Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* |
| 2 | * CRIS pgtable.h - macros and functions to manipulate page tables. |
| 3 | */ |
| 4 | |
| 5 | #ifndef _CRIS_PGTABLE_H |
| 6 | #define _CRIS_PGTABLE_H |
| 7 | |
| 8 | #include <asm-generic/4level-fixup.h> |
| 9 | |
| 10 | #ifndef __ASSEMBLY__ |
| 11 | #include <linux/config.h> |
| 12 | #include <linux/sched.h> |
| 13 | #include <asm/mmu.h> |
| 14 | #endif |
| 15 | #include <asm/arch/pgtable.h> |
| 16 | |
| 17 | /* |
| 18 | * The Linux memory management assumes a three-level page table setup. On |
| 19 | * CRIS, we use that, but "fold" the mid level into the top-level page |
| 20 | * table. Since the MMU TLB is software loaded through an interrupt, it |
| 21 | * supports any page table structure, so we could have used a three-level |
| 22 | * setup, but for the amounts of memory we normally use, a two-level is |
| 23 | * probably more efficient. |
| 24 | * |
| 25 | * This file contains the functions and defines necessary to modify and use |
| 26 | * the CRIS page table tree. |
| 27 | */ |
| 28 | #ifndef __ASSEMBLY__ |
| 29 | extern void paging_init(void); |
| 30 | #endif |
| 31 | |
| 32 | /* Certain architectures need to do special things when pte's |
| 33 | * within a page table are directly modified. Thus, the following |
| 34 | * hook is made available. |
| 35 | */ |
| 36 | #define set_pte(pteptr, pteval) ((*(pteptr)) = (pteval)) |
| 37 | #define set_pte_at(mm,addr,ptep,pteval) set_pte(ptep,pteval) |
| 38 | |
| 39 | /* |
| 40 | * (pmds are folded into pgds so this doesn't get actually called, |
| 41 | * but the define is needed for a generic inline function.) |
| 42 | */ |
| 43 | #define set_pmd(pmdptr, pmdval) (*(pmdptr) = pmdval) |
| 44 | #define set_pgd(pgdptr, pgdval) (*(pgdptr) = pgdval) |
| 45 | |
| 46 | /* PMD_SHIFT determines the size of the area a second-level page table can |
| 47 | * map. It is equal to the page size times the number of PTE's that fit in |
| 48 | * a PMD page. A PTE is 4-bytes in CRIS. Hence the following number. |
| 49 | */ |
| 50 | |
| 51 | #define PMD_SHIFT (PAGE_SHIFT + (PAGE_SHIFT-2)) |
| 52 | #define PMD_SIZE (1UL << PMD_SHIFT) |
| 53 | #define PMD_MASK (~(PMD_SIZE-1)) |
| 54 | |
| 55 | /* PGDIR_SHIFT determines what a third-level page table entry can map. |
| 56 | * Since we fold into a two-level structure, this is the same as PMD_SHIFT. |
| 57 | */ |
| 58 | |
| 59 | #define PGDIR_SHIFT PMD_SHIFT |
| 60 | #define PGDIR_SIZE (1UL << PGDIR_SHIFT) |
| 61 | #define PGDIR_MASK (~(PGDIR_SIZE-1)) |
| 62 | |
| 63 | /* |
| 64 | * entries per page directory level: we use a two-level, so |
| 65 | * we don't really have any PMD directory physically. |
| 66 | * pointers are 4 bytes so we can use the page size and |
| 67 | * divide it by 4 (shift by 2). |
| 68 | */ |
| 69 | #define PTRS_PER_PTE (1UL << (PAGE_SHIFT-2)) |
| 70 | #define PTRS_PER_PMD 1 |
| 71 | #define PTRS_PER_PGD (1UL << (PAGE_SHIFT-2)) |
| 72 | |
| 73 | /* calculate how many PGD entries a user-level program can use |
| 74 | * the first mappable virtual address is 0 |
| 75 | * (TASK_SIZE is the maximum virtual address space) |
| 76 | */ |
| 77 | |
| 78 | #define USER_PTRS_PER_PGD (TASK_SIZE/PGDIR_SIZE) |
Hugh Dickins | d455a36 | 2005-04-19 13:29:23 -0700 | [diff] [blame] | 79 | #define FIRST_USER_ADDRESS 0 |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 80 | |
| 81 | /* zero page used for uninitialized stuff */ |
| 82 | #ifndef __ASSEMBLY__ |
| 83 | extern unsigned long empty_zero_page; |
| 84 | #define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page)) |
| 85 | #endif |
| 86 | |
| 87 | /* number of bits that fit into a memory pointer */ |
| 88 | #define BITS_PER_PTR (8*sizeof(unsigned long)) |
| 89 | |
| 90 | /* to align the pointer to a pointer address */ |
| 91 | #define PTR_MASK (~(sizeof(void*)-1)) |
| 92 | |
| 93 | /* sizeof(void*)==1<<SIZEOF_PTR_LOG2 */ |
| 94 | /* 64-bit machines, beware! SRB. */ |
| 95 | #define SIZEOF_PTR_LOG2 2 |
| 96 | |
| 97 | /* to find an entry in a page-table */ |
| 98 | #define PAGE_PTR(address) \ |
| 99 | ((unsigned long)(address)>>(PAGE_SHIFT-SIZEOF_PTR_LOG2)&PTR_MASK&~PAGE_MASK) |
| 100 | |
| 101 | /* to set the page-dir */ |
| 102 | #define SET_PAGE_DIR(tsk,pgdir) |
| 103 | |
| 104 | #define pte_none(x) (!pte_val(x)) |
| 105 | #define pte_present(x) (pte_val(x) & _PAGE_PRESENT) |
| 106 | #define pte_clear(mm,addr,xp) do { pte_val(*(xp)) = 0; } while (0) |
| 107 | |
| 108 | #define pmd_none(x) (!pmd_val(x)) |
| 109 | /* by removing the _PAGE_KERNEL bit from the comparision, the same pmd_bad |
| 110 | * works for both _PAGE_TABLE and _KERNPG_TABLE pmd entries. |
| 111 | */ |
| 112 | #define pmd_bad(x) ((pmd_val(x) & (~PAGE_MASK & ~_PAGE_KERNEL)) != _PAGE_TABLE) |
| 113 | #define pmd_present(x) (pmd_val(x) & _PAGE_PRESENT) |
| 114 | #define pmd_clear(xp) do { pmd_val(*(xp)) = 0; } while (0) |
| 115 | |
| 116 | #ifndef __ASSEMBLY__ |
| 117 | |
| 118 | /* |
| 119 | * The "pgd_xxx()" functions here are trivial for a folded two-level |
| 120 | * setup: the pgd is never bad, and a pmd always exists (as it's folded |
| 121 | * into the pgd entry) |
| 122 | */ |
| 123 | extern inline int pgd_none(pgd_t pgd) { return 0; } |
| 124 | extern inline int pgd_bad(pgd_t pgd) { return 0; } |
| 125 | extern inline int pgd_present(pgd_t pgd) { return 1; } |
| 126 | extern inline void pgd_clear(pgd_t * pgdp) { } |
| 127 | |
| 128 | /* |
| 129 | * The following only work if pte_present() is true. |
| 130 | * Undefined behaviour if not.. |
| 131 | */ |
| 132 | |
| 133 | extern inline int pte_read(pte_t pte) { return pte_val(pte) & _PAGE_READ; } |
| 134 | extern inline int pte_write(pte_t pte) { return pte_val(pte) & _PAGE_WRITE; } |
| 135 | extern inline int pte_exec(pte_t pte) { return pte_val(pte) & _PAGE_READ; } |
| 136 | extern inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_MODIFIED; } |
| 137 | extern inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED; } |
| 138 | extern inline int pte_file(pte_t pte) { return pte_val(pte) & _PAGE_FILE; } |
| 139 | |
| 140 | extern inline pte_t pte_wrprotect(pte_t pte) |
| 141 | { |
| 142 | pte_val(pte) &= ~(_PAGE_WRITE | _PAGE_SILENT_WRITE); |
| 143 | return pte; |
| 144 | } |
| 145 | |
| 146 | extern inline pte_t pte_rdprotect(pte_t pte) |
| 147 | { |
| 148 | pte_val(pte) &= ~(_PAGE_READ | _PAGE_SILENT_READ); |
| 149 | return pte; |
| 150 | } |
| 151 | |
| 152 | extern inline pte_t pte_exprotect(pte_t pte) |
| 153 | { |
| 154 | pte_val(pte) &= ~(_PAGE_READ | _PAGE_SILENT_READ); |
| 155 | return pte; |
| 156 | } |
| 157 | |
| 158 | extern inline pte_t pte_mkclean(pte_t pte) |
| 159 | { |
| 160 | pte_val(pte) &= ~(_PAGE_MODIFIED | _PAGE_SILENT_WRITE); |
| 161 | return pte; |
| 162 | } |
| 163 | |
| 164 | extern inline pte_t pte_mkold(pte_t pte) |
| 165 | { |
| 166 | pte_val(pte) &= ~(_PAGE_ACCESSED | _PAGE_SILENT_READ); |
| 167 | return pte; |
| 168 | } |
| 169 | |
| 170 | extern inline pte_t pte_mkwrite(pte_t pte) |
| 171 | { |
| 172 | pte_val(pte) |= _PAGE_WRITE; |
| 173 | if (pte_val(pte) & _PAGE_MODIFIED) |
| 174 | pte_val(pte) |= _PAGE_SILENT_WRITE; |
| 175 | return pte; |
| 176 | } |
| 177 | |
| 178 | extern inline pte_t pte_mkread(pte_t pte) |
| 179 | { |
| 180 | pte_val(pte) |= _PAGE_READ; |
| 181 | if (pte_val(pte) & _PAGE_ACCESSED) |
| 182 | pte_val(pte) |= _PAGE_SILENT_READ; |
| 183 | return pte; |
| 184 | } |
| 185 | |
| 186 | extern inline pte_t pte_mkexec(pte_t pte) |
| 187 | { |
| 188 | pte_val(pte) |= _PAGE_READ; |
| 189 | if (pte_val(pte) & _PAGE_ACCESSED) |
| 190 | pte_val(pte) |= _PAGE_SILENT_READ; |
| 191 | return pte; |
| 192 | } |
| 193 | |
| 194 | extern inline pte_t pte_mkdirty(pte_t pte) |
| 195 | { |
| 196 | pte_val(pte) |= _PAGE_MODIFIED; |
| 197 | if (pte_val(pte) & _PAGE_WRITE) |
| 198 | pte_val(pte) |= _PAGE_SILENT_WRITE; |
| 199 | return pte; |
| 200 | } |
| 201 | |
| 202 | extern inline pte_t pte_mkyoung(pte_t pte) |
| 203 | { |
| 204 | pte_val(pte) |= _PAGE_ACCESSED; |
| 205 | if (pte_val(pte) & _PAGE_READ) |
| 206 | { |
| 207 | pte_val(pte) |= _PAGE_SILENT_READ; |
| 208 | if ((pte_val(pte) & (_PAGE_WRITE | _PAGE_MODIFIED)) == |
| 209 | (_PAGE_WRITE | _PAGE_MODIFIED)) |
| 210 | pte_val(pte) |= _PAGE_SILENT_WRITE; |
| 211 | } |
| 212 | return pte; |
| 213 | } |
| 214 | |
| 215 | /* |
| 216 | * Conversion functions: convert a page and protection to a page entry, |
| 217 | * and a page entry and page directory to the page they refer to. |
| 218 | */ |
| 219 | |
| 220 | /* What actually goes as arguments to the various functions is less than |
| 221 | * obvious, but a rule of thumb is that struct page's goes as struct page *, |
| 222 | * really physical DRAM addresses are unsigned long's, and DRAM "virtual" |
| 223 | * addresses (the 0xc0xxxxxx's) goes as void *'s. |
| 224 | */ |
| 225 | |
| 226 | extern inline pte_t __mk_pte(void * page, pgprot_t pgprot) |
| 227 | { |
| 228 | pte_t pte; |
| 229 | /* the PTE needs a physical address */ |
| 230 | pte_val(pte) = __pa(page) | pgprot_val(pgprot); |
| 231 | return pte; |
| 232 | } |
| 233 | |
| 234 | #define mk_pte(page, pgprot) __mk_pte(page_address(page), (pgprot)) |
| 235 | |
| 236 | #define mk_pte_phys(physpage, pgprot) \ |
| 237 | ({ \ |
| 238 | pte_t __pte; \ |
| 239 | \ |
| 240 | pte_val(__pte) = (physpage) + pgprot_val(pgprot); \ |
| 241 | __pte; \ |
| 242 | }) |
| 243 | |
| 244 | extern inline pte_t pte_modify(pte_t pte, pgprot_t newprot) |
| 245 | { pte_val(pte) = (pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot); return pte; } |
| 246 | |
| 247 | |
| 248 | /* pte_val refers to a page in the 0x4xxxxxxx physical DRAM interval |
| 249 | * __pte_page(pte_val) refers to the "virtual" DRAM interval |
| 250 | * pte_pagenr refers to the page-number counted starting from the virtual DRAM start |
| 251 | */ |
| 252 | |
| 253 | extern inline unsigned long __pte_page(pte_t pte) |
| 254 | { |
| 255 | /* the PTE contains a physical address */ |
| 256 | return (unsigned long)__va(pte_val(pte) & PAGE_MASK); |
| 257 | } |
| 258 | |
| 259 | #define pte_pagenr(pte) ((__pte_page(pte) - PAGE_OFFSET) >> PAGE_SHIFT) |
| 260 | |
| 261 | /* permanent address of a page */ |
| 262 | |
| 263 | #define __page_address(page) (PAGE_OFFSET + (((page) - mem_map) << PAGE_SHIFT)) |
| 264 | #define pte_page(pte) (mem_map+pte_pagenr(pte)) |
| 265 | |
| 266 | /* only the pte's themselves need to point to physical DRAM (see above) |
| 267 | * the pagetable links are purely handled within the kernel SW and thus |
| 268 | * don't need the __pa and __va transformations. |
| 269 | */ |
| 270 | |
| 271 | extern inline void pmd_set(pmd_t * pmdp, pte_t * ptep) |
| 272 | { pmd_val(*pmdp) = _PAGE_TABLE | (unsigned long) ptep; } |
| 273 | |
| 274 | #define pmd_page(pmd) (pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT)) |
| 275 | #define pmd_page_kernel(pmd) ((unsigned long) __va(pmd_val(pmd) & PAGE_MASK)) |
| 276 | |
| 277 | /* to find an entry in a page-table-directory. */ |
| 278 | #define pgd_index(address) ((address >> PGDIR_SHIFT) & (PTRS_PER_PGD-1)) |
| 279 | |
| 280 | /* to find an entry in a page-table-directory */ |
| 281 | extern inline pgd_t * pgd_offset(struct mm_struct * mm, unsigned long address) |
| 282 | { |
| 283 | return mm->pgd + pgd_index(address); |
| 284 | } |
| 285 | |
| 286 | /* to find an entry in a kernel page-table-directory */ |
| 287 | #define pgd_offset_k(address) pgd_offset(&init_mm, address) |
| 288 | |
| 289 | /* Find an entry in the second-level page table.. */ |
| 290 | extern inline pmd_t * pmd_offset(pgd_t * dir, unsigned long address) |
| 291 | { |
| 292 | return (pmd_t *) dir; |
| 293 | } |
| 294 | |
| 295 | /* Find an entry in the third-level page table.. */ |
| 296 | #define __pte_offset(address) \ |
| 297 | (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) |
| 298 | #define pte_offset_kernel(dir, address) \ |
| 299 | ((pte_t *) pmd_page_kernel(*(dir)) + __pte_offset(address)) |
| 300 | #define pte_offset_map(dir, address) \ |
| 301 | ((pte_t *)page_address(pmd_page(*(dir))) + __pte_offset(address)) |
| 302 | #define pte_offset_map_nested(dir, address) pte_offset_map(dir, address) |
| 303 | |
| 304 | #define pte_unmap(pte) do { } while (0) |
| 305 | #define pte_unmap_nested(pte) do { } while (0) |
| 306 | #define pte_pfn(x) ((unsigned long)(__va((x).pte)) >> PAGE_SHIFT) |
| 307 | #define pfn_pte(pfn, prot) __pte((__pa((pfn) << PAGE_SHIFT)) | pgprot_val(prot)) |
| 308 | |
| 309 | #define pte_ERROR(e) \ |
| 310 | printk("%s:%d: bad pte %p(%08lx).\n", __FILE__, __LINE__, &(e), pte_val(e)) |
| 311 | #define pmd_ERROR(e) \ |
| 312 | printk("%s:%d: bad pmd %p(%08lx).\n", __FILE__, __LINE__, &(e), pmd_val(e)) |
| 313 | #define pgd_ERROR(e) \ |
| 314 | printk("%s:%d: bad pgd %p(%08lx).\n", __FILE__, __LINE__, &(e), pgd_val(e)) |
| 315 | |
| 316 | |
| 317 | extern pgd_t swapper_pg_dir[PTRS_PER_PGD]; /* defined in head.S */ |
| 318 | |
| 319 | /* |
| 320 | * CRIS doesn't have any external MMU info: the kernel page |
| 321 | * tables contain all the necessary information. |
| 322 | * |
| 323 | * Actually I am not sure on what this could be used for. |
| 324 | */ |
| 325 | extern inline void update_mmu_cache(struct vm_area_struct * vma, |
| 326 | unsigned long address, pte_t pte) |
| 327 | { |
| 328 | } |
| 329 | |
| 330 | /* Encode and de-code a swap entry (must be !pte_none(e) && !pte_present(e)) */ |
| 331 | /* Since the PAGE_PRESENT bit is bit 4, we can use the bits above */ |
| 332 | |
| 333 | #define __swp_type(x) (((x).val >> 5) & 0x7f) |
| 334 | #define __swp_offset(x) ((x).val >> 12) |
| 335 | #define __swp_entry(type, offset) ((swp_entry_t) { ((type) << 5) | ((offset) << 12) }) |
| 336 | #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) }) |
| 337 | #define __swp_entry_to_pte(x) ((pte_t) { (x).val }) |
| 338 | |
| 339 | #define kern_addr_valid(addr) (1) |
| 340 | |
| 341 | #include <asm-generic/pgtable.h> |
| 342 | |
| 343 | /* |
| 344 | * No page table caches to initialise |
| 345 | */ |
| 346 | #define pgtable_cache_init() do { } while (0) |
| 347 | |
| 348 | #define pte_to_pgoff(x) (pte_val(x) >> 6) |
| 349 | #define pgoff_to_pte(x) __pte(((x) << 6) | _PAGE_FILE) |
| 350 | |
| 351 | #endif /* __ASSEMBLY__ */ |
| 352 | #endif /* _CRIS_PGTABLE_H */ |