blob: 0c1b3a0834e100b8227ad010c54bcf6d4e62480d [file] [log] [blame]
Eric Anholt673a3942008-07-30 12:06:12 -07001/*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28#include "drmP.h"
29#include "drm.h"
30#include "i915_drm.h"
31#include "i915_drv.h"
32
33/** @file i915_gem_tiling.c
34 *
35 * Support for managing tiling state of buffer objects.
36 *
37 * The idea behind tiling is to increase cache hit rates by rearranging
38 * pixel data so that a group of pixel accesses are in the same cacheline.
39 * Performance improvement from doing this on the back/depth buffer are on
40 * the order of 30%.
41 *
42 * Intel architectures make this somewhat more complicated, though, by
43 * adjustments made to addressing of data when the memory is in interleaved
44 * mode (matched pairs of DIMMS) to improve memory bandwidth.
45 * For interleaved memory, the CPU sends every sequential 64 bytes
46 * to an alternate memory channel so it can get the bandwidth from both.
47 *
48 * The GPU also rearranges its accesses for increased bandwidth to interleaved
49 * memory, and it matches what the CPU does for non-tiled. However, when tiled
50 * it does it a little differently, since one walks addresses not just in the
51 * X direction but also Y. So, along with alternating channels when bit
52 * 6 of the address flips, it also alternates when other bits flip -- Bits 9
53 * (every 512 bytes, an X tile scanline) and 10 (every two X tile scanlines)
54 * are common to both the 915 and 965-class hardware.
55 *
56 * The CPU also sometimes XORs in higher bits as well, to improve
57 * bandwidth doing strided access like we do so frequently in graphics. This
58 * is called "Channel XOR Randomization" in the MCH documentation. The result
59 * is that the CPU is XORing in either bit 11 or bit 17 to bit 6 of its address
60 * decode.
61 *
62 * All of this bit 6 XORing has an effect on our memory management,
63 * as we need to make sure that the 3d driver can correctly address object
64 * contents.
65 *
66 * If we don't have interleaved memory, all tiling is safe and no swizzling is
67 * required.
68 *
69 * When bit 17 is XORed in, we simply refuse to tile at all. Bit
70 * 17 is not just a page offset, so as we page an objet out and back in,
71 * individual pages in it will have different bit 17 addresses, resulting in
72 * each 64 bytes being swapped with its neighbor!
73 *
74 * Otherwise, if interleaved, we have to tell the 3d driver what the address
75 * swizzling it needs to do is, since it's writing with the CPU to the pages
76 * (bit 6 and potentially bit 11 XORed in), and the GPU is reading from the
77 * pages (bit 6, 9, and 10 XORed in), resulting in a cumulative bit swizzling
78 * required by the CPU of XORing in bit 6, 9, 10, and potentially 11, in order
79 * to match what the GPU expects.
80 */
81
82/**
83 * Detects bit 6 swizzling of address lookup between IGD access and CPU
84 * access through main memory.
85 */
86void
87i915_gem_detect_bit_6_swizzle(struct drm_device *dev)
88{
89 drm_i915_private_t *dev_priv = dev->dev_private;
90 uint32_t swizzle_x = I915_BIT_6_SWIZZLE_UNKNOWN;
91 uint32_t swizzle_y = I915_BIT_6_SWIZZLE_UNKNOWN;
92
93 if (!IS_I9XX(dev)) {
94 /* As far as we know, the 865 doesn't have these bit 6
95 * swizzling issues.
96 */
97 swizzle_x = I915_BIT_6_SWIZZLE_NONE;
98 swizzle_y = I915_BIT_6_SWIZZLE_NONE;
99 } else if (!IS_I965G(dev) || IS_I965GM(dev)) {
100 uint32_t dcc;
101
102 /* On 915-945 and GM965, channel interleave by the CPU is
103 * determined by DCC. The CPU will alternate based on bit 6
104 * in interleaved mode, and the GPU will then also alternate
105 * on bit 6, 9, and 10 for X, but the CPU may also optionally
106 * alternate based on bit 17 (XOR not disabled and XOR
107 * bit == 17).
108 */
109 dcc = I915_READ(DCC);
110 switch (dcc & DCC_ADDRESSING_MODE_MASK) {
111 case DCC_ADDRESSING_MODE_SINGLE_CHANNEL:
112 case DCC_ADDRESSING_MODE_DUAL_CHANNEL_ASYMMETRIC:
113 swizzle_x = I915_BIT_6_SWIZZLE_NONE;
114 swizzle_y = I915_BIT_6_SWIZZLE_NONE;
115 break;
116 case DCC_ADDRESSING_MODE_DUAL_CHANNEL_INTERLEAVED:
117 if (IS_I915G(dev) || IS_I915GM(dev) ||
118 dcc & DCC_CHANNEL_XOR_DISABLE) {
119 swizzle_x = I915_BIT_6_SWIZZLE_9_10;
120 swizzle_y = I915_BIT_6_SWIZZLE_9;
121 } else if (IS_I965GM(dev)) {
122 /* GM965 only does bit 11-based channel
123 * randomization
124 */
125 swizzle_x = I915_BIT_6_SWIZZLE_9_10_11;
126 swizzle_y = I915_BIT_6_SWIZZLE_9_11;
127 } else {
128 /* Bit 17 or perhaps other swizzling */
129 swizzle_x = I915_BIT_6_SWIZZLE_UNKNOWN;
130 swizzle_y = I915_BIT_6_SWIZZLE_UNKNOWN;
131 }
132 break;
133 }
134 if (dcc == 0xffffffff) {
135 DRM_ERROR("Couldn't read from MCHBAR. "
136 "Disabling tiling.\n");
137 swizzle_x = I915_BIT_6_SWIZZLE_UNKNOWN;
138 swizzle_y = I915_BIT_6_SWIZZLE_UNKNOWN;
139 }
140 } else {
141 /* The 965, G33, and newer, have a very flexible memory
142 * configuration. It will enable dual-channel mode
143 * (interleaving) on as much memory as it can, and the GPU
144 * will additionally sometimes enable different bit 6
145 * swizzling for tiled objects from the CPU.
146 *
147 * Here's what I found on the G965:
148 * slot fill memory size swizzling
149 * 0A 0B 1A 1B 1-ch 2-ch
150 * 512 0 0 0 512 0 O
151 * 512 0 512 0 16 1008 X
152 * 512 0 0 512 16 1008 X
153 * 0 512 0 512 16 1008 X
154 * 1024 1024 1024 0 2048 1024 O
155 *
156 * We could probably detect this based on either the DRB
157 * matching, which was the case for the swizzling required in
158 * the table above, or from the 1-ch value being less than
159 * the minimum size of a rank.
160 */
161 if (I915_READ16(C0DRB3) != I915_READ16(C1DRB3)) {
162 swizzle_x = I915_BIT_6_SWIZZLE_NONE;
163 swizzle_y = I915_BIT_6_SWIZZLE_NONE;
164 } else {
165 swizzle_x = I915_BIT_6_SWIZZLE_9_10;
166 swizzle_y = I915_BIT_6_SWIZZLE_9;
167 }
168 }
169
170 dev_priv->mm.bit_6_swizzle_x = swizzle_x;
171 dev_priv->mm.bit_6_swizzle_y = swizzle_y;
172}
173
174/**
175 * Sets the tiling mode of an object, returning the required swizzling of
176 * bit 6 of addresses in the object.
177 */
178int
179i915_gem_set_tiling(struct drm_device *dev, void *data,
180 struct drm_file *file_priv)
181{
182 struct drm_i915_gem_set_tiling *args = data;
183 drm_i915_private_t *dev_priv = dev->dev_private;
184 struct drm_gem_object *obj;
185 struct drm_i915_gem_object *obj_priv;
186
187 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
188 if (obj == NULL)
189 return -EINVAL;
190 obj_priv = obj->driver_private;
191
192 mutex_lock(&dev->struct_mutex);
193
194 if (args->tiling_mode == I915_TILING_NONE) {
195 obj_priv->tiling_mode = I915_TILING_NONE;
196 args->swizzle_mode = I915_BIT_6_SWIZZLE_NONE;
197 } else {
198 if (args->tiling_mode == I915_TILING_X)
199 args->swizzle_mode = dev_priv->mm.bit_6_swizzle_x;
200 else
201 args->swizzle_mode = dev_priv->mm.bit_6_swizzle_y;
202 /* If we can't handle the swizzling, make it untiled. */
203 if (args->swizzle_mode == I915_BIT_6_SWIZZLE_UNKNOWN) {
204 args->tiling_mode = I915_TILING_NONE;
205 args->swizzle_mode = I915_BIT_6_SWIZZLE_NONE;
206 }
207 }
208 obj_priv->tiling_mode = args->tiling_mode;
209
210 mutex_unlock(&dev->struct_mutex);
211
212 drm_gem_object_unreference(obj);
213
214 return 0;
215}
216
217/**
218 * Returns the current tiling mode and required bit 6 swizzling for the object.
219 */
220int
221i915_gem_get_tiling(struct drm_device *dev, void *data,
222 struct drm_file *file_priv)
223{
224 struct drm_i915_gem_get_tiling *args = data;
225 drm_i915_private_t *dev_priv = dev->dev_private;
226 struct drm_gem_object *obj;
227 struct drm_i915_gem_object *obj_priv;
228
229 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
230 if (obj == NULL)
231 return -EINVAL;
232 obj_priv = obj->driver_private;
233
234 mutex_lock(&dev->struct_mutex);
235
236 args->tiling_mode = obj_priv->tiling_mode;
237 switch (obj_priv->tiling_mode) {
238 case I915_TILING_X:
239 args->swizzle_mode = dev_priv->mm.bit_6_swizzle_x;
240 break;
241 case I915_TILING_Y:
242 args->swizzle_mode = dev_priv->mm.bit_6_swizzle_y;
243 break;
244 case I915_TILING_NONE:
245 args->swizzle_mode = I915_BIT_6_SWIZZLE_NONE;
246 break;
247 default:
248 DRM_ERROR("unknown tiling mode\n");
249 }
250
251 mutex_unlock(&dev->struct_mutex);
252
253 drm_gem_object_unreference(obj);
254
255 return 0;
256}