Arjan van de Ven | 1027498 | 2009-09-12 07:53:05 +0200 | [diff] [blame] | 1 | /* |
| 2 | * builtin-timechart.c - make an svg timechart of system activity |
| 3 | * |
| 4 | * (C) Copyright 2009 Intel Corporation |
| 5 | * |
| 6 | * Authors: |
| 7 | * Arjan van de Ven <arjan@linux.intel.com> |
| 8 | * |
| 9 | * This program is free software; you can redistribute it and/or |
| 10 | * modify it under the terms of the GNU General Public License |
| 11 | * as published by the Free Software Foundation; version 2 |
| 12 | * of the License. |
| 13 | */ |
| 14 | |
| 15 | #include "builtin.h" |
| 16 | |
| 17 | #include "util/util.h" |
| 18 | |
| 19 | #include "util/color.h" |
| 20 | #include <linux/list.h> |
| 21 | #include "util/cache.h" |
| 22 | #include <linux/rbtree.h> |
| 23 | #include "util/symbol.h" |
| 24 | #include "util/string.h" |
| 25 | #include "util/callchain.h" |
| 26 | #include "util/strlist.h" |
| 27 | |
| 28 | #include "perf.h" |
| 29 | #include "util/header.h" |
| 30 | #include "util/parse-options.h" |
| 31 | #include "util/parse-events.h" |
| 32 | #include "util/svghelper.h" |
| 33 | |
| 34 | static char const *input_name = "perf.data"; |
| 35 | static char const *output_name = "output.svg"; |
| 36 | |
| 37 | |
| 38 | static unsigned long page_size; |
| 39 | static unsigned long mmap_window = 32; |
| 40 | static u64 sample_type; |
| 41 | |
| 42 | static unsigned int numcpus; |
| 43 | static u64 min_freq; /* Lowest CPU frequency seen */ |
| 44 | static u64 max_freq; /* Highest CPU frequency seen */ |
| 45 | static u64 turbo_frequency; |
| 46 | |
| 47 | static u64 first_time, last_time; |
| 48 | |
| 49 | |
| 50 | static struct perf_header *header; |
| 51 | |
| 52 | struct per_pid; |
| 53 | struct per_pidcomm; |
| 54 | |
| 55 | struct cpu_sample; |
| 56 | struct power_event; |
| 57 | struct wake_event; |
| 58 | |
| 59 | struct sample_wrapper; |
| 60 | |
| 61 | /* |
| 62 | * Datastructure layout: |
| 63 | * We keep an list of "pid"s, matching the kernels notion of a task struct. |
| 64 | * Each "pid" entry, has a list of "comm"s. |
| 65 | * this is because we want to track different programs different, while |
| 66 | * exec will reuse the original pid (by design). |
| 67 | * Each comm has a list of samples that will be used to draw |
| 68 | * final graph. |
| 69 | */ |
| 70 | |
| 71 | struct per_pid { |
| 72 | struct per_pid *next; |
| 73 | |
| 74 | int pid; |
| 75 | int ppid; |
| 76 | |
| 77 | u64 start_time; |
| 78 | u64 end_time; |
| 79 | u64 total_time; |
| 80 | int display; |
| 81 | |
| 82 | struct per_pidcomm *all; |
| 83 | struct per_pidcomm *current; |
| 84 | |
| 85 | int painted; |
| 86 | }; |
| 87 | |
| 88 | |
| 89 | struct per_pidcomm { |
| 90 | struct per_pidcomm *next; |
| 91 | |
| 92 | u64 start_time; |
| 93 | u64 end_time; |
| 94 | u64 total_time; |
| 95 | |
| 96 | int Y; |
| 97 | int display; |
| 98 | |
| 99 | long state; |
| 100 | u64 state_since; |
| 101 | |
| 102 | char *comm; |
| 103 | |
| 104 | struct cpu_sample *samples; |
| 105 | }; |
| 106 | |
| 107 | struct sample_wrapper { |
| 108 | struct sample_wrapper *next; |
| 109 | |
| 110 | u64 timestamp; |
| 111 | unsigned char data[0]; |
| 112 | }; |
| 113 | |
| 114 | #define TYPE_NONE 0 |
| 115 | #define TYPE_RUNNING 1 |
| 116 | #define TYPE_WAITING 2 |
| 117 | #define TYPE_BLOCKED 3 |
| 118 | |
| 119 | struct cpu_sample { |
| 120 | struct cpu_sample *next; |
| 121 | |
| 122 | u64 start_time; |
| 123 | u64 end_time; |
| 124 | int type; |
| 125 | int cpu; |
| 126 | }; |
| 127 | |
| 128 | static struct per_pid *all_data; |
| 129 | |
| 130 | #define CSTATE 1 |
| 131 | #define PSTATE 2 |
| 132 | |
| 133 | struct power_event { |
| 134 | struct power_event *next; |
| 135 | int type; |
| 136 | int state; |
| 137 | u64 start_time; |
| 138 | u64 end_time; |
| 139 | int cpu; |
| 140 | }; |
| 141 | |
| 142 | struct wake_event { |
| 143 | struct wake_event *next; |
| 144 | int waker; |
| 145 | int wakee; |
| 146 | u64 time; |
| 147 | }; |
| 148 | |
| 149 | static struct power_event *power_events; |
| 150 | static struct wake_event *wake_events; |
| 151 | |
| 152 | struct sample_wrapper *all_samples; |
| 153 | |
| 154 | static struct per_pid *find_create_pid(int pid) |
| 155 | { |
| 156 | struct per_pid *cursor = all_data; |
| 157 | |
| 158 | while (cursor) { |
| 159 | if (cursor->pid == pid) |
| 160 | return cursor; |
| 161 | cursor = cursor->next; |
| 162 | } |
| 163 | cursor = malloc(sizeof(struct per_pid)); |
| 164 | assert(cursor != NULL); |
| 165 | memset(cursor, 0, sizeof(struct per_pid)); |
| 166 | cursor->pid = pid; |
| 167 | cursor->next = all_data; |
| 168 | all_data = cursor; |
| 169 | return cursor; |
| 170 | } |
| 171 | |
| 172 | static void pid_set_comm(int pid, char *comm) |
| 173 | { |
| 174 | struct per_pid *p; |
| 175 | struct per_pidcomm *c; |
| 176 | p = find_create_pid(pid); |
| 177 | c = p->all; |
| 178 | while (c) { |
| 179 | if (c->comm && strcmp(c->comm, comm) == 0) { |
| 180 | p->current = c; |
| 181 | return; |
| 182 | } |
| 183 | if (!c->comm) { |
| 184 | c->comm = strdup(comm); |
| 185 | p->current = c; |
| 186 | return; |
| 187 | } |
| 188 | c = c->next; |
| 189 | } |
| 190 | c = malloc(sizeof(struct per_pidcomm)); |
| 191 | assert(c != NULL); |
| 192 | memset(c, 0, sizeof(struct per_pidcomm)); |
| 193 | c->comm = strdup(comm); |
| 194 | p->current = c; |
| 195 | c->next = p->all; |
| 196 | p->all = c; |
| 197 | } |
| 198 | |
| 199 | static void pid_fork(int pid, int ppid, u64 timestamp) |
| 200 | { |
| 201 | struct per_pid *p, *pp; |
| 202 | p = find_create_pid(pid); |
| 203 | pp = find_create_pid(ppid); |
| 204 | p->ppid = ppid; |
| 205 | if (pp->current && pp->current->comm && !p->current) |
| 206 | pid_set_comm(pid, pp->current->comm); |
| 207 | |
| 208 | p->start_time = timestamp; |
| 209 | if (p->current) { |
| 210 | p->current->start_time = timestamp; |
| 211 | p->current->state_since = timestamp; |
| 212 | } |
| 213 | } |
| 214 | |
| 215 | static void pid_exit(int pid, u64 timestamp) |
| 216 | { |
| 217 | struct per_pid *p; |
| 218 | p = find_create_pid(pid); |
| 219 | p->end_time = timestamp; |
| 220 | if (p->current) |
| 221 | p->current->end_time = timestamp; |
| 222 | } |
| 223 | |
| 224 | static void |
| 225 | pid_put_sample(int pid, int type, unsigned int cpu, u64 start, u64 end) |
| 226 | { |
| 227 | struct per_pid *p; |
| 228 | struct per_pidcomm *c; |
| 229 | struct cpu_sample *sample; |
| 230 | |
| 231 | p = find_create_pid(pid); |
| 232 | c = p->current; |
| 233 | if (!c) { |
| 234 | c = malloc(sizeof(struct per_pidcomm)); |
| 235 | assert(c != NULL); |
| 236 | memset(c, 0, sizeof(struct per_pidcomm)); |
| 237 | p->current = c; |
| 238 | c->next = p->all; |
| 239 | p->all = c; |
| 240 | } |
| 241 | |
| 242 | sample = malloc(sizeof(struct cpu_sample)); |
| 243 | assert(sample != NULL); |
| 244 | memset(sample, 0, sizeof(struct cpu_sample)); |
| 245 | sample->start_time = start; |
| 246 | sample->end_time = end; |
| 247 | sample->type = type; |
| 248 | sample->next = c->samples; |
| 249 | sample->cpu = cpu; |
| 250 | c->samples = sample; |
| 251 | |
| 252 | if (sample->type == TYPE_RUNNING && end > start && start > 0) { |
| 253 | c->total_time += (end-start); |
| 254 | p->total_time += (end-start); |
| 255 | } |
| 256 | |
| 257 | if (c->start_time == 0 || c->start_time > start) |
| 258 | c->start_time = start; |
| 259 | if (p->start_time == 0 || p->start_time > start) |
| 260 | p->start_time = start; |
| 261 | |
| 262 | if (cpu > numcpus) |
| 263 | numcpus = cpu; |
| 264 | } |
| 265 | |
| 266 | #define MAX_CPUS 4096 |
| 267 | |
| 268 | static u64 cpus_cstate_start_times[MAX_CPUS]; |
| 269 | static int cpus_cstate_state[MAX_CPUS]; |
| 270 | static u64 cpus_pstate_start_times[MAX_CPUS]; |
| 271 | static u64 cpus_pstate_state[MAX_CPUS]; |
| 272 | |
| 273 | static int |
| 274 | process_comm_event(event_t *event) |
| 275 | { |
| 276 | pid_set_comm(event->comm.pid, event->comm.comm); |
| 277 | return 0; |
| 278 | } |
| 279 | static int |
| 280 | process_fork_event(event_t *event) |
| 281 | { |
| 282 | pid_fork(event->fork.pid, event->fork.ppid, event->fork.time); |
| 283 | return 0; |
| 284 | } |
| 285 | |
| 286 | static int |
| 287 | process_exit_event(event_t *event) |
| 288 | { |
| 289 | pid_exit(event->fork.pid, event->fork.time); |
| 290 | return 0; |
| 291 | } |
| 292 | |
| 293 | struct trace_entry { |
| 294 | u32 size; |
| 295 | unsigned short type; |
| 296 | unsigned char flags; |
| 297 | unsigned char preempt_count; |
| 298 | int pid; |
| 299 | int tgid; |
| 300 | }; |
| 301 | |
| 302 | struct power_entry { |
| 303 | struct trace_entry te; |
| 304 | s64 type; |
| 305 | s64 value; |
| 306 | }; |
| 307 | |
| 308 | #define TASK_COMM_LEN 16 |
| 309 | struct wakeup_entry { |
| 310 | struct trace_entry te; |
| 311 | char comm[TASK_COMM_LEN]; |
| 312 | int pid; |
| 313 | int prio; |
| 314 | int success; |
| 315 | }; |
| 316 | |
| 317 | /* |
| 318 | * trace_flag_type is an enumeration that holds different |
| 319 | * states when a trace occurs. These are: |
| 320 | * IRQS_OFF - interrupts were disabled |
| 321 | * IRQS_NOSUPPORT - arch does not support irqs_disabled_flags |
| 322 | * NEED_RESCED - reschedule is requested |
| 323 | * HARDIRQ - inside an interrupt handler |
| 324 | * SOFTIRQ - inside a softirq handler |
| 325 | */ |
| 326 | enum trace_flag_type { |
| 327 | TRACE_FLAG_IRQS_OFF = 0x01, |
| 328 | TRACE_FLAG_IRQS_NOSUPPORT = 0x02, |
| 329 | TRACE_FLAG_NEED_RESCHED = 0x04, |
| 330 | TRACE_FLAG_HARDIRQ = 0x08, |
| 331 | TRACE_FLAG_SOFTIRQ = 0x10, |
| 332 | }; |
| 333 | |
| 334 | |
| 335 | |
| 336 | struct sched_switch { |
| 337 | struct trace_entry te; |
| 338 | char prev_comm[TASK_COMM_LEN]; |
| 339 | int prev_pid; |
| 340 | int prev_prio; |
| 341 | long prev_state; /* Arjan weeps. */ |
| 342 | char next_comm[TASK_COMM_LEN]; |
| 343 | int next_pid; |
| 344 | int next_prio; |
| 345 | }; |
| 346 | |
| 347 | static void c_state_start(int cpu, u64 timestamp, int state) |
| 348 | { |
| 349 | cpus_cstate_start_times[cpu] = timestamp; |
| 350 | cpus_cstate_state[cpu] = state; |
| 351 | } |
| 352 | |
| 353 | static void c_state_end(int cpu, u64 timestamp) |
| 354 | { |
| 355 | struct power_event *pwr; |
| 356 | pwr = malloc(sizeof(struct power_event)); |
| 357 | if (!pwr) |
| 358 | return; |
| 359 | memset(pwr, 0, sizeof(struct power_event)); |
| 360 | |
| 361 | pwr->state = cpus_cstate_state[cpu]; |
| 362 | pwr->start_time = cpus_cstate_start_times[cpu]; |
| 363 | pwr->end_time = timestamp; |
| 364 | pwr->cpu = cpu; |
| 365 | pwr->type = CSTATE; |
| 366 | pwr->next = power_events; |
| 367 | |
| 368 | power_events = pwr; |
| 369 | } |
| 370 | |
| 371 | static void p_state_change(int cpu, u64 timestamp, u64 new_freq) |
| 372 | { |
| 373 | struct power_event *pwr; |
| 374 | pwr = malloc(sizeof(struct power_event)); |
| 375 | |
| 376 | if (new_freq > 8000000) /* detect invalid data */ |
| 377 | return; |
| 378 | |
| 379 | if (!pwr) |
| 380 | return; |
| 381 | memset(pwr, 0, sizeof(struct power_event)); |
| 382 | |
| 383 | pwr->state = cpus_pstate_state[cpu]; |
| 384 | pwr->start_time = cpus_pstate_start_times[cpu]; |
| 385 | pwr->end_time = timestamp; |
| 386 | pwr->cpu = cpu; |
| 387 | pwr->type = PSTATE; |
| 388 | pwr->next = power_events; |
| 389 | |
| 390 | if (!pwr->start_time) |
| 391 | pwr->start_time = first_time; |
| 392 | |
| 393 | power_events = pwr; |
| 394 | |
| 395 | cpus_pstate_state[cpu] = new_freq; |
| 396 | cpus_pstate_start_times[cpu] = timestamp; |
| 397 | |
| 398 | if ((u64)new_freq > max_freq) |
| 399 | max_freq = new_freq; |
| 400 | |
| 401 | if (new_freq < min_freq || min_freq == 0) |
| 402 | min_freq = new_freq; |
| 403 | |
| 404 | if (new_freq == max_freq - 1000) |
| 405 | turbo_frequency = max_freq; |
| 406 | } |
| 407 | |
| 408 | static void |
| 409 | sched_wakeup(int cpu, u64 timestamp, int pid, struct trace_entry *te) |
| 410 | { |
| 411 | struct wake_event *we; |
| 412 | struct per_pid *p; |
| 413 | struct wakeup_entry *wake = (void *)te; |
| 414 | |
| 415 | we = malloc(sizeof(struct wake_event)); |
| 416 | if (!we) |
| 417 | return; |
| 418 | |
| 419 | memset(we, 0, sizeof(struct wake_event)); |
| 420 | we->time = timestamp; |
| 421 | we->waker = pid; |
| 422 | |
| 423 | if ((te->flags & TRACE_FLAG_HARDIRQ) || (te->flags & TRACE_FLAG_SOFTIRQ)) |
| 424 | we->waker = -1; |
| 425 | |
| 426 | we->wakee = wake->pid; |
| 427 | we->next = wake_events; |
| 428 | wake_events = we; |
| 429 | p = find_create_pid(we->wakee); |
| 430 | |
| 431 | if (p && p->current && p->current->state == TYPE_NONE) { |
| 432 | p->current->state_since = timestamp; |
| 433 | p->current->state = TYPE_WAITING; |
| 434 | } |
| 435 | if (p && p->current && p->current->state == TYPE_BLOCKED) { |
| 436 | pid_put_sample(p->pid, p->current->state, cpu, p->current->state_since, timestamp); |
| 437 | p->current->state_since = timestamp; |
| 438 | p->current->state = TYPE_WAITING; |
| 439 | } |
| 440 | } |
| 441 | |
| 442 | static void sched_switch(int cpu, u64 timestamp, struct trace_entry *te) |
| 443 | { |
| 444 | struct per_pid *p = NULL, *prev_p; |
| 445 | struct sched_switch *sw = (void *)te; |
| 446 | |
| 447 | |
| 448 | prev_p = find_create_pid(sw->prev_pid); |
| 449 | |
| 450 | p = find_create_pid(sw->next_pid); |
| 451 | |
| 452 | if (prev_p->current && prev_p->current->state != TYPE_NONE) |
| 453 | pid_put_sample(sw->prev_pid, TYPE_RUNNING, cpu, prev_p->current->state_since, timestamp); |
| 454 | if (p && p->current) { |
| 455 | if (p->current->state != TYPE_NONE) |
| 456 | pid_put_sample(sw->next_pid, p->current->state, cpu, p->current->state_since, timestamp); |
| 457 | |
| 458 | p->current->state_since = timestamp; |
| 459 | p->current->state = TYPE_RUNNING; |
| 460 | } |
| 461 | |
| 462 | if (prev_p->current) { |
| 463 | prev_p->current->state = TYPE_NONE; |
| 464 | prev_p->current->state_since = timestamp; |
| 465 | if (sw->prev_state & 2) |
| 466 | prev_p->current->state = TYPE_BLOCKED; |
| 467 | if (sw->prev_state == 0) |
| 468 | prev_p->current->state = TYPE_WAITING; |
| 469 | } |
| 470 | } |
| 471 | |
| 472 | |
| 473 | static int |
| 474 | process_sample_event(event_t *event) |
| 475 | { |
| 476 | int cursor = 0; |
| 477 | u64 addr = 0; |
| 478 | u64 stamp = 0; |
| 479 | u32 cpu = 0; |
| 480 | u32 pid = 0; |
| 481 | struct trace_entry *te; |
| 482 | |
| 483 | if (sample_type & PERF_SAMPLE_IP) |
| 484 | cursor++; |
| 485 | |
| 486 | if (sample_type & PERF_SAMPLE_TID) { |
| 487 | pid = event->sample.array[cursor]>>32; |
| 488 | cursor++; |
| 489 | } |
| 490 | if (sample_type & PERF_SAMPLE_TIME) { |
| 491 | stamp = event->sample.array[cursor++]; |
| 492 | |
| 493 | if (!first_time || first_time > stamp) |
| 494 | first_time = stamp; |
| 495 | if (last_time < stamp) |
| 496 | last_time = stamp; |
| 497 | |
| 498 | } |
| 499 | if (sample_type & PERF_SAMPLE_ADDR) |
| 500 | addr = event->sample.array[cursor++]; |
| 501 | if (sample_type & PERF_SAMPLE_ID) |
| 502 | cursor++; |
| 503 | if (sample_type & PERF_SAMPLE_STREAM_ID) |
| 504 | cursor++; |
| 505 | if (sample_type & PERF_SAMPLE_CPU) |
| 506 | cpu = event->sample.array[cursor++] & 0xFFFFFFFF; |
| 507 | if (sample_type & PERF_SAMPLE_PERIOD) |
| 508 | cursor++; |
| 509 | |
| 510 | te = (void *)&event->sample.array[cursor]; |
| 511 | |
| 512 | if (sample_type & PERF_SAMPLE_RAW && te->size > 0) { |
| 513 | char *event_str; |
| 514 | struct power_entry *pe; |
| 515 | |
| 516 | pe = (void *)te; |
| 517 | |
| 518 | event_str = perf_header__find_event(te->type); |
| 519 | |
| 520 | if (!event_str) |
| 521 | return 0; |
| 522 | |
| 523 | if (strcmp(event_str, "power:power_start") == 0) |
| 524 | c_state_start(cpu, stamp, pe->value); |
| 525 | |
| 526 | if (strcmp(event_str, "power:power_end") == 0) |
| 527 | c_state_end(cpu, stamp); |
| 528 | |
| 529 | if (strcmp(event_str, "power:power_frequency") == 0) |
| 530 | p_state_change(cpu, stamp, pe->value); |
| 531 | |
| 532 | if (strcmp(event_str, "sched:sched_wakeup") == 0) |
| 533 | sched_wakeup(cpu, stamp, pid, te); |
| 534 | |
| 535 | if (strcmp(event_str, "sched:sched_switch") == 0) |
| 536 | sched_switch(cpu, stamp, te); |
| 537 | } |
| 538 | return 0; |
| 539 | } |
| 540 | |
| 541 | /* |
| 542 | * After the last sample we need to wrap up the current C/P state |
| 543 | * and close out each CPU for these. |
| 544 | */ |
| 545 | static void end_sample_processing(void) |
| 546 | { |
| 547 | u64 cpu; |
| 548 | struct power_event *pwr; |
| 549 | |
| 550 | for (cpu = 0; cpu < numcpus; cpu++) { |
| 551 | pwr = malloc(sizeof(struct power_event)); |
| 552 | if (!pwr) |
| 553 | return; |
| 554 | memset(pwr, 0, sizeof(struct power_event)); |
| 555 | |
| 556 | /* C state */ |
| 557 | #if 0 |
| 558 | pwr->state = cpus_cstate_state[cpu]; |
| 559 | pwr->start_time = cpus_cstate_start_times[cpu]; |
| 560 | pwr->end_time = last_time; |
| 561 | pwr->cpu = cpu; |
| 562 | pwr->type = CSTATE; |
| 563 | pwr->next = power_events; |
| 564 | |
| 565 | power_events = pwr; |
| 566 | #endif |
| 567 | /* P state */ |
| 568 | |
| 569 | pwr = malloc(sizeof(struct power_event)); |
| 570 | if (!pwr) |
| 571 | return; |
| 572 | memset(pwr, 0, sizeof(struct power_event)); |
| 573 | |
| 574 | pwr->state = cpus_pstate_state[cpu]; |
| 575 | pwr->start_time = cpus_pstate_start_times[cpu]; |
| 576 | pwr->end_time = last_time; |
| 577 | pwr->cpu = cpu; |
| 578 | pwr->type = PSTATE; |
| 579 | pwr->next = power_events; |
| 580 | |
| 581 | if (!pwr->start_time) |
| 582 | pwr->start_time = first_time; |
| 583 | if (!pwr->state) |
| 584 | pwr->state = min_freq; |
| 585 | power_events = pwr; |
| 586 | } |
| 587 | } |
| 588 | |
| 589 | static u64 sample_time(event_t *event) |
| 590 | { |
| 591 | int cursor; |
| 592 | |
| 593 | cursor = 0; |
| 594 | if (sample_type & PERF_SAMPLE_IP) |
| 595 | cursor++; |
| 596 | if (sample_type & PERF_SAMPLE_TID) |
| 597 | cursor++; |
| 598 | if (sample_type & PERF_SAMPLE_TIME) |
| 599 | return event->sample.array[cursor]; |
| 600 | return 0; |
| 601 | } |
| 602 | |
| 603 | |
| 604 | /* |
| 605 | * We first queue all events, sorted backwards by insertion. |
| 606 | * The order will get flipped later. |
| 607 | */ |
| 608 | static int |
| 609 | queue_sample_event(event_t *event) |
| 610 | { |
| 611 | struct sample_wrapper *copy, *prev; |
| 612 | int size; |
| 613 | |
| 614 | size = event->sample.header.size + sizeof(struct sample_wrapper) + 8; |
| 615 | |
| 616 | copy = malloc(size); |
| 617 | if (!copy) |
| 618 | return 1; |
| 619 | |
| 620 | memset(copy, 0, size); |
| 621 | |
| 622 | copy->next = NULL; |
| 623 | copy->timestamp = sample_time(event); |
| 624 | |
| 625 | memcpy(©->data, event, event->sample.header.size); |
| 626 | |
| 627 | /* insert in the right place in the list */ |
| 628 | |
| 629 | if (!all_samples) { |
| 630 | /* first sample ever */ |
| 631 | all_samples = copy; |
| 632 | return 0; |
| 633 | } |
| 634 | |
| 635 | if (all_samples->timestamp < copy->timestamp) { |
| 636 | /* insert at the head of the list */ |
| 637 | copy->next = all_samples; |
| 638 | all_samples = copy; |
| 639 | return 0; |
| 640 | } |
| 641 | |
| 642 | prev = all_samples; |
| 643 | while (prev->next) { |
| 644 | if (prev->next->timestamp < copy->timestamp) { |
| 645 | copy->next = prev->next; |
| 646 | prev->next = copy; |
| 647 | return 0; |
| 648 | } |
| 649 | prev = prev->next; |
| 650 | } |
| 651 | /* insert at the end of the list */ |
| 652 | prev->next = copy; |
| 653 | |
| 654 | return 0; |
| 655 | } |
| 656 | |
| 657 | static void sort_queued_samples(void) |
| 658 | { |
| 659 | struct sample_wrapper *cursor, *next; |
| 660 | |
| 661 | cursor = all_samples; |
| 662 | all_samples = NULL; |
| 663 | |
| 664 | while (cursor) { |
| 665 | next = cursor->next; |
| 666 | cursor->next = all_samples; |
| 667 | all_samples = cursor; |
| 668 | cursor = next; |
| 669 | } |
| 670 | } |
| 671 | |
| 672 | /* |
| 673 | * Sort the pid datastructure |
| 674 | */ |
| 675 | static void sort_pids(void) |
| 676 | { |
| 677 | struct per_pid *new_list, *p, *cursor, *prev; |
| 678 | /* sort by ppid first, then by pid, lowest to highest */ |
| 679 | |
| 680 | new_list = NULL; |
| 681 | |
| 682 | while (all_data) { |
| 683 | p = all_data; |
| 684 | all_data = p->next; |
| 685 | p->next = NULL; |
| 686 | |
| 687 | if (new_list == NULL) { |
| 688 | new_list = p; |
| 689 | p->next = NULL; |
| 690 | continue; |
| 691 | } |
| 692 | prev = NULL; |
| 693 | cursor = new_list; |
| 694 | while (cursor) { |
| 695 | if (cursor->ppid > p->ppid || |
| 696 | (cursor->ppid == p->ppid && cursor->pid > p->pid)) { |
| 697 | /* must insert before */ |
| 698 | if (prev) { |
| 699 | p->next = prev->next; |
| 700 | prev->next = p; |
| 701 | cursor = NULL; |
| 702 | continue; |
| 703 | } else { |
| 704 | p->next = new_list; |
| 705 | new_list = p; |
| 706 | cursor = NULL; |
| 707 | continue; |
| 708 | } |
| 709 | } |
| 710 | |
| 711 | prev = cursor; |
| 712 | cursor = cursor->next; |
| 713 | if (!cursor) |
| 714 | prev->next = p; |
| 715 | } |
| 716 | } |
| 717 | all_data = new_list; |
| 718 | } |
| 719 | |
| 720 | |
| 721 | static void draw_c_p_states(void) |
| 722 | { |
| 723 | struct power_event *pwr; |
| 724 | pwr = power_events; |
| 725 | |
| 726 | /* |
| 727 | * two pass drawing so that the P state bars are on top of the C state blocks |
| 728 | */ |
| 729 | while (pwr) { |
| 730 | if (pwr->type == CSTATE) |
| 731 | svg_cstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state); |
| 732 | pwr = pwr->next; |
| 733 | } |
| 734 | |
| 735 | pwr = power_events; |
| 736 | while (pwr) { |
| 737 | if (pwr->type == PSTATE) { |
| 738 | if (!pwr->state) |
| 739 | pwr->state = min_freq; |
| 740 | svg_pstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state); |
| 741 | } |
| 742 | pwr = pwr->next; |
| 743 | } |
| 744 | } |
| 745 | |
| 746 | static void draw_wakeups(void) |
| 747 | { |
| 748 | struct wake_event *we; |
| 749 | struct per_pid *p; |
| 750 | struct per_pidcomm *c; |
| 751 | |
| 752 | we = wake_events; |
| 753 | while (we) { |
| 754 | int from = 0, to = 0; |
Arjan van de Ven | 4f1202c | 2009-09-20 18:13:28 +0200 | [diff] [blame] | 755 | char *task_from = NULL, *task_to = NULL; |
Arjan van de Ven | 1027498 | 2009-09-12 07:53:05 +0200 | [diff] [blame] | 756 | |
| 757 | /* locate the column of the waker and wakee */ |
| 758 | p = all_data; |
| 759 | while (p) { |
| 760 | if (p->pid == we->waker || p->pid == we->wakee) { |
| 761 | c = p->all; |
| 762 | while (c) { |
| 763 | if (c->Y && c->start_time <= we->time && c->end_time >= we->time) { |
Arjan van de Ven | 4f1202c | 2009-09-20 18:13:28 +0200 | [diff] [blame] | 764 | if (p->pid == we->waker) { |
Arjan van de Ven | 1027498 | 2009-09-12 07:53:05 +0200 | [diff] [blame] | 765 | from = c->Y; |
Arjan van de Ven | 4f1202c | 2009-09-20 18:13:28 +0200 | [diff] [blame] | 766 | task_from = c->comm; |
| 767 | } |
| 768 | if (p->pid == we->wakee) { |
Arjan van de Ven | 1027498 | 2009-09-12 07:53:05 +0200 | [diff] [blame] | 769 | to = c->Y; |
Arjan van de Ven | 4f1202c | 2009-09-20 18:13:28 +0200 | [diff] [blame] | 770 | task_to = c->comm; |
| 771 | } |
Arjan van de Ven | 1027498 | 2009-09-12 07:53:05 +0200 | [diff] [blame] | 772 | } |
| 773 | c = c->next; |
| 774 | } |
| 775 | } |
| 776 | p = p->next; |
| 777 | } |
| 778 | |
| 779 | if (we->waker == -1) |
| 780 | svg_interrupt(we->time, to); |
| 781 | else if (from && to && abs(from - to) == 1) |
| 782 | svg_wakeline(we->time, from, to); |
| 783 | else |
Arjan van de Ven | 4f1202c | 2009-09-20 18:13:28 +0200 | [diff] [blame] | 784 | svg_partial_wakeline(we->time, from, task_from, to, task_to); |
Arjan van de Ven | 1027498 | 2009-09-12 07:53:05 +0200 | [diff] [blame] | 785 | we = we->next; |
| 786 | } |
| 787 | } |
| 788 | |
| 789 | static void draw_cpu_usage(void) |
| 790 | { |
| 791 | struct per_pid *p; |
| 792 | struct per_pidcomm *c; |
| 793 | struct cpu_sample *sample; |
| 794 | p = all_data; |
| 795 | while (p) { |
| 796 | c = p->all; |
| 797 | while (c) { |
| 798 | sample = c->samples; |
| 799 | while (sample) { |
| 800 | if (sample->type == TYPE_RUNNING) |
| 801 | svg_process(sample->cpu, sample->start_time, sample->end_time, "sample", c->comm); |
| 802 | |
| 803 | sample = sample->next; |
| 804 | } |
| 805 | c = c->next; |
| 806 | } |
| 807 | p = p->next; |
| 808 | } |
| 809 | } |
| 810 | |
| 811 | static void draw_process_bars(void) |
| 812 | { |
| 813 | struct per_pid *p; |
| 814 | struct per_pidcomm *c; |
| 815 | struct cpu_sample *sample; |
| 816 | int Y = 0; |
| 817 | |
| 818 | Y = 2 * numcpus + 2; |
| 819 | |
| 820 | p = all_data; |
| 821 | while (p) { |
| 822 | c = p->all; |
| 823 | while (c) { |
| 824 | if (!c->display) { |
| 825 | c->Y = 0; |
| 826 | c = c->next; |
| 827 | continue; |
| 828 | } |
| 829 | |
Arjan van de Ven | a92fe7b | 2009-09-20 18:13:53 +0200 | [diff] [blame] | 830 | svg_box(Y, c->start_time, c->end_time, "process"); |
Arjan van de Ven | 1027498 | 2009-09-12 07:53:05 +0200 | [diff] [blame] | 831 | sample = c->samples; |
| 832 | while (sample) { |
| 833 | if (sample->type == TYPE_RUNNING) |
Arjan van de Ven | a92fe7b | 2009-09-20 18:13:53 +0200 | [diff] [blame] | 834 | svg_sample(Y, sample->cpu, sample->start_time, sample->end_time); |
Arjan van de Ven | 1027498 | 2009-09-12 07:53:05 +0200 | [diff] [blame] | 835 | if (sample->type == TYPE_BLOCKED) |
| 836 | svg_box(Y, sample->start_time, sample->end_time, "blocked"); |
| 837 | if (sample->type == TYPE_WAITING) |
Arjan van de Ven | a92fe7b | 2009-09-20 18:13:53 +0200 | [diff] [blame] | 838 | svg_waiting(Y, sample->start_time, sample->end_time); |
Arjan van de Ven | 1027498 | 2009-09-12 07:53:05 +0200 | [diff] [blame] | 839 | sample = sample->next; |
| 840 | } |
| 841 | |
| 842 | if (c->comm) { |
| 843 | char comm[256]; |
| 844 | if (c->total_time > 5000000000) /* 5 seconds */ |
| 845 | sprintf(comm, "%s:%i (%2.2fs)", c->comm, p->pid, c->total_time / 1000000000.0); |
| 846 | else |
| 847 | sprintf(comm, "%s:%i (%3.1fms)", c->comm, p->pid, c->total_time / 1000000.0); |
| 848 | |
| 849 | svg_text(Y, c->start_time, comm); |
| 850 | } |
| 851 | c->Y = Y; |
| 852 | Y++; |
| 853 | c = c->next; |
| 854 | } |
| 855 | p = p->next; |
| 856 | } |
| 857 | } |
| 858 | |
| 859 | static int determine_display_tasks(u64 threshold) |
| 860 | { |
| 861 | struct per_pid *p; |
| 862 | struct per_pidcomm *c; |
| 863 | int count = 0; |
| 864 | |
| 865 | p = all_data; |
| 866 | while (p) { |
| 867 | p->display = 0; |
| 868 | if (p->start_time == 1) |
| 869 | p->start_time = first_time; |
| 870 | |
| 871 | /* no exit marker, task kept running to the end */ |
| 872 | if (p->end_time == 0) |
| 873 | p->end_time = last_time; |
| 874 | if (p->total_time >= threshold) |
| 875 | p->display = 1; |
| 876 | |
| 877 | c = p->all; |
| 878 | |
| 879 | while (c) { |
| 880 | c->display = 0; |
| 881 | |
| 882 | if (c->start_time == 1) |
| 883 | c->start_time = first_time; |
| 884 | |
| 885 | if (c->total_time >= threshold) { |
| 886 | c->display = 1; |
| 887 | count++; |
| 888 | } |
| 889 | |
| 890 | if (c->end_time == 0) |
| 891 | c->end_time = last_time; |
| 892 | |
| 893 | c = c->next; |
| 894 | } |
| 895 | p = p->next; |
| 896 | } |
| 897 | return count; |
| 898 | } |
| 899 | |
| 900 | |
| 901 | |
| 902 | #define TIME_THRESH 10000000 |
| 903 | |
| 904 | static void write_svg_file(const char *filename) |
| 905 | { |
| 906 | u64 i; |
| 907 | int count; |
| 908 | |
| 909 | numcpus++; |
| 910 | |
| 911 | |
| 912 | count = determine_display_tasks(TIME_THRESH); |
| 913 | |
| 914 | /* We'd like to show at least 15 tasks; be less picky if we have fewer */ |
| 915 | if (count < 15) |
| 916 | count = determine_display_tasks(TIME_THRESH / 10); |
| 917 | |
Arjan van de Ven | 5094b65 | 2009-09-20 18:14:16 +0200 | [diff] [blame] | 918 | open_svg(filename, numcpus, count, first_time, last_time); |
Arjan van de Ven | 1027498 | 2009-09-12 07:53:05 +0200 | [diff] [blame] | 919 | |
Arjan van de Ven | 5094b65 | 2009-09-20 18:14:16 +0200 | [diff] [blame] | 920 | svg_time_grid(); |
Arjan van de Ven | 1027498 | 2009-09-12 07:53:05 +0200 | [diff] [blame] | 921 | svg_legenda(); |
| 922 | |
| 923 | for (i = 0; i < numcpus; i++) |
| 924 | svg_cpu_box(i, max_freq, turbo_frequency); |
| 925 | |
| 926 | draw_cpu_usage(); |
| 927 | draw_process_bars(); |
| 928 | draw_c_p_states(); |
| 929 | draw_wakeups(); |
| 930 | |
| 931 | svg_close(); |
| 932 | } |
| 933 | |
| 934 | static int |
| 935 | process_event(event_t *event) |
| 936 | { |
| 937 | |
| 938 | switch (event->header.type) { |
| 939 | |
Ingo Molnar | cdd6c48 | 2009-09-21 12:02:48 +0200 | [diff] [blame] | 940 | case PERF_RECORD_COMM: |
Arjan van de Ven | 1027498 | 2009-09-12 07:53:05 +0200 | [diff] [blame] | 941 | return process_comm_event(event); |
Ingo Molnar | cdd6c48 | 2009-09-21 12:02:48 +0200 | [diff] [blame] | 942 | case PERF_RECORD_FORK: |
Arjan van de Ven | 1027498 | 2009-09-12 07:53:05 +0200 | [diff] [blame] | 943 | return process_fork_event(event); |
Ingo Molnar | cdd6c48 | 2009-09-21 12:02:48 +0200 | [diff] [blame] | 944 | case PERF_RECORD_EXIT: |
Arjan van de Ven | 1027498 | 2009-09-12 07:53:05 +0200 | [diff] [blame] | 945 | return process_exit_event(event); |
Ingo Molnar | cdd6c48 | 2009-09-21 12:02:48 +0200 | [diff] [blame] | 946 | case PERF_RECORD_SAMPLE: |
Arjan van de Ven | 1027498 | 2009-09-12 07:53:05 +0200 | [diff] [blame] | 947 | return queue_sample_event(event); |
| 948 | |
| 949 | /* |
| 950 | * We dont process them right now but they are fine: |
| 951 | */ |
Ingo Molnar | cdd6c48 | 2009-09-21 12:02:48 +0200 | [diff] [blame] | 952 | case PERF_RECORD_MMAP: |
| 953 | case PERF_RECORD_THROTTLE: |
| 954 | case PERF_RECORD_UNTHROTTLE: |
Arjan van de Ven | 1027498 | 2009-09-12 07:53:05 +0200 | [diff] [blame] | 955 | return 0; |
| 956 | |
| 957 | default: |
| 958 | return -1; |
| 959 | } |
| 960 | |
| 961 | return 0; |
| 962 | } |
| 963 | |
| 964 | static void process_samples(void) |
| 965 | { |
| 966 | struct sample_wrapper *cursor; |
| 967 | event_t *event; |
| 968 | |
| 969 | sort_queued_samples(); |
| 970 | |
| 971 | cursor = all_samples; |
| 972 | while (cursor) { |
| 973 | event = (void *)&cursor->data; |
| 974 | cursor = cursor->next; |
| 975 | process_sample_event(event); |
| 976 | } |
| 977 | } |
| 978 | |
| 979 | |
| 980 | static int __cmd_timechart(void) |
| 981 | { |
| 982 | int ret, rc = EXIT_FAILURE; |
| 983 | unsigned long offset = 0; |
| 984 | unsigned long head, shift; |
| 985 | struct stat statbuf; |
| 986 | event_t *event; |
| 987 | uint32_t size; |
| 988 | char *buf; |
| 989 | int input; |
| 990 | |
| 991 | input = open(input_name, O_RDONLY); |
| 992 | if (input < 0) { |
| 993 | fprintf(stderr, " failed to open file: %s", input_name); |
| 994 | if (!strcmp(input_name, "perf.data")) |
| 995 | fprintf(stderr, " (try 'perf record' first)"); |
| 996 | fprintf(stderr, "\n"); |
| 997 | exit(-1); |
| 998 | } |
| 999 | |
| 1000 | ret = fstat(input, &statbuf); |
| 1001 | if (ret < 0) { |
| 1002 | perror("failed to stat file"); |
| 1003 | exit(-1); |
| 1004 | } |
| 1005 | |
| 1006 | if (!statbuf.st_size) { |
| 1007 | fprintf(stderr, "zero-sized file, nothing to do!\n"); |
| 1008 | exit(0); |
| 1009 | } |
| 1010 | |
| 1011 | header = perf_header__read(input); |
| 1012 | head = header->data_offset; |
| 1013 | |
| 1014 | sample_type = perf_header__sample_type(header); |
| 1015 | |
| 1016 | shift = page_size * (head / page_size); |
| 1017 | offset += shift; |
| 1018 | head -= shift; |
| 1019 | |
| 1020 | remap: |
| 1021 | buf = (char *)mmap(NULL, page_size * mmap_window, PROT_READ, |
| 1022 | MAP_SHARED, input, offset); |
| 1023 | if (buf == MAP_FAILED) { |
| 1024 | perror("failed to mmap file"); |
| 1025 | exit(-1); |
| 1026 | } |
| 1027 | |
| 1028 | more: |
| 1029 | event = (event_t *)(buf + head); |
| 1030 | |
| 1031 | size = event->header.size; |
| 1032 | if (!size) |
| 1033 | size = 8; |
| 1034 | |
| 1035 | if (head + event->header.size >= page_size * mmap_window) { |
| 1036 | int ret2; |
| 1037 | |
| 1038 | shift = page_size * (head / page_size); |
| 1039 | |
| 1040 | ret2 = munmap(buf, page_size * mmap_window); |
| 1041 | assert(ret2 == 0); |
| 1042 | |
| 1043 | offset += shift; |
| 1044 | head -= shift; |
| 1045 | goto remap; |
| 1046 | } |
| 1047 | |
| 1048 | size = event->header.size; |
| 1049 | |
| 1050 | if (!size || process_event(event) < 0) { |
| 1051 | |
| 1052 | printf("%p [%p]: skipping unknown header type: %d\n", |
| 1053 | (void *)(offset + head), |
| 1054 | (void *)(long)(event->header.size), |
| 1055 | event->header.type); |
| 1056 | |
| 1057 | /* |
| 1058 | * assume we lost track of the stream, check alignment, and |
| 1059 | * increment a single u64 in the hope to catch on again 'soon'. |
| 1060 | */ |
| 1061 | |
| 1062 | if (unlikely(head & 7)) |
| 1063 | head &= ~7ULL; |
| 1064 | |
| 1065 | size = 8; |
| 1066 | } |
| 1067 | |
| 1068 | head += size; |
| 1069 | |
| 1070 | if (offset + head >= header->data_offset + header->data_size) |
| 1071 | goto done; |
| 1072 | |
| 1073 | if (offset + head < (unsigned long)statbuf.st_size) |
| 1074 | goto more; |
| 1075 | |
| 1076 | done: |
| 1077 | rc = EXIT_SUCCESS; |
| 1078 | close(input); |
| 1079 | |
| 1080 | |
| 1081 | process_samples(); |
| 1082 | |
| 1083 | end_sample_processing(); |
| 1084 | |
| 1085 | sort_pids(); |
| 1086 | |
| 1087 | write_svg_file(output_name); |
| 1088 | |
| 1089 | printf("Written %2.1f seconds of trace to %s.\n", (last_time - first_time) / 1000000000.0, output_name); |
| 1090 | |
| 1091 | return rc; |
| 1092 | } |
| 1093 | |
Arjan van de Ven | 3c09eeb | 2009-09-19 13:34:42 +0200 | [diff] [blame] | 1094 | static const char * const timechart_usage[] = { |
| 1095 | "perf timechart [<options>] {record}", |
Arjan van de Ven | 1027498 | 2009-09-12 07:53:05 +0200 | [diff] [blame] | 1096 | NULL |
| 1097 | }; |
| 1098 | |
Arjan van de Ven | 3c09eeb | 2009-09-19 13:34:42 +0200 | [diff] [blame] | 1099 | static const char *record_args[] = { |
| 1100 | "record", |
| 1101 | "-a", |
| 1102 | "-R", |
| 1103 | "-M", |
| 1104 | "-f", |
| 1105 | "-c", "1", |
| 1106 | "-e", "power:power_start", |
| 1107 | "-e", "power:power_end", |
| 1108 | "-e", "power:power_frequency", |
| 1109 | "-e", "sched:sched_wakeup", |
| 1110 | "-e", "sched:sched_switch", |
| 1111 | }; |
| 1112 | |
| 1113 | static int __cmd_record(int argc, const char **argv) |
| 1114 | { |
| 1115 | unsigned int rec_argc, i, j; |
| 1116 | const char **rec_argv; |
| 1117 | |
| 1118 | rec_argc = ARRAY_SIZE(record_args) + argc - 1; |
| 1119 | rec_argv = calloc(rec_argc + 1, sizeof(char *)); |
| 1120 | |
| 1121 | for (i = 0; i < ARRAY_SIZE(record_args); i++) |
| 1122 | rec_argv[i] = strdup(record_args[i]); |
| 1123 | |
| 1124 | for (j = 1; j < (unsigned int)argc; j++, i++) |
| 1125 | rec_argv[i] = argv[j]; |
| 1126 | |
| 1127 | return cmd_record(i, rec_argv, NULL); |
| 1128 | } |
| 1129 | |
Arjan van de Ven | 1027498 | 2009-09-12 07:53:05 +0200 | [diff] [blame] | 1130 | static const struct option options[] = { |
| 1131 | OPT_STRING('i', "input", &input_name, "file", |
| 1132 | "input file name"), |
| 1133 | OPT_STRING('o', "output", &output_name, "file", |
| 1134 | "output file name"), |
Arjan van de Ven | 5094b65 | 2009-09-20 18:14:16 +0200 | [diff] [blame] | 1135 | OPT_INTEGER('w', "width", &svg_page_width, |
| 1136 | "page width"), |
Arjan van de Ven | 1027498 | 2009-09-12 07:53:05 +0200 | [diff] [blame] | 1137 | OPT_END() |
| 1138 | }; |
| 1139 | |
| 1140 | |
| 1141 | int cmd_timechart(int argc, const char **argv, const char *prefix __used) |
| 1142 | { |
| 1143 | symbol__init(); |
| 1144 | |
| 1145 | page_size = getpagesize(); |
| 1146 | |
Arjan van de Ven | 3c09eeb | 2009-09-19 13:34:42 +0200 | [diff] [blame] | 1147 | argc = parse_options(argc, argv, options, timechart_usage, |
| 1148 | PARSE_OPT_STOP_AT_NON_OPTION); |
Arjan van de Ven | 1027498 | 2009-09-12 07:53:05 +0200 | [diff] [blame] | 1149 | |
Arjan van de Ven | 3c09eeb | 2009-09-19 13:34:42 +0200 | [diff] [blame] | 1150 | if (argc && !strncmp(argv[0], "rec", 3)) |
| 1151 | return __cmd_record(argc, argv); |
| 1152 | else if (argc) |
| 1153 | usage_with_options(timechart_usage, options); |
Arjan van de Ven | 1027498 | 2009-09-12 07:53:05 +0200 | [diff] [blame] | 1154 | |
| 1155 | setup_pager(); |
| 1156 | |
| 1157 | return __cmd_timechart(); |
| 1158 | } |