Auke Kok | 9d5c824 | 2008-01-24 02:22:38 -0800 | [diff] [blame] | 1 | /******************************************************************************* |
| 2 | |
| 3 | Intel(R) Gigabit Ethernet Linux driver |
| 4 | Copyright(c) 2007 Intel Corporation. |
| 5 | |
| 6 | This program is free software; you can redistribute it and/or modify it |
| 7 | under the terms and conditions of the GNU General Public License, |
| 8 | version 2, as published by the Free Software Foundation. |
| 9 | |
| 10 | This program is distributed in the hope it will be useful, but WITHOUT |
| 11 | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| 12 | FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for |
| 13 | more details. |
| 14 | |
| 15 | You should have received a copy of the GNU General Public License along with |
| 16 | this program; if not, write to the Free Software Foundation, Inc., |
| 17 | 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. |
| 18 | |
| 19 | The full GNU General Public License is included in this distribution in |
| 20 | the file called "COPYING". |
| 21 | |
| 22 | Contact Information: |
| 23 | e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> |
| 24 | Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 |
| 25 | |
| 26 | *******************************************************************************/ |
| 27 | |
| 28 | /* e1000_82575 |
| 29 | * e1000_82576 |
| 30 | */ |
| 31 | |
| 32 | #include <linux/types.h> |
| 33 | #include <linux/slab.h> |
| 34 | |
| 35 | #include "e1000_mac.h" |
| 36 | #include "e1000_82575.h" |
| 37 | |
| 38 | static s32 igb_get_invariants_82575(struct e1000_hw *); |
| 39 | static s32 igb_acquire_phy_82575(struct e1000_hw *); |
| 40 | static void igb_release_phy_82575(struct e1000_hw *); |
| 41 | static s32 igb_acquire_nvm_82575(struct e1000_hw *); |
| 42 | static void igb_release_nvm_82575(struct e1000_hw *); |
| 43 | static s32 igb_check_for_link_82575(struct e1000_hw *); |
| 44 | static s32 igb_get_cfg_done_82575(struct e1000_hw *); |
| 45 | static s32 igb_init_hw_82575(struct e1000_hw *); |
| 46 | static s32 igb_phy_hw_reset_sgmii_82575(struct e1000_hw *); |
| 47 | static s32 igb_read_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16 *); |
| 48 | static void igb_rar_set_82575(struct e1000_hw *, u8 *, u32); |
| 49 | static s32 igb_reset_hw_82575(struct e1000_hw *); |
| 50 | static s32 igb_set_d0_lplu_state_82575(struct e1000_hw *, bool); |
| 51 | static s32 igb_setup_copper_link_82575(struct e1000_hw *); |
| 52 | static s32 igb_setup_fiber_serdes_link_82575(struct e1000_hw *); |
| 53 | static s32 igb_write_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16); |
| 54 | static void igb_clear_hw_cntrs_82575(struct e1000_hw *); |
| 55 | static s32 igb_acquire_swfw_sync_82575(struct e1000_hw *, u16); |
| 56 | static s32 igb_configure_pcs_link_82575(struct e1000_hw *); |
| 57 | static s32 igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *, u16 *, |
| 58 | u16 *); |
| 59 | static s32 igb_get_phy_id_82575(struct e1000_hw *); |
| 60 | static void igb_release_swfw_sync_82575(struct e1000_hw *, u16); |
| 61 | static bool igb_sgmii_active_82575(struct e1000_hw *); |
| 62 | static s32 igb_reset_init_script_82575(struct e1000_hw *); |
| 63 | static s32 igb_read_mac_addr_82575(struct e1000_hw *); |
| 64 | |
| 65 | |
| 66 | struct e1000_dev_spec_82575 { |
| 67 | bool sgmii_active; |
| 68 | }; |
| 69 | |
| 70 | static s32 igb_get_invariants_82575(struct e1000_hw *hw) |
| 71 | { |
| 72 | struct e1000_phy_info *phy = &hw->phy; |
| 73 | struct e1000_nvm_info *nvm = &hw->nvm; |
| 74 | struct e1000_mac_info *mac = &hw->mac; |
| 75 | struct e1000_dev_spec_82575 *dev_spec; |
| 76 | u32 eecd; |
| 77 | s32 ret_val; |
| 78 | u16 size; |
| 79 | u32 ctrl_ext = 0; |
| 80 | |
| 81 | switch (hw->device_id) { |
| 82 | case E1000_DEV_ID_82575EB_COPPER: |
| 83 | case E1000_DEV_ID_82575EB_FIBER_SERDES: |
| 84 | case E1000_DEV_ID_82575GB_QUAD_COPPER: |
| 85 | mac->type = e1000_82575; |
| 86 | break; |
| 87 | default: |
| 88 | return -E1000_ERR_MAC_INIT; |
| 89 | break; |
| 90 | } |
| 91 | |
| 92 | /* MAC initialization */ |
| 93 | hw->dev_spec_size = sizeof(struct e1000_dev_spec_82575); |
| 94 | |
| 95 | /* Device-specific structure allocation */ |
| 96 | hw->dev_spec = kzalloc(hw->dev_spec_size, GFP_KERNEL); |
| 97 | |
| 98 | if (!hw->dev_spec) |
| 99 | return -ENOMEM; |
| 100 | |
| 101 | dev_spec = (struct e1000_dev_spec_82575 *)hw->dev_spec; |
| 102 | |
| 103 | /* Set media type */ |
| 104 | /* |
| 105 | * The 82575 uses bits 22:23 for link mode. The mode can be changed |
| 106 | * based on the EEPROM. We cannot rely upon device ID. There |
| 107 | * is no distinguishable difference between fiber and internal |
| 108 | * SerDes mode on the 82575. There can be an external PHY attached |
| 109 | * on the SGMII interface. For this, we'll set sgmii_active to true. |
| 110 | */ |
| 111 | phy->media_type = e1000_media_type_copper; |
| 112 | dev_spec->sgmii_active = false; |
| 113 | |
| 114 | ctrl_ext = rd32(E1000_CTRL_EXT); |
| 115 | if ((ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK) == |
| 116 | E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES) { |
| 117 | hw->phy.media_type = e1000_media_type_internal_serdes; |
| 118 | ctrl_ext |= E1000_CTRL_I2C_ENA; |
| 119 | } else if (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII) { |
| 120 | dev_spec->sgmii_active = true; |
| 121 | ctrl_ext |= E1000_CTRL_I2C_ENA; |
| 122 | } else { |
| 123 | ctrl_ext &= ~E1000_CTRL_I2C_ENA; |
| 124 | } |
| 125 | wr32(E1000_CTRL_EXT, ctrl_ext); |
| 126 | |
| 127 | /* Set mta register count */ |
| 128 | mac->mta_reg_count = 128; |
| 129 | /* Set rar entry count */ |
| 130 | mac->rar_entry_count = E1000_RAR_ENTRIES_82575; |
| 131 | /* Set if part includes ASF firmware */ |
| 132 | mac->asf_firmware_present = true; |
| 133 | /* Set if manageability features are enabled. */ |
| 134 | mac->arc_subsystem_valid = |
| 135 | (rd32(E1000_FWSM) & E1000_FWSM_MODE_MASK) |
| 136 | ? true : false; |
| 137 | |
| 138 | /* physical interface link setup */ |
| 139 | mac->ops.setup_physical_interface = |
| 140 | (hw->phy.media_type == e1000_media_type_copper) |
| 141 | ? igb_setup_copper_link_82575 |
| 142 | : igb_setup_fiber_serdes_link_82575; |
| 143 | |
| 144 | /* NVM initialization */ |
| 145 | eecd = rd32(E1000_EECD); |
| 146 | |
| 147 | nvm->opcode_bits = 8; |
| 148 | nvm->delay_usec = 1; |
| 149 | switch (nvm->override) { |
| 150 | case e1000_nvm_override_spi_large: |
| 151 | nvm->page_size = 32; |
| 152 | nvm->address_bits = 16; |
| 153 | break; |
| 154 | case e1000_nvm_override_spi_small: |
| 155 | nvm->page_size = 8; |
| 156 | nvm->address_bits = 8; |
| 157 | break; |
| 158 | default: |
| 159 | nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8; |
| 160 | nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8; |
| 161 | break; |
| 162 | } |
| 163 | |
| 164 | nvm->type = e1000_nvm_eeprom_spi; |
| 165 | |
| 166 | size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >> |
| 167 | E1000_EECD_SIZE_EX_SHIFT); |
| 168 | |
| 169 | /* |
| 170 | * Added to a constant, "size" becomes the left-shift value |
| 171 | * for setting word_size. |
| 172 | */ |
| 173 | size += NVM_WORD_SIZE_BASE_SHIFT; |
| 174 | nvm->word_size = 1 << size; |
| 175 | |
| 176 | /* setup PHY parameters */ |
| 177 | if (phy->media_type != e1000_media_type_copper) { |
| 178 | phy->type = e1000_phy_none; |
| 179 | return 0; |
| 180 | } |
| 181 | |
| 182 | phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT; |
| 183 | phy->reset_delay_us = 100; |
| 184 | |
| 185 | /* PHY function pointers */ |
| 186 | if (igb_sgmii_active_82575(hw)) { |
| 187 | phy->ops.reset_phy = igb_phy_hw_reset_sgmii_82575; |
| 188 | phy->ops.read_phy_reg = igb_read_phy_reg_sgmii_82575; |
| 189 | phy->ops.write_phy_reg = igb_write_phy_reg_sgmii_82575; |
| 190 | } else { |
| 191 | phy->ops.reset_phy = igb_phy_hw_reset; |
| 192 | phy->ops.read_phy_reg = igb_read_phy_reg_igp; |
| 193 | phy->ops.write_phy_reg = igb_write_phy_reg_igp; |
| 194 | } |
| 195 | |
| 196 | /* Set phy->phy_addr and phy->id. */ |
| 197 | ret_val = igb_get_phy_id_82575(hw); |
| 198 | if (ret_val) |
| 199 | return ret_val; |
| 200 | |
| 201 | /* Verify phy id and set remaining function pointers */ |
| 202 | switch (phy->id) { |
| 203 | case M88E1111_I_PHY_ID: |
| 204 | phy->type = e1000_phy_m88; |
| 205 | phy->ops.get_phy_info = igb_get_phy_info_m88; |
| 206 | phy->ops.get_cable_length = igb_get_cable_length_m88; |
| 207 | phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_m88; |
| 208 | break; |
| 209 | case IGP03E1000_E_PHY_ID: |
| 210 | phy->type = e1000_phy_igp_3; |
| 211 | phy->ops.get_phy_info = igb_get_phy_info_igp; |
| 212 | phy->ops.get_cable_length = igb_get_cable_length_igp_2; |
| 213 | phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_igp; |
| 214 | phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82575; |
| 215 | phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state; |
| 216 | break; |
| 217 | default: |
| 218 | return -E1000_ERR_PHY; |
| 219 | } |
| 220 | |
| 221 | return 0; |
| 222 | } |
| 223 | |
| 224 | /** |
| 225 | * e1000_acquire_phy_82575 - Acquire rights to access PHY |
| 226 | * @hw: pointer to the HW structure |
| 227 | * |
| 228 | * Acquire access rights to the correct PHY. This is a |
| 229 | * function pointer entry point called by the api module. |
| 230 | **/ |
| 231 | static s32 igb_acquire_phy_82575(struct e1000_hw *hw) |
| 232 | { |
| 233 | u16 mask; |
| 234 | |
| 235 | mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM; |
| 236 | |
| 237 | return igb_acquire_swfw_sync_82575(hw, mask); |
| 238 | } |
| 239 | |
| 240 | /** |
| 241 | * e1000_release_phy_82575 - Release rights to access PHY |
| 242 | * @hw: pointer to the HW structure |
| 243 | * |
| 244 | * A wrapper to release access rights to the correct PHY. This is a |
| 245 | * function pointer entry point called by the api module. |
| 246 | **/ |
| 247 | static void igb_release_phy_82575(struct e1000_hw *hw) |
| 248 | { |
| 249 | u16 mask; |
| 250 | |
| 251 | mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM; |
| 252 | igb_release_swfw_sync_82575(hw, mask); |
| 253 | } |
| 254 | |
| 255 | /** |
| 256 | * e1000_read_phy_reg_sgmii_82575 - Read PHY register using sgmii |
| 257 | * @hw: pointer to the HW structure |
| 258 | * @offset: register offset to be read |
| 259 | * @data: pointer to the read data |
| 260 | * |
| 261 | * Reads the PHY register at offset using the serial gigabit media independent |
| 262 | * interface and stores the retrieved information in data. |
| 263 | **/ |
| 264 | static s32 igb_read_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset, |
| 265 | u16 *data) |
| 266 | { |
| 267 | struct e1000_phy_info *phy = &hw->phy; |
| 268 | u32 i, i2ccmd = 0; |
| 269 | |
| 270 | if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) { |
| 271 | hw_dbg(hw, "PHY Address %u is out of range\n", offset); |
| 272 | return -E1000_ERR_PARAM; |
| 273 | } |
| 274 | |
| 275 | /* |
| 276 | * Set up Op-code, Phy Address, and register address in the I2CCMD |
| 277 | * register. The MAC will take care of interfacing with the |
| 278 | * PHY to retrieve the desired data. |
| 279 | */ |
| 280 | i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) | |
| 281 | (phy->addr << E1000_I2CCMD_PHY_ADDR_SHIFT) | |
| 282 | (E1000_I2CCMD_OPCODE_READ)); |
| 283 | |
| 284 | wr32(E1000_I2CCMD, i2ccmd); |
| 285 | |
| 286 | /* Poll the ready bit to see if the I2C read completed */ |
| 287 | for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) { |
| 288 | udelay(50); |
| 289 | i2ccmd = rd32(E1000_I2CCMD); |
| 290 | if (i2ccmd & E1000_I2CCMD_READY) |
| 291 | break; |
| 292 | } |
| 293 | if (!(i2ccmd & E1000_I2CCMD_READY)) { |
| 294 | hw_dbg(hw, "I2CCMD Read did not complete\n"); |
| 295 | return -E1000_ERR_PHY; |
| 296 | } |
| 297 | if (i2ccmd & E1000_I2CCMD_ERROR) { |
| 298 | hw_dbg(hw, "I2CCMD Error bit set\n"); |
| 299 | return -E1000_ERR_PHY; |
| 300 | } |
| 301 | |
| 302 | /* Need to byte-swap the 16-bit value. */ |
| 303 | *data = ((i2ccmd >> 8) & 0x00FF) | ((i2ccmd << 8) & 0xFF00); |
| 304 | |
| 305 | return 0; |
| 306 | } |
| 307 | |
| 308 | /** |
| 309 | * e1000_write_phy_reg_sgmii_82575 - Write PHY register using sgmii |
| 310 | * @hw: pointer to the HW structure |
| 311 | * @offset: register offset to write to |
| 312 | * @data: data to write at register offset |
| 313 | * |
| 314 | * Writes the data to PHY register at the offset using the serial gigabit |
| 315 | * media independent interface. |
| 316 | **/ |
| 317 | static s32 igb_write_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset, |
| 318 | u16 data) |
| 319 | { |
| 320 | struct e1000_phy_info *phy = &hw->phy; |
| 321 | u32 i, i2ccmd = 0; |
| 322 | u16 phy_data_swapped; |
| 323 | |
| 324 | if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) { |
| 325 | hw_dbg(hw, "PHY Address %d is out of range\n", offset); |
| 326 | return -E1000_ERR_PARAM; |
| 327 | } |
| 328 | |
| 329 | /* Swap the data bytes for the I2C interface */ |
| 330 | phy_data_swapped = ((data >> 8) & 0x00FF) | ((data << 8) & 0xFF00); |
| 331 | |
| 332 | /* |
| 333 | * Set up Op-code, Phy Address, and register address in the I2CCMD |
| 334 | * register. The MAC will take care of interfacing with the |
| 335 | * PHY to retrieve the desired data. |
| 336 | */ |
| 337 | i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) | |
| 338 | (phy->addr << E1000_I2CCMD_PHY_ADDR_SHIFT) | |
| 339 | E1000_I2CCMD_OPCODE_WRITE | |
| 340 | phy_data_swapped); |
| 341 | |
| 342 | wr32(E1000_I2CCMD, i2ccmd); |
| 343 | |
| 344 | /* Poll the ready bit to see if the I2C read completed */ |
| 345 | for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) { |
| 346 | udelay(50); |
| 347 | i2ccmd = rd32(E1000_I2CCMD); |
| 348 | if (i2ccmd & E1000_I2CCMD_READY) |
| 349 | break; |
| 350 | } |
| 351 | if (!(i2ccmd & E1000_I2CCMD_READY)) { |
| 352 | hw_dbg(hw, "I2CCMD Write did not complete\n"); |
| 353 | return -E1000_ERR_PHY; |
| 354 | } |
| 355 | if (i2ccmd & E1000_I2CCMD_ERROR) { |
| 356 | hw_dbg(hw, "I2CCMD Error bit set\n"); |
| 357 | return -E1000_ERR_PHY; |
| 358 | } |
| 359 | |
| 360 | return 0; |
| 361 | } |
| 362 | |
| 363 | /** |
| 364 | * e1000_get_phy_id_82575 - Retreive PHY addr and id |
| 365 | * @hw: pointer to the HW structure |
| 366 | * |
| 367 | * Retreives the PHY address and ID for both PHY's which do and do not use |
| 368 | * sgmi interface. |
| 369 | **/ |
| 370 | static s32 igb_get_phy_id_82575(struct e1000_hw *hw) |
| 371 | { |
| 372 | struct e1000_phy_info *phy = &hw->phy; |
| 373 | s32 ret_val = 0; |
| 374 | u16 phy_id; |
| 375 | |
| 376 | /* |
| 377 | * For SGMII PHYs, we try the list of possible addresses until |
| 378 | * we find one that works. For non-SGMII PHYs |
| 379 | * (e.g. integrated copper PHYs), an address of 1 should |
| 380 | * work. The result of this function should mean phy->phy_addr |
| 381 | * and phy->id are set correctly. |
| 382 | */ |
| 383 | if (!(igb_sgmii_active_82575(hw))) { |
| 384 | phy->addr = 1; |
| 385 | ret_val = igb_get_phy_id(hw); |
| 386 | goto out; |
| 387 | } |
| 388 | |
| 389 | /* |
| 390 | * The address field in the I2CCMD register is 3 bits and 0 is invalid. |
| 391 | * Therefore, we need to test 1-7 |
| 392 | */ |
| 393 | for (phy->addr = 1; phy->addr < 8; phy->addr++) { |
| 394 | ret_val = igb_read_phy_reg_sgmii_82575(hw, PHY_ID1, &phy_id); |
| 395 | if (ret_val == 0) { |
| 396 | hw_dbg(hw, "Vendor ID 0x%08X read at address %u\n", |
| 397 | phy_id, |
| 398 | phy->addr); |
| 399 | /* |
| 400 | * At the time of this writing, The M88 part is |
| 401 | * the only supported SGMII PHY product. |
| 402 | */ |
| 403 | if (phy_id == M88_VENDOR) |
| 404 | break; |
| 405 | } else { |
| 406 | hw_dbg(hw, "PHY address %u was unreadable\n", |
| 407 | phy->addr); |
| 408 | } |
| 409 | } |
| 410 | |
| 411 | /* A valid PHY type couldn't be found. */ |
| 412 | if (phy->addr == 8) { |
| 413 | phy->addr = 0; |
| 414 | ret_val = -E1000_ERR_PHY; |
| 415 | goto out; |
| 416 | } |
| 417 | |
| 418 | ret_val = igb_get_phy_id(hw); |
| 419 | |
| 420 | out: |
| 421 | return ret_val; |
| 422 | } |
| 423 | |
| 424 | /** |
| 425 | * e1000_phy_hw_reset_sgmii_82575 - Performs a PHY reset |
| 426 | * @hw: pointer to the HW structure |
| 427 | * |
| 428 | * Resets the PHY using the serial gigabit media independent interface. |
| 429 | **/ |
| 430 | static s32 igb_phy_hw_reset_sgmii_82575(struct e1000_hw *hw) |
| 431 | { |
| 432 | s32 ret_val; |
| 433 | |
| 434 | /* |
| 435 | * This isn't a true "hard" reset, but is the only reset |
| 436 | * available to us at this time. |
| 437 | */ |
| 438 | |
| 439 | hw_dbg(hw, "Soft resetting SGMII attached PHY...\n"); |
| 440 | |
| 441 | /* |
| 442 | * SFP documentation requires the following to configure the SPF module |
| 443 | * to work on SGMII. No further documentation is given. |
| 444 | */ |
| 445 | ret_val = hw->phy.ops.write_phy_reg(hw, 0x1B, 0x8084); |
| 446 | if (ret_val) |
| 447 | goto out; |
| 448 | |
| 449 | ret_val = igb_phy_sw_reset(hw); |
| 450 | |
| 451 | out: |
| 452 | return ret_val; |
| 453 | } |
| 454 | |
| 455 | /** |
| 456 | * e1000_set_d0_lplu_state_82575 - Set Low Power Linkup D0 state |
| 457 | * @hw: pointer to the HW structure |
| 458 | * @active: true to enable LPLU, false to disable |
| 459 | * |
| 460 | * Sets the LPLU D0 state according to the active flag. When |
| 461 | * activating LPLU this function also disables smart speed |
| 462 | * and vice versa. LPLU will not be activated unless the |
| 463 | * device autonegotiation advertisement meets standards of |
| 464 | * either 10 or 10/100 or 10/100/1000 at all duplexes. |
| 465 | * This is a function pointer entry point only called by |
| 466 | * PHY setup routines. |
| 467 | **/ |
| 468 | static s32 igb_set_d0_lplu_state_82575(struct e1000_hw *hw, bool active) |
| 469 | { |
| 470 | struct e1000_phy_info *phy = &hw->phy; |
| 471 | s32 ret_val; |
| 472 | u16 data; |
| 473 | |
| 474 | ret_val = hw->phy.ops.read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, |
| 475 | &data); |
| 476 | if (ret_val) |
| 477 | goto out; |
| 478 | |
| 479 | if (active) { |
| 480 | data |= IGP02E1000_PM_D0_LPLU; |
| 481 | ret_val = hw->phy.ops.write_phy_reg(hw, |
| 482 | IGP02E1000_PHY_POWER_MGMT, |
| 483 | data); |
| 484 | if (ret_val) |
| 485 | goto out; |
| 486 | |
| 487 | /* When LPLU is enabled, we should disable SmartSpeed */ |
| 488 | ret_val = hw->phy.ops.read_phy_reg(hw, |
| 489 | IGP01E1000_PHY_PORT_CONFIG, |
| 490 | &data); |
| 491 | data &= ~IGP01E1000_PSCFR_SMART_SPEED; |
| 492 | ret_val = hw->phy.ops.write_phy_reg(hw, |
| 493 | IGP01E1000_PHY_PORT_CONFIG, |
| 494 | data); |
| 495 | if (ret_val) |
| 496 | goto out; |
| 497 | } else { |
| 498 | data &= ~IGP02E1000_PM_D0_LPLU; |
| 499 | ret_val = hw->phy.ops.write_phy_reg(hw, |
| 500 | IGP02E1000_PHY_POWER_MGMT, |
| 501 | data); |
| 502 | /* |
| 503 | * LPLU and SmartSpeed are mutually exclusive. LPLU is used |
| 504 | * during Dx states where the power conservation is most |
| 505 | * important. During driver activity we should enable |
| 506 | * SmartSpeed, so performance is maintained. |
| 507 | */ |
| 508 | if (phy->smart_speed == e1000_smart_speed_on) { |
| 509 | ret_val = hw->phy.ops.read_phy_reg(hw, |
| 510 | IGP01E1000_PHY_PORT_CONFIG, |
| 511 | &data); |
| 512 | if (ret_val) |
| 513 | goto out; |
| 514 | |
| 515 | data |= IGP01E1000_PSCFR_SMART_SPEED; |
| 516 | ret_val = hw->phy.ops.write_phy_reg(hw, |
| 517 | IGP01E1000_PHY_PORT_CONFIG, |
| 518 | data); |
| 519 | if (ret_val) |
| 520 | goto out; |
| 521 | } else if (phy->smart_speed == e1000_smart_speed_off) { |
| 522 | ret_val = hw->phy.ops.read_phy_reg(hw, |
| 523 | IGP01E1000_PHY_PORT_CONFIG, |
| 524 | &data); |
| 525 | if (ret_val) |
| 526 | goto out; |
| 527 | |
| 528 | data &= ~IGP01E1000_PSCFR_SMART_SPEED; |
| 529 | ret_val = hw->phy.ops.write_phy_reg(hw, |
| 530 | IGP01E1000_PHY_PORT_CONFIG, |
| 531 | data); |
| 532 | if (ret_val) |
| 533 | goto out; |
| 534 | } |
| 535 | } |
| 536 | |
| 537 | out: |
| 538 | return ret_val; |
| 539 | } |
| 540 | |
| 541 | /** |
| 542 | * e1000_acquire_nvm_82575 - Request for access to EEPROM |
| 543 | * @hw: pointer to the HW structure |
| 544 | * |
| 545 | * Acquire the necessary semaphores for exclussive access to the EEPROM. |
| 546 | * Set the EEPROM access request bit and wait for EEPROM access grant bit. |
| 547 | * Return successful if access grant bit set, else clear the request for |
| 548 | * EEPROM access and return -E1000_ERR_NVM (-1). |
| 549 | **/ |
| 550 | static s32 igb_acquire_nvm_82575(struct e1000_hw *hw) |
| 551 | { |
| 552 | s32 ret_val; |
| 553 | |
| 554 | ret_val = igb_acquire_swfw_sync_82575(hw, E1000_SWFW_EEP_SM); |
| 555 | if (ret_val) |
| 556 | goto out; |
| 557 | |
| 558 | ret_val = igb_acquire_nvm(hw); |
| 559 | |
| 560 | if (ret_val) |
| 561 | igb_release_swfw_sync_82575(hw, E1000_SWFW_EEP_SM); |
| 562 | |
| 563 | out: |
| 564 | return ret_val; |
| 565 | } |
| 566 | |
| 567 | /** |
| 568 | * e1000_release_nvm_82575 - Release exclusive access to EEPROM |
| 569 | * @hw: pointer to the HW structure |
| 570 | * |
| 571 | * Stop any current commands to the EEPROM and clear the EEPROM request bit, |
| 572 | * then release the semaphores acquired. |
| 573 | **/ |
| 574 | static void igb_release_nvm_82575(struct e1000_hw *hw) |
| 575 | { |
| 576 | igb_release_nvm(hw); |
| 577 | igb_release_swfw_sync_82575(hw, E1000_SWFW_EEP_SM); |
| 578 | } |
| 579 | |
| 580 | /** |
| 581 | * e1000_acquire_swfw_sync_82575 - Acquire SW/FW semaphore |
| 582 | * @hw: pointer to the HW structure |
| 583 | * @mask: specifies which semaphore to acquire |
| 584 | * |
| 585 | * Acquire the SW/FW semaphore to access the PHY or NVM. The mask |
| 586 | * will also specify which port we're acquiring the lock for. |
| 587 | **/ |
| 588 | static s32 igb_acquire_swfw_sync_82575(struct e1000_hw *hw, u16 mask) |
| 589 | { |
| 590 | u32 swfw_sync; |
| 591 | u32 swmask = mask; |
| 592 | u32 fwmask = mask << 16; |
| 593 | s32 ret_val = 0; |
| 594 | s32 i = 0, timeout = 200; /* FIXME: find real value to use here */ |
| 595 | |
| 596 | while (i < timeout) { |
| 597 | if (igb_get_hw_semaphore(hw)) { |
| 598 | ret_val = -E1000_ERR_SWFW_SYNC; |
| 599 | goto out; |
| 600 | } |
| 601 | |
| 602 | swfw_sync = rd32(E1000_SW_FW_SYNC); |
| 603 | if (!(swfw_sync & (fwmask | swmask))) |
| 604 | break; |
| 605 | |
| 606 | /* |
| 607 | * Firmware currently using resource (fwmask) |
| 608 | * or other software thread using resource (swmask) |
| 609 | */ |
| 610 | igb_put_hw_semaphore(hw); |
| 611 | mdelay(5); |
| 612 | i++; |
| 613 | } |
| 614 | |
| 615 | if (i == timeout) { |
| 616 | hw_dbg(hw, "Can't access resource, SW_FW_SYNC timeout.\n"); |
| 617 | ret_val = -E1000_ERR_SWFW_SYNC; |
| 618 | goto out; |
| 619 | } |
| 620 | |
| 621 | swfw_sync |= swmask; |
| 622 | wr32(E1000_SW_FW_SYNC, swfw_sync); |
| 623 | |
| 624 | igb_put_hw_semaphore(hw); |
| 625 | |
| 626 | out: |
| 627 | return ret_val; |
| 628 | } |
| 629 | |
| 630 | /** |
| 631 | * e1000_release_swfw_sync_82575 - Release SW/FW semaphore |
| 632 | * @hw: pointer to the HW structure |
| 633 | * @mask: specifies which semaphore to acquire |
| 634 | * |
| 635 | * Release the SW/FW semaphore used to access the PHY or NVM. The mask |
| 636 | * will also specify which port we're releasing the lock for. |
| 637 | **/ |
| 638 | static void igb_release_swfw_sync_82575(struct e1000_hw *hw, u16 mask) |
| 639 | { |
| 640 | u32 swfw_sync; |
| 641 | |
| 642 | while (igb_get_hw_semaphore(hw) != 0); |
| 643 | /* Empty */ |
| 644 | |
| 645 | swfw_sync = rd32(E1000_SW_FW_SYNC); |
| 646 | swfw_sync &= ~mask; |
| 647 | wr32(E1000_SW_FW_SYNC, swfw_sync); |
| 648 | |
| 649 | igb_put_hw_semaphore(hw); |
| 650 | } |
| 651 | |
| 652 | /** |
| 653 | * e1000_get_cfg_done_82575 - Read config done bit |
| 654 | * @hw: pointer to the HW structure |
| 655 | * |
| 656 | * Read the management control register for the config done bit for |
| 657 | * completion status. NOTE: silicon which is EEPROM-less will fail trying |
| 658 | * to read the config done bit, so an error is *ONLY* logged and returns |
| 659 | * 0. If we were to return with error, EEPROM-less silicon |
| 660 | * would not be able to be reset or change link. |
| 661 | **/ |
| 662 | static s32 igb_get_cfg_done_82575(struct e1000_hw *hw) |
| 663 | { |
| 664 | s32 timeout = PHY_CFG_TIMEOUT; |
| 665 | s32 ret_val = 0; |
| 666 | u32 mask = E1000_NVM_CFG_DONE_PORT_0; |
| 667 | |
| 668 | if (hw->bus.func == 1) |
| 669 | mask = E1000_NVM_CFG_DONE_PORT_1; |
| 670 | |
| 671 | while (timeout) { |
| 672 | if (rd32(E1000_EEMNGCTL) & mask) |
| 673 | break; |
| 674 | msleep(1); |
| 675 | timeout--; |
| 676 | } |
| 677 | if (!timeout) |
| 678 | hw_dbg(hw, "MNG configuration cycle has not completed.\n"); |
| 679 | |
| 680 | /* If EEPROM is not marked present, init the PHY manually */ |
| 681 | if (((rd32(E1000_EECD) & E1000_EECD_PRES) == 0) && |
| 682 | (hw->phy.type == e1000_phy_igp_3)) |
| 683 | igb_phy_init_script_igp3(hw); |
| 684 | |
| 685 | return ret_val; |
| 686 | } |
| 687 | |
| 688 | /** |
| 689 | * e1000_check_for_link_82575 - Check for link |
| 690 | * @hw: pointer to the HW structure |
| 691 | * |
| 692 | * If sgmii is enabled, then use the pcs register to determine link, otherwise |
| 693 | * use the generic interface for determining link. |
| 694 | **/ |
| 695 | static s32 igb_check_for_link_82575(struct e1000_hw *hw) |
| 696 | { |
| 697 | s32 ret_val; |
| 698 | u16 speed, duplex; |
| 699 | |
| 700 | /* SGMII link check is done through the PCS register. */ |
| 701 | if ((hw->phy.media_type != e1000_media_type_copper) || |
| 702 | (igb_sgmii_active_82575(hw))) |
| 703 | ret_val = igb_get_pcs_speed_and_duplex_82575(hw, &speed, |
| 704 | &duplex); |
| 705 | else |
| 706 | ret_val = igb_check_for_copper_link(hw); |
| 707 | |
| 708 | return ret_val; |
| 709 | } |
| 710 | |
| 711 | /** |
| 712 | * e1000_get_pcs_speed_and_duplex_82575 - Retrieve current speed/duplex |
| 713 | * @hw: pointer to the HW structure |
| 714 | * @speed: stores the current speed |
| 715 | * @duplex: stores the current duplex |
| 716 | * |
| 717 | * Using the physical coding sub-layer (PCS), retreive the current speed and |
| 718 | * duplex, then store the values in the pointers provided. |
| 719 | **/ |
| 720 | static s32 igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *hw, u16 *speed, |
| 721 | u16 *duplex) |
| 722 | { |
| 723 | struct e1000_mac_info *mac = &hw->mac; |
| 724 | u32 pcs; |
| 725 | |
| 726 | /* Set up defaults for the return values of this function */ |
| 727 | mac->serdes_has_link = false; |
| 728 | *speed = 0; |
| 729 | *duplex = 0; |
| 730 | |
| 731 | /* |
| 732 | * Read the PCS Status register for link state. For non-copper mode, |
| 733 | * the status register is not accurate. The PCS status register is |
| 734 | * used instead. |
| 735 | */ |
| 736 | pcs = rd32(E1000_PCS_LSTAT); |
| 737 | |
| 738 | /* |
| 739 | * The link up bit determines when link is up on autoneg. The sync ok |
| 740 | * gets set once both sides sync up and agree upon link. Stable link |
| 741 | * can be determined by checking for both link up and link sync ok |
| 742 | */ |
| 743 | if ((pcs & E1000_PCS_LSTS_LINK_OK) && (pcs & E1000_PCS_LSTS_SYNK_OK)) { |
| 744 | mac->serdes_has_link = true; |
| 745 | |
| 746 | /* Detect and store PCS speed */ |
| 747 | if (pcs & E1000_PCS_LSTS_SPEED_1000) { |
| 748 | *speed = SPEED_1000; |
| 749 | } else if (pcs & E1000_PCS_LSTS_SPEED_100) { |
| 750 | *speed = SPEED_100; |
| 751 | } else { |
| 752 | *speed = SPEED_10; |
| 753 | } |
| 754 | |
| 755 | /* Detect and store PCS duplex */ |
| 756 | if (pcs & E1000_PCS_LSTS_DUPLEX_FULL) { |
| 757 | *duplex = FULL_DUPLEX; |
| 758 | } else { |
| 759 | *duplex = HALF_DUPLEX; |
| 760 | } |
| 761 | } |
| 762 | |
| 763 | return 0; |
| 764 | } |
| 765 | |
| 766 | /** |
| 767 | * e1000_rar_set_82575 - Set receive address register |
| 768 | * @hw: pointer to the HW structure |
| 769 | * @addr: pointer to the receive address |
| 770 | * @index: receive address array register |
| 771 | * |
| 772 | * Sets the receive address array register at index to the address passed |
| 773 | * in by addr. |
| 774 | **/ |
| 775 | static void igb_rar_set_82575(struct e1000_hw *hw, u8 *addr, u32 index) |
| 776 | { |
| 777 | if (index < E1000_RAR_ENTRIES_82575) |
| 778 | igb_rar_set(hw, addr, index); |
| 779 | |
| 780 | return; |
| 781 | } |
| 782 | |
| 783 | /** |
| 784 | * e1000_reset_hw_82575 - Reset hardware |
| 785 | * @hw: pointer to the HW structure |
| 786 | * |
| 787 | * This resets the hardware into a known state. This is a |
| 788 | * function pointer entry point called by the api module. |
| 789 | **/ |
| 790 | static s32 igb_reset_hw_82575(struct e1000_hw *hw) |
| 791 | { |
| 792 | u32 ctrl, icr; |
| 793 | s32 ret_val; |
| 794 | |
| 795 | /* |
| 796 | * Prevent the PCI-E bus from sticking if there is no TLP connection |
| 797 | * on the last TLP read/write transaction when MAC is reset. |
| 798 | */ |
| 799 | ret_val = igb_disable_pcie_master(hw); |
| 800 | if (ret_val) |
| 801 | hw_dbg(hw, "PCI-E Master disable polling has failed.\n"); |
| 802 | |
| 803 | hw_dbg(hw, "Masking off all interrupts\n"); |
| 804 | wr32(E1000_IMC, 0xffffffff); |
| 805 | |
| 806 | wr32(E1000_RCTL, 0); |
| 807 | wr32(E1000_TCTL, E1000_TCTL_PSP); |
| 808 | wrfl(); |
| 809 | |
| 810 | msleep(10); |
| 811 | |
| 812 | ctrl = rd32(E1000_CTRL); |
| 813 | |
| 814 | hw_dbg(hw, "Issuing a global reset to MAC\n"); |
| 815 | wr32(E1000_CTRL, ctrl | E1000_CTRL_RST); |
| 816 | |
| 817 | ret_val = igb_get_auto_rd_done(hw); |
| 818 | if (ret_val) { |
| 819 | /* |
| 820 | * When auto config read does not complete, do not |
| 821 | * return with an error. This can happen in situations |
| 822 | * where there is no eeprom and prevents getting link. |
| 823 | */ |
| 824 | hw_dbg(hw, "Auto Read Done did not complete\n"); |
| 825 | } |
| 826 | |
| 827 | /* If EEPROM is not present, run manual init scripts */ |
| 828 | if ((rd32(E1000_EECD) & E1000_EECD_PRES) == 0) |
| 829 | igb_reset_init_script_82575(hw); |
| 830 | |
| 831 | /* Clear any pending interrupt events. */ |
| 832 | wr32(E1000_IMC, 0xffffffff); |
| 833 | icr = rd32(E1000_ICR); |
| 834 | |
| 835 | igb_check_alt_mac_addr(hw); |
| 836 | |
| 837 | return ret_val; |
| 838 | } |
| 839 | |
| 840 | /** |
| 841 | * e1000_init_hw_82575 - Initialize hardware |
| 842 | * @hw: pointer to the HW structure |
| 843 | * |
| 844 | * This inits the hardware readying it for operation. |
| 845 | **/ |
| 846 | static s32 igb_init_hw_82575(struct e1000_hw *hw) |
| 847 | { |
| 848 | struct e1000_mac_info *mac = &hw->mac; |
| 849 | s32 ret_val; |
| 850 | u16 i, rar_count = mac->rar_entry_count; |
| 851 | |
| 852 | /* Initialize identification LED */ |
| 853 | ret_val = igb_id_led_init(hw); |
| 854 | if (ret_val) { |
| 855 | hw_dbg(hw, "Error initializing identification LED\n"); |
| 856 | /* This is not fatal and we should not stop init due to this */ |
| 857 | } |
| 858 | |
| 859 | /* Disabling VLAN filtering */ |
| 860 | hw_dbg(hw, "Initializing the IEEE VLAN\n"); |
| 861 | igb_clear_vfta(hw); |
| 862 | |
| 863 | /* Setup the receive address */ |
| 864 | igb_init_rx_addrs(hw, rar_count); |
| 865 | /* Zero out the Multicast HASH table */ |
| 866 | hw_dbg(hw, "Zeroing the MTA\n"); |
| 867 | for (i = 0; i < mac->mta_reg_count; i++) |
| 868 | array_wr32(E1000_MTA, i, 0); |
| 869 | |
| 870 | /* Setup link and flow control */ |
| 871 | ret_val = igb_setup_link(hw); |
| 872 | |
| 873 | /* |
| 874 | * Clear all of the statistics registers (clear on read). It is |
| 875 | * important that we do this after we have tried to establish link |
| 876 | * because the symbol error count will increment wildly if there |
| 877 | * is no link. |
| 878 | */ |
| 879 | igb_clear_hw_cntrs_82575(hw); |
| 880 | |
| 881 | return ret_val; |
| 882 | } |
| 883 | |
| 884 | /** |
| 885 | * e1000_setup_copper_link_82575 - Configure copper link settings |
| 886 | * @hw: pointer to the HW structure |
| 887 | * |
| 888 | * Configures the link for auto-neg or forced speed and duplex. Then we check |
| 889 | * for link, once link is established calls to configure collision distance |
| 890 | * and flow control are called. |
| 891 | **/ |
| 892 | static s32 igb_setup_copper_link_82575(struct e1000_hw *hw) |
| 893 | { |
| 894 | u32 ctrl, led_ctrl; |
| 895 | s32 ret_val; |
| 896 | bool link; |
| 897 | |
| 898 | ctrl = rd32(E1000_CTRL); |
| 899 | ctrl |= E1000_CTRL_SLU; |
| 900 | ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); |
| 901 | wr32(E1000_CTRL, ctrl); |
| 902 | |
| 903 | switch (hw->phy.type) { |
| 904 | case e1000_phy_m88: |
| 905 | ret_val = igb_copper_link_setup_m88(hw); |
| 906 | break; |
| 907 | case e1000_phy_igp_3: |
| 908 | ret_val = igb_copper_link_setup_igp(hw); |
| 909 | /* Setup activity LED */ |
| 910 | led_ctrl = rd32(E1000_LEDCTL); |
| 911 | led_ctrl &= IGP_ACTIVITY_LED_MASK; |
| 912 | led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE); |
| 913 | wr32(E1000_LEDCTL, led_ctrl); |
| 914 | break; |
| 915 | default: |
| 916 | ret_val = -E1000_ERR_PHY; |
| 917 | break; |
| 918 | } |
| 919 | |
| 920 | if (ret_val) |
| 921 | goto out; |
| 922 | |
| 923 | if (hw->mac.autoneg) { |
| 924 | /* |
| 925 | * Setup autoneg and flow control advertisement |
| 926 | * and perform autonegotiation. |
| 927 | */ |
| 928 | ret_val = igb_copper_link_autoneg(hw); |
| 929 | if (ret_val) |
| 930 | goto out; |
| 931 | } else { |
| 932 | /* |
| 933 | * PHY will be set to 10H, 10F, 100H or 100F |
| 934 | * depending on user settings. |
| 935 | */ |
| 936 | hw_dbg(hw, "Forcing Speed and Duplex\n"); |
| 937 | ret_val = igb_phy_force_speed_duplex(hw); |
| 938 | if (ret_val) { |
| 939 | hw_dbg(hw, "Error Forcing Speed and Duplex\n"); |
| 940 | goto out; |
| 941 | } |
| 942 | } |
| 943 | |
| 944 | ret_val = igb_configure_pcs_link_82575(hw); |
| 945 | if (ret_val) |
| 946 | goto out; |
| 947 | |
| 948 | /* |
| 949 | * Check link status. Wait up to 100 microseconds for link to become |
| 950 | * valid. |
| 951 | */ |
| 952 | ret_val = igb_phy_has_link(hw, |
| 953 | COPPER_LINK_UP_LIMIT, |
| 954 | 10, |
| 955 | &link); |
| 956 | if (ret_val) |
| 957 | goto out; |
| 958 | |
| 959 | if (link) { |
| 960 | hw_dbg(hw, "Valid link established!!!\n"); |
| 961 | /* Config the MAC and PHY after link is up */ |
| 962 | igb_config_collision_dist(hw); |
| 963 | ret_val = igb_config_fc_after_link_up(hw); |
| 964 | } else { |
| 965 | hw_dbg(hw, "Unable to establish link!!!\n"); |
| 966 | } |
| 967 | |
| 968 | out: |
| 969 | return ret_val; |
| 970 | } |
| 971 | |
| 972 | /** |
| 973 | * e1000_setup_fiber_serdes_link_82575 - Setup link for fiber/serdes |
| 974 | * @hw: pointer to the HW structure |
| 975 | * |
| 976 | * Configures speed and duplex for fiber and serdes links. |
| 977 | **/ |
| 978 | static s32 igb_setup_fiber_serdes_link_82575(struct e1000_hw *hw) |
| 979 | { |
| 980 | u32 reg; |
| 981 | |
| 982 | /* |
| 983 | * On the 82575, SerDes loopback mode persists until it is |
| 984 | * explicitly turned off or a power cycle is performed. A read to |
| 985 | * the register does not indicate its status. Therefore, we ensure |
| 986 | * loopback mode is disabled during initialization. |
| 987 | */ |
| 988 | wr32(E1000_SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK); |
| 989 | |
| 990 | /* Force link up, set 1gb, set both sw defined pins */ |
| 991 | reg = rd32(E1000_CTRL); |
| 992 | reg |= E1000_CTRL_SLU | |
| 993 | E1000_CTRL_SPD_1000 | |
| 994 | E1000_CTRL_FRCSPD | |
| 995 | E1000_CTRL_SWDPIN0 | |
| 996 | E1000_CTRL_SWDPIN1; |
| 997 | wr32(E1000_CTRL, reg); |
| 998 | |
| 999 | /* Set switch control to serdes energy detect */ |
| 1000 | reg = rd32(E1000_CONNSW); |
| 1001 | reg |= E1000_CONNSW_ENRGSRC; |
| 1002 | wr32(E1000_CONNSW, reg); |
| 1003 | |
| 1004 | /* |
| 1005 | * New SerDes mode allows for forcing speed or autonegotiating speed |
| 1006 | * at 1gb. Autoneg should be default set by most drivers. This is the |
| 1007 | * mode that will be compatible with older link partners and switches. |
| 1008 | * However, both are supported by the hardware and some drivers/tools. |
| 1009 | */ |
| 1010 | reg = rd32(E1000_PCS_LCTL); |
| 1011 | |
| 1012 | reg &= ~(E1000_PCS_LCTL_AN_ENABLE | E1000_PCS_LCTL_FLV_LINK_UP | |
| 1013 | E1000_PCS_LCTL_FSD | E1000_PCS_LCTL_FORCE_LINK); |
| 1014 | |
| 1015 | if (hw->mac.autoneg) { |
| 1016 | /* Set PCS register for autoneg */ |
| 1017 | reg |= E1000_PCS_LCTL_FSV_1000 | /* Force 1000 */ |
| 1018 | E1000_PCS_LCTL_FDV_FULL | /* SerDes Full duplex */ |
| 1019 | E1000_PCS_LCTL_AN_ENABLE | /* Enable Autoneg */ |
| 1020 | E1000_PCS_LCTL_AN_RESTART; /* Restart autoneg */ |
| 1021 | hw_dbg(hw, "Configuring Autoneg; PCS_LCTL = 0x%08X\n", reg); |
| 1022 | } else { |
| 1023 | /* Set PCS register for forced speed */ |
| 1024 | reg |= E1000_PCS_LCTL_FLV_LINK_UP | /* Force link up */ |
| 1025 | E1000_PCS_LCTL_FSV_1000 | /* Force 1000 */ |
| 1026 | E1000_PCS_LCTL_FDV_FULL | /* SerDes Full duplex */ |
| 1027 | E1000_PCS_LCTL_FSD | /* Force Speed */ |
| 1028 | E1000_PCS_LCTL_FORCE_LINK; /* Force Link */ |
| 1029 | hw_dbg(hw, "Configuring Forced Link; PCS_LCTL = 0x%08X\n", reg); |
| 1030 | } |
| 1031 | wr32(E1000_PCS_LCTL, reg); |
| 1032 | |
| 1033 | return 0; |
| 1034 | } |
| 1035 | |
| 1036 | /** |
| 1037 | * e1000_configure_pcs_link_82575 - Configure PCS link |
| 1038 | * @hw: pointer to the HW structure |
| 1039 | * |
| 1040 | * Configure the physical coding sub-layer (PCS) link. The PCS link is |
| 1041 | * only used on copper connections where the serialized gigabit media |
| 1042 | * independent interface (sgmii) is being used. Configures the link |
| 1043 | * for auto-negotiation or forces speed/duplex. |
| 1044 | **/ |
| 1045 | static s32 igb_configure_pcs_link_82575(struct e1000_hw *hw) |
| 1046 | { |
| 1047 | struct e1000_mac_info *mac = &hw->mac; |
| 1048 | u32 reg = 0; |
| 1049 | |
| 1050 | if (hw->phy.media_type != e1000_media_type_copper || |
| 1051 | !(igb_sgmii_active_82575(hw))) |
| 1052 | goto out; |
| 1053 | |
| 1054 | /* For SGMII, we need to issue a PCS autoneg restart */ |
| 1055 | reg = rd32(E1000_PCS_LCTL); |
| 1056 | |
| 1057 | /* AN time out should be disabled for SGMII mode */ |
| 1058 | reg &= ~(E1000_PCS_LCTL_AN_TIMEOUT); |
| 1059 | |
| 1060 | if (mac->autoneg) { |
| 1061 | /* Make sure forced speed and force link are not set */ |
| 1062 | reg &= ~(E1000_PCS_LCTL_FSD | E1000_PCS_LCTL_FORCE_LINK); |
| 1063 | |
| 1064 | /* |
| 1065 | * The PHY should be setup prior to calling this function. |
| 1066 | * All we need to do is restart autoneg and enable autoneg. |
| 1067 | */ |
| 1068 | reg |= E1000_PCS_LCTL_AN_RESTART | E1000_PCS_LCTL_AN_ENABLE; |
| 1069 | } else { |
| 1070 | /* Set PCS regiseter for forced speed */ |
| 1071 | |
| 1072 | /* Turn off bits for full duplex, speed, and autoneg */ |
| 1073 | reg &= ~(E1000_PCS_LCTL_FSV_1000 | |
| 1074 | E1000_PCS_LCTL_FSV_100 | |
| 1075 | E1000_PCS_LCTL_FDV_FULL | |
| 1076 | E1000_PCS_LCTL_AN_ENABLE); |
| 1077 | |
| 1078 | /* Check for duplex first */ |
| 1079 | if (mac->forced_speed_duplex & E1000_ALL_FULL_DUPLEX) |
| 1080 | reg |= E1000_PCS_LCTL_FDV_FULL; |
| 1081 | |
| 1082 | /* Now set speed */ |
| 1083 | if (mac->forced_speed_duplex & E1000_ALL_100_SPEED) |
| 1084 | reg |= E1000_PCS_LCTL_FSV_100; |
| 1085 | |
| 1086 | /* Force speed and force link */ |
| 1087 | reg |= E1000_PCS_LCTL_FSD | |
| 1088 | E1000_PCS_LCTL_FORCE_LINK | |
| 1089 | E1000_PCS_LCTL_FLV_LINK_UP; |
| 1090 | |
| 1091 | hw_dbg(hw, |
| 1092 | "Wrote 0x%08X to PCS_LCTL to configure forced link\n", |
| 1093 | reg); |
| 1094 | } |
| 1095 | wr32(E1000_PCS_LCTL, reg); |
| 1096 | |
| 1097 | out: |
| 1098 | return 0; |
| 1099 | } |
| 1100 | |
| 1101 | /** |
| 1102 | * e1000_sgmii_active_82575 - Return sgmii state |
| 1103 | * @hw: pointer to the HW structure |
| 1104 | * |
| 1105 | * 82575 silicon has a serialized gigabit media independent interface (sgmii) |
| 1106 | * which can be enabled for use in the embedded applications. Simply |
| 1107 | * return the current state of the sgmii interface. |
| 1108 | **/ |
| 1109 | static bool igb_sgmii_active_82575(struct e1000_hw *hw) |
| 1110 | { |
| 1111 | struct e1000_dev_spec_82575 *dev_spec; |
| 1112 | bool ret_val; |
| 1113 | |
| 1114 | if (hw->mac.type != e1000_82575) { |
| 1115 | ret_val = false; |
| 1116 | goto out; |
| 1117 | } |
| 1118 | |
| 1119 | dev_spec = (struct e1000_dev_spec_82575 *)hw->dev_spec; |
| 1120 | |
| 1121 | ret_val = dev_spec->sgmii_active; |
| 1122 | |
| 1123 | out: |
| 1124 | return ret_val; |
| 1125 | } |
| 1126 | |
| 1127 | /** |
| 1128 | * e1000_reset_init_script_82575 - Inits HW defaults after reset |
| 1129 | * @hw: pointer to the HW structure |
| 1130 | * |
| 1131 | * Inits recommended HW defaults after a reset when there is no EEPROM |
| 1132 | * detected. This is only for the 82575. |
| 1133 | **/ |
| 1134 | static s32 igb_reset_init_script_82575(struct e1000_hw *hw) |
| 1135 | { |
| 1136 | if (hw->mac.type == e1000_82575) { |
| 1137 | hw_dbg(hw, "Running reset init script for 82575\n"); |
| 1138 | /* SerDes configuration via SERDESCTRL */ |
| 1139 | igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x00, 0x0C); |
| 1140 | igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x01, 0x78); |
| 1141 | igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x1B, 0x23); |
| 1142 | igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x23, 0x15); |
| 1143 | |
| 1144 | /* CCM configuration via CCMCTL register */ |
| 1145 | igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x14, 0x00); |
| 1146 | igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x10, 0x00); |
| 1147 | |
| 1148 | /* PCIe lanes configuration */ |
| 1149 | igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x00, 0xEC); |
| 1150 | igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x61, 0xDF); |
| 1151 | igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x34, 0x05); |
| 1152 | igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x2F, 0x81); |
| 1153 | |
| 1154 | /* PCIe PLL Configuration */ |
| 1155 | igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x02, 0x47); |
| 1156 | igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x14, 0x00); |
| 1157 | igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x10, 0x00); |
| 1158 | } |
| 1159 | |
| 1160 | return 0; |
| 1161 | } |
| 1162 | |
| 1163 | /** |
| 1164 | * e1000_read_mac_addr_82575 - Read device MAC address |
| 1165 | * @hw: pointer to the HW structure |
| 1166 | **/ |
| 1167 | static s32 igb_read_mac_addr_82575(struct e1000_hw *hw) |
| 1168 | { |
| 1169 | s32 ret_val = 0; |
| 1170 | |
| 1171 | if (igb_check_alt_mac_addr(hw)) |
| 1172 | ret_val = igb_read_mac_addr(hw); |
| 1173 | |
| 1174 | return ret_val; |
| 1175 | } |
| 1176 | |
| 1177 | /** |
| 1178 | * e1000_clear_hw_cntrs_82575 - Clear device specific hardware counters |
| 1179 | * @hw: pointer to the HW structure |
| 1180 | * |
| 1181 | * Clears the hardware counters by reading the counter registers. |
| 1182 | **/ |
| 1183 | static void igb_clear_hw_cntrs_82575(struct e1000_hw *hw) |
| 1184 | { |
| 1185 | u32 temp; |
| 1186 | |
| 1187 | igb_clear_hw_cntrs_base(hw); |
| 1188 | |
| 1189 | temp = rd32(E1000_PRC64); |
| 1190 | temp = rd32(E1000_PRC127); |
| 1191 | temp = rd32(E1000_PRC255); |
| 1192 | temp = rd32(E1000_PRC511); |
| 1193 | temp = rd32(E1000_PRC1023); |
| 1194 | temp = rd32(E1000_PRC1522); |
| 1195 | temp = rd32(E1000_PTC64); |
| 1196 | temp = rd32(E1000_PTC127); |
| 1197 | temp = rd32(E1000_PTC255); |
| 1198 | temp = rd32(E1000_PTC511); |
| 1199 | temp = rd32(E1000_PTC1023); |
| 1200 | temp = rd32(E1000_PTC1522); |
| 1201 | |
| 1202 | temp = rd32(E1000_ALGNERRC); |
| 1203 | temp = rd32(E1000_RXERRC); |
| 1204 | temp = rd32(E1000_TNCRS); |
| 1205 | temp = rd32(E1000_CEXTERR); |
| 1206 | temp = rd32(E1000_TSCTC); |
| 1207 | temp = rd32(E1000_TSCTFC); |
| 1208 | |
| 1209 | temp = rd32(E1000_MGTPRC); |
| 1210 | temp = rd32(E1000_MGTPDC); |
| 1211 | temp = rd32(E1000_MGTPTC); |
| 1212 | |
| 1213 | temp = rd32(E1000_IAC); |
| 1214 | temp = rd32(E1000_ICRXOC); |
| 1215 | |
| 1216 | temp = rd32(E1000_ICRXPTC); |
| 1217 | temp = rd32(E1000_ICRXATC); |
| 1218 | temp = rd32(E1000_ICTXPTC); |
| 1219 | temp = rd32(E1000_ICTXATC); |
| 1220 | temp = rd32(E1000_ICTXQEC); |
| 1221 | temp = rd32(E1000_ICTXQMTC); |
| 1222 | temp = rd32(E1000_ICRXDMTC); |
| 1223 | |
| 1224 | temp = rd32(E1000_CBTMPC); |
| 1225 | temp = rd32(E1000_HTDPMC); |
| 1226 | temp = rd32(E1000_CBRMPC); |
| 1227 | temp = rd32(E1000_RPTHC); |
| 1228 | temp = rd32(E1000_HGPTC); |
| 1229 | temp = rd32(E1000_HTCBDPC); |
| 1230 | temp = rd32(E1000_HGORCL); |
| 1231 | temp = rd32(E1000_HGORCH); |
| 1232 | temp = rd32(E1000_HGOTCL); |
| 1233 | temp = rd32(E1000_HGOTCH); |
| 1234 | temp = rd32(E1000_LENERRS); |
| 1235 | |
| 1236 | /* This register should not be read in copper configurations */ |
| 1237 | if (hw->phy.media_type == e1000_media_type_internal_serdes) |
| 1238 | temp = rd32(E1000_SCVPC); |
| 1239 | } |
| 1240 | |
| 1241 | static struct e1000_mac_operations e1000_mac_ops_82575 = { |
| 1242 | .reset_hw = igb_reset_hw_82575, |
| 1243 | .init_hw = igb_init_hw_82575, |
| 1244 | .check_for_link = igb_check_for_link_82575, |
| 1245 | .rar_set = igb_rar_set_82575, |
| 1246 | .read_mac_addr = igb_read_mac_addr_82575, |
| 1247 | .get_speed_and_duplex = igb_get_speed_and_duplex_copper, |
| 1248 | }; |
| 1249 | |
| 1250 | static struct e1000_phy_operations e1000_phy_ops_82575 = { |
| 1251 | .acquire_phy = igb_acquire_phy_82575, |
| 1252 | .get_cfg_done = igb_get_cfg_done_82575, |
| 1253 | .release_phy = igb_release_phy_82575, |
| 1254 | }; |
| 1255 | |
| 1256 | static struct e1000_nvm_operations e1000_nvm_ops_82575 = { |
| 1257 | .acquire_nvm = igb_acquire_nvm_82575, |
| 1258 | .read_nvm = igb_read_nvm_eerd, |
| 1259 | .release_nvm = igb_release_nvm_82575, |
| 1260 | .write_nvm = igb_write_nvm_spi, |
| 1261 | }; |
| 1262 | |
| 1263 | const struct e1000_info e1000_82575_info = { |
| 1264 | .get_invariants = igb_get_invariants_82575, |
| 1265 | .mac_ops = &e1000_mac_ops_82575, |
| 1266 | .phy_ops = &e1000_phy_ops_82575, |
| 1267 | .nvm_ops = &e1000_nvm_ops_82575, |
| 1268 | }; |
| 1269 | |