define op_print_item(ih,item) item_ops[le_ih_k_type (ih)]->print_item (ih, item)
2211#define op_check_item(ih,item) item_ops[le_ih_k_type (ih)]->check_item (ih, item)
2212#define op_create_vi(vn,vi,is_affected,insert_size) item_ops[le_ih_k_type ((vi)->vi_ih)]->create_vi (vn,vi,is_affected,insert_size)
2213#define op_check_left(vi,free,start_skip,end_skip) item_ops[(vi)->vi_index]->check_left (vi, free, start_skip, end_skip)
2214#define op_check_right(vi,free) item_ops[(vi)->vi_index]->check_right (vi, free)
2215#define op_part_size(vi,from,to) item_ops[(vi)->vi_index]->part_size (vi, from, to)
2216#define op_unit_num(vi) item_ops[(vi)->vi_index]->unit_num (vi)
2217#define op_print_vi(vi) item_ops[(vi)->vi_index]->print_vi (vi)
2218
2219#define COMP_SHORT_KEYS comp_short_keys
2220
2221/* number of blocks pointed to by the indirect item */
2222#define I_UNFM_NUM(ih) (ih_item_len(ih) / UNFM_P_SIZE)
2223
2224/* the used space within the unformatted node corresponding to pos within the item pointed to by ih */
2225#define I_POS_UNFM_SIZE(ih,pos,size) (((pos) == I_UNFM_NUM(ih) - 1 ) ? (size) - ih_free_space(ih) : (size))
2226
2227/* number of bytes contained by the direct item or the unformatted nodes the indirect item points to */
2228
2229/* get the item header */
2230#define B_N_PITEM_HEAD(bh,item_num) ( (struct item_head * )((bh)->b_data + BLKH_SIZE) + (item_num) )
2231
2232/* get key */
2233#define B_N_PDELIM_KEY(bh,item_num) ( (struct reiserfs_key * )((bh)->b_data + BLKH_SIZE) + (item_num) )
2234
2235/* get the key */
2236#define B_N_PKEY(bh,item_num) ( &(B_N_PITEM_HEAD(bh,item_num)->ih_key) )
2237
2238/* get item body */
2239#define B_N_PITEM(bh,item_num) ( (bh)->b_data + ih_location(B_N_PITEM_HEAD((bh),(item_num))))
2240
2241/* get the stat data by the buffer header and the item order */
2242#define B_N_STAT_DATA(bh,nr) \
2243( (struct stat_data *)((bh)->b_data + ih_location(B_N_PITEM_HEAD((bh),(nr))) ) )
2244
2245 /* following defines use reiserfs buffer header and item header */
2246
2247/* get stat-data */
2248#define B_I_STAT_DATA(bh, ih) ( (struct stat_data * )((bh)->b_data + ih_location(ih)) )
2249
2250// this is 3976 for size==4096
2251#define MAX_DIRECT_ITEM_LEN(size) ((size) - BLKH_SIZE - 2*IH_SIZE - SD_SIZE - UNFM_P_SIZE)
2252
2253/* indirect items consist of entries which contain blocknrs, pos
2254 indicates which entry, and B_I_POS_UNFM_POINTER resolves to the
2255 blocknr contained by the entry pos points to */
2256#define B_I_POS_UNFM_POINTER(bh,ih,pos) le32_to_cpu(*(((unp_t *)B_I_PITEM(bh,ih)) + (pos)))
2257#define PUT_B_I_POS_UNFM_POINTER(bh,ih,pos, val) do {*(((unp_t *)B_I_PITEM(bh,ih)) + (pos)) = cpu_to_le32(val); } while (0)
2258
2259struct reiserfs_iget_args {
2260 __u32 objectid;
2261 __u32 dirid;
2262};
2263
2264/***************************************************************************/
2265/* FUNCTION DECLARATIONS */
2266/***************************************************************************/
2267
2268#define get_journal_desc_magic(bh) (bh->b_data + bh->b_size - 12)
2269
2270#define journal_trans_half(blocksize) \
2271 ((blocksize - sizeof (struct reiserfs_journal_desc) + sizeof (__u32) - 12) / sizeof (__u32))
2272
2273/* journal.c see journal.c for all the comments here */
2274
2275/* first block written in a commit. */
2276struct reiserfs_journal_desc {
2277 __le32 j_trans_id; /* id of commit */
2278 __le32 j_len; /* length of commit. len +1 is the commit block */
2279 __le32 j_mount_id; /* mount id of this trans */
2280 __le32 j_realblock[1]; /* real locations for each block */
2281};
2282
2283#define get_desc_trans_id(d) le32_to_cpu((d)->j_trans_id)
2284#define get_desc_trans_len(d) le32_to_cpu((d)->j_len)
2285#define get_desc_mount_id(d) le32_to_cpu((d)->j_mount_id)
2286
2287#define set_desc_trans_id(d,val) do { (d)->j_trans_id = cpu_to_le32 (val); } while (0)
2288#define set_desc_trans_len(d,val) do { (d)->j_len = cpu_to_le32 (val); } while (0)
2289#define set_desc_mount_id(d,val) do { (d)->j_mount_id = cpu_to_le32 (val); } while (0)
2290
2291/* last block written in a commit */
2292struct reiserfs_journal_commit {
2293 __le32 j_trans_id; /* must match j_trans_id from the desc block */
2294 __le32 j_len; /* ditto */
2295 __le32 j_realblock[1]; /* real locations for each block */
2296};
2297
2298#define get_commit_trans_id(c) le32_to_cpu((c)->j_trans_id)
2299#define get_commit_trans_len(c) le32_to_cpu((c)->j_len)
2300#define get_commit_mount_id(c) le32_to_cpu((c)->j_mount_id)
2301
2302#define set_commit_trans_id(c,val) do { (c)->j_trans_id = cpu_to_le32 (val); } while (0)
2303#define set_commit_trans_len(c,val) do { (c)->j_len = cpu_to_le32 (val); } while (0)
2304
2305/* this header block gets written whenever a transaction is considered fully flushed, and is more recent than the
2306** last fully flushed transaction. fully flushed means all the log blocks and all the real blocks are on disk,
2307** and this transaction does not need to be replayed.
2308*/
2309struct reiserfs_journal_header {
2310 __le32 j_last_flush_trans_id; /* id of last fully flushed transaction */
2311 __le32 j_first_unflushed_offset; /* offset in the log of where to start replay after a crash */
2312 __le32 j_mount_id;
2313 /* 12 */ struct journal_params jh_journal;
2314};
2315
2316/* biggest tunable defines are right here */
2317#define JOURNAL_BLOCK_COUNT 8192 /* number of blocks in the journal */
2318#define JOURNAL_TRANS_MAX_DEFAULT 1024 /* biggest possible single transaction, don't change for now (8/3/99) */
2319#define JOURNAL_TRANS_MIN_DEFAULT 256
2320#define JOURNAL_MAX_BATCH_DEFAULT 900 /* max blocks to batch into one transaction, don't make this any bigger than 900 */
2321#define JOURNAL_MIN_RATIO 2
2322#define JOURNAL_MAX_COMMIT_AGE 30
2323#define JOURNAL_MAX_TRANS_AGE 30
2324#define JOURNAL_PER_BALANCE_CNT (3 * (MAX_HEIGHT-2) + 9)
2325#define JOURNAL_BLOCKS_PER_OBJECT(sb) (JOURNAL_PER_BALANCE_CNT * 3 + \
2326 2 * (REISERFS_QUOTA_INIT_BLOCKS(sb) + \
2327 REISERFS_QUOTA_TRANS_BLOCKS(sb)))
2328
2329#ifdef CONFIG_QUOTA
2330#define REISERFS_QUOTA_OPTS ((1 << REISERFS_USRQUOTA) | (1 << REISERFS_GRPQUOTA))
2331/* We need to update data and inode (atime) */
2332#define REISERFS_QUOTA_TRANS_BLOCKS(s) (REISERFS_SB(s)->s_mount_opt & REISERFS_QUOTA_OPTS ? 2 : 0)
2333/* 1 balancing, 1 bitmap, 1 data per write + stat data update */
2334#define REISERFS_QUOTA_INIT_BLOCKS(s) (REISERFS_SB(s)->s_mount_opt & REISERFS_QUOTA_OPTS ? \
2335(DQUOT_INIT_ALLOC*(JOURNAL_PER_BALANCE_CNT+2)+DQUOT_INIT_REWRITE+1) : 0)
2336/* same as with INIT */
2337#define REISERFS_QUOTA_DEL_BLOCKS(s) (REISERFS_SB(s)->s_mount_opt & REISERFS_QUOTA_OPTS ? \
2338(DQUOT_DEL_ALLOC*(JOURNAL_PER_BALANCE_CNT+2)+DQUOT_DEL_REWRITE+1) : 0)
2339#else
2340#define REISERFS_QUOTA_TRANS_BLOCKS(s) 0
2341#define REISERFS_QUOTA_INIT_BLOCKS(s) 0
2342#define REISERFS_QUOTA_DEL_BLOCKS(s) 0
2343#endif
2344
2345/* both of these can be as low as 1, or as high as you want. The min is the
2346** number of 4k bitmap nodes preallocated on mount. New nodes are allocated
2347** as needed, and released when transactions are committed. On release, if
2348** the current number of nodes is > max, the node is freed, otherwise,
2349** it is put on a free list for faster use later.
2350*/
2351#define REISERFS_MIN_BITMAP_NODES 10
2352#define REISERFS_MAX_BITMAP_NODES 100
2353
2354#define JBH_HASH_SHIFT 13 /* these are based on journal hash size of 8192 */
2355#define JBH_HASH_MASK 8191
2356
2357#define _jhashfn(sb,block) \
2358 (((unsigned long)sb>>L1_CACHE_SHIFT) ^ \
2359 (((block)<<(JBH_HASH_SHIFT - 6)) ^ ((block) >> 13) ^ ((block) << (JBH_HASH_SHIFT - 12))))
2360#define journal_hash(t,sb,block) ((t)[_jhashfn((sb),(block)) & JBH_HASH_MASK])
2361
2362// We need these to make journal.c code more readable
2363#define journal_find_get_block(s, block) __find_get_block(SB_JOURNAL(s)->j_dev_bd, block, s->s_blocksize)
2364#define journal_getblk(s, block) __getblk(SB_JOURNAL(s)->j_dev_bd, block, s->s_blocksize)
2365#define journal_bread(s, block) __bread(SB_JOURNAL(s)->j_dev_bd, block, s->s_blocksize)
2366
2367enum reiserfs_bh_state_bits {
2368 BH_JDirty = BH_PrivateStart, /* buffer is in current transaction */
2369 BH_JDirty_wait,
2370 BH_JNew, /* disk block was taken off free list before
2371 * being in a finished transaction, or
2372 * written to disk. Can be reused immed. */
2373 BH_JPrepared,
2374 BH_JRestore_dirty,
2375 BH_JTest, // debugging only will go away
2376};
2377
2378BUFFER_FNS(JDirty, journaled);
2379TAS_BUFFER_FNS(JDirty, journaled);
2380BUFFER_FNS(JDirty_wait, journal_dirty);
2381TAS_BUFFER_FNS(JDirty_wait, journal_dirty);
2382BUFFER_FNS(JNew, journal_new);
2383TAS_BUFFER_FNS(JNew, journal_new);
2384BUFFER_FNS(JPrepared, journal_prepared);
2385TAS_BUFFER_FNS(JPrepared, journal_prepared);
2386BUFFER_FNS(JRestore_dirty, journal_restore_dirty);
2387TAS_BUFFER_FNS(JRestore_dirty, journal_restore_dirty);
2388BUFFER_FNS(JTest, journal_test);
2389TAS_BUFFER_FNS(JTest, journal_test);
2390
2391/*
2392** transaction handle which is passed around for all journal calls
2393*/
2394struct reiserfs_transaction_handle {
2395 struct super_block *t_super; /* super for this FS when journal_begin was
2396 called. saves calls to reiserfs_get_super
2397 also used by nested transactions to make
2398 sure they are nesting on the right FS
2399 _must_ be first in the handle
2400 */
2401 int t_refcount;
2402 int t_blocks_logged; /* number of blocks this writer has logged */
2403 int t_blocks_allocated; /* number of blocks this writer allocated */
2404 unsigned int t_trans_id; /* sanity check, equals the current trans id */
2405 void *t_handle_save; /* save existing current->journal_info */
2406 unsigned displace_new_blocks:1; /* if new block allocation occurres, that block
2407 should be displaced from others */
2408 struct list_head t_list;
2409};
2410
2411/* used to keep track of ordered and tail writes, attached to the buffer
2412 * head through b_journal_head.
2413 */
2414struct reiserfs_jh {
2415 struct reiserfs_journal_list *jl;
2416 struct buffer_head *bh;
2417 struct list_head list;
2418};
2419
2420void reiserfs_free_jh(struct buffer_head *bh);
2421int reiserfs_add_tail_list(struct inode *inode, struct buffer_head *bh);
2422int reiserfs_add_ordered_list(struct inode *inode, struct buffer_head *bh);
2423int journal_mark_dirty(struct reiserfs_transaction_handle *,
2424 struct super_block *, struct buffer_head *bh);
2425
2426static inline int reiserfs_file_data_log(struct inode *inode)
2427{
2428 if (reiserfs_data_log(inode->i_sb) ||
2429 (REISERFS_I(inode)->i_flags & i_data_log))
2430 return 1;
2431 return 0;
2432}
2433
2434static inline int reiserfs_transaction_running(struct super_block *s)
2435{
2436 struct reiserfs_transaction_handle *th = current->journal_info;
2437 if (th && th->t_super == s)
2438 return 1;
2439 if (th && th->t_super == NULL)
2440 BUG();
2441 return 0;
2442}
2443
2444static inline int reiserfs_transaction_free_space(struct reiserfs_transaction_handle *th)
2445{
2446 return th->t_blocks_allocated - th->t_blocks_logged;
2447}
2448
2449struct reiserfs_transaction_handle *reiserfs_persistent_transaction(struct
2450 super_block
2451 *,
2452 int count);
2453int reiserfs_end_persistent_transaction(struct reiserfs_transaction_handle *);
Marco Stornellicfac4b42012-12-15 11:47:31 +01002454void reiserfs_vfs_truncate_file(struct inode *inode);
Al Virof466c6f2012-03-17 01:16:43 -04002455int reiserfs_commit_page(struct inode *inode, struct page *page,
2456 unsigned from, unsigned to);
Artem Bityutskiy25729b02012-06-01 17:18:05 +03002457void reiserfs_flush_old_commits(struct super_block *);
Al Virof466c6f2012-03-17 01:16:43 -04002458int reiserfs_commit_for_inode(struct inode *);
2459int reiserfs_inode_needs_commit(struct inode *);
2460void reiserfs_update_inode_transaction(struct inode *);
2461void reiserfs_wait_on_write_block(struct super_block *s);
2462void reiserfs_block_writes(struct reiserfs_transaction_handle *th);
2463void reiserfs_allow_writes(struct super_block *s);
2464void reiserfs_check_lock_depth(struct super_block *s, char *caller);
2465int reiserfs_prepare_for_journal(struct super_block *, struct buffer_head *bh,
2466 int wait);
2467void reiserfs_restore_prepared_buffer(struct super_block *,
2468 struct buffer_head *bh);
2469int journal_init(struct super_block *, const char *j_dev_name, int old_format,
2470 unsigned int);
2471int journal_release(struct reiserfs_transaction_handle *, struct super_block *);
2472int journal_release_error(struct reiserfs_transaction_handle *,
2473 struct super_block *);
2474int journal_end(struct reiserfs_transaction_handle *, struct super_block *,
2475 unsigned long);
2476int journal_end_sync(struct reiserfs_transaction_handle *, struct super_block *,
2477 unsigned long);
2478int journal_mark_freed(struct reiserfs_transaction_handle *,
2479 struct super_block *, b_blocknr_t blocknr);
2480int journal_transaction_should_end(struct reiserfs_transaction_handle *, int);
2481int reiserfs_in_journal(struct super_block *sb, unsigned int bmap_nr,
2482 int bit_nr, int searchall, b_blocknr_t *next);
2483int journal_begin(struct reiserfs_transaction_handle *,
2484 struct super_block *sb, unsigned long);
2485int journal_join_abort(struct reiserfs_transaction_handle *,
2486 struct super_block *sb, unsigned long);
2487void reiserfs_abort_journal(struct super_block *sb, int errno);
2488void reiserfs_abort(struct super_block *sb, int errno, const char *fmt, ...);
2489int reiserfs_allocate_list_bitmaps(struct super_block *s,
2490 struct reiserfs_list_bitmap *, unsigned int);
2491
Artem Bityutskiy033369d2012-06-01 17:18:08 +03002492void reiserfs_schedule_old_flush(struct super_block *s);
Al Virof466c6f2012-03-17 01:16:43 -04002493void add_save_link(struct reiserfs_transaction_handle *th,
2494 struct inode *inode, int truncate);
2495int remove_save_link(struct inode *inode, int truncate);
2496
2497/* objectid.c */
2498__u32 reiserfs_get_unused_objectid(struct reiserfs_transaction_handle *th);
2499void reiserfs_release_objectid(struct reiserfs_transaction_handle *th,
2500 __u32 objectid_to_release);
2501int reiserfs_convert_objectid_map_v1(struct super_block *);
2502
2503/* stree.c */
2504int B_IS_IN_TREE(const struct buffer_head *);
2505extern void copy_item_head(struct item_head *to,
2506 const struct item_head *from);
2507
2508// first key is in cpu form, second - le
2509extern int comp_short_keys(const struct reiserfs_key *le_key,
2510 const struct cpu_key *cpu_key);
2511extern void le_key2cpu_key(struct cpu_key *to, const struct reiserfs_key *from);
2512
2513// both are in le form
2514extern int comp_le_keys(const struct reiserfs_key *,
2515 const struct reiserfs_key *);
2516extern int comp_short_le_keys(const struct reiserfs_key *,
2517 const struct reiserfs_key *);
2518
2519//
2520// get key version from on disk key - kludge
2521//
2522static inline int le_key_version(const struct reiserfs_key *key)
2523{
2524 int type;
2525
2526 type = offset_v2_k_type(&(key->u.k_offset_v2));
2527 if (type != TYPE_DIRECT && type != TYPE_INDIRECT
2528 && type != TYPE_DIRENTRY)
2529 return KEY_FORMAT_3_5;
2530
2531 return KEY_FORMAT_3_6;
2532
2533}
2534
2535static inline void copy_key(struct reiserfs_key *to,
2536 const struct reiserfs_key *from)
2537{
2538 memcpy(to, from, KEY_SIZE);
2539}
2540
2541int comp_items(const struct item_head *stored_ih, const struct treepath *path);
2542const struct reiserfs_key *get_rkey(const struct treepath *chk_path,
2543 const struct super_block *sb);
2544int search_by_key(struct super_block *, const struct cpu_key *,
2545 struct treepath *, int);
2546#define search_item(s,key,path) search_by_key (s, key, path, DISK_LEAF_NODE_LEVEL)
2547int search_for_position_by_key(struct super_block *sb,
2548 const struct cpu_key *cpu_key,
2549 struct treepath *search_path);
2550extern void decrement_bcount(struct buffer_head *bh);
2551void decrement_counters_in_path(struct treepath *search_path);
2552void pathrelse(struct treepath *search_path);
2553int reiserfs_check_path(struct treepath *p);
2554void pathrelse_and_restore(struct super_block *s, struct treepath *search_path);
2555
2556int reiserfs_insert_item(struct reiserfs_transaction_handle *th,
2557 struct treepath *path,
2558 const struct cpu_key *key,
2559 struct item_head *ih,
2560 struct inode *inode, const char *body);
2561
2562int reiserfs_paste_into_item(struct reiserfs_transaction_handle *th,
2563 struct treepath *path,
2564 const struct cpu_key *key,
2565 struct inode *inode,
2566 const char *body, int paste_size);
2567
2568int reiserfs_cut_from_item(struct reiserfs_transaction_handle *th,
2569 struct treepath *path,
2570 struct cpu_key *key,
2571 struct inode *inode,
2572 struct page *page, loff_t new_file_size);
2573
2574int reiserfs_delete_item(struct reiserfs_transaction_handle *th,
2575 struct treepath *path,
2576 const struct cpu_key *key,
2577 struct inode *inode, struct buffer_head *un_bh);
2578
2579void reiserfs_delete_solid_item(struct reiserfs_transaction_handle *th,
2580 struct inode *inode, struct reiserfs_key *key);
2581int reiserfs_delete_object(struct reiserfs_transaction_handle *th,
2582 struct inode *inode);
2583int reiserfs_do_truncate(struct reiserfs_transaction_handle *th,
2584 struct inode *inode, struct page *,
2585 int update_timestamps);
2586
2587#define i_block_size(inode) ((inode)->i_sb->s_blocksize)
2588#define file_size(inode) ((inode)->i_size)
2589#define tail_size(inode) (file_size (inode) & (i_block_size (inode) - 1))
2590
2591#define tail_has_to_be_packed(inode) (have_large_tails ((inode)->i_sb)?\
2592!STORE_TAIL_IN_UNFM_S1(file_size (inode), tail_size(inode), inode->i_sb->s_blocksize):have_small_tails ((inode)->i_sb)?!STORE_TAIL_IN_UNFM_S2(file_size (inode), tail_size(inode), inode->i_sb->s_blocksize):0 )
2593
2594void padd_item(char *item, int total_length, int length);
2595
2596/* inode.c */
2597/* args for the create parameter of reiserfs_get_block */
2598#define GET_BLOCK_NO_CREATE 0 /* don't create new blocks or convert tails */
2599#define GET_BLOCK_CREATE 1 /* add anything you need to find block */
2600#define GET_BLOCK_NO_HOLE 2 /* return -ENOENT for file holes */
2601#define GET_BLOCK_READ_DIRECT 4 /* read the tail if indirect item not found */
2602#define GET_BLOCK_NO_IMUX 8 /* i_mutex is not held, don't preallocate */
2603#define GET_BLOCK_NO_DANGLE 16 /* don't leave any transactions running */
2604
2605void reiserfs_read_locked_inode(struct inode *inode,
2606 struct reiserfs_iget_args *args);
2607int reiserfs_find_actor(struct inode *inode, void *p);
2608int reiserfs_init_locked_inode(struct inode *inode, void *p);
2609void reiserfs_evict_inode(struct inode *inode);
2610int reiserfs_write_inode(struct inode *inode, struct writeback_control *wbc);
2611int reiserfs_get_block(struct inode *inode, sector_t block,
2612 struct buffer_head *bh_result, int create);
2613struct dentry *reiserfs_fh_to_dentry(struct super_block *sb, struct fid *fid,
2614 int fh_len, int fh_type);
2615struct dentry *reiserfs_fh_to_parent(struct super_block *sb, struct fid *fid,
2616 int fh_len, int fh_type);
Al Virob0b03822012-04-02 14:34:06 -04002617int reiserfs_encode_fh(struct inode *inode, __u32 * data, int *lenp,
2618 struct inode *parent);
Al Virof466c6f2012-03-17 01:16:43 -04002619
2620int reiserfs_truncate_file(struct inode *, int update_timestamps);
2621void make_cpu_key(struct cpu_key *cpu_key, struct inode *inode, loff_t offset,
2622 int type, int key_length);
2623void make_le_item_head(struct item_head *ih, const struct cpu_key *key,
2624 int version,
2625 loff_t offset, int type, int length, int entry_count);
2626struct inode *reiserfs_iget(struct super_block *s, const struct cpu_key *key);
2627
2628struct reiserfs_security_handle;
2629int reiserfs_new_inode(struct reiserfs_transaction_handle *th,
2630 struct inode *dir, umode_t mode,
2631 const char *symname, loff_t i_size,
2632 struct dentry *dentry, struct inode *inode,
2633 struct reiserfs_security_handle *security);
2634
2635void reiserfs_update_sd_size(struct reiserfs_transaction_handle *th,
2636 struct inode *inode, loff_t size);
2637
2638static inline void reiserfs_update_sd(struct reiserfs_transaction_handle *th,
2639 struct inode *inode)
2640{
2641 reiserfs_update_sd_size(th, inode, inode->i_size);
2642}
2643
2644void sd_attrs_to_i_attrs(__u16 sd_attrs, struct inode *inode);
2645void i_attrs_to_sd_attrs(struct inode *inode, __u16 * sd_attrs);
2646int reiserfs_setattr(struct dentry *dentry, struct iattr *attr);
2647
2648int __reiserfs_write_begin(struct page *page, unsigned from, unsigned len);
2649
2650/* namei.c */
2651void set_de_name_and_namelen(struct reiserfs_dir_entry *de);
2652int search_by_entry_key(struct super_block *sb, const struct cpu_key *key,
2653 struct treepath *path, struct reiserfs_dir_entry *de);
2654struct dentry *reiserfs_get_parent(struct dentry *);
2655
2656#ifdef CONFIG_REISERFS_PROC_INFO
2657int reiserfs_proc_info_init(struct super_block *sb);
2658int reiserfs_proc_info_done(struct super_block *sb);
2659int reiserfs_proc_info_global_init(void);
2660int reiserfs_proc_info_global_done(void);
2661
2662#define PROC_EXP( e ) e
2663
2664#define __PINFO( sb ) REISERFS_SB(sb) -> s_proc_info_data
2665#define PROC_INFO_MAX( sb, field, value ) \
2666 __PINFO( sb ).field = \
2667 max( REISERFS_SB( sb ) -> s_proc_info_data.field, value )
2668#define PROC_INFO_INC( sb, field ) ( ++ ( __PINFO( sb ).field ) )
2669#define PROC_INFO_ADD( sb, field, val ) ( __PINFO( sb ).field += ( val ) )
2670#define PROC_INFO_BH_STAT( sb, bh, level ) \
2671 PROC_INFO_INC( sb, sbk_read_at[ ( level ) ] ); \
2672 PROC_INFO_ADD( sb, free_at[ ( level ) ], B_FREE_SPACE( bh ) ); \
2673 PROC_INFO_ADD( sb, items_at[ ( level ) ], B_NR_ITEMS( bh ) )
2674#else
2675static inline int reiserfs_proc_info_init(struct super_block *sb)
2676{
2677 return 0;
2678}
2679
2680static inline int reiserfs_proc_info_done(struct super_block *sb)
2681{
2682 return 0;
2683}
2684
2685static inline int reiserfs_proc_info_global_init(void)
2686{
2687 return 0;
2688}
2689
2690static inline int reiserfs_proc_info_global_done(void)
2691{
2692 return 0;
2693}
2694
2695#define PROC_EXP( e )
2696#define VOID_V ( ( void ) 0 )
2697#define PROC_INFO_MAX( sb, field, value ) VOID_V
2698#define PROC_INFO_INC( sb, field ) VOID_V
2699#define PROC_INFO_ADD( sb, field, val ) VOID_V
2700#define PROC_INFO_BH_STAT(sb, bh, n_node_level) VOID_V
2701#endif
2702
2703/* dir.c */
2704extern const struct inode_operations reiserfs_dir_inode_operations;
2705extern const struct inode_operations reiserfs_symlink_inode_operations;
2706extern const struct inode_operations reiserfs_special_inode_operations;
2707extern const struct file_operations reiserfs_dir_operations;
Al Virocd62cda2013-05-17 22:58:58 -04002708int reiserfs_readdir_inode(struct inode *, struct dir_context *);
Al Virof466c6f2012-03-17 01:16:43 -04002709
2710/* tail_conversion.c */
2711int direct2indirect(struct reiserfs_transaction_handle *, struct inode *,
2712 struct treepath *, struct buffer_head *, loff_t);
2713int indirect2direct(struct reiserfs_transaction_handle *, struct inode *,
2714 struct page *, struct treepath *, const struct cpu_key *,
2715 loff_t, char *);
2716void reiserfs_unmap_buffer(struct buffer_head *);
2717
2718/* file.c */
2719extern const struct inode_operations reiserfs_file_inode_operations;
2720extern const struct file_operations reiserfs_file_operations;
2721extern const struct address_space_operations reiserfs_address_space_operations;
2722
2723/* fix_nodes.c */
2724
2725int fix_nodes(int n_op_mode, struct tree_balance *tb,
2726 struct item_head *ins_ih, const void *);
2727void unfix_nodes(struct tree_balance *);
2728
2729/* prints.c */
2730void __reiserfs_panic(struct super_block *s, const char *id,
2731 const char *function, const char *fmt, ...)
2732 __attribute__ ((noreturn));
2733#define reiserfs_panic(s, id, fmt, args...) \
2734 __reiserfs_panic(s, id, __func__, fmt, ##args)
2735void __reiserfs_error(struct super_block *s, const char *id,
2736 const char *function, const char *fmt, ...);
2737#define reiserfs_error(s, id, fmt, args...) \
2738 __reiserfs_error(s, id, __func__, fmt, ##args)
2739void reiserfs_info(struct super_block *s, const char *fmt, ...);
2740void reiserfs_debug(struct super_block *s, int level, const char *fmt, ...);
2741void print_indirect_item(struct buffer_head *bh, int item_num);
2742void store_print_tb(struct tree_balance *tb);
2743void print_cur_tb(char *mes);
2744void print_de(struct reiserfs_dir_entry *de);
2745void print_bi(struct buffer_info *bi, char *mes);
2746#define PRINT_LEAF_ITEMS 1 /* print all items */
2747#define PRINT_DIRECTORY_ITEMS 2 /* print directory items */
2748#define PRINT_DIRECT_ITEMS 4 /* print contents of direct items */
2749void print_block(struct buffer_head *bh, ...);
2750void print_bmap(struct super_block *s, int silent);
2751void print_bmap_block(int i, char *data, int size, int silent);
2752/*void print_super_block (struct super_block * s, char * mes);*/
2753void print_objectid_map(struct super_block *s);
2754void print_block_head(struct buffer_head *bh, char *mes);
2755void check_leaf(struct buffer_head *bh);
2756void check_internal(struct buffer_head *bh);
2757void print_statistics(struct super_block *s);
2758char *reiserfs_hashname(int code);
2759
2760/* lbalance.c */
2761int leaf_move_items(int shift_mode, struct tree_balance *tb, int mov_num,
2762 int mov_bytes, struct buffer_head *Snew);
2763int leaf_shift_left(struct tree_balance *tb, int shift_num, int shift_bytes);
2764int leaf_shift_right(struct tree_balance *tb, int shift_num, int shift_bytes);
2765void leaf_delete_items(struct buffer_info *cur_bi, int last_first, int first,
2766 int del_num, int del_bytes);
2767void leaf_insert_into_buf(struct buffer_info *bi, int before,
2768 struct item_head *inserted_item_ih,
2769 const char *inserted_item_body, int zeros_number);
2770void leaf_paste_in_buffer(struct buffer_info *bi, int pasted_item_num,
2771 int pos_in_item, int paste_size, const char *body,
2772 int zeros_number);
2773void leaf_cut_from_buffer(struct buffer_info *bi, int cut_item_num,
2774 int pos_in_item, int cut_size);
2775void leaf_paste_entries(struct buffer_info *bi, int item_num, int before,
2776 int new_entry_count, struct reiserfs_de_head *new_dehs,
2777 const char *records, int paste_size);
2778/* ibalance.c */
2779int balance_internal(struct tree_balance *, int, int, struct item_head *,
2780 struct buffer_head **);
2781
2782/* do_balance.c */
2783void do_balance_mark_leaf_dirty(struct tree_balance *tb,
2784 struct buffer_head *bh, int flag);
2785#define do_balance_mark_internal_dirty do_balance_mark_leaf_dirty
2786#define do_balance_mark_sb_dirty do_balance_mark_leaf_dirty
2787
2788void do_balance(struct tree_balance *tb, struct item_head *ih,
2789 const char *body, int flag);
2790void reiserfs_invalidate_buffer(struct tree_balance *tb,
2791 struct buffer_head *bh);
2792
2793int get_left_neighbor_position(struct tree_balance *tb, int h);
2794int get_right_neighbor_position(struct tree_balance *tb, int h);
2795void replace_key(struct tree_balance *tb, struct buffer_head *, int,
2796 struct buffer_head *, int);
2797void make_empty_node(struct buffer_info *);
2798struct buffer_head *get_FEB(struct tree_balance *);
2799
2800/* bitmap.c */
2801
2802/* structure contains hints for block allocator, and it is a container for
2803 * arguments, such as node, search path, transaction_handle, etc. */
2804struct __reiserfs_blocknr_hint {
2805 struct inode *inode; /* inode passed to allocator, if we allocate unf. nodes */
2806 sector_t block; /* file offset, in blocks */
2807 struct in_core_key key;
2808 struct treepath *path; /* search path, used by allocator to deternine search_start by
2809 * various ways */
2810 struct reiserfs_transaction_handle *th; /* transaction handle is needed to log super blocks and
2811 * bitmap blocks changes */
2812 b_blocknr_t beg, end;
2813 b_blocknr_t search_start; /* a field used to transfer search start value (block number)
2814 * between different block allocator procedures
2815 * (determine_search_start() and others) */
2816 int prealloc_size; /* is set in determine_prealloc_size() function, used by underlayed
2817 * function that do actual allocation */
2818
2819 unsigned formatted_node:1; /* the allocator uses different polices for getting disk space for
2820 * formatted/unformatted blocks with/without preallocation */
2821 unsigned preallocate:1;
2822};
2823
2824typedef struct __reiserfs_blocknr_hint reiserfs_blocknr_hint_t;
2825
2826int reiserfs_parse_alloc_options(struct super_block *, char *);
2827void reiserfs_init_alloc_options(struct super_block *s);
2828
2829/*
2830 * given a directory, this will tell you what packing locality
2831 * to use for a new object underneat it. The locality is returned
2832 * in disk byte order (le).
2833 */
2834__le32 reiserfs_choose_packing(struct inode *dir);
2835
2836int reiserfs_init_bitmap_cache(struct super_block *sb);
2837void reiserfs_free_bitmap_cache(struct super_block *sb);
2838void reiserfs_cache_bitmap_metadata(struct super_block *sb, struct buffer_head *bh, struct reiserfs_bitmap_info *info);
2839struct buffer_head *reiserfs_read_bitmap_block(struct super_block *sb, unsigned int bitmap);
2840int is_reusable(struct super_block *s, b_blocknr_t block, int bit_value);
2841void reiserfs_free_block(struct reiserfs_transaction_handle *th, struct inode *,
2842 b_blocknr_t, int for_unformatted);
2843int reiserfs_allocate_blocknrs(reiserfs_blocknr_hint_t *, b_blocknr_t *, int,
2844 int);
2845static inline int reiserfs_new_form_blocknrs(struct tree_balance *tb,
2846 b_blocknr_t * new_blocknrs,
2847 int amount_needed)
2848{
2849 reiserfs_blocknr_hint_t hint = {
2850 .th = tb->transaction_handle,
2851 .path = tb->tb_path,
2852 .inode = NULL,
2853 .key = tb->key,
2854 .block = 0,
2855 .formatted_node = 1
2856 };
2857 return reiserfs_allocate_blocknrs(&hint, new_blocknrs, amount_needed,
2858 0);
2859}
2860
2861static inline int reiserfs_new_unf_blocknrs(struct reiserfs_transaction_handle
2862 *th, struct inode *inode,
2863 b_blocknr_t * new_blocknrs,
2864 struct treepath *path,
2865 sector_t block)
2866{
2867 reiserfs_blocknr_hint_t hint = {
2868 .th = th,
2869 .path = path,
2870 .inode = inode,
2871 .block = block,
2872 .formatted_node = 0,
2873 .preallocate = 0
2874 };
2875 return reiserfs_allocate_blocknrs(&hint, new_blocknrs, 1, 0);
2876}
2877
2878#ifdef REISERFS_PREALLOCATE
2879static inline int reiserfs_new_unf_blocknrs2(struct reiserfs_transaction_handle
2880 *th, struct inode *inode,
2881 b_blocknr_t * new_blocknrs,
2882 struct treepath *path,
2883 sector_t block)
2884{
2885 reiserfs_blocknr_hint_t hint = {
2886 .th = th,
2887 .path = path,
2888 .inode = inode,
2889 .block = block,
2890 .formatted_node = 0,
2891 .preallocate = 1
2892 };
2893 return reiserfs_allocate_blocknrs(&hint, new_blocknrs, 1, 0);
2894}
2895
2896void reiserfs_discard_prealloc(struct reiserfs_transaction_handle *th,
2897 struct inode *inode);
2898void reiserfs_discard_all_prealloc(struct reiserfs_transaction_handle *th);
2899#endif
2900
2901/* hashes.c */
2902__u32 keyed_hash(const signed char *msg, int len);
2903__u32 yura_hash(const signed char *msg, int len);
2904__u32 r5_hash(const signed char *msg, int len);
2905
2906#define reiserfs_set_le_bit __set_bit_le
2907#define reiserfs_test_and_set_le_bit __test_and_set_bit_le
2908#define reiserfs_clear_le_bit __clear_bit_le
2909#define reiserfs_test_and_clear_le_bit __test_and_clear_bit_le
2910#define reiserfs_test_le_bit test_bit_le
2911#define reiserfs_find_next_zero_le_bit find_next_zero_bit_le
2912
2913/* sometimes reiserfs_truncate may require to allocate few new blocks
2914 to perform indirect2direct conversion. People probably used to
2915 think, that truncate should work without problems on a filesystem
2916 without free disk space. They may complain that they can not
2917 truncate due to lack of free disk space. This spare space allows us
2918 to not worry about it. 500 is probably too much, but it should be
2919 absolutely safe */
2920#define SPARE_SPACE 500
2921
2922/* prototypes from ioctl.c */
2923long reiserfs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg);
2924long reiserfs_compat_ioctl(struct file *filp,
2925 unsigned int cmd, unsigned long arg);
2926int reiserfs_unpack(struct inode *inode, struct file *filp);