blob: 565a54f1d06a1852bac76a8c317906bd04dbcac9 [file] [log] [blame]
David S. Miller1f26dac2005-09-27 15:24:13 -07001/* cassini.c: Sun Microsystems Cassini(+) ethernet driver.
2 *
3 * Copyright (C) 2004 Sun Microsystems Inc.
4 * Copyright (C) 2003 Adrian Sun (asun@darksunrising.com)
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License as
8 * published by the Free Software Foundation; either version 2 of the
9 * License, or (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
19 * 02111-1307, USA.
20 *
21 * This driver uses the sungem driver (c) David Miller
22 * (davem@redhat.com) as its basis.
23 *
24 * The cassini chip has a number of features that distinguish it from
25 * the gem chip:
26 * 4 transmit descriptor rings that are used for either QoS (VLAN) or
27 * load balancing (non-VLAN mode)
28 * batching of multiple packets
29 * multiple CPU dispatching
30 * page-based RX descriptor engine with separate completion rings
31 * Gigabit support (GMII and PCS interface)
32 * MIF link up/down detection works
33 *
34 * RX is handled by page sized buffers that are attached as fragments to
35 * the skb. here's what's done:
36 * -- driver allocates pages at a time and keeps reference counts
37 * on them.
38 * -- the upper protocol layers assume that the header is in the skb
39 * itself. as a result, cassini will copy a small amount (64 bytes)
40 * to make them happy.
41 * -- driver appends the rest of the data pages as frags to skbuffs
42 * and increments the reference count
43 * -- on page reclamation, the driver swaps the page with a spare page.
44 * if that page is still in use, it frees its reference to that page,
45 * and allocates a new page for use. otherwise, it just recycles the
46 * the page.
47 *
48 * NOTE: cassini can parse the header. however, it's not worth it
49 * as long as the network stack requires a header copy.
50 *
51 * TX has 4 queues. currently these queues are used in a round-robin
52 * fashion for load balancing. They can also be used for QoS. for that
53 * to work, however, QoS information needs to be exposed down to the driver
54 * level so that subqueues get targetted to particular transmit rings.
55 * alternatively, the queues can be configured via use of the all-purpose
56 * ioctl.
57 *
58 * RX DATA: the rx completion ring has all the info, but the rx desc
59 * ring has all of the data. RX can conceivably come in under multiple
60 * interrupts, but the INT# assignment needs to be set up properly by
61 * the BIOS and conveyed to the driver. PCI BIOSes don't know how to do
62 * that. also, the two descriptor rings are designed to distinguish between
63 * encrypted and non-encrypted packets, but we use them for buffering
64 * instead.
65 *
66 * by default, the selective clear mask is set up to process rx packets.
67 */
68
69#include <linux/config.h>
David S. Miller1f26dac2005-09-27 15:24:13 -070070
71#include <linux/module.h>
72#include <linux/kernel.h>
73#include <linux/types.h>
74#include <linux/compiler.h>
75#include <linux/slab.h>
76#include <linux/delay.h>
77#include <linux/init.h>
78#include <linux/ioport.h>
79#include <linux/pci.h>
80#include <linux/mm.h>
81#include <linux/highmem.h>
82#include <linux/list.h>
83#include <linux/dma-mapping.h>
84
85#include <linux/netdevice.h>
86#include <linux/etherdevice.h>
87#include <linux/skbuff.h>
88#include <linux/ethtool.h>
89#include <linux/crc32.h>
90#include <linux/random.h>
91#include <linux/mii.h>
92#include <linux/ip.h>
93#include <linux/tcp.h>
Ingo Molnar758df692006-03-20 22:34:09 -080094#include <linux/mutex.h>
David S. Miller1f26dac2005-09-27 15:24:13 -070095
96#include <net/checksum.h>
97
98#include <asm/atomic.h>
99#include <asm/system.h>
100#include <asm/io.h>
101#include <asm/byteorder.h>
102#include <asm/uaccess.h>
103
104#define cas_page_map(x) kmap_atomic((x), KM_SKB_DATA_SOFTIRQ)
105#define cas_page_unmap(x) kunmap_atomic((x), KM_SKB_DATA_SOFTIRQ)
106#define CAS_NCPUS num_online_cpus()
107
108#if defined(CONFIG_CASSINI_NAPI) && defined(HAVE_NETDEV_POLL)
109#define USE_NAPI
110#define cas_skb_release(x) netif_receive_skb(x)
111#else
112#define cas_skb_release(x) netif_rx(x)
113#endif
114
115/* select which firmware to use */
116#define USE_HP_WORKAROUND
117#define HP_WORKAROUND_DEFAULT /* select which firmware to use as default */
118#define CAS_HP_ALT_FIRMWARE cas_prog_null /* alternate firmware */
119
120#include "cassini.h"
121
122#define USE_TX_COMPWB /* use completion writeback registers */
123#define USE_CSMA_CD_PROTO /* standard CSMA/CD */
124#define USE_RX_BLANK /* hw interrupt mitigation */
125#undef USE_ENTROPY_DEV /* don't test for entropy device */
126
127/* NOTE: these aren't useable unless PCI interrupts can be assigned.
128 * also, we need to make cp->lock finer-grained.
129 */
130#undef USE_PCI_INTB
131#undef USE_PCI_INTC
132#undef USE_PCI_INTD
133#undef USE_QOS
134
135#undef USE_VPD_DEBUG /* debug vpd information if defined */
136
137/* rx processing options */
138#define USE_PAGE_ORDER /* specify to allocate large rx pages */
139#define RX_DONT_BATCH 0 /* if 1, don't batch flows */
140#define RX_COPY_ALWAYS 0 /* if 0, use frags */
141#define RX_COPY_MIN 64 /* copy a little to make upper layers happy */
142#undef RX_COUNT_BUFFERS /* define to calculate RX buffer stats */
143
144#define DRV_MODULE_NAME "cassini"
145#define PFX DRV_MODULE_NAME ": "
146#define DRV_MODULE_VERSION "1.4"
147#define DRV_MODULE_RELDATE "1 July 2004"
148
149#define CAS_DEF_MSG_ENABLE \
150 (NETIF_MSG_DRV | \
151 NETIF_MSG_PROBE | \
152 NETIF_MSG_LINK | \
153 NETIF_MSG_TIMER | \
154 NETIF_MSG_IFDOWN | \
155 NETIF_MSG_IFUP | \
156 NETIF_MSG_RX_ERR | \
157 NETIF_MSG_TX_ERR)
158
159/* length of time before we decide the hardware is borked,
160 * and dev->tx_timeout() should be called to fix the problem
161 */
162#define CAS_TX_TIMEOUT (HZ)
163#define CAS_LINK_TIMEOUT (22*HZ/10)
164#define CAS_LINK_FAST_TIMEOUT (1)
165
166/* timeout values for state changing. these specify the number
167 * of 10us delays to be used before giving up.
168 */
169#define STOP_TRIES_PHY 1000
170#define STOP_TRIES 5000
171
172/* specify a minimum frame size to deal with some fifo issues
173 * max mtu == 2 * page size - ethernet header - 64 - swivel =
174 * 2 * page_size - 0x50
175 */
176#define CAS_MIN_FRAME 97
177#define CAS_1000MB_MIN_FRAME 255
178#define CAS_MIN_MTU 60
179#define CAS_MAX_MTU min(((cp->page_size << 1) - 0x50), 9000)
180
181#if 1
182/*
183 * Eliminate these and use separate atomic counters for each, to
184 * avoid a race condition.
185 */
186#else
187#define CAS_RESET_MTU 1
188#define CAS_RESET_ALL 2
189#define CAS_RESET_SPARE 3
190#endif
191
192static char version[] __devinitdata =
193 DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
194
Rusty Russell8d3b33f2006-03-25 03:07:05 -0800195static int cassini_debug = -1; /* -1 == use CAS_DEF_MSG_ENABLE as value */
196static int link_mode;
197
David S. Miller1f26dac2005-09-27 15:24:13 -0700198MODULE_AUTHOR("Adrian Sun (asun@darksunrising.com)");
199MODULE_DESCRIPTION("Sun Cassini(+) ethernet driver");
200MODULE_LICENSE("GPL");
Rusty Russell8d3b33f2006-03-25 03:07:05 -0800201module_param(cassini_debug, int, 0);
David S. Miller1f26dac2005-09-27 15:24:13 -0700202MODULE_PARM_DESC(cassini_debug, "Cassini bitmapped debugging message enable value");
Rusty Russell8d3b33f2006-03-25 03:07:05 -0800203module_param(link_mode, int, 0);
David S. Miller1f26dac2005-09-27 15:24:13 -0700204MODULE_PARM_DESC(link_mode, "default link mode");
205
206/*
207 * Work around for a PCS bug in which the link goes down due to the chip
208 * being confused and never showing a link status of "up."
209 */
210#define DEFAULT_LINKDOWN_TIMEOUT 5
211/*
212 * Value in seconds, for user input.
213 */
214static int linkdown_timeout = DEFAULT_LINKDOWN_TIMEOUT;
Rusty Russell8d3b33f2006-03-25 03:07:05 -0800215module_param(linkdown_timeout, int, 0);
David S. Miller1f26dac2005-09-27 15:24:13 -0700216MODULE_PARM_DESC(linkdown_timeout,
217"min reset interval in sec. for PCS linkdown issue; disabled if not positive");
218
219/*
220 * value in 'ticks' (units used by jiffies). Set when we init the
221 * module because 'HZ' in actually a function call on some flavors of
222 * Linux. This will default to DEFAULT_LINKDOWN_TIMEOUT * HZ.
223 */
224static int link_transition_timeout;
225
226
David S. Miller1f26dac2005-09-27 15:24:13 -0700227
228static u16 link_modes[] __devinitdata = {
229 BMCR_ANENABLE, /* 0 : autoneg */
230 0, /* 1 : 10bt half duplex */
231 BMCR_SPEED100, /* 2 : 100bt half duplex */
232 BMCR_FULLDPLX, /* 3 : 10bt full duplex */
233 BMCR_SPEED100|BMCR_FULLDPLX, /* 4 : 100bt full duplex */
234 CAS_BMCR_SPEED1000|BMCR_FULLDPLX /* 5 : 1000bt full duplex */
235};
236
237static struct pci_device_id cas_pci_tbl[] __devinitdata = {
238 { PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_CASSINI,
239 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
240 { PCI_VENDOR_ID_NS, PCI_DEVICE_ID_NS_SATURN,
241 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
242 { 0, }
243};
244
245MODULE_DEVICE_TABLE(pci, cas_pci_tbl);
246
247static void cas_set_link_modes(struct cas *cp);
248
249static inline void cas_lock_tx(struct cas *cp)
250{
251 int i;
252
253 for (i = 0; i < N_TX_RINGS; i++)
254 spin_lock(&cp->tx_lock[i]);
255}
256
257static inline void cas_lock_all(struct cas *cp)
258{
259 spin_lock_irq(&cp->lock);
260 cas_lock_tx(cp);
261}
262
263/* WTZ: QA was finding deadlock problems with the previous
264 * versions after long test runs with multiple cards per machine.
265 * See if replacing cas_lock_all with safer versions helps. The
266 * symptoms QA is reporting match those we'd expect if interrupts
267 * aren't being properly restored, and we fixed a previous deadlock
268 * with similar symptoms by using save/restore versions in other
269 * places.
270 */
271#define cas_lock_all_save(cp, flags) \
272do { \
273 struct cas *xxxcp = (cp); \
274 spin_lock_irqsave(&xxxcp->lock, flags); \
275 cas_lock_tx(xxxcp); \
276} while (0)
277
278static inline void cas_unlock_tx(struct cas *cp)
279{
280 int i;
281
282 for (i = N_TX_RINGS; i > 0; i--)
283 spin_unlock(&cp->tx_lock[i - 1]);
284}
285
286static inline void cas_unlock_all(struct cas *cp)
287{
288 cas_unlock_tx(cp);
289 spin_unlock_irq(&cp->lock);
290}
291
292#define cas_unlock_all_restore(cp, flags) \
293do { \
294 struct cas *xxxcp = (cp); \
295 cas_unlock_tx(xxxcp); \
296 spin_unlock_irqrestore(&xxxcp->lock, flags); \
297} while (0)
298
299static void cas_disable_irq(struct cas *cp, const int ring)
300{
301 /* Make sure we won't get any more interrupts */
302 if (ring == 0) {
303 writel(0xFFFFFFFF, cp->regs + REG_INTR_MASK);
304 return;
305 }
306
307 /* disable completion interrupts and selectively mask */
308 if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
309 switch (ring) {
310#if defined (USE_PCI_INTB) || defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
311#ifdef USE_PCI_INTB
312 case 1:
313#endif
314#ifdef USE_PCI_INTC
315 case 2:
316#endif
317#ifdef USE_PCI_INTD
318 case 3:
319#endif
320 writel(INTRN_MASK_CLEAR_ALL | INTRN_MASK_RX_EN,
321 cp->regs + REG_PLUS_INTRN_MASK(ring));
322 break;
323#endif
324 default:
325 writel(INTRN_MASK_CLEAR_ALL, cp->regs +
326 REG_PLUS_INTRN_MASK(ring));
327 break;
328 }
329 }
330}
331
332static inline void cas_mask_intr(struct cas *cp)
333{
334 int i;
335
336 for (i = 0; i < N_RX_COMP_RINGS; i++)
337 cas_disable_irq(cp, i);
338}
339
Nick Pigginfa4f0772006-01-18 14:05:16 -0800340static inline void cas_buffer_init(cas_page_t *cp)
341{
342 struct page *page = cp->buffer;
343 atomic_set((atomic_t *)&page->lru.next, 1);
344}
345
346static inline int cas_buffer_count(cas_page_t *cp)
347{
348 struct page *page = cp->buffer;
349 return atomic_read((atomic_t *)&page->lru.next);
350}
351
352static inline void cas_buffer_inc(cas_page_t *cp)
353{
354 struct page *page = cp->buffer;
355 atomic_inc((atomic_t *)&page->lru.next);
356}
357
358static inline void cas_buffer_dec(cas_page_t *cp)
359{
360 struct page *page = cp->buffer;
361 atomic_dec((atomic_t *)&page->lru.next);
362}
363
David S. Miller1f26dac2005-09-27 15:24:13 -0700364static void cas_enable_irq(struct cas *cp, const int ring)
365{
366 if (ring == 0) { /* all but TX_DONE */
367 writel(INTR_TX_DONE, cp->regs + REG_INTR_MASK);
368 return;
369 }
370
371 if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
372 switch (ring) {
373#if defined (USE_PCI_INTB) || defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
374#ifdef USE_PCI_INTB
375 case 1:
376#endif
377#ifdef USE_PCI_INTC
378 case 2:
379#endif
380#ifdef USE_PCI_INTD
381 case 3:
382#endif
383 writel(INTRN_MASK_RX_EN, cp->regs +
384 REG_PLUS_INTRN_MASK(ring));
385 break;
386#endif
387 default:
388 break;
389 }
390 }
391}
392
393static inline void cas_unmask_intr(struct cas *cp)
394{
395 int i;
396
397 for (i = 0; i < N_RX_COMP_RINGS; i++)
398 cas_enable_irq(cp, i);
399}
400
401static inline void cas_entropy_gather(struct cas *cp)
402{
403#ifdef USE_ENTROPY_DEV
404 if ((cp->cas_flags & CAS_FLAG_ENTROPY_DEV) == 0)
405 return;
406
407 batch_entropy_store(readl(cp->regs + REG_ENTROPY_IV),
408 readl(cp->regs + REG_ENTROPY_IV),
409 sizeof(uint64_t)*8);
410#endif
411}
412
413static inline void cas_entropy_reset(struct cas *cp)
414{
415#ifdef USE_ENTROPY_DEV
416 if ((cp->cas_flags & CAS_FLAG_ENTROPY_DEV) == 0)
417 return;
418
419 writel(BIM_LOCAL_DEV_PAD | BIM_LOCAL_DEV_PROM | BIM_LOCAL_DEV_EXT,
420 cp->regs + REG_BIM_LOCAL_DEV_EN);
421 writeb(ENTROPY_RESET_STC_MODE, cp->regs + REG_ENTROPY_RESET);
422 writeb(0x55, cp->regs + REG_ENTROPY_RAND_REG);
423
424 /* if we read back 0x0, we don't have an entropy device */
425 if (readb(cp->regs + REG_ENTROPY_RAND_REG) == 0)
426 cp->cas_flags &= ~CAS_FLAG_ENTROPY_DEV;
427#endif
428}
429
430/* access to the phy. the following assumes that we've initialized the MIF to
431 * be in frame rather than bit-bang mode
432 */
433static u16 cas_phy_read(struct cas *cp, int reg)
434{
435 u32 cmd;
436 int limit = STOP_TRIES_PHY;
437
438 cmd = MIF_FRAME_ST | MIF_FRAME_OP_READ;
439 cmd |= CAS_BASE(MIF_FRAME_PHY_ADDR, cp->phy_addr);
440 cmd |= CAS_BASE(MIF_FRAME_REG_ADDR, reg);
441 cmd |= MIF_FRAME_TURN_AROUND_MSB;
442 writel(cmd, cp->regs + REG_MIF_FRAME);
443
444 /* poll for completion */
445 while (limit-- > 0) {
446 udelay(10);
447 cmd = readl(cp->regs + REG_MIF_FRAME);
448 if (cmd & MIF_FRAME_TURN_AROUND_LSB)
449 return (cmd & MIF_FRAME_DATA_MASK);
450 }
451 return 0xFFFF; /* -1 */
452}
453
454static int cas_phy_write(struct cas *cp, int reg, u16 val)
455{
456 int limit = STOP_TRIES_PHY;
457 u32 cmd;
458
459 cmd = MIF_FRAME_ST | MIF_FRAME_OP_WRITE;
460 cmd |= CAS_BASE(MIF_FRAME_PHY_ADDR, cp->phy_addr);
461 cmd |= CAS_BASE(MIF_FRAME_REG_ADDR, reg);
462 cmd |= MIF_FRAME_TURN_AROUND_MSB;
463 cmd |= val & MIF_FRAME_DATA_MASK;
464 writel(cmd, cp->regs + REG_MIF_FRAME);
465
466 /* poll for completion */
467 while (limit-- > 0) {
468 udelay(10);
469 cmd = readl(cp->regs + REG_MIF_FRAME);
470 if (cmd & MIF_FRAME_TURN_AROUND_LSB)
471 return 0;
472 }
473 return -1;
474}
475
476static void cas_phy_powerup(struct cas *cp)
477{
478 u16 ctl = cas_phy_read(cp, MII_BMCR);
479
480 if ((ctl & BMCR_PDOWN) == 0)
481 return;
482 ctl &= ~BMCR_PDOWN;
483 cas_phy_write(cp, MII_BMCR, ctl);
484}
485
486static void cas_phy_powerdown(struct cas *cp)
487{
488 u16 ctl = cas_phy_read(cp, MII_BMCR);
489
490 if (ctl & BMCR_PDOWN)
491 return;
492 ctl |= BMCR_PDOWN;
493 cas_phy_write(cp, MII_BMCR, ctl);
494}
495
496/* cp->lock held. note: the last put_page will free the buffer */
497static int cas_page_free(struct cas *cp, cas_page_t *page)
498{
499 pci_unmap_page(cp->pdev, page->dma_addr, cp->page_size,
500 PCI_DMA_FROMDEVICE);
Nick Pigginfa4f0772006-01-18 14:05:16 -0800501 cas_buffer_dec(page);
David S. Miller1f26dac2005-09-27 15:24:13 -0700502 __free_pages(page->buffer, cp->page_order);
503 kfree(page);
504 return 0;
505}
506
507#ifdef RX_COUNT_BUFFERS
508#define RX_USED_ADD(x, y) ((x)->used += (y))
509#define RX_USED_SET(x, y) ((x)->used = (y))
510#else
511#define RX_USED_ADD(x, y)
512#define RX_USED_SET(x, y)
513#endif
514
515/* local page allocation routines for the receive buffers. jumbo pages
516 * require at least 8K contiguous and 8K aligned buffers.
517 */
Al Viro9e249742005-10-21 03:22:29 -0400518static cas_page_t *cas_page_alloc(struct cas *cp, const gfp_t flags)
David S. Miller1f26dac2005-09-27 15:24:13 -0700519{
520 cas_page_t *page;
521
522 page = kmalloc(sizeof(cas_page_t), flags);
523 if (!page)
524 return NULL;
525
526 INIT_LIST_HEAD(&page->list);
527 RX_USED_SET(page, 0);
528 page->buffer = alloc_pages(flags, cp->page_order);
529 if (!page->buffer)
530 goto page_err;
Nick Pigginfa4f0772006-01-18 14:05:16 -0800531 cas_buffer_init(page);
David S. Miller1f26dac2005-09-27 15:24:13 -0700532 page->dma_addr = pci_map_page(cp->pdev, page->buffer, 0,
533 cp->page_size, PCI_DMA_FROMDEVICE);
534 return page;
535
536page_err:
537 kfree(page);
538 return NULL;
539}
540
541/* initialize spare pool of rx buffers, but allocate during the open */
542static void cas_spare_init(struct cas *cp)
543{
544 spin_lock(&cp->rx_inuse_lock);
545 INIT_LIST_HEAD(&cp->rx_inuse_list);
546 spin_unlock(&cp->rx_inuse_lock);
547
548 spin_lock(&cp->rx_spare_lock);
549 INIT_LIST_HEAD(&cp->rx_spare_list);
550 cp->rx_spares_needed = RX_SPARE_COUNT;
551 spin_unlock(&cp->rx_spare_lock);
552}
553
554/* used on close. free all the spare buffers. */
555static void cas_spare_free(struct cas *cp)
556{
557 struct list_head list, *elem, *tmp;
558
559 /* free spare buffers */
560 INIT_LIST_HEAD(&list);
561 spin_lock(&cp->rx_spare_lock);
562 list_splice(&cp->rx_spare_list, &list);
563 INIT_LIST_HEAD(&cp->rx_spare_list);
564 spin_unlock(&cp->rx_spare_lock);
565 list_for_each_safe(elem, tmp, &list) {
566 cas_page_free(cp, list_entry(elem, cas_page_t, list));
567 }
568
569 INIT_LIST_HEAD(&list);
570#if 1
571 /*
572 * Looks like Adrian had protected this with a different
573 * lock than used everywhere else to manipulate this list.
574 */
575 spin_lock(&cp->rx_inuse_lock);
576 list_splice(&cp->rx_inuse_list, &list);
577 INIT_LIST_HEAD(&cp->rx_inuse_list);
578 spin_unlock(&cp->rx_inuse_lock);
579#else
580 spin_lock(&cp->rx_spare_lock);
581 list_splice(&cp->rx_inuse_list, &list);
582 INIT_LIST_HEAD(&cp->rx_inuse_list);
583 spin_unlock(&cp->rx_spare_lock);
584#endif
585 list_for_each_safe(elem, tmp, &list) {
586 cas_page_free(cp, list_entry(elem, cas_page_t, list));
587 }
588}
589
590/* replenish spares if needed */
Al Viro9e249742005-10-21 03:22:29 -0400591static void cas_spare_recover(struct cas *cp, const gfp_t flags)
David S. Miller1f26dac2005-09-27 15:24:13 -0700592{
593 struct list_head list, *elem, *tmp;
594 int needed, i;
595
596 /* check inuse list. if we don't need any more free buffers,
597 * just free it
598 */
599
600 /* make a local copy of the list */
601 INIT_LIST_HEAD(&list);
602 spin_lock(&cp->rx_inuse_lock);
603 list_splice(&cp->rx_inuse_list, &list);
604 INIT_LIST_HEAD(&cp->rx_inuse_list);
605 spin_unlock(&cp->rx_inuse_lock);
606
607 list_for_each_safe(elem, tmp, &list) {
608 cas_page_t *page = list_entry(elem, cas_page_t, list);
609
Nick Pigginfa4f0772006-01-18 14:05:16 -0800610 if (cas_buffer_count(page) > 1)
David S. Miller1f26dac2005-09-27 15:24:13 -0700611 continue;
612
613 list_del(elem);
614 spin_lock(&cp->rx_spare_lock);
615 if (cp->rx_spares_needed > 0) {
616 list_add(elem, &cp->rx_spare_list);
617 cp->rx_spares_needed--;
618 spin_unlock(&cp->rx_spare_lock);
619 } else {
620 spin_unlock(&cp->rx_spare_lock);
621 cas_page_free(cp, page);
622 }
623 }
624
625 /* put any inuse buffers back on the list */
626 if (!list_empty(&list)) {
627 spin_lock(&cp->rx_inuse_lock);
628 list_splice(&list, &cp->rx_inuse_list);
629 spin_unlock(&cp->rx_inuse_lock);
630 }
631
632 spin_lock(&cp->rx_spare_lock);
633 needed = cp->rx_spares_needed;
634 spin_unlock(&cp->rx_spare_lock);
635 if (!needed)
636 return;
637
638 /* we still need spares, so try to allocate some */
639 INIT_LIST_HEAD(&list);
640 i = 0;
641 while (i < needed) {
642 cas_page_t *spare = cas_page_alloc(cp, flags);
643 if (!spare)
644 break;
645 list_add(&spare->list, &list);
646 i++;
647 }
648
649 spin_lock(&cp->rx_spare_lock);
650 list_splice(&list, &cp->rx_spare_list);
651 cp->rx_spares_needed -= i;
652 spin_unlock(&cp->rx_spare_lock);
653}
654
655/* pull a page from the list. */
656static cas_page_t *cas_page_dequeue(struct cas *cp)
657{
658 struct list_head *entry;
659 int recover;
660
661 spin_lock(&cp->rx_spare_lock);
662 if (list_empty(&cp->rx_spare_list)) {
663 /* try to do a quick recovery */
664 spin_unlock(&cp->rx_spare_lock);
665 cas_spare_recover(cp, GFP_ATOMIC);
666 spin_lock(&cp->rx_spare_lock);
667 if (list_empty(&cp->rx_spare_list)) {
668 if (netif_msg_rx_err(cp))
669 printk(KERN_ERR "%s: no spare buffers "
670 "available.\n", cp->dev->name);
671 spin_unlock(&cp->rx_spare_lock);
672 return NULL;
673 }
674 }
675
676 entry = cp->rx_spare_list.next;
677 list_del(entry);
678 recover = ++cp->rx_spares_needed;
679 spin_unlock(&cp->rx_spare_lock);
680
681 /* trigger the timer to do the recovery */
682 if ((recover & (RX_SPARE_RECOVER_VAL - 1)) == 0) {
683#if 1
684 atomic_inc(&cp->reset_task_pending);
685 atomic_inc(&cp->reset_task_pending_spare);
686 schedule_work(&cp->reset_task);
687#else
688 atomic_set(&cp->reset_task_pending, CAS_RESET_SPARE);
689 schedule_work(&cp->reset_task);
690#endif
691 }
692 return list_entry(entry, cas_page_t, list);
693}
694
695
696static void cas_mif_poll(struct cas *cp, const int enable)
697{
698 u32 cfg;
699
700 cfg = readl(cp->regs + REG_MIF_CFG);
701 cfg &= (MIF_CFG_MDIO_0 | MIF_CFG_MDIO_1);
702
703 if (cp->phy_type & CAS_PHY_MII_MDIO1)
704 cfg |= MIF_CFG_PHY_SELECT;
705
706 /* poll and interrupt on link status change. */
707 if (enable) {
708 cfg |= MIF_CFG_POLL_EN;
709 cfg |= CAS_BASE(MIF_CFG_POLL_REG, MII_BMSR);
710 cfg |= CAS_BASE(MIF_CFG_POLL_PHY, cp->phy_addr);
711 }
712 writel((enable) ? ~(BMSR_LSTATUS | BMSR_ANEGCOMPLETE) : 0xFFFF,
713 cp->regs + REG_MIF_MASK);
714 writel(cfg, cp->regs + REG_MIF_CFG);
715}
716
717/* Must be invoked under cp->lock */
718static void cas_begin_auto_negotiation(struct cas *cp, struct ethtool_cmd *ep)
719{
720 u16 ctl;
721#if 1
722 int lcntl;
723 int changed = 0;
724 int oldstate = cp->lstate;
725 int link_was_not_down = !(oldstate == link_down);
726#endif
727 /* Setup link parameters */
728 if (!ep)
729 goto start_aneg;
730 lcntl = cp->link_cntl;
731 if (ep->autoneg == AUTONEG_ENABLE)
732 cp->link_cntl = BMCR_ANENABLE;
733 else {
734 cp->link_cntl = 0;
735 if (ep->speed == SPEED_100)
736 cp->link_cntl |= BMCR_SPEED100;
737 else if (ep->speed == SPEED_1000)
738 cp->link_cntl |= CAS_BMCR_SPEED1000;
739 if (ep->duplex == DUPLEX_FULL)
740 cp->link_cntl |= BMCR_FULLDPLX;
741 }
742#if 1
743 changed = (lcntl != cp->link_cntl);
744#endif
745start_aneg:
746 if (cp->lstate == link_up) {
747 printk(KERN_INFO "%s: PCS link down.\n",
748 cp->dev->name);
749 } else {
750 if (changed) {
751 printk(KERN_INFO "%s: link configuration changed\n",
752 cp->dev->name);
753 }
754 }
755 cp->lstate = link_down;
756 cp->link_transition = LINK_TRANSITION_LINK_DOWN;
757 if (!cp->hw_running)
758 return;
759#if 1
760 /*
761 * WTZ: If the old state was link_up, we turn off the carrier
762 * to replicate everything we do elsewhere on a link-down
763 * event when we were already in a link-up state..
764 */
765 if (oldstate == link_up)
766 netif_carrier_off(cp->dev);
767 if (changed && link_was_not_down) {
768 /*
769 * WTZ: This branch will simply schedule a full reset after
770 * we explicitly changed link modes in an ioctl. See if this
771 * fixes the link-problems we were having for forced mode.
772 */
773 atomic_inc(&cp->reset_task_pending);
774 atomic_inc(&cp->reset_task_pending_all);
775 schedule_work(&cp->reset_task);
776 cp->timer_ticks = 0;
777 mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT);
778 return;
779 }
780#endif
781 if (cp->phy_type & CAS_PHY_SERDES) {
782 u32 val = readl(cp->regs + REG_PCS_MII_CTRL);
783
784 if (cp->link_cntl & BMCR_ANENABLE) {
785 val |= (PCS_MII_RESTART_AUTONEG | PCS_MII_AUTONEG_EN);
786 cp->lstate = link_aneg;
787 } else {
788 if (cp->link_cntl & BMCR_FULLDPLX)
789 val |= PCS_MII_CTRL_DUPLEX;
790 val &= ~PCS_MII_AUTONEG_EN;
791 cp->lstate = link_force_ok;
792 }
793 cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
794 writel(val, cp->regs + REG_PCS_MII_CTRL);
795
796 } else {
797 cas_mif_poll(cp, 0);
798 ctl = cas_phy_read(cp, MII_BMCR);
799 ctl &= ~(BMCR_FULLDPLX | BMCR_SPEED100 |
800 CAS_BMCR_SPEED1000 | BMCR_ANENABLE);
801 ctl |= cp->link_cntl;
802 if (ctl & BMCR_ANENABLE) {
803 ctl |= BMCR_ANRESTART;
804 cp->lstate = link_aneg;
805 } else {
806 cp->lstate = link_force_ok;
807 }
808 cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
809 cas_phy_write(cp, MII_BMCR, ctl);
810 cas_mif_poll(cp, 1);
811 }
812
813 cp->timer_ticks = 0;
814 mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT);
815}
816
817/* Must be invoked under cp->lock. */
818static int cas_reset_mii_phy(struct cas *cp)
819{
820 int limit = STOP_TRIES_PHY;
821 u16 val;
822
823 cas_phy_write(cp, MII_BMCR, BMCR_RESET);
824 udelay(100);
825 while (limit--) {
826 val = cas_phy_read(cp, MII_BMCR);
827 if ((val & BMCR_RESET) == 0)
828 break;
829 udelay(10);
830 }
831 return (limit <= 0);
832}
833
834static void cas_saturn_firmware_load(struct cas *cp)
835{
836 cas_saturn_patch_t *patch = cas_saturn_patch;
837
838 cas_phy_powerdown(cp);
839
840 /* expanded memory access mode */
841 cas_phy_write(cp, DP83065_MII_MEM, 0x0);
842
843 /* pointer configuration for new firmware */
844 cas_phy_write(cp, DP83065_MII_REGE, 0x8ff9);
845 cas_phy_write(cp, DP83065_MII_REGD, 0xbd);
846 cas_phy_write(cp, DP83065_MII_REGE, 0x8ffa);
847 cas_phy_write(cp, DP83065_MII_REGD, 0x82);
848 cas_phy_write(cp, DP83065_MII_REGE, 0x8ffb);
849 cas_phy_write(cp, DP83065_MII_REGD, 0x0);
850 cas_phy_write(cp, DP83065_MII_REGE, 0x8ffc);
851 cas_phy_write(cp, DP83065_MII_REGD, 0x39);
852
853 /* download new firmware */
854 cas_phy_write(cp, DP83065_MII_MEM, 0x1);
855 cas_phy_write(cp, DP83065_MII_REGE, patch->addr);
856 while (patch->addr) {
857 cas_phy_write(cp, DP83065_MII_REGD, patch->val);
858 patch++;
859 }
860
861 /* enable firmware */
862 cas_phy_write(cp, DP83065_MII_REGE, 0x8ff8);
863 cas_phy_write(cp, DP83065_MII_REGD, 0x1);
864}
865
866
867/* phy initialization */
868static void cas_phy_init(struct cas *cp)
869{
870 u16 val;
871
872 /* if we're in MII/GMII mode, set up phy */
873 if (CAS_PHY_MII(cp->phy_type)) {
874 writel(PCS_DATAPATH_MODE_MII,
875 cp->regs + REG_PCS_DATAPATH_MODE);
876
877 cas_mif_poll(cp, 0);
878 cas_reset_mii_phy(cp); /* take out of isolate mode */
879
880 if (PHY_LUCENT_B0 == cp->phy_id) {
881 /* workaround link up/down issue with lucent */
882 cas_phy_write(cp, LUCENT_MII_REG, 0x8000);
883 cas_phy_write(cp, MII_BMCR, 0x00f1);
884 cas_phy_write(cp, LUCENT_MII_REG, 0x0);
885
886 } else if (PHY_BROADCOM_B0 == (cp->phy_id & 0xFFFFFFFC)) {
887 /* workarounds for broadcom phy */
888 cas_phy_write(cp, BROADCOM_MII_REG8, 0x0C20);
889 cas_phy_write(cp, BROADCOM_MII_REG7, 0x0012);
890 cas_phy_write(cp, BROADCOM_MII_REG5, 0x1804);
891 cas_phy_write(cp, BROADCOM_MII_REG7, 0x0013);
892 cas_phy_write(cp, BROADCOM_MII_REG5, 0x1204);
893 cas_phy_write(cp, BROADCOM_MII_REG7, 0x8006);
894 cas_phy_write(cp, BROADCOM_MII_REG5, 0x0132);
895 cas_phy_write(cp, BROADCOM_MII_REG7, 0x8006);
896 cas_phy_write(cp, BROADCOM_MII_REG5, 0x0232);
897 cas_phy_write(cp, BROADCOM_MII_REG7, 0x201F);
898 cas_phy_write(cp, BROADCOM_MII_REG5, 0x0A20);
899
900 } else if (PHY_BROADCOM_5411 == cp->phy_id) {
901 val = cas_phy_read(cp, BROADCOM_MII_REG4);
902 val = cas_phy_read(cp, BROADCOM_MII_REG4);
903 if (val & 0x0080) {
904 /* link workaround */
905 cas_phy_write(cp, BROADCOM_MII_REG4,
906 val & ~0x0080);
907 }
908
909 } else if (cp->cas_flags & CAS_FLAG_SATURN) {
910 writel((cp->phy_type & CAS_PHY_MII_MDIO0) ?
911 SATURN_PCFG_FSI : 0x0,
912 cp->regs + REG_SATURN_PCFG);
913
914 /* load firmware to address 10Mbps auto-negotiation
915 * issue. NOTE: this will need to be changed if the
916 * default firmware gets fixed.
917 */
918 if (PHY_NS_DP83065 == cp->phy_id) {
919 cas_saturn_firmware_load(cp);
920 }
921 cas_phy_powerup(cp);
922 }
923
924 /* advertise capabilities */
925 val = cas_phy_read(cp, MII_BMCR);
926 val &= ~BMCR_ANENABLE;
927 cas_phy_write(cp, MII_BMCR, val);
928 udelay(10);
929
930 cas_phy_write(cp, MII_ADVERTISE,
931 cas_phy_read(cp, MII_ADVERTISE) |
932 (ADVERTISE_10HALF | ADVERTISE_10FULL |
933 ADVERTISE_100HALF | ADVERTISE_100FULL |
934 CAS_ADVERTISE_PAUSE |
935 CAS_ADVERTISE_ASYM_PAUSE));
936
937 if (cp->cas_flags & CAS_FLAG_1000MB_CAP) {
938 /* make sure that we don't advertise half
939 * duplex to avoid a chip issue
940 */
941 val = cas_phy_read(cp, CAS_MII_1000_CTRL);
942 val &= ~CAS_ADVERTISE_1000HALF;
943 val |= CAS_ADVERTISE_1000FULL;
944 cas_phy_write(cp, CAS_MII_1000_CTRL, val);
945 }
946
947 } else {
948 /* reset pcs for serdes */
949 u32 val;
950 int limit;
951
952 writel(PCS_DATAPATH_MODE_SERDES,
953 cp->regs + REG_PCS_DATAPATH_MODE);
954
955 /* enable serdes pins on saturn */
956 if (cp->cas_flags & CAS_FLAG_SATURN)
957 writel(0, cp->regs + REG_SATURN_PCFG);
958
959 /* Reset PCS unit. */
960 val = readl(cp->regs + REG_PCS_MII_CTRL);
961 val |= PCS_MII_RESET;
962 writel(val, cp->regs + REG_PCS_MII_CTRL);
963
964 limit = STOP_TRIES;
965 while (limit-- > 0) {
966 udelay(10);
967 if ((readl(cp->regs + REG_PCS_MII_CTRL) &
968 PCS_MII_RESET) == 0)
969 break;
970 }
971 if (limit <= 0)
972 printk(KERN_WARNING "%s: PCS reset bit would not "
973 "clear [%08x].\n", cp->dev->name,
974 readl(cp->regs + REG_PCS_STATE_MACHINE));
975
976 /* Make sure PCS is disabled while changing advertisement
977 * configuration.
978 */
979 writel(0x0, cp->regs + REG_PCS_CFG);
980
981 /* Advertise all capabilities except half-duplex. */
982 val = readl(cp->regs + REG_PCS_MII_ADVERT);
983 val &= ~PCS_MII_ADVERT_HD;
984 val |= (PCS_MII_ADVERT_FD | PCS_MII_ADVERT_SYM_PAUSE |
985 PCS_MII_ADVERT_ASYM_PAUSE);
986 writel(val, cp->regs + REG_PCS_MII_ADVERT);
987
988 /* enable PCS */
989 writel(PCS_CFG_EN, cp->regs + REG_PCS_CFG);
990
991 /* pcs workaround: enable sync detect */
992 writel(PCS_SERDES_CTRL_SYNCD_EN,
993 cp->regs + REG_PCS_SERDES_CTRL);
994 }
995}
996
997
998static int cas_pcs_link_check(struct cas *cp)
999{
1000 u32 stat, state_machine;
1001 int retval = 0;
1002
1003 /* The link status bit latches on zero, so you must
1004 * read it twice in such a case to see a transition
1005 * to the link being up.
1006 */
1007 stat = readl(cp->regs + REG_PCS_MII_STATUS);
1008 if ((stat & PCS_MII_STATUS_LINK_STATUS) == 0)
1009 stat = readl(cp->regs + REG_PCS_MII_STATUS);
1010
1011 /* The remote-fault indication is only valid
1012 * when autoneg has completed.
1013 */
1014 if ((stat & (PCS_MII_STATUS_AUTONEG_COMP |
1015 PCS_MII_STATUS_REMOTE_FAULT)) ==
1016 (PCS_MII_STATUS_AUTONEG_COMP | PCS_MII_STATUS_REMOTE_FAULT)) {
1017 if (netif_msg_link(cp))
1018 printk(KERN_INFO "%s: PCS RemoteFault\n",
1019 cp->dev->name);
1020 }
1021
1022 /* work around link detection issue by querying the PCS state
1023 * machine directly.
1024 */
1025 state_machine = readl(cp->regs + REG_PCS_STATE_MACHINE);
1026 if ((state_machine & PCS_SM_LINK_STATE_MASK) != SM_LINK_STATE_UP) {
1027 stat &= ~PCS_MII_STATUS_LINK_STATUS;
1028 } else if (state_machine & PCS_SM_WORD_SYNC_STATE_MASK) {
1029 stat |= PCS_MII_STATUS_LINK_STATUS;
1030 }
1031
1032 if (stat & PCS_MII_STATUS_LINK_STATUS) {
1033 if (cp->lstate != link_up) {
1034 if (cp->opened) {
1035 cp->lstate = link_up;
1036 cp->link_transition = LINK_TRANSITION_LINK_UP;
1037
1038 cas_set_link_modes(cp);
1039 netif_carrier_on(cp->dev);
1040 }
1041 }
1042 } else if (cp->lstate == link_up) {
1043 cp->lstate = link_down;
1044 if (link_transition_timeout != 0 &&
1045 cp->link_transition != LINK_TRANSITION_REQUESTED_RESET &&
1046 !cp->link_transition_jiffies_valid) {
1047 /*
1048 * force a reset, as a workaround for the
1049 * link-failure problem. May want to move this to a
1050 * point a bit earlier in the sequence. If we had
1051 * generated a reset a short time ago, we'll wait for
1052 * the link timer to check the status until a
1053 * timer expires (link_transistion_jiffies_valid is
1054 * true when the timer is running.) Instead of using
1055 * a system timer, we just do a check whenever the
1056 * link timer is running - this clears the flag after
1057 * a suitable delay.
1058 */
1059 retval = 1;
1060 cp->link_transition = LINK_TRANSITION_REQUESTED_RESET;
1061 cp->link_transition_jiffies = jiffies;
1062 cp->link_transition_jiffies_valid = 1;
1063 } else {
1064 cp->link_transition = LINK_TRANSITION_ON_FAILURE;
1065 }
1066 netif_carrier_off(cp->dev);
1067 if (cp->opened && netif_msg_link(cp)) {
1068 printk(KERN_INFO "%s: PCS link down.\n",
1069 cp->dev->name);
1070 }
1071
1072 /* Cassini only: if you force a mode, there can be
1073 * sync problems on link down. to fix that, the following
1074 * things need to be checked:
1075 * 1) read serialink state register
1076 * 2) read pcs status register to verify link down.
1077 * 3) if link down and serial link == 0x03, then you need
1078 * to global reset the chip.
1079 */
1080 if ((cp->cas_flags & CAS_FLAG_REG_PLUS) == 0) {
1081 /* should check to see if we're in a forced mode */
1082 stat = readl(cp->regs + REG_PCS_SERDES_STATE);
1083 if (stat == 0x03)
1084 return 1;
1085 }
1086 } else if (cp->lstate == link_down) {
1087 if (link_transition_timeout != 0 &&
1088 cp->link_transition != LINK_TRANSITION_REQUESTED_RESET &&
1089 !cp->link_transition_jiffies_valid) {
1090 /* force a reset, as a workaround for the
1091 * link-failure problem. May want to move
1092 * this to a point a bit earlier in the
1093 * sequence.
1094 */
1095 retval = 1;
1096 cp->link_transition = LINK_TRANSITION_REQUESTED_RESET;
1097 cp->link_transition_jiffies = jiffies;
1098 cp->link_transition_jiffies_valid = 1;
1099 } else {
1100 cp->link_transition = LINK_TRANSITION_STILL_FAILED;
1101 }
1102 }
1103
1104 return retval;
1105}
1106
1107static int cas_pcs_interrupt(struct net_device *dev,
1108 struct cas *cp, u32 status)
1109{
1110 u32 stat = readl(cp->regs + REG_PCS_INTR_STATUS);
1111
1112 if ((stat & PCS_INTR_STATUS_LINK_CHANGE) == 0)
1113 return 0;
1114 return cas_pcs_link_check(cp);
1115}
1116
1117static int cas_txmac_interrupt(struct net_device *dev,
1118 struct cas *cp, u32 status)
1119{
1120 u32 txmac_stat = readl(cp->regs + REG_MAC_TX_STATUS);
1121
1122 if (!txmac_stat)
1123 return 0;
1124
1125 if (netif_msg_intr(cp))
1126 printk(KERN_DEBUG "%s: txmac interrupt, txmac_stat: 0x%x\n",
1127 cp->dev->name, txmac_stat);
1128
1129 /* Defer timer expiration is quite normal,
1130 * don't even log the event.
1131 */
1132 if ((txmac_stat & MAC_TX_DEFER_TIMER) &&
1133 !(txmac_stat & ~MAC_TX_DEFER_TIMER))
1134 return 0;
1135
1136 spin_lock(&cp->stat_lock[0]);
1137 if (txmac_stat & MAC_TX_UNDERRUN) {
1138 printk(KERN_ERR "%s: TX MAC xmit underrun.\n",
1139 dev->name);
1140 cp->net_stats[0].tx_fifo_errors++;
1141 }
1142
1143 if (txmac_stat & MAC_TX_MAX_PACKET_ERR) {
1144 printk(KERN_ERR "%s: TX MAC max packet size error.\n",
1145 dev->name);
1146 cp->net_stats[0].tx_errors++;
1147 }
1148
1149 /* The rest are all cases of one of the 16-bit TX
1150 * counters expiring.
1151 */
1152 if (txmac_stat & MAC_TX_COLL_NORMAL)
1153 cp->net_stats[0].collisions += 0x10000;
1154
1155 if (txmac_stat & MAC_TX_COLL_EXCESS) {
1156 cp->net_stats[0].tx_aborted_errors += 0x10000;
1157 cp->net_stats[0].collisions += 0x10000;
1158 }
1159
1160 if (txmac_stat & MAC_TX_COLL_LATE) {
1161 cp->net_stats[0].tx_aborted_errors += 0x10000;
1162 cp->net_stats[0].collisions += 0x10000;
1163 }
1164 spin_unlock(&cp->stat_lock[0]);
1165
1166 /* We do not keep track of MAC_TX_COLL_FIRST and
1167 * MAC_TX_PEAK_ATTEMPTS events.
1168 */
1169 return 0;
1170}
1171
1172static void cas_load_firmware(struct cas *cp, cas_hp_inst_t *firmware)
1173{
1174 cas_hp_inst_t *inst;
1175 u32 val;
1176 int i;
1177
1178 i = 0;
1179 while ((inst = firmware) && inst->note) {
1180 writel(i, cp->regs + REG_HP_INSTR_RAM_ADDR);
1181
1182 val = CAS_BASE(HP_INSTR_RAM_HI_VAL, inst->val);
1183 val |= CAS_BASE(HP_INSTR_RAM_HI_MASK, inst->mask);
1184 writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_HI);
1185
1186 val = CAS_BASE(HP_INSTR_RAM_MID_OUTARG, inst->outarg >> 10);
1187 val |= CAS_BASE(HP_INSTR_RAM_MID_OUTOP, inst->outop);
1188 val |= CAS_BASE(HP_INSTR_RAM_MID_FNEXT, inst->fnext);
1189 val |= CAS_BASE(HP_INSTR_RAM_MID_FOFF, inst->foff);
1190 val |= CAS_BASE(HP_INSTR_RAM_MID_SNEXT, inst->snext);
1191 val |= CAS_BASE(HP_INSTR_RAM_MID_SOFF, inst->soff);
1192 val |= CAS_BASE(HP_INSTR_RAM_MID_OP, inst->op);
1193 writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_MID);
1194
1195 val = CAS_BASE(HP_INSTR_RAM_LOW_OUTMASK, inst->outmask);
1196 val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTSHIFT, inst->outshift);
1197 val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTEN, inst->outenab);
1198 val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTARG, inst->outarg);
1199 writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_LOW);
1200 ++firmware;
1201 ++i;
1202 }
1203}
1204
1205static void cas_init_rx_dma(struct cas *cp)
1206{
1207 u64 desc_dma = cp->block_dvma;
1208 u32 val;
1209 int i, size;
1210
1211 /* rx free descriptors */
1212 val = CAS_BASE(RX_CFG_SWIVEL, RX_SWIVEL_OFF_VAL);
1213 val |= CAS_BASE(RX_CFG_DESC_RING, RX_DESC_RINGN_INDEX(0));
1214 val |= CAS_BASE(RX_CFG_COMP_RING, RX_COMP_RINGN_INDEX(0));
1215 if ((N_RX_DESC_RINGS > 1) &&
1216 (cp->cas_flags & CAS_FLAG_REG_PLUS)) /* do desc 2 */
1217 val |= CAS_BASE(RX_CFG_DESC_RING1, RX_DESC_RINGN_INDEX(1));
1218 writel(val, cp->regs + REG_RX_CFG);
1219
1220 val = (unsigned long) cp->init_rxds[0] -
1221 (unsigned long) cp->init_block;
1222 writel((desc_dma + val) >> 32, cp->regs + REG_RX_DB_HI);
1223 writel((desc_dma + val) & 0xffffffff, cp->regs + REG_RX_DB_LOW);
1224 writel(RX_DESC_RINGN_SIZE(0) - 4, cp->regs + REG_RX_KICK);
1225
1226 if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1227 /* rx desc 2 is for IPSEC packets. however,
1228 * we don't it that for that purpose.
1229 */
1230 val = (unsigned long) cp->init_rxds[1] -
1231 (unsigned long) cp->init_block;
1232 writel((desc_dma + val) >> 32, cp->regs + REG_PLUS_RX_DB1_HI);
1233 writel((desc_dma + val) & 0xffffffff, cp->regs +
1234 REG_PLUS_RX_DB1_LOW);
1235 writel(RX_DESC_RINGN_SIZE(1) - 4, cp->regs +
1236 REG_PLUS_RX_KICK1);
1237 }
1238
1239 /* rx completion registers */
1240 val = (unsigned long) cp->init_rxcs[0] -
1241 (unsigned long) cp->init_block;
1242 writel((desc_dma + val) >> 32, cp->regs + REG_RX_CB_HI);
1243 writel((desc_dma + val) & 0xffffffff, cp->regs + REG_RX_CB_LOW);
1244
1245 if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1246 /* rx comp 2-4 */
1247 for (i = 1; i < MAX_RX_COMP_RINGS; i++) {
1248 val = (unsigned long) cp->init_rxcs[i] -
1249 (unsigned long) cp->init_block;
1250 writel((desc_dma + val) >> 32, cp->regs +
1251 REG_PLUS_RX_CBN_HI(i));
1252 writel((desc_dma + val) & 0xffffffff, cp->regs +
1253 REG_PLUS_RX_CBN_LOW(i));
1254 }
1255 }
1256
1257 /* read selective clear regs to prevent spurious interrupts
1258 * on reset because complete == kick.
1259 * selective clear set up to prevent interrupts on resets
1260 */
1261 readl(cp->regs + REG_INTR_STATUS_ALIAS);
1262 writel(INTR_RX_DONE | INTR_RX_BUF_UNAVAIL, cp->regs + REG_ALIAS_CLEAR);
1263 if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1264 for (i = 1; i < N_RX_COMP_RINGS; i++)
1265 readl(cp->regs + REG_PLUS_INTRN_STATUS_ALIAS(i));
1266
1267 /* 2 is different from 3 and 4 */
1268 if (N_RX_COMP_RINGS > 1)
1269 writel(INTR_RX_DONE_ALT | INTR_RX_BUF_UNAVAIL_1,
1270 cp->regs + REG_PLUS_ALIASN_CLEAR(1));
1271
1272 for (i = 2; i < N_RX_COMP_RINGS; i++)
1273 writel(INTR_RX_DONE_ALT,
1274 cp->regs + REG_PLUS_ALIASN_CLEAR(i));
1275 }
1276
1277 /* set up pause thresholds */
1278 val = CAS_BASE(RX_PAUSE_THRESH_OFF,
1279 cp->rx_pause_off / RX_PAUSE_THRESH_QUANTUM);
1280 val |= CAS_BASE(RX_PAUSE_THRESH_ON,
1281 cp->rx_pause_on / RX_PAUSE_THRESH_QUANTUM);
1282 writel(val, cp->regs + REG_RX_PAUSE_THRESH);
1283
1284 /* zero out dma reassembly buffers */
1285 for (i = 0; i < 64; i++) {
1286 writel(i, cp->regs + REG_RX_TABLE_ADDR);
1287 writel(0x0, cp->regs + REG_RX_TABLE_DATA_LOW);
1288 writel(0x0, cp->regs + REG_RX_TABLE_DATA_MID);
1289 writel(0x0, cp->regs + REG_RX_TABLE_DATA_HI);
1290 }
1291
1292 /* make sure address register is 0 for normal operation */
1293 writel(0x0, cp->regs + REG_RX_CTRL_FIFO_ADDR);
1294 writel(0x0, cp->regs + REG_RX_IPP_FIFO_ADDR);
1295
1296 /* interrupt mitigation */
1297#ifdef USE_RX_BLANK
1298 val = CAS_BASE(RX_BLANK_INTR_TIME, RX_BLANK_INTR_TIME_VAL);
1299 val |= CAS_BASE(RX_BLANK_INTR_PKT, RX_BLANK_INTR_PKT_VAL);
1300 writel(val, cp->regs + REG_RX_BLANK);
1301#else
1302 writel(0x0, cp->regs + REG_RX_BLANK);
1303#endif
1304
1305 /* interrupt generation as a function of low water marks for
1306 * free desc and completion entries. these are used to trigger
1307 * housekeeping for rx descs. we don't use the free interrupt
1308 * as it's not very useful
1309 */
1310 /* val = CAS_BASE(RX_AE_THRESH_FREE, RX_AE_FREEN_VAL(0)); */
1311 val = CAS_BASE(RX_AE_THRESH_COMP, RX_AE_COMP_VAL);
1312 writel(val, cp->regs + REG_RX_AE_THRESH);
1313 if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1314 val = CAS_BASE(RX_AE1_THRESH_FREE, RX_AE_FREEN_VAL(1));
1315 writel(val, cp->regs + REG_PLUS_RX_AE1_THRESH);
1316 }
1317
1318 /* Random early detect registers. useful for congestion avoidance.
1319 * this should be tunable.
1320 */
1321 writel(0x0, cp->regs + REG_RX_RED);
1322
1323 /* receive page sizes. default == 2K (0x800) */
1324 val = 0;
1325 if (cp->page_size == 0x1000)
1326 val = 0x1;
1327 else if (cp->page_size == 0x2000)
1328 val = 0x2;
1329 else if (cp->page_size == 0x4000)
1330 val = 0x3;
1331
1332 /* round mtu + offset. constrain to page size. */
1333 size = cp->dev->mtu + 64;
1334 if (size > cp->page_size)
1335 size = cp->page_size;
1336
1337 if (size <= 0x400)
1338 i = 0x0;
1339 else if (size <= 0x800)
1340 i = 0x1;
1341 else if (size <= 0x1000)
1342 i = 0x2;
1343 else
1344 i = 0x3;
1345
1346 cp->mtu_stride = 1 << (i + 10);
1347 val = CAS_BASE(RX_PAGE_SIZE, val);
1348 val |= CAS_BASE(RX_PAGE_SIZE_MTU_STRIDE, i);
1349 val |= CAS_BASE(RX_PAGE_SIZE_MTU_COUNT, cp->page_size >> (i + 10));
1350 val |= CAS_BASE(RX_PAGE_SIZE_MTU_OFF, 0x1);
1351 writel(val, cp->regs + REG_RX_PAGE_SIZE);
1352
1353 /* enable the header parser if desired */
1354 if (CAS_HP_FIRMWARE == cas_prog_null)
1355 return;
1356
1357 val = CAS_BASE(HP_CFG_NUM_CPU, CAS_NCPUS > 63 ? 0 : CAS_NCPUS);
1358 val |= HP_CFG_PARSE_EN | HP_CFG_SYN_INC_MASK;
1359 val |= CAS_BASE(HP_CFG_TCP_THRESH, HP_TCP_THRESH_VAL);
1360 writel(val, cp->regs + REG_HP_CFG);
1361}
1362
1363static inline void cas_rxc_init(struct cas_rx_comp *rxc)
1364{
1365 memset(rxc, 0, sizeof(*rxc));
1366 rxc->word4 = cpu_to_le64(RX_COMP4_ZERO);
1367}
1368
1369/* NOTE: we use the ENC RX DESC ring for spares. the rx_page[0,1]
1370 * flipping is protected by the fact that the chip will not
1371 * hand back the same page index while it's being processed.
1372 */
1373static inline cas_page_t *cas_page_spare(struct cas *cp, const int index)
1374{
1375 cas_page_t *page = cp->rx_pages[1][index];
1376 cas_page_t *new;
1377
Nick Pigginfa4f0772006-01-18 14:05:16 -08001378 if (cas_buffer_count(page) == 1)
David S. Miller1f26dac2005-09-27 15:24:13 -07001379 return page;
1380
1381 new = cas_page_dequeue(cp);
1382 if (new) {
1383 spin_lock(&cp->rx_inuse_lock);
1384 list_add(&page->list, &cp->rx_inuse_list);
1385 spin_unlock(&cp->rx_inuse_lock);
1386 }
1387 return new;
1388}
1389
1390/* this needs to be changed if we actually use the ENC RX DESC ring */
1391static cas_page_t *cas_page_swap(struct cas *cp, const int ring,
1392 const int index)
1393{
1394 cas_page_t **page0 = cp->rx_pages[0];
1395 cas_page_t **page1 = cp->rx_pages[1];
1396
1397 /* swap if buffer is in use */
Nick Pigginfa4f0772006-01-18 14:05:16 -08001398 if (cas_buffer_count(page0[index]) > 1) {
David S. Miller1f26dac2005-09-27 15:24:13 -07001399 cas_page_t *new = cas_page_spare(cp, index);
1400 if (new) {
1401 page1[index] = page0[index];
1402 page0[index] = new;
1403 }
1404 }
1405 RX_USED_SET(page0[index], 0);
1406 return page0[index];
1407}
1408
1409static void cas_clean_rxds(struct cas *cp)
1410{
1411 /* only clean ring 0 as ring 1 is used for spare buffers */
1412 struct cas_rx_desc *rxd = cp->init_rxds[0];
1413 int i, size;
1414
1415 /* release all rx flows */
1416 for (i = 0; i < N_RX_FLOWS; i++) {
1417 struct sk_buff *skb;
1418 while ((skb = __skb_dequeue(&cp->rx_flows[i]))) {
1419 cas_skb_release(skb);
1420 }
1421 }
1422
1423 /* initialize descriptors */
1424 size = RX_DESC_RINGN_SIZE(0);
1425 for (i = 0; i < size; i++) {
1426 cas_page_t *page = cas_page_swap(cp, 0, i);
1427 rxd[i].buffer = cpu_to_le64(page->dma_addr);
1428 rxd[i].index = cpu_to_le64(CAS_BASE(RX_INDEX_NUM, i) |
1429 CAS_BASE(RX_INDEX_RING, 0));
1430 }
1431
1432 cp->rx_old[0] = RX_DESC_RINGN_SIZE(0) - 4;
1433 cp->rx_last[0] = 0;
1434 cp->cas_flags &= ~CAS_FLAG_RXD_POST(0);
1435}
1436
1437static void cas_clean_rxcs(struct cas *cp)
1438{
1439 int i, j;
1440
1441 /* take ownership of rx comp descriptors */
1442 memset(cp->rx_cur, 0, sizeof(*cp->rx_cur)*N_RX_COMP_RINGS);
1443 memset(cp->rx_new, 0, sizeof(*cp->rx_new)*N_RX_COMP_RINGS);
1444 for (i = 0; i < N_RX_COMP_RINGS; i++) {
1445 struct cas_rx_comp *rxc = cp->init_rxcs[i];
1446 for (j = 0; j < RX_COMP_RINGN_SIZE(i); j++) {
1447 cas_rxc_init(rxc + j);
1448 }
1449 }
1450}
1451
1452#if 0
1453/* When we get a RX fifo overflow, the RX unit is probably hung
1454 * so we do the following.
1455 *
1456 * If any part of the reset goes wrong, we return 1 and that causes the
1457 * whole chip to be reset.
1458 */
1459static int cas_rxmac_reset(struct cas *cp)
1460{
1461 struct net_device *dev = cp->dev;
1462 int limit;
1463 u32 val;
1464
1465 /* First, reset MAC RX. */
1466 writel(cp->mac_rx_cfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
1467 for (limit = 0; limit < STOP_TRIES; limit++) {
1468 if (!(readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_EN))
1469 break;
1470 udelay(10);
1471 }
1472 if (limit == STOP_TRIES) {
1473 printk(KERN_ERR "%s: RX MAC will not disable, resetting whole "
1474 "chip.\n", dev->name);
1475 return 1;
1476 }
1477
1478 /* Second, disable RX DMA. */
1479 writel(0, cp->regs + REG_RX_CFG);
1480 for (limit = 0; limit < STOP_TRIES; limit++) {
1481 if (!(readl(cp->regs + REG_RX_CFG) & RX_CFG_DMA_EN))
1482 break;
1483 udelay(10);
1484 }
1485 if (limit == STOP_TRIES) {
1486 printk(KERN_ERR "%s: RX DMA will not disable, resetting whole "
1487 "chip.\n", dev->name);
1488 return 1;
1489 }
1490
1491 mdelay(5);
1492
1493 /* Execute RX reset command. */
1494 writel(SW_RESET_RX, cp->regs + REG_SW_RESET);
1495 for (limit = 0; limit < STOP_TRIES; limit++) {
1496 if (!(readl(cp->regs + REG_SW_RESET) & SW_RESET_RX))
1497 break;
1498 udelay(10);
1499 }
1500 if (limit == STOP_TRIES) {
1501 printk(KERN_ERR "%s: RX reset command will not execute, "
1502 "resetting whole chip.\n", dev->name);
1503 return 1;
1504 }
1505
1506 /* reset driver rx state */
1507 cas_clean_rxds(cp);
1508 cas_clean_rxcs(cp);
1509
1510 /* Now, reprogram the rest of RX unit. */
1511 cas_init_rx_dma(cp);
1512
1513 /* re-enable */
1514 val = readl(cp->regs + REG_RX_CFG);
1515 writel(val | RX_CFG_DMA_EN, cp->regs + REG_RX_CFG);
1516 writel(MAC_RX_FRAME_RECV, cp->regs + REG_MAC_RX_MASK);
1517 val = readl(cp->regs + REG_MAC_RX_CFG);
1518 writel(val | MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
1519 return 0;
1520}
1521#endif
1522
1523static int cas_rxmac_interrupt(struct net_device *dev, struct cas *cp,
1524 u32 status)
1525{
1526 u32 stat = readl(cp->regs + REG_MAC_RX_STATUS);
1527
1528 if (!stat)
1529 return 0;
1530
1531 if (netif_msg_intr(cp))
1532 printk(KERN_DEBUG "%s: rxmac interrupt, stat: 0x%x\n",
1533 cp->dev->name, stat);
1534
1535 /* these are all rollovers */
1536 spin_lock(&cp->stat_lock[0]);
1537 if (stat & MAC_RX_ALIGN_ERR)
1538 cp->net_stats[0].rx_frame_errors += 0x10000;
1539
1540 if (stat & MAC_RX_CRC_ERR)
1541 cp->net_stats[0].rx_crc_errors += 0x10000;
1542
1543 if (stat & MAC_RX_LEN_ERR)
1544 cp->net_stats[0].rx_length_errors += 0x10000;
1545
1546 if (stat & MAC_RX_OVERFLOW) {
1547 cp->net_stats[0].rx_over_errors++;
1548 cp->net_stats[0].rx_fifo_errors++;
1549 }
1550
1551 /* We do not track MAC_RX_FRAME_COUNT and MAC_RX_VIOL_ERR
1552 * events.
1553 */
1554 spin_unlock(&cp->stat_lock[0]);
1555 return 0;
1556}
1557
1558static int cas_mac_interrupt(struct net_device *dev, struct cas *cp,
1559 u32 status)
1560{
1561 u32 stat = readl(cp->regs + REG_MAC_CTRL_STATUS);
1562
1563 if (!stat)
1564 return 0;
1565
1566 if (netif_msg_intr(cp))
1567 printk(KERN_DEBUG "%s: mac interrupt, stat: 0x%x\n",
1568 cp->dev->name, stat);
1569
1570 /* This interrupt is just for pause frame and pause
1571 * tracking. It is useful for diagnostics and debug
1572 * but probably by default we will mask these events.
1573 */
1574 if (stat & MAC_CTRL_PAUSE_STATE)
1575 cp->pause_entered++;
1576
1577 if (stat & MAC_CTRL_PAUSE_RECEIVED)
1578 cp->pause_last_time_recvd = (stat >> 16);
1579
1580 return 0;
1581}
1582
1583
1584/* Must be invoked under cp->lock. */
1585static inline int cas_mdio_link_not_up(struct cas *cp)
1586{
1587 u16 val;
1588
1589 switch (cp->lstate) {
1590 case link_force_ret:
1591 if (netif_msg_link(cp))
1592 printk(KERN_INFO "%s: Autoneg failed again, keeping"
1593 " forced mode\n", cp->dev->name);
1594 cas_phy_write(cp, MII_BMCR, cp->link_fcntl);
1595 cp->timer_ticks = 5;
1596 cp->lstate = link_force_ok;
1597 cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
1598 break;
1599
1600 case link_aneg:
1601 val = cas_phy_read(cp, MII_BMCR);
1602
1603 /* Try forced modes. we try things in the following order:
1604 * 1000 full -> 100 full/half -> 10 half
1605 */
1606 val &= ~(BMCR_ANRESTART | BMCR_ANENABLE);
1607 val |= BMCR_FULLDPLX;
1608 val |= (cp->cas_flags & CAS_FLAG_1000MB_CAP) ?
1609 CAS_BMCR_SPEED1000 : BMCR_SPEED100;
1610 cas_phy_write(cp, MII_BMCR, val);
1611 cp->timer_ticks = 5;
1612 cp->lstate = link_force_try;
1613 cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
1614 break;
1615
1616 case link_force_try:
1617 /* Downgrade from 1000 to 100 to 10 Mbps if necessary. */
1618 val = cas_phy_read(cp, MII_BMCR);
1619 cp->timer_ticks = 5;
1620 if (val & CAS_BMCR_SPEED1000) { /* gigabit */
1621 val &= ~CAS_BMCR_SPEED1000;
1622 val |= (BMCR_SPEED100 | BMCR_FULLDPLX);
1623 cas_phy_write(cp, MII_BMCR, val);
1624 break;
1625 }
1626
1627 if (val & BMCR_SPEED100) {
1628 if (val & BMCR_FULLDPLX) /* fd failed */
1629 val &= ~BMCR_FULLDPLX;
1630 else { /* 100Mbps failed */
1631 val &= ~BMCR_SPEED100;
1632 }
1633 cas_phy_write(cp, MII_BMCR, val);
1634 break;
1635 }
1636 default:
1637 break;
1638 }
1639 return 0;
1640}
1641
1642
1643/* must be invoked with cp->lock held */
1644static int cas_mii_link_check(struct cas *cp, const u16 bmsr)
1645{
1646 int restart;
1647
1648 if (bmsr & BMSR_LSTATUS) {
1649 /* Ok, here we got a link. If we had it due to a forced
1650 * fallback, and we were configured for autoneg, we
1651 * retry a short autoneg pass. If you know your hub is
1652 * broken, use ethtool ;)
1653 */
1654 if ((cp->lstate == link_force_try) &&
1655 (cp->link_cntl & BMCR_ANENABLE)) {
1656 cp->lstate = link_force_ret;
1657 cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
1658 cas_mif_poll(cp, 0);
1659 cp->link_fcntl = cas_phy_read(cp, MII_BMCR);
1660 cp->timer_ticks = 5;
1661 if (cp->opened && netif_msg_link(cp))
1662 printk(KERN_INFO "%s: Got link after fallback, retrying"
1663 " autoneg once...\n", cp->dev->name);
1664 cas_phy_write(cp, MII_BMCR,
1665 cp->link_fcntl | BMCR_ANENABLE |
1666 BMCR_ANRESTART);
1667 cas_mif_poll(cp, 1);
1668
1669 } else if (cp->lstate != link_up) {
1670 cp->lstate = link_up;
1671 cp->link_transition = LINK_TRANSITION_LINK_UP;
1672
1673 if (cp->opened) {
1674 cas_set_link_modes(cp);
1675 netif_carrier_on(cp->dev);
1676 }
1677 }
1678 return 0;
1679 }
1680
1681 /* link not up. if the link was previously up, we restart the
1682 * whole process
1683 */
1684 restart = 0;
1685 if (cp->lstate == link_up) {
1686 cp->lstate = link_down;
1687 cp->link_transition = LINK_TRANSITION_LINK_DOWN;
1688
1689 netif_carrier_off(cp->dev);
1690 if (cp->opened && netif_msg_link(cp))
1691 printk(KERN_INFO "%s: Link down\n",
1692 cp->dev->name);
1693 restart = 1;
1694
1695 } else if (++cp->timer_ticks > 10)
1696 cas_mdio_link_not_up(cp);
1697
1698 return restart;
1699}
1700
1701static int cas_mif_interrupt(struct net_device *dev, struct cas *cp,
1702 u32 status)
1703{
1704 u32 stat = readl(cp->regs + REG_MIF_STATUS);
1705 u16 bmsr;
1706
1707 /* check for a link change */
1708 if (CAS_VAL(MIF_STATUS_POLL_STATUS, stat) == 0)
1709 return 0;
1710
1711 bmsr = CAS_VAL(MIF_STATUS_POLL_DATA, stat);
1712 return cas_mii_link_check(cp, bmsr);
1713}
1714
1715static int cas_pci_interrupt(struct net_device *dev, struct cas *cp,
1716 u32 status)
1717{
1718 u32 stat = readl(cp->regs + REG_PCI_ERR_STATUS);
1719
1720 if (!stat)
1721 return 0;
1722
1723 printk(KERN_ERR "%s: PCI error [%04x:%04x] ", dev->name, stat,
1724 readl(cp->regs + REG_BIM_DIAG));
1725
1726 /* cassini+ has this reserved */
1727 if ((stat & PCI_ERR_BADACK) &&
1728 ((cp->cas_flags & CAS_FLAG_REG_PLUS) == 0))
1729 printk("<No ACK64# during ABS64 cycle> ");
1730
1731 if (stat & PCI_ERR_DTRTO)
1732 printk("<Delayed transaction timeout> ");
1733 if (stat & PCI_ERR_OTHER)
1734 printk("<other> ");
1735 if (stat & PCI_ERR_BIM_DMA_WRITE)
1736 printk("<BIM DMA 0 write req> ");
1737 if (stat & PCI_ERR_BIM_DMA_READ)
1738 printk("<BIM DMA 0 read req> ");
1739 printk("\n");
1740
1741 if (stat & PCI_ERR_OTHER) {
1742 u16 cfg;
1743
1744 /* Interrogate PCI config space for the
1745 * true cause.
1746 */
1747 pci_read_config_word(cp->pdev, PCI_STATUS, &cfg);
1748 printk(KERN_ERR "%s: Read PCI cfg space status [%04x]\n",
1749 dev->name, cfg);
1750 if (cfg & PCI_STATUS_PARITY)
1751 printk(KERN_ERR "%s: PCI parity error detected.\n",
1752 dev->name);
1753 if (cfg & PCI_STATUS_SIG_TARGET_ABORT)
1754 printk(KERN_ERR "%s: PCI target abort.\n",
1755 dev->name);
1756 if (cfg & PCI_STATUS_REC_TARGET_ABORT)
1757 printk(KERN_ERR "%s: PCI master acks target abort.\n",
1758 dev->name);
1759 if (cfg & PCI_STATUS_REC_MASTER_ABORT)
1760 printk(KERN_ERR "%s: PCI master abort.\n", dev->name);
1761 if (cfg & PCI_STATUS_SIG_SYSTEM_ERROR)
1762 printk(KERN_ERR "%s: PCI system error SERR#.\n",
1763 dev->name);
1764 if (cfg & PCI_STATUS_DETECTED_PARITY)
1765 printk(KERN_ERR "%s: PCI parity error.\n",
1766 dev->name);
1767
1768 /* Write the error bits back to clear them. */
1769 cfg &= (PCI_STATUS_PARITY |
1770 PCI_STATUS_SIG_TARGET_ABORT |
1771 PCI_STATUS_REC_TARGET_ABORT |
1772 PCI_STATUS_REC_MASTER_ABORT |
1773 PCI_STATUS_SIG_SYSTEM_ERROR |
1774 PCI_STATUS_DETECTED_PARITY);
1775 pci_write_config_word(cp->pdev, PCI_STATUS, cfg);
1776 }
1777
1778 /* For all PCI errors, we should reset the chip. */
1779 return 1;
1780}
1781
1782/* All non-normal interrupt conditions get serviced here.
1783 * Returns non-zero if we should just exit the interrupt
1784 * handler right now (ie. if we reset the card which invalidates
1785 * all of the other original irq status bits).
1786 */
1787static int cas_abnormal_irq(struct net_device *dev, struct cas *cp,
1788 u32 status)
1789{
1790 if (status & INTR_RX_TAG_ERROR) {
1791 /* corrupt RX tag framing */
1792 if (netif_msg_rx_err(cp))
1793 printk(KERN_DEBUG "%s: corrupt rx tag framing\n",
1794 cp->dev->name);
1795 spin_lock(&cp->stat_lock[0]);
1796 cp->net_stats[0].rx_errors++;
1797 spin_unlock(&cp->stat_lock[0]);
1798 goto do_reset;
1799 }
1800
1801 if (status & INTR_RX_LEN_MISMATCH) {
1802 /* length mismatch. */
1803 if (netif_msg_rx_err(cp))
1804 printk(KERN_DEBUG "%s: length mismatch for rx frame\n",
1805 cp->dev->name);
1806 spin_lock(&cp->stat_lock[0]);
1807 cp->net_stats[0].rx_errors++;
1808 spin_unlock(&cp->stat_lock[0]);
1809 goto do_reset;
1810 }
1811
1812 if (status & INTR_PCS_STATUS) {
1813 if (cas_pcs_interrupt(dev, cp, status))
1814 goto do_reset;
1815 }
1816
1817 if (status & INTR_TX_MAC_STATUS) {
1818 if (cas_txmac_interrupt(dev, cp, status))
1819 goto do_reset;
1820 }
1821
1822 if (status & INTR_RX_MAC_STATUS) {
1823 if (cas_rxmac_interrupt(dev, cp, status))
1824 goto do_reset;
1825 }
1826
1827 if (status & INTR_MAC_CTRL_STATUS) {
1828 if (cas_mac_interrupt(dev, cp, status))
1829 goto do_reset;
1830 }
1831
1832 if (status & INTR_MIF_STATUS) {
1833 if (cas_mif_interrupt(dev, cp, status))
1834 goto do_reset;
1835 }
1836
1837 if (status & INTR_PCI_ERROR_STATUS) {
1838 if (cas_pci_interrupt(dev, cp, status))
1839 goto do_reset;
1840 }
1841 return 0;
1842
1843do_reset:
1844#if 1
1845 atomic_inc(&cp->reset_task_pending);
1846 atomic_inc(&cp->reset_task_pending_all);
1847 printk(KERN_ERR "%s:reset called in cas_abnormal_irq [0x%x]\n",
1848 dev->name, status);
1849 schedule_work(&cp->reset_task);
1850#else
1851 atomic_set(&cp->reset_task_pending, CAS_RESET_ALL);
1852 printk(KERN_ERR "reset called in cas_abnormal_irq\n");
1853 schedule_work(&cp->reset_task);
1854#endif
1855 return 1;
1856}
1857
1858/* NOTE: CAS_TABORT returns 1 or 2 so that it can be used when
1859 * determining whether to do a netif_stop/wakeup
1860 */
1861#define CAS_TABORT(x) (((x)->cas_flags & CAS_FLAG_TARGET_ABORT) ? 2 : 1)
1862#define CAS_ROUND_PAGE(x) (((x) + PAGE_SIZE - 1) & PAGE_MASK)
1863static inline int cas_calc_tabort(struct cas *cp, const unsigned long addr,
1864 const int len)
1865{
1866 unsigned long off = addr + len;
1867
1868 if (CAS_TABORT(cp) == 1)
1869 return 0;
1870 if ((CAS_ROUND_PAGE(off) - off) > TX_TARGET_ABORT_LEN)
1871 return 0;
1872 return TX_TARGET_ABORT_LEN;
1873}
1874
1875static inline void cas_tx_ringN(struct cas *cp, int ring, int limit)
1876{
1877 struct cas_tx_desc *txds;
1878 struct sk_buff **skbs;
1879 struct net_device *dev = cp->dev;
1880 int entry, count;
1881
1882 spin_lock(&cp->tx_lock[ring]);
1883 txds = cp->init_txds[ring];
1884 skbs = cp->tx_skbs[ring];
1885 entry = cp->tx_old[ring];
1886
1887 count = TX_BUFF_COUNT(ring, entry, limit);
1888 while (entry != limit) {
1889 struct sk_buff *skb = skbs[entry];
1890 dma_addr_t daddr;
1891 u32 dlen;
1892 int frag;
1893
1894 if (!skb) {
1895 /* this should never occur */
1896 entry = TX_DESC_NEXT(ring, entry);
1897 continue;
1898 }
1899
1900 /* however, we might get only a partial skb release. */
1901 count -= skb_shinfo(skb)->nr_frags +
1902 + cp->tx_tiny_use[ring][entry].nbufs + 1;
1903 if (count < 0)
1904 break;
1905
1906 if (netif_msg_tx_done(cp))
1907 printk(KERN_DEBUG "%s: tx[%d] done, slot %d\n",
1908 cp->dev->name, ring, entry);
1909
1910 skbs[entry] = NULL;
1911 cp->tx_tiny_use[ring][entry].nbufs = 0;
1912
1913 for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
1914 struct cas_tx_desc *txd = txds + entry;
1915
1916 daddr = le64_to_cpu(txd->buffer);
1917 dlen = CAS_VAL(TX_DESC_BUFLEN,
1918 le64_to_cpu(txd->control));
1919 pci_unmap_page(cp->pdev, daddr, dlen,
1920 PCI_DMA_TODEVICE);
1921 entry = TX_DESC_NEXT(ring, entry);
1922
1923 /* tiny buffer may follow */
1924 if (cp->tx_tiny_use[ring][entry].used) {
1925 cp->tx_tiny_use[ring][entry].used = 0;
1926 entry = TX_DESC_NEXT(ring, entry);
1927 }
1928 }
1929
1930 spin_lock(&cp->stat_lock[ring]);
1931 cp->net_stats[ring].tx_packets++;
1932 cp->net_stats[ring].tx_bytes += skb->len;
1933 spin_unlock(&cp->stat_lock[ring]);
1934 dev_kfree_skb_irq(skb);
1935 }
1936 cp->tx_old[ring] = entry;
1937
1938 /* this is wrong for multiple tx rings. the net device needs
1939 * multiple queues for this to do the right thing. we wait
1940 * for 2*packets to be available when using tiny buffers
1941 */
1942 if (netif_queue_stopped(dev) &&
1943 (TX_BUFFS_AVAIL(cp, ring) > CAS_TABORT(cp)*(MAX_SKB_FRAGS + 1)))
1944 netif_wake_queue(dev);
1945 spin_unlock(&cp->tx_lock[ring]);
1946}
1947
1948static void cas_tx(struct net_device *dev, struct cas *cp,
1949 u32 status)
1950{
1951 int limit, ring;
1952#ifdef USE_TX_COMPWB
1953 u64 compwb = le64_to_cpu(cp->init_block->tx_compwb);
1954#endif
1955 if (netif_msg_intr(cp))
Andrew Morton64af4c12006-01-17 15:14:49 -08001956 printk(KERN_DEBUG "%s: tx interrupt, status: 0x%x, %llx\n",
1957 cp->dev->name, status, (unsigned long long)compwb);
David S. Miller1f26dac2005-09-27 15:24:13 -07001958 /* process all the rings */
1959 for (ring = 0; ring < N_TX_RINGS; ring++) {
1960#ifdef USE_TX_COMPWB
1961 /* use the completion writeback registers */
1962 limit = (CAS_VAL(TX_COMPWB_MSB, compwb) << 8) |
1963 CAS_VAL(TX_COMPWB_LSB, compwb);
1964 compwb = TX_COMPWB_NEXT(compwb);
1965#else
1966 limit = readl(cp->regs + REG_TX_COMPN(ring));
1967#endif
1968 if (cp->tx_old[ring] != limit)
1969 cas_tx_ringN(cp, ring, limit);
1970 }
1971}
1972
1973
1974static int cas_rx_process_pkt(struct cas *cp, struct cas_rx_comp *rxc,
1975 int entry, const u64 *words,
1976 struct sk_buff **skbref)
1977{
1978 int dlen, hlen, len, i, alloclen;
1979 int off, swivel = RX_SWIVEL_OFF_VAL;
1980 struct cas_page *page;
1981 struct sk_buff *skb;
1982 void *addr, *crcaddr;
1983 char *p;
1984
1985 hlen = CAS_VAL(RX_COMP2_HDR_SIZE, words[1]);
1986 dlen = CAS_VAL(RX_COMP1_DATA_SIZE, words[0]);
1987 len = hlen + dlen;
1988
1989 if (RX_COPY_ALWAYS || (words[2] & RX_COMP3_SMALL_PKT))
1990 alloclen = len;
1991 else
1992 alloclen = max(hlen, RX_COPY_MIN);
1993
1994 skb = dev_alloc_skb(alloclen + swivel + cp->crc_size);
1995 if (skb == NULL)
1996 return -1;
1997
1998 *skbref = skb;
1999 skb->dev = cp->dev;
2000 skb_reserve(skb, swivel);
2001
2002 p = skb->data;
2003 addr = crcaddr = NULL;
2004 if (hlen) { /* always copy header pages */
2005 i = CAS_VAL(RX_COMP2_HDR_INDEX, words[1]);
2006 page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2007 off = CAS_VAL(RX_COMP2_HDR_OFF, words[1]) * 0x100 +
2008 swivel;
2009
2010 i = hlen;
2011 if (!dlen) /* attach FCS */
2012 i += cp->crc_size;
2013 pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr + off, i,
2014 PCI_DMA_FROMDEVICE);
2015 addr = cas_page_map(page->buffer);
2016 memcpy(p, addr + off, i);
2017 pci_dma_sync_single_for_device(cp->pdev, page->dma_addr + off, i,
2018 PCI_DMA_FROMDEVICE);
2019 cas_page_unmap(addr);
2020 RX_USED_ADD(page, 0x100);
2021 p += hlen;
2022 swivel = 0;
2023 }
2024
2025
2026 if (alloclen < (hlen + dlen)) {
2027 skb_frag_t *frag = skb_shinfo(skb)->frags;
2028
2029 /* normal or jumbo packets. we use frags */
2030 i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]);
2031 page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2032 off = CAS_VAL(RX_COMP1_DATA_OFF, words[0]) + swivel;
2033
2034 hlen = min(cp->page_size - off, dlen);
2035 if (hlen < 0) {
2036 if (netif_msg_rx_err(cp)) {
2037 printk(KERN_DEBUG "%s: rx page overflow: "
2038 "%d\n", cp->dev->name, hlen);
2039 }
2040 dev_kfree_skb_irq(skb);
2041 return -1;
2042 }
2043 i = hlen;
2044 if (i == dlen) /* attach FCS */
2045 i += cp->crc_size;
2046 pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr + off, i,
2047 PCI_DMA_FROMDEVICE);
2048
2049 /* make sure we always copy a header */
2050 swivel = 0;
2051 if (p == (char *) skb->data) { /* not split */
2052 addr = cas_page_map(page->buffer);
2053 memcpy(p, addr + off, RX_COPY_MIN);
2054 pci_dma_sync_single_for_device(cp->pdev, page->dma_addr + off, i,
2055 PCI_DMA_FROMDEVICE);
2056 cas_page_unmap(addr);
2057 off += RX_COPY_MIN;
2058 swivel = RX_COPY_MIN;
2059 RX_USED_ADD(page, cp->mtu_stride);
2060 } else {
2061 RX_USED_ADD(page, hlen);
2062 }
2063 skb_put(skb, alloclen);
2064
2065 skb_shinfo(skb)->nr_frags++;
2066 skb->data_len += hlen - swivel;
2067 skb->len += hlen - swivel;
2068
2069 get_page(page->buffer);
Nick Pigginfa4f0772006-01-18 14:05:16 -08002070 cas_buffer_inc(page);
David S. Miller1f26dac2005-09-27 15:24:13 -07002071 frag->page = page->buffer;
2072 frag->page_offset = off;
2073 frag->size = hlen - swivel;
2074
2075 /* any more data? */
2076 if ((words[0] & RX_COMP1_SPLIT_PKT) && ((dlen -= hlen) > 0)) {
2077 hlen = dlen;
2078 off = 0;
2079
2080 i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]);
2081 page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2082 pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr,
2083 hlen + cp->crc_size,
2084 PCI_DMA_FROMDEVICE);
2085 pci_dma_sync_single_for_device(cp->pdev, page->dma_addr,
2086 hlen + cp->crc_size,
2087 PCI_DMA_FROMDEVICE);
2088
2089 skb_shinfo(skb)->nr_frags++;
2090 skb->data_len += hlen;
2091 skb->len += hlen;
2092 frag++;
2093
2094 get_page(page->buffer);
Nick Pigginfa4f0772006-01-18 14:05:16 -08002095 cas_buffer_inc(page);
David S. Miller1f26dac2005-09-27 15:24:13 -07002096 frag->page = page->buffer;
2097 frag->page_offset = 0;
2098 frag->size = hlen;
2099 RX_USED_ADD(page, hlen + cp->crc_size);
2100 }
2101
2102 if (cp->crc_size) {
2103 addr = cas_page_map(page->buffer);
2104 crcaddr = addr + off + hlen;
2105 }
2106
2107 } else {
2108 /* copying packet */
2109 if (!dlen)
2110 goto end_copy_pkt;
2111
2112 i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]);
2113 page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2114 off = CAS_VAL(RX_COMP1_DATA_OFF, words[0]) + swivel;
2115 hlen = min(cp->page_size - off, dlen);
2116 if (hlen < 0) {
2117 if (netif_msg_rx_err(cp)) {
2118 printk(KERN_DEBUG "%s: rx page overflow: "
2119 "%d\n", cp->dev->name, hlen);
2120 }
2121 dev_kfree_skb_irq(skb);
2122 return -1;
2123 }
2124 i = hlen;
2125 if (i == dlen) /* attach FCS */
2126 i += cp->crc_size;
2127 pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr + off, i,
2128 PCI_DMA_FROMDEVICE);
2129 addr = cas_page_map(page->buffer);
2130 memcpy(p, addr + off, i);
2131 pci_dma_sync_single_for_device(cp->pdev, page->dma_addr + off, i,
2132 PCI_DMA_FROMDEVICE);
2133 cas_page_unmap(addr);
2134 if (p == (char *) skb->data) /* not split */
2135 RX_USED_ADD(page, cp->mtu_stride);
2136 else
2137 RX_USED_ADD(page, i);
2138
2139 /* any more data? */
2140 if ((words[0] & RX_COMP1_SPLIT_PKT) && ((dlen -= hlen) > 0)) {
2141 p += hlen;
2142 i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]);
2143 page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2144 pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr,
2145 dlen + cp->crc_size,
2146 PCI_DMA_FROMDEVICE);
2147 addr = cas_page_map(page->buffer);
2148 memcpy(p, addr, dlen + cp->crc_size);
2149 pci_dma_sync_single_for_device(cp->pdev, page->dma_addr,
2150 dlen + cp->crc_size,
2151 PCI_DMA_FROMDEVICE);
2152 cas_page_unmap(addr);
2153 RX_USED_ADD(page, dlen + cp->crc_size);
2154 }
2155end_copy_pkt:
2156 if (cp->crc_size) {
2157 addr = NULL;
2158 crcaddr = skb->data + alloclen;
2159 }
2160 skb_put(skb, alloclen);
2161 }
2162
2163 i = CAS_VAL(RX_COMP4_TCP_CSUM, words[3]);
2164 if (cp->crc_size) {
2165 /* checksum includes FCS. strip it out. */
2166 i = csum_fold(csum_partial(crcaddr, cp->crc_size, i));
2167 if (addr)
2168 cas_page_unmap(addr);
2169 }
2170 skb->csum = ntohs(i ^ 0xffff);
2171 skb->ip_summed = CHECKSUM_HW;
2172 skb->protocol = eth_type_trans(skb, cp->dev);
2173 return len;
2174}
2175
2176
2177/* we can handle up to 64 rx flows at a time. we do the same thing
2178 * as nonreassm except that we batch up the buffers.
2179 * NOTE: we currently just treat each flow as a bunch of packets that
2180 * we pass up. a better way would be to coalesce the packets
2181 * into a jumbo packet. to do that, we need to do the following:
2182 * 1) the first packet will have a clean split between header and
2183 * data. save both.
2184 * 2) each time the next flow packet comes in, extend the
2185 * data length and merge the checksums.
2186 * 3) on flow release, fix up the header.
2187 * 4) make sure the higher layer doesn't care.
2188 * because packets get coalesced, we shouldn't run into fragment count
2189 * issues.
2190 */
2191static inline void cas_rx_flow_pkt(struct cas *cp, const u64 *words,
2192 struct sk_buff *skb)
2193{
2194 int flowid = CAS_VAL(RX_COMP3_FLOWID, words[2]) & (N_RX_FLOWS - 1);
2195 struct sk_buff_head *flow = &cp->rx_flows[flowid];
2196
2197 /* this is protected at a higher layer, so no need to
2198 * do any additional locking here. stick the buffer
2199 * at the end.
2200 */
2201 __skb_insert(skb, flow->prev, (struct sk_buff *) flow, flow);
2202 if (words[0] & RX_COMP1_RELEASE_FLOW) {
2203 while ((skb = __skb_dequeue(flow))) {
2204 cas_skb_release(skb);
2205 }
2206 }
2207}
2208
2209/* put rx descriptor back on ring. if a buffer is in use by a higher
2210 * layer, this will need to put in a replacement.
2211 */
2212static void cas_post_page(struct cas *cp, const int ring, const int index)
2213{
2214 cas_page_t *new;
2215 int entry;
2216
2217 entry = cp->rx_old[ring];
2218
2219 new = cas_page_swap(cp, ring, index);
2220 cp->init_rxds[ring][entry].buffer = cpu_to_le64(new->dma_addr);
2221 cp->init_rxds[ring][entry].index =
2222 cpu_to_le64(CAS_BASE(RX_INDEX_NUM, index) |
2223 CAS_BASE(RX_INDEX_RING, ring));
2224
2225 entry = RX_DESC_ENTRY(ring, entry + 1);
2226 cp->rx_old[ring] = entry;
2227
2228 if (entry % 4)
2229 return;
2230
2231 if (ring == 0)
2232 writel(entry, cp->regs + REG_RX_KICK);
2233 else if ((N_RX_DESC_RINGS > 1) &&
2234 (cp->cas_flags & CAS_FLAG_REG_PLUS))
2235 writel(entry, cp->regs + REG_PLUS_RX_KICK1);
2236}
2237
2238
2239/* only when things are bad */
2240static int cas_post_rxds_ringN(struct cas *cp, int ring, int num)
2241{
2242 unsigned int entry, last, count, released;
2243 int cluster;
2244 cas_page_t **page = cp->rx_pages[ring];
2245
2246 entry = cp->rx_old[ring];
2247
2248 if (netif_msg_intr(cp))
2249 printk(KERN_DEBUG "%s: rxd[%d] interrupt, done: %d\n",
2250 cp->dev->name, ring, entry);
2251
2252 cluster = -1;
2253 count = entry & 0x3;
2254 last = RX_DESC_ENTRY(ring, num ? entry + num - 4: entry - 4);
2255 released = 0;
2256 while (entry != last) {
2257 /* make a new buffer if it's still in use */
Nick Pigginfa4f0772006-01-18 14:05:16 -08002258 if (cas_buffer_count(page[entry]) > 1) {
David S. Miller1f26dac2005-09-27 15:24:13 -07002259 cas_page_t *new = cas_page_dequeue(cp);
2260 if (!new) {
2261 /* let the timer know that we need to
2262 * do this again
2263 */
2264 cp->cas_flags |= CAS_FLAG_RXD_POST(ring);
2265 if (!timer_pending(&cp->link_timer))
2266 mod_timer(&cp->link_timer, jiffies +
2267 CAS_LINK_FAST_TIMEOUT);
2268 cp->rx_old[ring] = entry;
2269 cp->rx_last[ring] = num ? num - released : 0;
2270 return -ENOMEM;
2271 }
2272 spin_lock(&cp->rx_inuse_lock);
2273 list_add(&page[entry]->list, &cp->rx_inuse_list);
2274 spin_unlock(&cp->rx_inuse_lock);
2275 cp->init_rxds[ring][entry].buffer =
2276 cpu_to_le64(new->dma_addr);
2277 page[entry] = new;
2278
2279 }
2280
2281 if (++count == 4) {
2282 cluster = entry;
2283 count = 0;
2284 }
2285 released++;
2286 entry = RX_DESC_ENTRY(ring, entry + 1);
2287 }
2288 cp->rx_old[ring] = entry;
2289
2290 if (cluster < 0)
2291 return 0;
2292
2293 if (ring == 0)
2294 writel(cluster, cp->regs + REG_RX_KICK);
2295 else if ((N_RX_DESC_RINGS > 1) &&
2296 (cp->cas_flags & CAS_FLAG_REG_PLUS))
2297 writel(cluster, cp->regs + REG_PLUS_RX_KICK1);
2298 return 0;
2299}
2300
2301
2302/* process a completion ring. packets are set up in three basic ways:
2303 * small packets: should be copied header + data in single buffer.
2304 * large packets: header and data in a single buffer.
2305 * split packets: header in a separate buffer from data.
2306 * data may be in multiple pages. data may be > 256
2307 * bytes but in a single page.
2308 *
2309 * NOTE: RX page posting is done in this routine as well. while there's
2310 * the capability of using multiple RX completion rings, it isn't
2311 * really worthwhile due to the fact that the page posting will
2312 * force serialization on the single descriptor ring.
2313 */
2314static int cas_rx_ringN(struct cas *cp, int ring, int budget)
2315{
2316 struct cas_rx_comp *rxcs = cp->init_rxcs[ring];
2317 int entry, drops;
2318 int npackets = 0;
2319
2320 if (netif_msg_intr(cp))
2321 printk(KERN_DEBUG "%s: rx[%d] interrupt, done: %d/%d\n",
2322 cp->dev->name, ring,
2323 readl(cp->regs + REG_RX_COMP_HEAD),
2324 cp->rx_new[ring]);
2325
2326 entry = cp->rx_new[ring];
2327 drops = 0;
2328 while (1) {
2329 struct cas_rx_comp *rxc = rxcs + entry;
2330 struct sk_buff *skb;
2331 int type, len;
2332 u64 words[4];
2333 int i, dring;
2334
2335 words[0] = le64_to_cpu(rxc->word1);
2336 words[1] = le64_to_cpu(rxc->word2);
2337 words[2] = le64_to_cpu(rxc->word3);
2338 words[3] = le64_to_cpu(rxc->word4);
2339
2340 /* don't touch if still owned by hw */
2341 type = CAS_VAL(RX_COMP1_TYPE, words[0]);
2342 if (type == 0)
2343 break;
2344
2345 /* hw hasn't cleared the zero bit yet */
2346 if (words[3] & RX_COMP4_ZERO) {
2347 break;
2348 }
2349
2350 /* get info on the packet */
2351 if (words[3] & (RX_COMP4_LEN_MISMATCH | RX_COMP4_BAD)) {
2352 spin_lock(&cp->stat_lock[ring]);
2353 cp->net_stats[ring].rx_errors++;
2354 if (words[3] & RX_COMP4_LEN_MISMATCH)
2355 cp->net_stats[ring].rx_length_errors++;
2356 if (words[3] & RX_COMP4_BAD)
2357 cp->net_stats[ring].rx_crc_errors++;
2358 spin_unlock(&cp->stat_lock[ring]);
2359
2360 /* We'll just return it to Cassini. */
2361 drop_it:
2362 spin_lock(&cp->stat_lock[ring]);
2363 ++cp->net_stats[ring].rx_dropped;
2364 spin_unlock(&cp->stat_lock[ring]);
2365 goto next;
2366 }
2367
2368 len = cas_rx_process_pkt(cp, rxc, entry, words, &skb);
2369 if (len < 0) {
2370 ++drops;
2371 goto drop_it;
2372 }
2373
2374 /* see if it's a flow re-assembly or not. the driver
2375 * itself handles release back up.
2376 */
2377 if (RX_DONT_BATCH || (type == 0x2)) {
2378 /* non-reassm: these always get released */
2379 cas_skb_release(skb);
2380 } else {
2381 cas_rx_flow_pkt(cp, words, skb);
2382 }
2383
2384 spin_lock(&cp->stat_lock[ring]);
2385 cp->net_stats[ring].rx_packets++;
2386 cp->net_stats[ring].rx_bytes += len;
2387 spin_unlock(&cp->stat_lock[ring]);
2388 cp->dev->last_rx = jiffies;
2389
2390 next:
2391 npackets++;
2392
2393 /* should it be released? */
2394 if (words[0] & RX_COMP1_RELEASE_HDR) {
2395 i = CAS_VAL(RX_COMP2_HDR_INDEX, words[1]);
2396 dring = CAS_VAL(RX_INDEX_RING, i);
2397 i = CAS_VAL(RX_INDEX_NUM, i);
2398 cas_post_page(cp, dring, i);
2399 }
2400
2401 if (words[0] & RX_COMP1_RELEASE_DATA) {
2402 i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]);
2403 dring = CAS_VAL(RX_INDEX_RING, i);
2404 i = CAS_VAL(RX_INDEX_NUM, i);
2405 cas_post_page(cp, dring, i);
2406 }
2407
2408 if (words[0] & RX_COMP1_RELEASE_NEXT) {
2409 i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]);
2410 dring = CAS_VAL(RX_INDEX_RING, i);
2411 i = CAS_VAL(RX_INDEX_NUM, i);
2412 cas_post_page(cp, dring, i);
2413 }
2414
2415 /* skip to the next entry */
2416 entry = RX_COMP_ENTRY(ring, entry + 1 +
2417 CAS_VAL(RX_COMP1_SKIP, words[0]));
2418#ifdef USE_NAPI
2419 if (budget && (npackets >= budget))
2420 break;
2421#endif
2422 }
2423 cp->rx_new[ring] = entry;
2424
2425 if (drops)
2426 printk(KERN_INFO "%s: Memory squeeze, deferring packet.\n",
2427 cp->dev->name);
2428 return npackets;
2429}
2430
2431
2432/* put completion entries back on the ring */
2433static void cas_post_rxcs_ringN(struct net_device *dev,
2434 struct cas *cp, int ring)
2435{
2436 struct cas_rx_comp *rxc = cp->init_rxcs[ring];
2437 int last, entry;
2438
2439 last = cp->rx_cur[ring];
2440 entry = cp->rx_new[ring];
2441 if (netif_msg_intr(cp))
2442 printk(KERN_DEBUG "%s: rxc[%d] interrupt, done: %d/%d\n",
2443 dev->name, ring, readl(cp->regs + REG_RX_COMP_HEAD),
2444 entry);
2445
2446 /* zero and re-mark descriptors */
2447 while (last != entry) {
2448 cas_rxc_init(rxc + last);
2449 last = RX_COMP_ENTRY(ring, last + 1);
2450 }
2451 cp->rx_cur[ring] = last;
2452
2453 if (ring == 0)
2454 writel(last, cp->regs + REG_RX_COMP_TAIL);
2455 else if (cp->cas_flags & CAS_FLAG_REG_PLUS)
2456 writel(last, cp->regs + REG_PLUS_RX_COMPN_TAIL(ring));
2457}
2458
2459
2460
2461/* cassini can use all four PCI interrupts for the completion ring.
2462 * rings 3 and 4 are identical
2463 */
2464#if defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
2465static inline void cas_handle_irqN(struct net_device *dev,
2466 struct cas *cp, const u32 status,
2467 const int ring)
2468{
2469 if (status & (INTR_RX_COMP_FULL_ALT | INTR_RX_COMP_AF_ALT))
2470 cas_post_rxcs_ringN(dev, cp, ring);
2471}
2472
2473static irqreturn_t cas_interruptN(int irq, void *dev_id, struct pt_regs *regs)
2474{
2475 struct net_device *dev = dev_id;
2476 struct cas *cp = netdev_priv(dev);
2477 unsigned long flags;
2478 int ring;
2479 u32 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(ring));
2480
2481 /* check for shared irq */
2482 if (status == 0)
2483 return IRQ_NONE;
2484
2485 ring = (irq == cp->pci_irq_INTC) ? 2 : 3;
2486 spin_lock_irqsave(&cp->lock, flags);
2487 if (status & INTR_RX_DONE_ALT) { /* handle rx separately */
2488#ifdef USE_NAPI
2489 cas_mask_intr(cp);
2490 netif_rx_schedule(dev);
2491#else
2492 cas_rx_ringN(cp, ring, 0);
2493#endif
2494 status &= ~INTR_RX_DONE_ALT;
2495 }
2496
2497 if (status)
2498 cas_handle_irqN(dev, cp, status, ring);
2499 spin_unlock_irqrestore(&cp->lock, flags);
2500 return IRQ_HANDLED;
2501}
2502#endif
2503
2504#ifdef USE_PCI_INTB
2505/* everything but rx packets */
2506static inline void cas_handle_irq1(struct cas *cp, const u32 status)
2507{
2508 if (status & INTR_RX_BUF_UNAVAIL_1) {
2509 /* Frame arrived, no free RX buffers available.
2510 * NOTE: we can get this on a link transition. */
2511 cas_post_rxds_ringN(cp, 1, 0);
2512 spin_lock(&cp->stat_lock[1]);
2513 cp->net_stats[1].rx_dropped++;
2514 spin_unlock(&cp->stat_lock[1]);
2515 }
2516
2517 if (status & INTR_RX_BUF_AE_1)
2518 cas_post_rxds_ringN(cp, 1, RX_DESC_RINGN_SIZE(1) -
2519 RX_AE_FREEN_VAL(1));
2520
2521 if (status & (INTR_RX_COMP_AF | INTR_RX_COMP_FULL))
2522 cas_post_rxcs_ringN(cp, 1);
2523}
2524
2525/* ring 2 handles a few more events than 3 and 4 */
2526static irqreturn_t cas_interrupt1(int irq, void *dev_id, struct pt_regs *regs)
2527{
2528 struct net_device *dev = dev_id;
2529 struct cas *cp = netdev_priv(dev);
2530 unsigned long flags;
2531 u32 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(1));
2532
2533 /* check for shared interrupt */
2534 if (status == 0)
2535 return IRQ_NONE;
2536
2537 spin_lock_irqsave(&cp->lock, flags);
2538 if (status & INTR_RX_DONE_ALT) { /* handle rx separately */
2539#ifdef USE_NAPI
2540 cas_mask_intr(cp);
2541 netif_rx_schedule(dev);
2542#else
2543 cas_rx_ringN(cp, 1, 0);
2544#endif
2545 status &= ~INTR_RX_DONE_ALT;
2546 }
2547 if (status)
2548 cas_handle_irq1(cp, status);
2549 spin_unlock_irqrestore(&cp->lock, flags);
2550 return IRQ_HANDLED;
2551}
2552#endif
2553
2554static inline void cas_handle_irq(struct net_device *dev,
2555 struct cas *cp, const u32 status)
2556{
2557 /* housekeeping interrupts */
2558 if (status & INTR_ERROR_MASK)
2559 cas_abnormal_irq(dev, cp, status);
2560
2561 if (status & INTR_RX_BUF_UNAVAIL) {
2562 /* Frame arrived, no free RX buffers available.
2563 * NOTE: we can get this on a link transition.
2564 */
2565 cas_post_rxds_ringN(cp, 0, 0);
2566 spin_lock(&cp->stat_lock[0]);
2567 cp->net_stats[0].rx_dropped++;
2568 spin_unlock(&cp->stat_lock[0]);
2569 } else if (status & INTR_RX_BUF_AE) {
2570 cas_post_rxds_ringN(cp, 0, RX_DESC_RINGN_SIZE(0) -
2571 RX_AE_FREEN_VAL(0));
2572 }
2573
2574 if (status & (INTR_RX_COMP_AF | INTR_RX_COMP_FULL))
2575 cas_post_rxcs_ringN(dev, cp, 0);
2576}
2577
2578static irqreturn_t cas_interrupt(int irq, void *dev_id, struct pt_regs *regs)
2579{
2580 struct net_device *dev = dev_id;
2581 struct cas *cp = netdev_priv(dev);
2582 unsigned long flags;
2583 u32 status = readl(cp->regs + REG_INTR_STATUS);
2584
2585 if (status == 0)
2586 return IRQ_NONE;
2587
2588 spin_lock_irqsave(&cp->lock, flags);
2589 if (status & (INTR_TX_ALL | INTR_TX_INTME)) {
2590 cas_tx(dev, cp, status);
2591 status &= ~(INTR_TX_ALL | INTR_TX_INTME);
2592 }
2593
2594 if (status & INTR_RX_DONE) {
2595#ifdef USE_NAPI
2596 cas_mask_intr(cp);
2597 netif_rx_schedule(dev);
2598#else
2599 cas_rx_ringN(cp, 0, 0);
2600#endif
2601 status &= ~INTR_RX_DONE;
2602 }
2603
2604 if (status)
2605 cas_handle_irq(dev, cp, status);
2606 spin_unlock_irqrestore(&cp->lock, flags);
2607 return IRQ_HANDLED;
2608}
2609
2610
2611#ifdef USE_NAPI
2612static int cas_poll(struct net_device *dev, int *budget)
2613{
2614 struct cas *cp = netdev_priv(dev);
2615 int i, enable_intr, todo, credits;
2616 u32 status = readl(cp->regs + REG_INTR_STATUS);
2617 unsigned long flags;
2618
2619 spin_lock_irqsave(&cp->lock, flags);
2620 cas_tx(dev, cp, status);
2621 spin_unlock_irqrestore(&cp->lock, flags);
2622
2623 /* NAPI rx packets. we spread the credits across all of the
2624 * rxc rings
2625 */
2626 todo = min(*budget, dev->quota);
2627
2628 /* to make sure we're fair with the work we loop through each
2629 * ring N_RX_COMP_RING times with a request of
2630 * todo / N_RX_COMP_RINGS
2631 */
2632 enable_intr = 1;
2633 credits = 0;
2634 for (i = 0; i < N_RX_COMP_RINGS; i++) {
2635 int j;
2636 for (j = 0; j < N_RX_COMP_RINGS; j++) {
2637 credits += cas_rx_ringN(cp, j, todo / N_RX_COMP_RINGS);
2638 if (credits >= todo) {
2639 enable_intr = 0;
2640 goto rx_comp;
2641 }
2642 }
2643 }
2644
2645rx_comp:
2646 *budget -= credits;
2647 dev->quota -= credits;
2648
2649 /* final rx completion */
2650 spin_lock_irqsave(&cp->lock, flags);
2651 if (status)
2652 cas_handle_irq(dev, cp, status);
2653
2654#ifdef USE_PCI_INTB
2655 if (N_RX_COMP_RINGS > 1) {
2656 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(1));
2657 if (status)
2658 cas_handle_irq1(dev, cp, status);
2659 }
2660#endif
2661
2662#ifdef USE_PCI_INTC
2663 if (N_RX_COMP_RINGS > 2) {
2664 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(2));
2665 if (status)
2666 cas_handle_irqN(dev, cp, status, 2);
2667 }
2668#endif
2669
2670#ifdef USE_PCI_INTD
2671 if (N_RX_COMP_RINGS > 3) {
2672 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(3));
2673 if (status)
2674 cas_handle_irqN(dev, cp, status, 3);
2675 }
2676#endif
2677 spin_unlock_irqrestore(&cp->lock, flags);
2678 if (enable_intr) {
2679 netif_rx_complete(dev);
2680 cas_unmask_intr(cp);
2681 return 0;
2682 }
2683 return 1;
2684}
2685#endif
2686
2687#ifdef CONFIG_NET_POLL_CONTROLLER
2688static void cas_netpoll(struct net_device *dev)
2689{
2690 struct cas *cp = netdev_priv(dev);
2691
2692 cas_disable_irq(cp, 0);
2693 cas_interrupt(cp->pdev->irq, dev, NULL);
2694 cas_enable_irq(cp, 0);
2695
2696#ifdef USE_PCI_INTB
2697 if (N_RX_COMP_RINGS > 1) {
2698 /* cas_interrupt1(); */
2699 }
2700#endif
2701#ifdef USE_PCI_INTC
2702 if (N_RX_COMP_RINGS > 2) {
2703 /* cas_interruptN(); */
2704 }
2705#endif
2706#ifdef USE_PCI_INTD
2707 if (N_RX_COMP_RINGS > 3) {
2708 /* cas_interruptN(); */
2709 }
2710#endif
2711}
2712#endif
2713
2714static void cas_tx_timeout(struct net_device *dev)
2715{
2716 struct cas *cp = netdev_priv(dev);
2717
2718 printk(KERN_ERR "%s: transmit timed out, resetting\n", dev->name);
2719 if (!cp->hw_running) {
2720 printk("%s: hrm.. hw not running!\n", dev->name);
2721 return;
2722 }
2723
2724 printk(KERN_ERR "%s: MIF_STATE[%08x]\n",
2725 dev->name, readl(cp->regs + REG_MIF_STATE_MACHINE));
2726
2727 printk(KERN_ERR "%s: MAC_STATE[%08x]\n",
2728 dev->name, readl(cp->regs + REG_MAC_STATE_MACHINE));
2729
2730 printk(KERN_ERR "%s: TX_STATE[%08x:%08x:%08x] "
2731 "FIFO[%08x:%08x:%08x] SM1[%08x] SM2[%08x]\n",
2732 dev->name,
2733 readl(cp->regs + REG_TX_CFG),
2734 readl(cp->regs + REG_MAC_TX_STATUS),
2735 readl(cp->regs + REG_MAC_TX_CFG),
2736 readl(cp->regs + REG_TX_FIFO_PKT_CNT),
2737 readl(cp->regs + REG_TX_FIFO_WRITE_PTR),
2738 readl(cp->regs + REG_TX_FIFO_READ_PTR),
2739 readl(cp->regs + REG_TX_SM_1),
2740 readl(cp->regs + REG_TX_SM_2));
2741
2742 printk(KERN_ERR "%s: RX_STATE[%08x:%08x:%08x]\n",
2743 dev->name,
2744 readl(cp->regs + REG_RX_CFG),
2745 readl(cp->regs + REG_MAC_RX_STATUS),
2746 readl(cp->regs + REG_MAC_RX_CFG));
2747
2748 printk(KERN_ERR "%s: HP_STATE[%08x:%08x:%08x:%08x]\n",
2749 dev->name,
2750 readl(cp->regs + REG_HP_STATE_MACHINE),
2751 readl(cp->regs + REG_HP_STATUS0),
2752 readl(cp->regs + REG_HP_STATUS1),
2753 readl(cp->regs + REG_HP_STATUS2));
2754
2755#if 1
2756 atomic_inc(&cp->reset_task_pending);
2757 atomic_inc(&cp->reset_task_pending_all);
2758 schedule_work(&cp->reset_task);
2759#else
2760 atomic_set(&cp->reset_task_pending, CAS_RESET_ALL);
2761 schedule_work(&cp->reset_task);
2762#endif
2763}
2764
2765static inline int cas_intme(int ring, int entry)
2766{
2767 /* Algorithm: IRQ every 1/2 of descriptors. */
2768 if (!(entry & ((TX_DESC_RINGN_SIZE(ring) >> 1) - 1)))
2769 return 1;
2770 return 0;
2771}
2772
2773
2774static void cas_write_txd(struct cas *cp, int ring, int entry,
2775 dma_addr_t mapping, int len, u64 ctrl, int last)
2776{
2777 struct cas_tx_desc *txd = cp->init_txds[ring] + entry;
2778
2779 ctrl |= CAS_BASE(TX_DESC_BUFLEN, len);
2780 if (cas_intme(ring, entry))
2781 ctrl |= TX_DESC_INTME;
2782 if (last)
2783 ctrl |= TX_DESC_EOF;
2784 txd->control = cpu_to_le64(ctrl);
2785 txd->buffer = cpu_to_le64(mapping);
2786}
2787
2788static inline void *tx_tiny_buf(struct cas *cp, const int ring,
2789 const int entry)
2790{
2791 return cp->tx_tiny_bufs[ring] + TX_TINY_BUF_LEN*entry;
2792}
2793
2794static inline dma_addr_t tx_tiny_map(struct cas *cp, const int ring,
2795 const int entry, const int tentry)
2796{
2797 cp->tx_tiny_use[ring][tentry].nbufs++;
2798 cp->tx_tiny_use[ring][entry].used = 1;
2799 return cp->tx_tiny_dvma[ring] + TX_TINY_BUF_LEN*entry;
2800}
2801
2802static inline int cas_xmit_tx_ringN(struct cas *cp, int ring,
2803 struct sk_buff *skb)
2804{
2805 struct net_device *dev = cp->dev;
2806 int entry, nr_frags, frag, tabort, tentry;
2807 dma_addr_t mapping;
2808 unsigned long flags;
2809 u64 ctrl;
2810 u32 len;
2811
2812 spin_lock_irqsave(&cp->tx_lock[ring], flags);
2813
2814 /* This is a hard error, log it. */
2815 if (TX_BUFFS_AVAIL(cp, ring) <=
2816 CAS_TABORT(cp)*(skb_shinfo(skb)->nr_frags + 1)) {
2817 netif_stop_queue(dev);
2818 spin_unlock_irqrestore(&cp->tx_lock[ring], flags);
2819 printk(KERN_ERR PFX "%s: BUG! Tx Ring full when "
2820 "queue awake!\n", dev->name);
2821 return 1;
2822 }
2823
2824 ctrl = 0;
2825 if (skb->ip_summed == CHECKSUM_HW) {
2826 u64 csum_start_off, csum_stuff_off;
2827
2828 csum_start_off = (u64) (skb->h.raw - skb->data);
2829 csum_stuff_off = (u64) ((skb->h.raw + skb->csum) - skb->data);
2830
2831 ctrl = TX_DESC_CSUM_EN |
2832 CAS_BASE(TX_DESC_CSUM_START, csum_start_off) |
2833 CAS_BASE(TX_DESC_CSUM_STUFF, csum_stuff_off);
2834 }
2835
2836 entry = cp->tx_new[ring];
2837 cp->tx_skbs[ring][entry] = skb;
2838
2839 nr_frags = skb_shinfo(skb)->nr_frags;
2840 len = skb_headlen(skb);
2841 mapping = pci_map_page(cp->pdev, virt_to_page(skb->data),
2842 offset_in_page(skb->data), len,
2843 PCI_DMA_TODEVICE);
2844
2845 tentry = entry;
2846 tabort = cas_calc_tabort(cp, (unsigned long) skb->data, len);
2847 if (unlikely(tabort)) {
2848 /* NOTE: len is always > tabort */
2849 cas_write_txd(cp, ring, entry, mapping, len - tabort,
2850 ctrl | TX_DESC_SOF, 0);
2851 entry = TX_DESC_NEXT(ring, entry);
2852
2853 memcpy(tx_tiny_buf(cp, ring, entry), skb->data +
2854 len - tabort, tabort);
2855 mapping = tx_tiny_map(cp, ring, entry, tentry);
2856 cas_write_txd(cp, ring, entry, mapping, tabort, ctrl,
2857 (nr_frags == 0));
2858 } else {
2859 cas_write_txd(cp, ring, entry, mapping, len, ctrl |
2860 TX_DESC_SOF, (nr_frags == 0));
2861 }
2862 entry = TX_DESC_NEXT(ring, entry);
2863
2864 for (frag = 0; frag < nr_frags; frag++) {
2865 skb_frag_t *fragp = &skb_shinfo(skb)->frags[frag];
2866
2867 len = fragp->size;
2868 mapping = pci_map_page(cp->pdev, fragp->page,
2869 fragp->page_offset, len,
2870 PCI_DMA_TODEVICE);
2871
2872 tabort = cas_calc_tabort(cp, fragp->page_offset, len);
2873 if (unlikely(tabort)) {
2874 void *addr;
2875
2876 /* NOTE: len is always > tabort */
2877 cas_write_txd(cp, ring, entry, mapping, len - tabort,
2878 ctrl, 0);
2879 entry = TX_DESC_NEXT(ring, entry);
2880
2881 addr = cas_page_map(fragp->page);
2882 memcpy(tx_tiny_buf(cp, ring, entry),
2883 addr + fragp->page_offset + len - tabort,
2884 tabort);
2885 cas_page_unmap(addr);
2886 mapping = tx_tiny_map(cp, ring, entry, tentry);
2887 len = tabort;
2888 }
2889
2890 cas_write_txd(cp, ring, entry, mapping, len, ctrl,
2891 (frag + 1 == nr_frags));
2892 entry = TX_DESC_NEXT(ring, entry);
2893 }
2894
2895 cp->tx_new[ring] = entry;
2896 if (TX_BUFFS_AVAIL(cp, ring) <= CAS_TABORT(cp)*(MAX_SKB_FRAGS + 1))
2897 netif_stop_queue(dev);
2898
2899 if (netif_msg_tx_queued(cp))
2900 printk(KERN_DEBUG "%s: tx[%d] queued, slot %d, skblen %d, "
2901 "avail %d\n",
2902 dev->name, ring, entry, skb->len,
2903 TX_BUFFS_AVAIL(cp, ring));
2904 writel(entry, cp->regs + REG_TX_KICKN(ring));
2905 spin_unlock_irqrestore(&cp->tx_lock[ring], flags);
2906 return 0;
2907}
2908
2909static int cas_start_xmit(struct sk_buff *skb, struct net_device *dev)
2910{
2911 struct cas *cp = netdev_priv(dev);
2912
2913 /* this is only used as a load-balancing hint, so it doesn't
2914 * need to be SMP safe
2915 */
2916 static int ring;
2917
Herbert Xu5b057c62006-06-23 02:06:41 -07002918 if (skb_padto(skb, cp->min_frame_size))
David S. Miller1f26dac2005-09-27 15:24:13 -07002919 return 0;
2920
2921 /* XXX: we need some higher-level QoS hooks to steer packets to
2922 * individual queues.
2923 */
2924 if (cas_xmit_tx_ringN(cp, ring++ & N_TX_RINGS_MASK, skb))
2925 return 1;
2926 dev->trans_start = jiffies;
2927 return 0;
2928}
2929
2930static void cas_init_tx_dma(struct cas *cp)
2931{
2932 u64 desc_dma = cp->block_dvma;
2933 unsigned long off;
2934 u32 val;
2935 int i;
2936
2937 /* set up tx completion writeback registers. must be 8-byte aligned */
2938#ifdef USE_TX_COMPWB
2939 off = offsetof(struct cas_init_block, tx_compwb);
2940 writel((desc_dma + off) >> 32, cp->regs + REG_TX_COMPWB_DB_HI);
2941 writel((desc_dma + off) & 0xffffffff, cp->regs + REG_TX_COMPWB_DB_LOW);
2942#endif
2943
2944 /* enable completion writebacks, enable paced mode,
2945 * disable read pipe, and disable pre-interrupt compwbs
2946 */
2947 val = TX_CFG_COMPWB_Q1 | TX_CFG_COMPWB_Q2 |
2948 TX_CFG_COMPWB_Q3 | TX_CFG_COMPWB_Q4 |
2949 TX_CFG_DMA_RDPIPE_DIS | TX_CFG_PACED_MODE |
2950 TX_CFG_INTR_COMPWB_DIS;
2951
2952 /* write out tx ring info and tx desc bases */
2953 for (i = 0; i < MAX_TX_RINGS; i++) {
2954 off = (unsigned long) cp->init_txds[i] -
2955 (unsigned long) cp->init_block;
2956
2957 val |= CAS_TX_RINGN_BASE(i);
2958 writel((desc_dma + off) >> 32, cp->regs + REG_TX_DBN_HI(i));
2959 writel((desc_dma + off) & 0xffffffff, cp->regs +
2960 REG_TX_DBN_LOW(i));
2961 /* don't zero out the kick register here as the system
2962 * will wedge
2963 */
2964 }
2965 writel(val, cp->regs + REG_TX_CFG);
2966
2967 /* program max burst sizes. these numbers should be different
2968 * if doing QoS.
2969 */
2970#ifdef USE_QOS
2971 writel(0x800, cp->regs + REG_TX_MAXBURST_0);
2972 writel(0x1600, cp->regs + REG_TX_MAXBURST_1);
2973 writel(0x2400, cp->regs + REG_TX_MAXBURST_2);
2974 writel(0x4800, cp->regs + REG_TX_MAXBURST_3);
2975#else
2976 writel(0x800, cp->regs + REG_TX_MAXBURST_0);
2977 writel(0x800, cp->regs + REG_TX_MAXBURST_1);
2978 writel(0x800, cp->regs + REG_TX_MAXBURST_2);
2979 writel(0x800, cp->regs + REG_TX_MAXBURST_3);
2980#endif
2981}
2982
2983/* Must be invoked under cp->lock. */
2984static inline void cas_init_dma(struct cas *cp)
2985{
2986 cas_init_tx_dma(cp);
2987 cas_init_rx_dma(cp);
2988}
2989
2990/* Must be invoked under cp->lock. */
2991static u32 cas_setup_multicast(struct cas *cp)
2992{
2993 u32 rxcfg = 0;
2994 int i;
2995
2996 if (cp->dev->flags & IFF_PROMISC) {
2997 rxcfg |= MAC_RX_CFG_PROMISC_EN;
2998
2999 } else if (cp->dev->flags & IFF_ALLMULTI) {
3000 for (i=0; i < 16; i++)
3001 writel(0xFFFF, cp->regs + REG_MAC_HASH_TABLEN(i));
3002 rxcfg |= MAC_RX_CFG_HASH_FILTER_EN;
3003
3004 } else {
3005 u16 hash_table[16];
3006 u32 crc;
3007 struct dev_mc_list *dmi = cp->dev->mc_list;
3008 int i;
3009
3010 /* use the alternate mac address registers for the
3011 * first 15 multicast addresses
3012 */
3013 for (i = 1; i <= CAS_MC_EXACT_MATCH_SIZE; i++) {
3014 if (!dmi) {
3015 writel(0x0, cp->regs + REG_MAC_ADDRN(i*3 + 0));
3016 writel(0x0, cp->regs + REG_MAC_ADDRN(i*3 + 1));
3017 writel(0x0, cp->regs + REG_MAC_ADDRN(i*3 + 2));
3018 continue;
3019 }
3020 writel((dmi->dmi_addr[4] << 8) | dmi->dmi_addr[5],
3021 cp->regs + REG_MAC_ADDRN(i*3 + 0));
3022 writel((dmi->dmi_addr[2] << 8) | dmi->dmi_addr[3],
3023 cp->regs + REG_MAC_ADDRN(i*3 + 1));
3024 writel((dmi->dmi_addr[0] << 8) | dmi->dmi_addr[1],
3025 cp->regs + REG_MAC_ADDRN(i*3 + 2));
3026 dmi = dmi->next;
3027 }
3028
3029 /* use hw hash table for the next series of
3030 * multicast addresses
3031 */
3032 memset(hash_table, 0, sizeof(hash_table));
3033 while (dmi) {
3034 crc = ether_crc_le(ETH_ALEN, dmi->dmi_addr);
3035 crc >>= 24;
3036 hash_table[crc >> 4] |= 1 << (15 - (crc & 0xf));
3037 dmi = dmi->next;
3038 }
3039 for (i=0; i < 16; i++)
3040 writel(hash_table[i], cp->regs +
3041 REG_MAC_HASH_TABLEN(i));
3042 rxcfg |= MAC_RX_CFG_HASH_FILTER_EN;
3043 }
3044
3045 return rxcfg;
3046}
3047
3048/* must be invoked under cp->stat_lock[N_TX_RINGS] */
3049static void cas_clear_mac_err(struct cas *cp)
3050{
3051 writel(0, cp->regs + REG_MAC_COLL_NORMAL);
3052 writel(0, cp->regs + REG_MAC_COLL_FIRST);
3053 writel(0, cp->regs + REG_MAC_COLL_EXCESS);
3054 writel(0, cp->regs + REG_MAC_COLL_LATE);
3055 writel(0, cp->regs + REG_MAC_TIMER_DEFER);
3056 writel(0, cp->regs + REG_MAC_ATTEMPTS_PEAK);
3057 writel(0, cp->regs + REG_MAC_RECV_FRAME);
3058 writel(0, cp->regs + REG_MAC_LEN_ERR);
3059 writel(0, cp->regs + REG_MAC_ALIGN_ERR);
3060 writel(0, cp->regs + REG_MAC_FCS_ERR);
3061 writel(0, cp->regs + REG_MAC_RX_CODE_ERR);
3062}
3063
3064
3065static void cas_mac_reset(struct cas *cp)
3066{
3067 int i;
3068
3069 /* do both TX and RX reset */
3070 writel(0x1, cp->regs + REG_MAC_TX_RESET);
3071 writel(0x1, cp->regs + REG_MAC_RX_RESET);
3072
3073 /* wait for TX */
3074 i = STOP_TRIES;
3075 while (i-- > 0) {
3076 if (readl(cp->regs + REG_MAC_TX_RESET) == 0)
3077 break;
3078 udelay(10);
3079 }
3080
3081 /* wait for RX */
3082 i = STOP_TRIES;
3083 while (i-- > 0) {
3084 if (readl(cp->regs + REG_MAC_RX_RESET) == 0)
3085 break;
3086 udelay(10);
3087 }
3088
3089 if (readl(cp->regs + REG_MAC_TX_RESET) |
3090 readl(cp->regs + REG_MAC_RX_RESET))
3091 printk(KERN_ERR "%s: mac tx[%d]/rx[%d] reset failed [%08x]\n",
3092 cp->dev->name, readl(cp->regs + REG_MAC_TX_RESET),
3093 readl(cp->regs + REG_MAC_RX_RESET),
3094 readl(cp->regs + REG_MAC_STATE_MACHINE));
3095}
3096
3097
3098/* Must be invoked under cp->lock. */
3099static void cas_init_mac(struct cas *cp)
3100{
3101 unsigned char *e = &cp->dev->dev_addr[0];
3102 int i;
3103#ifdef CONFIG_CASSINI_MULTICAST_REG_WRITE
3104 u32 rxcfg;
3105#endif
3106 cas_mac_reset(cp);
3107
3108 /* setup core arbitration weight register */
3109 writel(CAWR_RR_DIS, cp->regs + REG_CAWR);
3110
3111 /* XXX Use pci_dma_burst_advice() */
3112#if !defined(CONFIG_SPARC64) && !defined(CONFIG_ALPHA)
3113 /* set the infinite burst register for chips that don't have
3114 * pci issues.
3115 */
3116 if ((cp->cas_flags & CAS_FLAG_TARGET_ABORT) == 0)
3117 writel(INF_BURST_EN, cp->regs + REG_INF_BURST);
3118#endif
3119
3120 writel(0x1BF0, cp->regs + REG_MAC_SEND_PAUSE);
3121
3122 writel(0x00, cp->regs + REG_MAC_IPG0);
3123 writel(0x08, cp->regs + REG_MAC_IPG1);
3124 writel(0x04, cp->regs + REG_MAC_IPG2);
3125
3126 /* change later for 802.3z */
3127 writel(0x40, cp->regs + REG_MAC_SLOT_TIME);
3128
3129 /* min frame + FCS */
3130 writel(ETH_ZLEN + 4, cp->regs + REG_MAC_FRAMESIZE_MIN);
3131
3132 /* Ethernet payload + header + FCS + optional VLAN tag. NOTE: we
3133 * specify the maximum frame size to prevent RX tag errors on
3134 * oversized frames.
3135 */
3136 writel(CAS_BASE(MAC_FRAMESIZE_MAX_BURST, 0x2000) |
3137 CAS_BASE(MAC_FRAMESIZE_MAX_FRAME,
3138 (CAS_MAX_MTU + ETH_HLEN + 4 + 4)),
3139 cp->regs + REG_MAC_FRAMESIZE_MAX);
3140
3141 /* NOTE: crc_size is used as a surrogate for half-duplex.
3142 * workaround saturn half-duplex issue by increasing preamble
3143 * size to 65 bytes.
3144 */
3145 if ((cp->cas_flags & CAS_FLAG_SATURN) && cp->crc_size)
3146 writel(0x41, cp->regs + REG_MAC_PA_SIZE);
3147 else
3148 writel(0x07, cp->regs + REG_MAC_PA_SIZE);
3149 writel(0x04, cp->regs + REG_MAC_JAM_SIZE);
3150 writel(0x10, cp->regs + REG_MAC_ATTEMPT_LIMIT);
3151 writel(0x8808, cp->regs + REG_MAC_CTRL_TYPE);
3152
3153 writel((e[5] | (e[4] << 8)) & 0x3ff, cp->regs + REG_MAC_RANDOM_SEED);
3154
3155 writel(0, cp->regs + REG_MAC_ADDR_FILTER0);
3156 writel(0, cp->regs + REG_MAC_ADDR_FILTER1);
3157 writel(0, cp->regs + REG_MAC_ADDR_FILTER2);
3158 writel(0, cp->regs + REG_MAC_ADDR_FILTER2_1_MASK);
3159 writel(0, cp->regs + REG_MAC_ADDR_FILTER0_MASK);
3160
3161 /* setup mac address in perfect filter array */
3162 for (i = 0; i < 45; i++)
3163 writel(0x0, cp->regs + REG_MAC_ADDRN(i));
3164
3165 writel((e[4] << 8) | e[5], cp->regs + REG_MAC_ADDRN(0));
3166 writel((e[2] << 8) | e[3], cp->regs + REG_MAC_ADDRN(1));
3167 writel((e[0] << 8) | e[1], cp->regs + REG_MAC_ADDRN(2));
3168
3169 writel(0x0001, cp->regs + REG_MAC_ADDRN(42));
3170 writel(0xc200, cp->regs + REG_MAC_ADDRN(43));
3171 writel(0x0180, cp->regs + REG_MAC_ADDRN(44));
3172
3173#ifndef CONFIG_CASSINI_MULTICAST_REG_WRITE
3174 cp->mac_rx_cfg = cas_setup_multicast(cp);
3175#else
3176 /* WTZ: Do what Adrian did in cas_set_multicast. Doing
3177 * a writel does not seem to be necessary because Cassini
3178 * seems to preserve the configuration when we do the reset.
3179 * If the chip is in trouble, though, it is not clear if we
3180 * can really count on this behavior. cas_set_multicast uses
3181 * spin_lock_irqsave, but we are called only in cas_init_hw and
3182 * cas_init_hw is protected by cas_lock_all, which calls
3183 * spin_lock_irq (so it doesn't need to save the flags, and
3184 * we should be OK for the writel, as that is the only
3185 * difference).
3186 */
3187 cp->mac_rx_cfg = rxcfg = cas_setup_multicast(cp);
3188 writel(rxcfg, cp->regs + REG_MAC_RX_CFG);
3189#endif
3190 spin_lock(&cp->stat_lock[N_TX_RINGS]);
3191 cas_clear_mac_err(cp);
3192 spin_unlock(&cp->stat_lock[N_TX_RINGS]);
3193
3194 /* Setup MAC interrupts. We want to get all of the interesting
3195 * counter expiration events, but we do not want to hear about
3196 * normal rx/tx as the DMA engine tells us that.
3197 */
3198 writel(MAC_TX_FRAME_XMIT, cp->regs + REG_MAC_TX_MASK);
3199 writel(MAC_RX_FRAME_RECV, cp->regs + REG_MAC_RX_MASK);
3200
3201 /* Don't enable even the PAUSE interrupts for now, we
3202 * make no use of those events other than to record them.
3203 */
3204 writel(0xffffffff, cp->regs + REG_MAC_CTRL_MASK);
3205}
3206
3207/* Must be invoked under cp->lock. */
3208static void cas_init_pause_thresholds(struct cas *cp)
3209{
3210 /* Calculate pause thresholds. Setting the OFF threshold to the
3211 * full RX fifo size effectively disables PAUSE generation
3212 */
3213 if (cp->rx_fifo_size <= (2 * 1024)) {
3214 cp->rx_pause_off = cp->rx_pause_on = cp->rx_fifo_size;
3215 } else {
3216 int max_frame = (cp->dev->mtu + ETH_HLEN + 4 + 4 + 64) & ~63;
3217 if (max_frame * 3 > cp->rx_fifo_size) {
3218 cp->rx_pause_off = 7104;
3219 cp->rx_pause_on = 960;
3220 } else {
3221 int off = (cp->rx_fifo_size - (max_frame * 2));
3222 int on = off - max_frame;
3223 cp->rx_pause_off = off;
3224 cp->rx_pause_on = on;
3225 }
3226 }
3227}
3228
3229static int cas_vpd_match(const void __iomem *p, const char *str)
3230{
3231 int len = strlen(str) + 1;
3232 int i;
3233
3234 for (i = 0; i < len; i++) {
3235 if (readb(p + i) != str[i])
3236 return 0;
3237 }
3238 return 1;
3239}
3240
3241
3242/* get the mac address by reading the vpd information in the rom.
3243 * also get the phy type and determine if there's an entropy generator.
3244 * NOTE: this is a bit convoluted for the following reasons:
3245 * 1) vpd info has order-dependent mac addresses for multinic cards
3246 * 2) the only way to determine the nic order is to use the slot
3247 * number.
3248 * 3) fiber cards don't have bridges, so their slot numbers don't
3249 * mean anything.
3250 * 4) we don't actually know we have a fiber card until after
3251 * the mac addresses are parsed.
3252 */
3253static int cas_get_vpd_info(struct cas *cp, unsigned char *dev_addr,
3254 const int offset)
3255{
3256 void __iomem *p = cp->regs + REG_EXPANSION_ROM_RUN_START;
3257 void __iomem *base, *kstart;
3258 int i, len;
3259 int found = 0;
3260#define VPD_FOUND_MAC 0x01
3261#define VPD_FOUND_PHY 0x02
3262
3263 int phy_type = CAS_PHY_MII_MDIO0; /* default phy type */
3264 int mac_off = 0;
3265
3266 /* give us access to the PROM */
3267 writel(BIM_LOCAL_DEV_PROM | BIM_LOCAL_DEV_PAD,
3268 cp->regs + REG_BIM_LOCAL_DEV_EN);
3269
3270 /* check for an expansion rom */
3271 if (readb(p) != 0x55 || readb(p + 1) != 0xaa)
3272 goto use_random_mac_addr;
3273
3274 /* search for beginning of vpd */
Al Viro46d70312005-09-30 03:21:45 +01003275 base = NULL;
David S. Miller1f26dac2005-09-27 15:24:13 -07003276 for (i = 2; i < EXPANSION_ROM_SIZE; i++) {
3277 /* check for PCIR */
3278 if ((readb(p + i + 0) == 0x50) &&
3279 (readb(p + i + 1) == 0x43) &&
3280 (readb(p + i + 2) == 0x49) &&
3281 (readb(p + i + 3) == 0x52)) {
3282 base = p + (readb(p + i + 8) |
3283 (readb(p + i + 9) << 8));
3284 break;
3285 }
3286 }
3287
3288 if (!base || (readb(base) != 0x82))
3289 goto use_random_mac_addr;
3290
3291 i = (readb(base + 1) | (readb(base + 2) << 8)) + 3;
3292 while (i < EXPANSION_ROM_SIZE) {
3293 if (readb(base + i) != 0x90) /* no vpd found */
3294 goto use_random_mac_addr;
3295
3296 /* found a vpd field */
3297 len = readb(base + i + 1) | (readb(base + i + 2) << 8);
3298
3299 /* extract keywords */
3300 kstart = base + i + 3;
3301 p = kstart;
3302 while ((p - kstart) < len) {
3303 int klen = readb(p + 2);
3304 int j;
3305 char type;
3306
3307 p += 3;
3308
3309 /* look for the following things:
3310 * -- correct length == 29
3311 * 3 (type) + 2 (size) +
3312 * 18 (strlen("local-mac-address") + 1) +
3313 * 6 (mac addr)
3314 * -- VPD Instance 'I'
3315 * -- VPD Type Bytes 'B'
3316 * -- VPD data length == 6
3317 * -- property string == local-mac-address
3318 *
3319 * -- correct length == 24
3320 * 3 (type) + 2 (size) +
3321 * 12 (strlen("entropy-dev") + 1) +
3322 * 7 (strlen("vms110") + 1)
3323 * -- VPD Instance 'I'
3324 * -- VPD Type String 'B'
3325 * -- VPD data length == 7
3326 * -- property string == entropy-dev
3327 *
3328 * -- correct length == 18
3329 * 3 (type) + 2 (size) +
3330 * 9 (strlen("phy-type") + 1) +
3331 * 4 (strlen("pcs") + 1)
3332 * -- VPD Instance 'I'
3333 * -- VPD Type String 'S'
3334 * -- VPD data length == 4
3335 * -- property string == phy-type
3336 *
3337 * -- correct length == 23
3338 * 3 (type) + 2 (size) +
3339 * 14 (strlen("phy-interface") + 1) +
3340 * 4 (strlen("pcs") + 1)
3341 * -- VPD Instance 'I'
3342 * -- VPD Type String 'S'
3343 * -- VPD data length == 4
3344 * -- property string == phy-interface
3345 */
3346 if (readb(p) != 'I')
3347 goto next;
3348
3349 /* finally, check string and length */
3350 type = readb(p + 3);
3351 if (type == 'B') {
3352 if ((klen == 29) && readb(p + 4) == 6 &&
3353 cas_vpd_match(p + 5,
3354 "local-mac-address")) {
3355 if (mac_off++ > offset)
3356 goto next;
3357
3358 /* set mac address */
3359 for (j = 0; j < 6; j++)
3360 dev_addr[j] =
3361 readb(p + 23 + j);
3362 goto found_mac;
3363 }
3364 }
3365
3366 if (type != 'S')
3367 goto next;
3368
3369#ifdef USE_ENTROPY_DEV
3370 if ((klen == 24) &&
3371 cas_vpd_match(p + 5, "entropy-dev") &&
3372 cas_vpd_match(p + 17, "vms110")) {
3373 cp->cas_flags |= CAS_FLAG_ENTROPY_DEV;
3374 goto next;
3375 }
3376#endif
3377
3378 if (found & VPD_FOUND_PHY)
3379 goto next;
3380
3381 if ((klen == 18) && readb(p + 4) == 4 &&
3382 cas_vpd_match(p + 5, "phy-type")) {
3383 if (cas_vpd_match(p + 14, "pcs")) {
3384 phy_type = CAS_PHY_SERDES;
3385 goto found_phy;
3386 }
3387 }
3388
3389 if ((klen == 23) && readb(p + 4) == 4 &&
3390 cas_vpd_match(p + 5, "phy-interface")) {
3391 if (cas_vpd_match(p + 19, "pcs")) {
3392 phy_type = CAS_PHY_SERDES;
3393 goto found_phy;
3394 }
3395 }
3396found_mac:
3397 found |= VPD_FOUND_MAC;
3398 goto next;
3399
3400found_phy:
3401 found |= VPD_FOUND_PHY;
3402
3403next:
3404 p += klen;
3405 }
3406 i += len + 3;
3407 }
3408
3409use_random_mac_addr:
3410 if (found & VPD_FOUND_MAC)
3411 goto done;
3412
3413 /* Sun MAC prefix then 3 random bytes. */
3414 printk(PFX "MAC address not found in ROM VPD\n");
3415 dev_addr[0] = 0x08;
3416 dev_addr[1] = 0x00;
3417 dev_addr[2] = 0x20;
3418 get_random_bytes(dev_addr + 3, 3);
3419
3420done:
3421 writel(0, cp->regs + REG_BIM_LOCAL_DEV_EN);
3422 return phy_type;
3423}
3424
3425/* check pci invariants */
3426static void cas_check_pci_invariants(struct cas *cp)
3427{
3428 struct pci_dev *pdev = cp->pdev;
3429 u8 rev;
3430
3431 cp->cas_flags = 0;
3432 pci_read_config_byte(pdev, PCI_REVISION_ID, &rev);
3433 if ((pdev->vendor == PCI_VENDOR_ID_SUN) &&
3434 (pdev->device == PCI_DEVICE_ID_SUN_CASSINI)) {
3435 if (rev >= CAS_ID_REVPLUS)
3436 cp->cas_flags |= CAS_FLAG_REG_PLUS;
3437 if (rev < CAS_ID_REVPLUS02u)
3438 cp->cas_flags |= CAS_FLAG_TARGET_ABORT;
3439
3440 /* Original Cassini supports HW CSUM, but it's not
3441 * enabled by default as it can trigger TX hangs.
3442 */
3443 if (rev < CAS_ID_REV2)
3444 cp->cas_flags |= CAS_FLAG_NO_HW_CSUM;
3445 } else {
3446 /* Only sun has original cassini chips. */
3447 cp->cas_flags |= CAS_FLAG_REG_PLUS;
3448
3449 /* We use a flag because the same phy might be externally
3450 * connected.
3451 */
3452 if ((pdev->vendor == PCI_VENDOR_ID_NS) &&
3453 (pdev->device == PCI_DEVICE_ID_NS_SATURN))
3454 cp->cas_flags |= CAS_FLAG_SATURN;
3455 }
3456}
3457
3458
3459static int cas_check_invariants(struct cas *cp)
3460{
3461 struct pci_dev *pdev = cp->pdev;
3462 u32 cfg;
3463 int i;
3464
3465 /* get page size for rx buffers. */
3466 cp->page_order = 0;
3467#ifdef USE_PAGE_ORDER
3468 if (PAGE_SHIFT < CAS_JUMBO_PAGE_SHIFT) {
3469 /* see if we can allocate larger pages */
3470 struct page *page = alloc_pages(GFP_ATOMIC,
3471 CAS_JUMBO_PAGE_SHIFT -
3472 PAGE_SHIFT);
3473 if (page) {
3474 __free_pages(page, CAS_JUMBO_PAGE_SHIFT - PAGE_SHIFT);
3475 cp->page_order = CAS_JUMBO_PAGE_SHIFT - PAGE_SHIFT;
3476 } else {
3477 printk(PFX "MTU limited to %d bytes\n", CAS_MAX_MTU);
3478 }
3479 }
3480#endif
3481 cp->page_size = (PAGE_SIZE << cp->page_order);
3482
3483 /* Fetch the FIFO configurations. */
3484 cp->tx_fifo_size = readl(cp->regs + REG_TX_FIFO_SIZE) * 64;
3485 cp->rx_fifo_size = RX_FIFO_SIZE;
3486
3487 /* finish phy determination. MDIO1 takes precedence over MDIO0 if
3488 * they're both connected.
3489 */
3490 cp->phy_type = cas_get_vpd_info(cp, cp->dev->dev_addr,
3491 PCI_SLOT(pdev->devfn));
3492 if (cp->phy_type & CAS_PHY_SERDES) {
3493 cp->cas_flags |= CAS_FLAG_1000MB_CAP;
3494 return 0; /* no more checking needed */
3495 }
3496
3497 /* MII */
3498 cfg = readl(cp->regs + REG_MIF_CFG);
3499 if (cfg & MIF_CFG_MDIO_1) {
3500 cp->phy_type = CAS_PHY_MII_MDIO1;
3501 } else if (cfg & MIF_CFG_MDIO_0) {
3502 cp->phy_type = CAS_PHY_MII_MDIO0;
3503 }
3504
3505 cas_mif_poll(cp, 0);
3506 writel(PCS_DATAPATH_MODE_MII, cp->regs + REG_PCS_DATAPATH_MODE);
3507
3508 for (i = 0; i < 32; i++) {
3509 u32 phy_id;
3510 int j;
3511
3512 for (j = 0; j < 3; j++) {
3513 cp->phy_addr = i;
3514 phy_id = cas_phy_read(cp, MII_PHYSID1) << 16;
3515 phy_id |= cas_phy_read(cp, MII_PHYSID2);
3516 if (phy_id && (phy_id != 0xFFFFFFFF)) {
3517 cp->phy_id = phy_id;
3518 goto done;
3519 }
3520 }
3521 }
3522 printk(KERN_ERR PFX "MII phy did not respond [%08x]\n",
3523 readl(cp->regs + REG_MIF_STATE_MACHINE));
3524 return -1;
3525
3526done:
3527 /* see if we can do gigabit */
3528 cfg = cas_phy_read(cp, MII_BMSR);
3529 if ((cfg & CAS_BMSR_1000_EXTEND) &&
3530 cas_phy_read(cp, CAS_MII_1000_EXTEND))
3531 cp->cas_flags |= CAS_FLAG_1000MB_CAP;
3532 return 0;
3533}
3534
3535/* Must be invoked under cp->lock. */
3536static inline void cas_start_dma(struct cas *cp)
3537{
3538 int i;
3539 u32 val;
3540 int txfailed = 0;
3541
3542 /* enable dma */
3543 val = readl(cp->regs + REG_TX_CFG) | TX_CFG_DMA_EN;
3544 writel(val, cp->regs + REG_TX_CFG);
3545 val = readl(cp->regs + REG_RX_CFG) | RX_CFG_DMA_EN;
3546 writel(val, cp->regs + REG_RX_CFG);
3547
3548 /* enable the mac */
3549 val = readl(cp->regs + REG_MAC_TX_CFG) | MAC_TX_CFG_EN;
3550 writel(val, cp->regs + REG_MAC_TX_CFG);
3551 val = readl(cp->regs + REG_MAC_RX_CFG) | MAC_RX_CFG_EN;
3552 writel(val, cp->regs + REG_MAC_RX_CFG);
3553
3554 i = STOP_TRIES;
3555 while (i-- > 0) {
3556 val = readl(cp->regs + REG_MAC_TX_CFG);
3557 if ((val & MAC_TX_CFG_EN))
3558 break;
3559 udelay(10);
3560 }
3561 if (i < 0) txfailed = 1;
3562 i = STOP_TRIES;
3563 while (i-- > 0) {
3564 val = readl(cp->regs + REG_MAC_RX_CFG);
3565 if ((val & MAC_RX_CFG_EN)) {
3566 if (txfailed) {
3567 printk(KERN_ERR
3568 "%s: enabling mac failed [tx:%08x:%08x].\n",
3569 cp->dev->name,
3570 readl(cp->regs + REG_MIF_STATE_MACHINE),
3571 readl(cp->regs + REG_MAC_STATE_MACHINE));
3572 }
3573 goto enable_rx_done;
3574 }
3575 udelay(10);
3576 }
3577 printk(KERN_ERR "%s: enabling mac failed [%s:%08x:%08x].\n",
3578 cp->dev->name,
3579 (txfailed? "tx,rx":"rx"),
3580 readl(cp->regs + REG_MIF_STATE_MACHINE),
3581 readl(cp->regs + REG_MAC_STATE_MACHINE));
3582
3583enable_rx_done:
3584 cas_unmask_intr(cp); /* enable interrupts */
3585 writel(RX_DESC_RINGN_SIZE(0) - 4, cp->regs + REG_RX_KICK);
3586 writel(0, cp->regs + REG_RX_COMP_TAIL);
3587
3588 if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
3589 if (N_RX_DESC_RINGS > 1)
3590 writel(RX_DESC_RINGN_SIZE(1) - 4,
3591 cp->regs + REG_PLUS_RX_KICK1);
3592
3593 for (i = 1; i < N_RX_COMP_RINGS; i++)
3594 writel(0, cp->regs + REG_PLUS_RX_COMPN_TAIL(i));
3595 }
3596}
3597
3598/* Must be invoked under cp->lock. */
3599static void cas_read_pcs_link_mode(struct cas *cp, int *fd, int *spd,
3600 int *pause)
3601{
3602 u32 val = readl(cp->regs + REG_PCS_MII_LPA);
3603 *fd = (val & PCS_MII_LPA_FD) ? 1 : 0;
3604 *pause = (val & PCS_MII_LPA_SYM_PAUSE) ? 0x01 : 0x00;
3605 if (val & PCS_MII_LPA_ASYM_PAUSE)
3606 *pause |= 0x10;
3607 *spd = 1000;
3608}
3609
3610/* Must be invoked under cp->lock. */
3611static void cas_read_mii_link_mode(struct cas *cp, int *fd, int *spd,
3612 int *pause)
3613{
3614 u32 val;
3615
3616 *fd = 0;
3617 *spd = 10;
3618 *pause = 0;
3619
3620 /* use GMII registers */
3621 val = cas_phy_read(cp, MII_LPA);
3622 if (val & CAS_LPA_PAUSE)
3623 *pause = 0x01;
3624
3625 if (val & CAS_LPA_ASYM_PAUSE)
3626 *pause |= 0x10;
3627
3628 if (val & LPA_DUPLEX)
3629 *fd = 1;
3630 if (val & LPA_100)
3631 *spd = 100;
3632
3633 if (cp->cas_flags & CAS_FLAG_1000MB_CAP) {
3634 val = cas_phy_read(cp, CAS_MII_1000_STATUS);
3635 if (val & (CAS_LPA_1000FULL | CAS_LPA_1000HALF))
3636 *spd = 1000;
3637 if (val & CAS_LPA_1000FULL)
3638 *fd = 1;
3639 }
3640}
3641
3642/* A link-up condition has occurred, initialize and enable the
3643 * rest of the chip.
3644 *
3645 * Must be invoked under cp->lock.
3646 */
3647static void cas_set_link_modes(struct cas *cp)
3648{
3649 u32 val;
3650 int full_duplex, speed, pause;
3651
3652 full_duplex = 0;
3653 speed = 10;
3654 pause = 0;
3655
3656 if (CAS_PHY_MII(cp->phy_type)) {
3657 cas_mif_poll(cp, 0);
3658 val = cas_phy_read(cp, MII_BMCR);
3659 if (val & BMCR_ANENABLE) {
3660 cas_read_mii_link_mode(cp, &full_duplex, &speed,
3661 &pause);
3662 } else {
3663 if (val & BMCR_FULLDPLX)
3664 full_duplex = 1;
3665
3666 if (val & BMCR_SPEED100)
3667 speed = 100;
3668 else if (val & CAS_BMCR_SPEED1000)
3669 speed = (cp->cas_flags & CAS_FLAG_1000MB_CAP) ?
3670 1000 : 100;
3671 }
3672 cas_mif_poll(cp, 1);
3673
3674 } else {
3675 val = readl(cp->regs + REG_PCS_MII_CTRL);
3676 cas_read_pcs_link_mode(cp, &full_duplex, &speed, &pause);
3677 if ((val & PCS_MII_AUTONEG_EN) == 0) {
3678 if (val & PCS_MII_CTRL_DUPLEX)
3679 full_duplex = 1;
3680 }
3681 }
3682
3683 if (netif_msg_link(cp))
3684 printk(KERN_INFO "%s: Link up at %d Mbps, %s-duplex.\n",
3685 cp->dev->name, speed, (full_duplex ? "full" : "half"));
3686
3687 val = MAC_XIF_TX_MII_OUTPUT_EN | MAC_XIF_LINK_LED;
3688 if (CAS_PHY_MII(cp->phy_type)) {
3689 val |= MAC_XIF_MII_BUFFER_OUTPUT_EN;
3690 if (!full_duplex)
3691 val |= MAC_XIF_DISABLE_ECHO;
3692 }
3693 if (full_duplex)
3694 val |= MAC_XIF_FDPLX_LED;
3695 if (speed == 1000)
3696 val |= MAC_XIF_GMII_MODE;
3697 writel(val, cp->regs + REG_MAC_XIF_CFG);
3698
3699 /* deal with carrier and collision detect. */
3700 val = MAC_TX_CFG_IPG_EN;
3701 if (full_duplex) {
3702 val |= MAC_TX_CFG_IGNORE_CARRIER;
3703 val |= MAC_TX_CFG_IGNORE_COLL;
3704 } else {
3705#ifndef USE_CSMA_CD_PROTO
3706 val |= MAC_TX_CFG_NEVER_GIVE_UP_EN;
3707 val |= MAC_TX_CFG_NEVER_GIVE_UP_LIM;
3708#endif
3709 }
3710 /* val now set up for REG_MAC_TX_CFG */
3711
3712 /* If gigabit and half-duplex, enable carrier extension
3713 * mode. increase slot time to 512 bytes as well.
3714 * else, disable it and make sure slot time is 64 bytes.
3715 * also activate checksum bug workaround
3716 */
3717 if ((speed == 1000) && !full_duplex) {
3718 writel(val | MAC_TX_CFG_CARRIER_EXTEND,
3719 cp->regs + REG_MAC_TX_CFG);
3720
3721 val = readl(cp->regs + REG_MAC_RX_CFG);
3722 val &= ~MAC_RX_CFG_STRIP_FCS; /* checksum workaround */
3723 writel(val | MAC_RX_CFG_CARRIER_EXTEND,
3724 cp->regs + REG_MAC_RX_CFG);
3725
3726 writel(0x200, cp->regs + REG_MAC_SLOT_TIME);
3727
3728 cp->crc_size = 4;
3729 /* minimum size gigabit frame at half duplex */
3730 cp->min_frame_size = CAS_1000MB_MIN_FRAME;
3731
3732 } else {
3733 writel(val, cp->regs + REG_MAC_TX_CFG);
3734
3735 /* checksum bug workaround. don't strip FCS when in
3736 * half-duplex mode
3737 */
3738 val = readl(cp->regs + REG_MAC_RX_CFG);
3739 if (full_duplex) {
3740 val |= MAC_RX_CFG_STRIP_FCS;
3741 cp->crc_size = 0;
3742 cp->min_frame_size = CAS_MIN_MTU;
3743 } else {
3744 val &= ~MAC_RX_CFG_STRIP_FCS;
3745 cp->crc_size = 4;
3746 cp->min_frame_size = CAS_MIN_FRAME;
3747 }
3748 writel(val & ~MAC_RX_CFG_CARRIER_EXTEND,
3749 cp->regs + REG_MAC_RX_CFG);
3750 writel(0x40, cp->regs + REG_MAC_SLOT_TIME);
3751 }
3752
3753 if (netif_msg_link(cp)) {
3754 if (pause & 0x01) {
3755 printk(KERN_INFO "%s: Pause is enabled "
3756 "(rxfifo: %d off: %d on: %d)\n",
3757 cp->dev->name,
3758 cp->rx_fifo_size,
3759 cp->rx_pause_off,
3760 cp->rx_pause_on);
3761 } else if (pause & 0x10) {
3762 printk(KERN_INFO "%s: TX pause enabled\n",
3763 cp->dev->name);
3764 } else {
3765 printk(KERN_INFO "%s: Pause is disabled\n",
3766 cp->dev->name);
3767 }
3768 }
3769
3770 val = readl(cp->regs + REG_MAC_CTRL_CFG);
3771 val &= ~(MAC_CTRL_CFG_SEND_PAUSE_EN | MAC_CTRL_CFG_RECV_PAUSE_EN);
3772 if (pause) { /* symmetric or asymmetric pause */
3773 val |= MAC_CTRL_CFG_SEND_PAUSE_EN;
3774 if (pause & 0x01) { /* symmetric pause */
3775 val |= MAC_CTRL_CFG_RECV_PAUSE_EN;
3776 }
3777 }
3778 writel(val, cp->regs + REG_MAC_CTRL_CFG);
3779 cas_start_dma(cp);
3780}
3781
3782/* Must be invoked under cp->lock. */
3783static void cas_init_hw(struct cas *cp, int restart_link)
3784{
3785 if (restart_link)
3786 cas_phy_init(cp);
3787
3788 cas_init_pause_thresholds(cp);
3789 cas_init_mac(cp);
3790 cas_init_dma(cp);
3791
3792 if (restart_link) {
3793 /* Default aneg parameters */
3794 cp->timer_ticks = 0;
3795 cas_begin_auto_negotiation(cp, NULL);
3796 } else if (cp->lstate == link_up) {
3797 cas_set_link_modes(cp);
3798 netif_carrier_on(cp->dev);
3799 }
3800}
3801
3802/* Must be invoked under cp->lock. on earlier cassini boards,
3803 * SOFT_0 is tied to PCI reset. we use this to force a pci reset,
3804 * let it settle out, and then restore pci state.
3805 */
3806static void cas_hard_reset(struct cas *cp)
3807{
3808 writel(BIM_LOCAL_DEV_SOFT_0, cp->regs + REG_BIM_LOCAL_DEV_EN);
3809 udelay(20);
3810 pci_restore_state(cp->pdev);
3811}
3812
3813
3814static void cas_global_reset(struct cas *cp, int blkflag)
3815{
3816 int limit;
3817
3818 /* issue a global reset. don't use RSTOUT. */
3819 if (blkflag && !CAS_PHY_MII(cp->phy_type)) {
3820 /* For PCS, when the blkflag is set, we should set the
3821 * SW_REST_BLOCK_PCS_SLINK bit to prevent the results of
3822 * the last autonegotiation from being cleared. We'll
3823 * need some special handling if the chip is set into a
3824 * loopback mode.
3825 */
3826 writel((SW_RESET_TX | SW_RESET_RX | SW_RESET_BLOCK_PCS_SLINK),
3827 cp->regs + REG_SW_RESET);
3828 } else {
3829 writel(SW_RESET_TX | SW_RESET_RX, cp->regs + REG_SW_RESET);
3830 }
3831
3832 /* need to wait at least 3ms before polling register */
3833 mdelay(3);
3834
3835 limit = STOP_TRIES;
3836 while (limit-- > 0) {
3837 u32 val = readl(cp->regs + REG_SW_RESET);
3838 if ((val & (SW_RESET_TX | SW_RESET_RX)) == 0)
3839 goto done;
3840 udelay(10);
3841 }
3842 printk(KERN_ERR "%s: sw reset failed.\n", cp->dev->name);
3843
3844done:
3845 /* enable various BIM interrupts */
3846 writel(BIM_CFG_DPAR_INTR_ENABLE | BIM_CFG_RMA_INTR_ENABLE |
3847 BIM_CFG_RTA_INTR_ENABLE, cp->regs + REG_BIM_CFG);
3848
3849 /* clear out pci error status mask for handled errors.
3850 * we don't deal with DMA counter overflows as they happen
3851 * all the time.
3852 */
3853 writel(0xFFFFFFFFU & ~(PCI_ERR_BADACK | PCI_ERR_DTRTO |
3854 PCI_ERR_OTHER | PCI_ERR_BIM_DMA_WRITE |
3855 PCI_ERR_BIM_DMA_READ), cp->regs +
3856 REG_PCI_ERR_STATUS_MASK);
3857
3858 /* set up for MII by default to address mac rx reset timeout
3859 * issue
3860 */
3861 writel(PCS_DATAPATH_MODE_MII, cp->regs + REG_PCS_DATAPATH_MODE);
3862}
3863
3864static void cas_reset(struct cas *cp, int blkflag)
3865{
3866 u32 val;
3867
3868 cas_mask_intr(cp);
3869 cas_global_reset(cp, blkflag);
3870 cas_mac_reset(cp);
3871 cas_entropy_reset(cp);
3872
3873 /* disable dma engines. */
3874 val = readl(cp->regs + REG_TX_CFG);
3875 val &= ~TX_CFG_DMA_EN;
3876 writel(val, cp->regs + REG_TX_CFG);
3877
3878 val = readl(cp->regs + REG_RX_CFG);
3879 val &= ~RX_CFG_DMA_EN;
3880 writel(val, cp->regs + REG_RX_CFG);
3881
3882 /* program header parser */
3883 if ((cp->cas_flags & CAS_FLAG_TARGET_ABORT) ||
3884 (CAS_HP_ALT_FIRMWARE == cas_prog_null)) {
3885 cas_load_firmware(cp, CAS_HP_FIRMWARE);
3886 } else {
3887 cas_load_firmware(cp, CAS_HP_ALT_FIRMWARE);
3888 }
3889
3890 /* clear out error registers */
3891 spin_lock(&cp->stat_lock[N_TX_RINGS]);
3892 cas_clear_mac_err(cp);
3893 spin_unlock(&cp->stat_lock[N_TX_RINGS]);
3894}
3895
Ingo Molnar758df692006-03-20 22:34:09 -08003896/* Shut down the chip, must be called with pm_mutex held. */
David S. Miller1f26dac2005-09-27 15:24:13 -07003897static void cas_shutdown(struct cas *cp)
3898{
3899 unsigned long flags;
3900
3901 /* Make us not-running to avoid timers respawning */
3902 cp->hw_running = 0;
3903
3904 del_timer_sync(&cp->link_timer);
3905
3906 /* Stop the reset task */
3907#if 0
3908 while (atomic_read(&cp->reset_task_pending_mtu) ||
3909 atomic_read(&cp->reset_task_pending_spare) ||
3910 atomic_read(&cp->reset_task_pending_all))
3911 schedule();
3912
3913#else
3914 while (atomic_read(&cp->reset_task_pending))
3915 schedule();
3916#endif
3917 /* Actually stop the chip */
3918 cas_lock_all_save(cp, flags);
3919 cas_reset(cp, 0);
3920 if (cp->cas_flags & CAS_FLAG_SATURN)
3921 cas_phy_powerdown(cp);
3922 cas_unlock_all_restore(cp, flags);
3923}
3924
3925static int cas_change_mtu(struct net_device *dev, int new_mtu)
3926{
3927 struct cas *cp = netdev_priv(dev);
3928
3929 if (new_mtu < CAS_MIN_MTU || new_mtu > CAS_MAX_MTU)
3930 return -EINVAL;
3931
3932 dev->mtu = new_mtu;
3933 if (!netif_running(dev) || !netif_device_present(dev))
3934 return 0;
3935
3936 /* let the reset task handle it */
3937#if 1
3938 atomic_inc(&cp->reset_task_pending);
3939 if ((cp->phy_type & CAS_PHY_SERDES)) {
3940 atomic_inc(&cp->reset_task_pending_all);
3941 } else {
3942 atomic_inc(&cp->reset_task_pending_mtu);
3943 }
3944 schedule_work(&cp->reset_task);
3945#else
3946 atomic_set(&cp->reset_task_pending, (cp->phy_type & CAS_PHY_SERDES) ?
3947 CAS_RESET_ALL : CAS_RESET_MTU);
3948 printk(KERN_ERR "reset called in cas_change_mtu\n");
3949 schedule_work(&cp->reset_task);
3950#endif
3951
3952 flush_scheduled_work();
3953 return 0;
3954}
3955
3956static void cas_clean_txd(struct cas *cp, int ring)
3957{
3958 struct cas_tx_desc *txd = cp->init_txds[ring];
3959 struct sk_buff *skb, **skbs = cp->tx_skbs[ring];
3960 u64 daddr, dlen;
3961 int i, size;
3962
3963 size = TX_DESC_RINGN_SIZE(ring);
3964 for (i = 0; i < size; i++) {
3965 int frag;
3966
3967 if (skbs[i] == NULL)
3968 continue;
3969
3970 skb = skbs[i];
3971 skbs[i] = NULL;
3972
3973 for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
3974 int ent = i & (size - 1);
3975
3976 /* first buffer is never a tiny buffer and so
3977 * needs to be unmapped.
3978 */
3979 daddr = le64_to_cpu(txd[ent].buffer);
3980 dlen = CAS_VAL(TX_DESC_BUFLEN,
3981 le64_to_cpu(txd[ent].control));
3982 pci_unmap_page(cp->pdev, daddr, dlen,
3983 PCI_DMA_TODEVICE);
3984
3985 if (frag != skb_shinfo(skb)->nr_frags) {
3986 i++;
3987
3988 /* next buffer might by a tiny buffer.
3989 * skip past it.
3990 */
3991 ent = i & (size - 1);
3992 if (cp->tx_tiny_use[ring][ent].used)
3993 i++;
3994 }
3995 }
3996 dev_kfree_skb_any(skb);
3997 }
3998
3999 /* zero out tiny buf usage */
4000 memset(cp->tx_tiny_use[ring], 0, size*sizeof(*cp->tx_tiny_use[ring]));
4001}
4002
4003/* freed on close */
4004static inline void cas_free_rx_desc(struct cas *cp, int ring)
4005{
4006 cas_page_t **page = cp->rx_pages[ring];
4007 int i, size;
4008
4009 size = RX_DESC_RINGN_SIZE(ring);
4010 for (i = 0; i < size; i++) {
4011 if (page[i]) {
4012 cas_page_free(cp, page[i]);
4013 page[i] = NULL;
4014 }
4015 }
4016}
4017
4018static void cas_free_rxds(struct cas *cp)
4019{
4020 int i;
4021
4022 for (i = 0; i < N_RX_DESC_RINGS; i++)
4023 cas_free_rx_desc(cp, i);
4024}
4025
4026/* Must be invoked under cp->lock. */
4027static void cas_clean_rings(struct cas *cp)
4028{
4029 int i;
4030
4031 /* need to clean all tx rings */
4032 memset(cp->tx_old, 0, sizeof(*cp->tx_old)*N_TX_RINGS);
4033 memset(cp->tx_new, 0, sizeof(*cp->tx_new)*N_TX_RINGS);
4034 for (i = 0; i < N_TX_RINGS; i++)
4035 cas_clean_txd(cp, i);
4036
4037 /* zero out init block */
4038 memset(cp->init_block, 0, sizeof(struct cas_init_block));
4039 cas_clean_rxds(cp);
4040 cas_clean_rxcs(cp);
4041}
4042
4043/* allocated on open */
4044static inline int cas_alloc_rx_desc(struct cas *cp, int ring)
4045{
4046 cas_page_t **page = cp->rx_pages[ring];
4047 int size, i = 0;
4048
4049 size = RX_DESC_RINGN_SIZE(ring);
4050 for (i = 0; i < size; i++) {
4051 if ((page[i] = cas_page_alloc(cp, GFP_KERNEL)) == NULL)
4052 return -1;
4053 }
4054 return 0;
4055}
4056
4057static int cas_alloc_rxds(struct cas *cp)
4058{
4059 int i;
4060
4061 for (i = 0; i < N_RX_DESC_RINGS; i++) {
4062 if (cas_alloc_rx_desc(cp, i) < 0) {
4063 cas_free_rxds(cp);
4064 return -1;
4065 }
4066 }
4067 return 0;
4068}
4069
4070static void cas_reset_task(void *data)
4071{
4072 struct cas *cp = (struct cas *) data;
4073#if 0
4074 int pending = atomic_read(&cp->reset_task_pending);
4075#else
4076 int pending_all = atomic_read(&cp->reset_task_pending_all);
4077 int pending_spare = atomic_read(&cp->reset_task_pending_spare);
4078 int pending_mtu = atomic_read(&cp->reset_task_pending_mtu);
4079
4080 if (pending_all == 0 && pending_spare == 0 && pending_mtu == 0) {
4081 /* We can have more tasks scheduled than actually
4082 * needed.
4083 */
4084 atomic_dec(&cp->reset_task_pending);
4085 return;
4086 }
4087#endif
4088 /* The link went down, we reset the ring, but keep
4089 * DMA stopped. Use this function for reset
4090 * on error as well.
4091 */
4092 if (cp->hw_running) {
4093 unsigned long flags;
4094
4095 /* Make sure we don't get interrupts or tx packets */
4096 netif_device_detach(cp->dev);
4097 cas_lock_all_save(cp, flags);
4098
4099 if (cp->opened) {
4100 /* We call cas_spare_recover when we call cas_open.
4101 * but we do not initialize the lists cas_spare_recover
4102 * uses until cas_open is called.
4103 */
4104 cas_spare_recover(cp, GFP_ATOMIC);
4105 }
4106#if 1
4107 /* test => only pending_spare set */
4108 if (!pending_all && !pending_mtu)
4109 goto done;
4110#else
4111 if (pending == CAS_RESET_SPARE)
4112 goto done;
4113#endif
4114 /* when pending == CAS_RESET_ALL, the following
4115 * call to cas_init_hw will restart auto negotiation.
4116 * Setting the second argument of cas_reset to
4117 * !(pending == CAS_RESET_ALL) will set this argument
4118 * to 1 (avoiding reinitializing the PHY for the normal
4119 * PCS case) when auto negotiation is not restarted.
4120 */
4121#if 1
4122 cas_reset(cp, !(pending_all > 0));
4123 if (cp->opened)
4124 cas_clean_rings(cp);
4125 cas_init_hw(cp, (pending_all > 0));
4126#else
4127 cas_reset(cp, !(pending == CAS_RESET_ALL));
4128 if (cp->opened)
4129 cas_clean_rings(cp);
4130 cas_init_hw(cp, pending == CAS_RESET_ALL);
4131#endif
4132
4133done:
4134 cas_unlock_all_restore(cp, flags);
4135 netif_device_attach(cp->dev);
4136 }
4137#if 1
4138 atomic_sub(pending_all, &cp->reset_task_pending_all);
4139 atomic_sub(pending_spare, &cp->reset_task_pending_spare);
4140 atomic_sub(pending_mtu, &cp->reset_task_pending_mtu);
4141 atomic_dec(&cp->reset_task_pending);
4142#else
4143 atomic_set(&cp->reset_task_pending, 0);
4144#endif
4145}
4146
4147static void cas_link_timer(unsigned long data)
4148{
4149 struct cas *cp = (struct cas *) data;
4150 int mask, pending = 0, reset = 0;
4151 unsigned long flags;
4152
4153 if (link_transition_timeout != 0 &&
4154 cp->link_transition_jiffies_valid &&
4155 ((jiffies - cp->link_transition_jiffies) >
4156 (link_transition_timeout))) {
4157 /* One-second counter so link-down workaround doesn't
4158 * cause resets to occur so fast as to fool the switch
4159 * into thinking the link is down.
4160 */
4161 cp->link_transition_jiffies_valid = 0;
4162 }
4163
4164 if (!cp->hw_running)
4165 return;
4166
4167 spin_lock_irqsave(&cp->lock, flags);
4168 cas_lock_tx(cp);
4169 cas_entropy_gather(cp);
4170
4171 /* If the link task is still pending, we just
4172 * reschedule the link timer
4173 */
4174#if 1
4175 if (atomic_read(&cp->reset_task_pending_all) ||
4176 atomic_read(&cp->reset_task_pending_spare) ||
4177 atomic_read(&cp->reset_task_pending_mtu))
4178 goto done;
4179#else
4180 if (atomic_read(&cp->reset_task_pending))
4181 goto done;
4182#endif
4183
4184 /* check for rx cleaning */
4185 if ((mask = (cp->cas_flags & CAS_FLAG_RXD_POST_MASK))) {
4186 int i, rmask;
4187
4188 for (i = 0; i < MAX_RX_DESC_RINGS; i++) {
4189 rmask = CAS_FLAG_RXD_POST(i);
4190 if ((mask & rmask) == 0)
4191 continue;
4192
4193 /* post_rxds will do a mod_timer */
4194 if (cas_post_rxds_ringN(cp, i, cp->rx_last[i]) < 0) {
4195 pending = 1;
4196 continue;
4197 }
4198 cp->cas_flags &= ~rmask;
4199 }
4200 }
4201
4202 if (CAS_PHY_MII(cp->phy_type)) {
4203 u16 bmsr;
4204 cas_mif_poll(cp, 0);
4205 bmsr = cas_phy_read(cp, MII_BMSR);
4206 /* WTZ: Solaris driver reads this twice, but that
4207 * may be due to the PCS case and the use of a
4208 * common implementation. Read it twice here to be
4209 * safe.
4210 */
4211 bmsr = cas_phy_read(cp, MII_BMSR);
4212 cas_mif_poll(cp, 1);
4213 readl(cp->regs + REG_MIF_STATUS); /* avoid dups */
4214 reset = cas_mii_link_check(cp, bmsr);
4215 } else {
4216 reset = cas_pcs_link_check(cp);
4217 }
4218
4219 if (reset)
4220 goto done;
4221
4222 /* check for tx state machine confusion */
4223 if ((readl(cp->regs + REG_MAC_TX_STATUS) & MAC_TX_FRAME_XMIT) == 0) {
4224 u32 val = readl(cp->regs + REG_MAC_STATE_MACHINE);
4225 u32 wptr, rptr;
4226 int tlm = CAS_VAL(MAC_SM_TLM, val);
4227
4228 if (((tlm == 0x5) || (tlm == 0x3)) &&
4229 (CAS_VAL(MAC_SM_ENCAP_SM, val) == 0)) {
4230 if (netif_msg_tx_err(cp))
4231 printk(KERN_DEBUG "%s: tx err: "
4232 "MAC_STATE[%08x]\n",
4233 cp->dev->name, val);
4234 reset = 1;
4235 goto done;
4236 }
4237
4238 val = readl(cp->regs + REG_TX_FIFO_PKT_CNT);
4239 wptr = readl(cp->regs + REG_TX_FIFO_WRITE_PTR);
4240 rptr = readl(cp->regs + REG_TX_FIFO_READ_PTR);
4241 if ((val == 0) && (wptr != rptr)) {
4242 if (netif_msg_tx_err(cp))
4243 printk(KERN_DEBUG "%s: tx err: "
4244 "TX_FIFO[%08x:%08x:%08x]\n",
4245 cp->dev->name, val, wptr, rptr);
4246 reset = 1;
4247 }
4248
4249 if (reset)
4250 cas_hard_reset(cp);
4251 }
4252
4253done:
4254 if (reset) {
4255#if 1
4256 atomic_inc(&cp->reset_task_pending);
4257 atomic_inc(&cp->reset_task_pending_all);
4258 schedule_work(&cp->reset_task);
4259#else
4260 atomic_set(&cp->reset_task_pending, CAS_RESET_ALL);
4261 printk(KERN_ERR "reset called in cas_link_timer\n");
4262 schedule_work(&cp->reset_task);
4263#endif
4264 }
4265
4266 if (!pending)
4267 mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT);
4268 cas_unlock_tx(cp);
4269 spin_unlock_irqrestore(&cp->lock, flags);
4270}
4271
4272/* tiny buffers are used to avoid target abort issues with
4273 * older cassini's
4274 */
4275static void cas_tx_tiny_free(struct cas *cp)
4276{
4277 struct pci_dev *pdev = cp->pdev;
4278 int i;
4279
4280 for (i = 0; i < N_TX_RINGS; i++) {
4281 if (!cp->tx_tiny_bufs[i])
4282 continue;
4283
4284 pci_free_consistent(pdev, TX_TINY_BUF_BLOCK,
4285 cp->tx_tiny_bufs[i],
4286 cp->tx_tiny_dvma[i]);
4287 cp->tx_tiny_bufs[i] = NULL;
4288 }
4289}
4290
4291static int cas_tx_tiny_alloc(struct cas *cp)
4292{
4293 struct pci_dev *pdev = cp->pdev;
4294 int i;
4295
4296 for (i = 0; i < N_TX_RINGS; i++) {
4297 cp->tx_tiny_bufs[i] =
4298 pci_alloc_consistent(pdev, TX_TINY_BUF_BLOCK,
4299 &cp->tx_tiny_dvma[i]);
4300 if (!cp->tx_tiny_bufs[i]) {
4301 cas_tx_tiny_free(cp);
4302 return -1;
4303 }
4304 }
4305 return 0;
4306}
4307
4308
4309static int cas_open(struct net_device *dev)
4310{
4311 struct cas *cp = netdev_priv(dev);
4312 int hw_was_up, err;
4313 unsigned long flags;
4314
Ingo Molnar758df692006-03-20 22:34:09 -08004315 mutex_lock(&cp->pm_mutex);
David S. Miller1f26dac2005-09-27 15:24:13 -07004316
4317 hw_was_up = cp->hw_running;
4318
Ingo Molnar758df692006-03-20 22:34:09 -08004319 /* The power-management mutex protects the hw_running
David S. Miller1f26dac2005-09-27 15:24:13 -07004320 * etc. state so it is safe to do this bit without cp->lock
4321 */
4322 if (!cp->hw_running) {
4323 /* Reset the chip */
4324 cas_lock_all_save(cp, flags);
4325 /* We set the second arg to cas_reset to zero
4326 * because cas_init_hw below will have its second
4327 * argument set to non-zero, which will force
4328 * autonegotiation to start.
4329 */
4330 cas_reset(cp, 0);
4331 cp->hw_running = 1;
4332 cas_unlock_all_restore(cp, flags);
4333 }
4334
4335 if (cas_tx_tiny_alloc(cp) < 0)
4336 return -ENOMEM;
4337
4338 /* alloc rx descriptors */
4339 err = -ENOMEM;
4340 if (cas_alloc_rxds(cp) < 0)
4341 goto err_tx_tiny;
4342
4343 /* allocate spares */
4344 cas_spare_init(cp);
4345 cas_spare_recover(cp, GFP_KERNEL);
4346
4347 /* We can now request the interrupt as we know it's masked
4348 * on the controller. cassini+ has up to 4 interrupts
4349 * that can be used, but you need to do explicit pci interrupt
4350 * mapping to expose them
4351 */
4352 if (request_irq(cp->pdev->irq, cas_interrupt,
4353 SA_SHIRQ, dev->name, (void *) dev)) {
4354 printk(KERN_ERR "%s: failed to request irq !\n",
4355 cp->dev->name);
4356 err = -EAGAIN;
4357 goto err_spare;
4358 }
4359
4360 /* init hw */
4361 cas_lock_all_save(cp, flags);
4362 cas_clean_rings(cp);
4363 cas_init_hw(cp, !hw_was_up);
4364 cp->opened = 1;
4365 cas_unlock_all_restore(cp, flags);
4366
4367 netif_start_queue(dev);
Ingo Molnar758df692006-03-20 22:34:09 -08004368 mutex_unlock(&cp->pm_mutex);
David S. Miller1f26dac2005-09-27 15:24:13 -07004369 return 0;
4370
4371err_spare:
4372 cas_spare_free(cp);
4373 cas_free_rxds(cp);
4374err_tx_tiny:
4375 cas_tx_tiny_free(cp);
Ingo Molnar758df692006-03-20 22:34:09 -08004376 mutex_unlock(&cp->pm_mutex);
David S. Miller1f26dac2005-09-27 15:24:13 -07004377 return err;
4378}
4379
4380static int cas_close(struct net_device *dev)
4381{
4382 unsigned long flags;
4383 struct cas *cp = netdev_priv(dev);
4384
4385 /* Make sure we don't get distracted by suspend/resume */
Ingo Molnar758df692006-03-20 22:34:09 -08004386 mutex_lock(&cp->pm_mutex);
David S. Miller1f26dac2005-09-27 15:24:13 -07004387
4388 netif_stop_queue(dev);
4389
4390 /* Stop traffic, mark us closed */
4391 cas_lock_all_save(cp, flags);
4392 cp->opened = 0;
4393 cas_reset(cp, 0);
4394 cas_phy_init(cp);
4395 cas_begin_auto_negotiation(cp, NULL);
4396 cas_clean_rings(cp);
4397 cas_unlock_all_restore(cp, flags);
4398
4399 free_irq(cp->pdev->irq, (void *) dev);
4400 cas_spare_free(cp);
4401 cas_free_rxds(cp);
4402 cas_tx_tiny_free(cp);
Ingo Molnar758df692006-03-20 22:34:09 -08004403 mutex_unlock(&cp->pm_mutex);
David S. Miller1f26dac2005-09-27 15:24:13 -07004404 return 0;
4405}
4406
4407static struct {
4408 const char name[ETH_GSTRING_LEN];
4409} ethtool_cassini_statnames[] = {
4410 {"collisions"},
4411 {"rx_bytes"},
4412 {"rx_crc_errors"},
4413 {"rx_dropped"},
4414 {"rx_errors"},
4415 {"rx_fifo_errors"},
4416 {"rx_frame_errors"},
4417 {"rx_length_errors"},
4418 {"rx_over_errors"},
4419 {"rx_packets"},
4420 {"tx_aborted_errors"},
4421 {"tx_bytes"},
4422 {"tx_dropped"},
4423 {"tx_errors"},
4424 {"tx_fifo_errors"},
4425 {"tx_packets"}
4426};
4427#define CAS_NUM_STAT_KEYS (sizeof(ethtool_cassini_statnames)/ETH_GSTRING_LEN)
4428
4429static struct {
4430 const int offsets; /* neg. values for 2nd arg to cas_read_phy */
4431} ethtool_register_table[] = {
4432 {-MII_BMSR},
4433 {-MII_BMCR},
4434 {REG_CAWR},
4435 {REG_INF_BURST},
4436 {REG_BIM_CFG},
4437 {REG_RX_CFG},
4438 {REG_HP_CFG},
4439 {REG_MAC_TX_CFG},
4440 {REG_MAC_RX_CFG},
4441 {REG_MAC_CTRL_CFG},
4442 {REG_MAC_XIF_CFG},
4443 {REG_MIF_CFG},
4444 {REG_PCS_CFG},
4445 {REG_SATURN_PCFG},
4446 {REG_PCS_MII_STATUS},
4447 {REG_PCS_STATE_MACHINE},
4448 {REG_MAC_COLL_EXCESS},
4449 {REG_MAC_COLL_LATE}
4450};
4451#define CAS_REG_LEN (sizeof(ethtool_register_table)/sizeof(int))
4452#define CAS_MAX_REGS (sizeof (u32)*CAS_REG_LEN)
4453
Al Viroa232f762005-10-03 14:01:37 -07004454static void cas_read_regs(struct cas *cp, u8 *ptr, int len)
David S. Miller1f26dac2005-09-27 15:24:13 -07004455{
David S. Miller1f26dac2005-09-27 15:24:13 -07004456 u8 *p;
4457 int i;
4458 unsigned long flags;
4459
David S. Miller1f26dac2005-09-27 15:24:13 -07004460 spin_lock_irqsave(&cp->lock, flags);
Al Viroa232f762005-10-03 14:01:37 -07004461 for (i = 0, p = ptr; i < len ; i ++, p += sizeof(u32)) {
David S. Miller1f26dac2005-09-27 15:24:13 -07004462 u16 hval;
4463 u32 val;
4464 if (ethtool_register_table[i].offsets < 0) {
4465 hval = cas_phy_read(cp,
4466 -ethtool_register_table[i].offsets);
4467 val = hval;
4468 } else {
4469 val= readl(cp->regs+ethtool_register_table[i].offsets);
4470 }
4471 memcpy(p, (u8 *)&val, sizeof(u32));
4472 }
4473 spin_unlock_irqrestore(&cp->lock, flags);
David S. Miller1f26dac2005-09-27 15:24:13 -07004474}
4475
4476static struct net_device_stats *cas_get_stats(struct net_device *dev)
4477{
4478 struct cas *cp = netdev_priv(dev);
4479 struct net_device_stats *stats = cp->net_stats;
4480 unsigned long flags;
4481 int i;
4482 unsigned long tmp;
4483
4484 /* we collate all of the stats into net_stats[N_TX_RING] */
4485 if (!cp->hw_running)
4486 return stats + N_TX_RINGS;
4487
4488 /* collect outstanding stats */
4489 /* WTZ: the Cassini spec gives these as 16 bit counters but
4490 * stored in 32-bit words. Added a mask of 0xffff to be safe,
4491 * in case the chip somehow puts any garbage in the other bits.
4492 * Also, counter usage didn't seem to mach what Adrian did
4493 * in the parts of the code that set these quantities. Made
4494 * that consistent.
4495 */
4496 spin_lock_irqsave(&cp->stat_lock[N_TX_RINGS], flags);
4497 stats[N_TX_RINGS].rx_crc_errors +=
4498 readl(cp->regs + REG_MAC_FCS_ERR) & 0xffff;
4499 stats[N_TX_RINGS].rx_frame_errors +=
4500 readl(cp->regs + REG_MAC_ALIGN_ERR) &0xffff;
4501 stats[N_TX_RINGS].rx_length_errors +=
4502 readl(cp->regs + REG_MAC_LEN_ERR) & 0xffff;
4503#if 1
4504 tmp = (readl(cp->regs + REG_MAC_COLL_EXCESS) & 0xffff) +
4505 (readl(cp->regs + REG_MAC_COLL_LATE) & 0xffff);
4506 stats[N_TX_RINGS].tx_aborted_errors += tmp;
4507 stats[N_TX_RINGS].collisions +=
4508 tmp + (readl(cp->regs + REG_MAC_COLL_NORMAL) & 0xffff);
4509#else
4510 stats[N_TX_RINGS].tx_aborted_errors +=
4511 readl(cp->regs + REG_MAC_COLL_EXCESS);
4512 stats[N_TX_RINGS].collisions += readl(cp->regs + REG_MAC_COLL_EXCESS) +
4513 readl(cp->regs + REG_MAC_COLL_LATE);
4514#endif
4515 cas_clear_mac_err(cp);
4516
4517 /* saved bits that are unique to ring 0 */
4518 spin_lock(&cp->stat_lock[0]);
4519 stats[N_TX_RINGS].collisions += stats[0].collisions;
4520 stats[N_TX_RINGS].rx_over_errors += stats[0].rx_over_errors;
4521 stats[N_TX_RINGS].rx_frame_errors += stats[0].rx_frame_errors;
4522 stats[N_TX_RINGS].rx_fifo_errors += stats[0].rx_fifo_errors;
4523 stats[N_TX_RINGS].tx_aborted_errors += stats[0].tx_aborted_errors;
4524 stats[N_TX_RINGS].tx_fifo_errors += stats[0].tx_fifo_errors;
4525 spin_unlock(&cp->stat_lock[0]);
4526
4527 for (i = 0; i < N_TX_RINGS; i++) {
4528 spin_lock(&cp->stat_lock[i]);
4529 stats[N_TX_RINGS].rx_length_errors +=
4530 stats[i].rx_length_errors;
4531 stats[N_TX_RINGS].rx_crc_errors += stats[i].rx_crc_errors;
4532 stats[N_TX_RINGS].rx_packets += stats[i].rx_packets;
4533 stats[N_TX_RINGS].tx_packets += stats[i].tx_packets;
4534 stats[N_TX_RINGS].rx_bytes += stats[i].rx_bytes;
4535 stats[N_TX_RINGS].tx_bytes += stats[i].tx_bytes;
4536 stats[N_TX_RINGS].rx_errors += stats[i].rx_errors;
4537 stats[N_TX_RINGS].tx_errors += stats[i].tx_errors;
4538 stats[N_TX_RINGS].rx_dropped += stats[i].rx_dropped;
4539 stats[N_TX_RINGS].tx_dropped += stats[i].tx_dropped;
4540 memset(stats + i, 0, sizeof(struct net_device_stats));
4541 spin_unlock(&cp->stat_lock[i]);
4542 }
4543 spin_unlock_irqrestore(&cp->stat_lock[N_TX_RINGS], flags);
4544 return stats + N_TX_RINGS;
4545}
4546
4547
4548static void cas_set_multicast(struct net_device *dev)
4549{
4550 struct cas *cp = netdev_priv(dev);
4551 u32 rxcfg, rxcfg_new;
4552 unsigned long flags;
4553 int limit = STOP_TRIES;
4554
4555 if (!cp->hw_running)
4556 return;
4557
4558 spin_lock_irqsave(&cp->lock, flags);
4559 rxcfg = readl(cp->regs + REG_MAC_RX_CFG);
4560
4561 /* disable RX MAC and wait for completion */
4562 writel(rxcfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
4563 while (readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_EN) {
4564 if (!limit--)
4565 break;
4566 udelay(10);
4567 }
4568
4569 /* disable hash filter and wait for completion */
4570 limit = STOP_TRIES;
4571 rxcfg &= ~(MAC_RX_CFG_PROMISC_EN | MAC_RX_CFG_HASH_FILTER_EN);
4572 writel(rxcfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
4573 while (readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_HASH_FILTER_EN) {
4574 if (!limit--)
4575 break;
4576 udelay(10);
4577 }
4578
4579 /* program hash filters */
4580 cp->mac_rx_cfg = rxcfg_new = cas_setup_multicast(cp);
4581 rxcfg |= rxcfg_new;
4582 writel(rxcfg, cp->regs + REG_MAC_RX_CFG);
4583 spin_unlock_irqrestore(&cp->lock, flags);
4584}
4585
Al Viroa232f762005-10-03 14:01:37 -07004586static void cas_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
4587{
4588 struct cas *cp = netdev_priv(dev);
4589 strncpy(info->driver, DRV_MODULE_NAME, ETHTOOL_BUSINFO_LEN);
4590 strncpy(info->version, DRV_MODULE_VERSION, ETHTOOL_BUSINFO_LEN);
4591 info->fw_version[0] = '\0';
4592 strncpy(info->bus_info, pci_name(cp->pdev), ETHTOOL_BUSINFO_LEN);
4593 info->regdump_len = cp->casreg_len < CAS_MAX_REGS ?
4594 cp->casreg_len : CAS_MAX_REGS;
4595 info->n_stats = CAS_NUM_STAT_KEYS;
4596}
4597
4598static int cas_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
David S. Miller1f26dac2005-09-27 15:24:13 -07004599{
4600 struct cas *cp = netdev_priv(dev);
4601 u16 bmcr;
4602 int full_duplex, speed, pause;
David S. Miller1f26dac2005-09-27 15:24:13 -07004603 unsigned long flags;
4604 enum link_state linkstate = link_up;
4605
Al Viroa232f762005-10-03 14:01:37 -07004606 cmd->advertising = 0;
4607 cmd->supported = SUPPORTED_Autoneg;
4608 if (cp->cas_flags & CAS_FLAG_1000MB_CAP) {
4609 cmd->supported |= SUPPORTED_1000baseT_Full;
4610 cmd->advertising |= ADVERTISED_1000baseT_Full;
David S. Miller1f26dac2005-09-27 15:24:13 -07004611 }
4612
Al Viroa232f762005-10-03 14:01:37 -07004613 /* Record PHY settings if HW is on. */
4614 spin_lock_irqsave(&cp->lock, flags);
4615 bmcr = 0;
4616 linkstate = cp->lstate;
4617 if (CAS_PHY_MII(cp->phy_type)) {
4618 cmd->port = PORT_MII;
4619 cmd->transceiver = (cp->cas_flags & CAS_FLAG_SATURN) ?
4620 XCVR_INTERNAL : XCVR_EXTERNAL;
4621 cmd->phy_address = cp->phy_addr;
4622 cmd->advertising |= ADVERTISED_TP | ADVERTISED_MII |
4623 ADVERTISED_10baseT_Half |
4624 ADVERTISED_10baseT_Full |
4625 ADVERTISED_100baseT_Half |
4626 ADVERTISED_100baseT_Full;
4627
4628 cmd->supported |=
4629 (SUPPORTED_10baseT_Half |
4630 SUPPORTED_10baseT_Full |
4631 SUPPORTED_100baseT_Half |
4632 SUPPORTED_100baseT_Full |
4633 SUPPORTED_TP | SUPPORTED_MII);
4634
4635 if (cp->hw_running) {
4636 cas_mif_poll(cp, 0);
4637 bmcr = cas_phy_read(cp, MII_BMCR);
4638 cas_read_mii_link_mode(cp, &full_duplex,
4639 &speed, &pause);
4640 cas_mif_poll(cp, 1);
David S. Miller1f26dac2005-09-27 15:24:13 -07004641 }
4642
Al Viroa232f762005-10-03 14:01:37 -07004643 } else {
4644 cmd->port = PORT_FIBRE;
4645 cmd->transceiver = XCVR_INTERNAL;
4646 cmd->phy_address = 0;
4647 cmd->supported |= SUPPORTED_FIBRE;
4648 cmd->advertising |= ADVERTISED_FIBRE;
David S. Miller1f26dac2005-09-27 15:24:13 -07004649
Al Viroa232f762005-10-03 14:01:37 -07004650 if (cp->hw_running) {
4651 /* pcs uses the same bits as mii */
4652 bmcr = readl(cp->regs + REG_PCS_MII_CTRL);
4653 cas_read_pcs_link_mode(cp, &full_duplex,
4654 &speed, &pause);
David S. Miller1f26dac2005-09-27 15:24:13 -07004655 }
Al Viroa232f762005-10-03 14:01:37 -07004656 }
4657 spin_unlock_irqrestore(&cp->lock, flags);
David S. Miller1f26dac2005-09-27 15:24:13 -07004658
Al Viroa232f762005-10-03 14:01:37 -07004659 if (bmcr & BMCR_ANENABLE) {
4660 cmd->advertising |= ADVERTISED_Autoneg;
4661 cmd->autoneg = AUTONEG_ENABLE;
4662 cmd->speed = ((speed == 10) ?
4663 SPEED_10 :
4664 ((speed == 1000) ?
4665 SPEED_1000 : SPEED_100));
4666 cmd->duplex = full_duplex ? DUPLEX_FULL : DUPLEX_HALF;
4667 } else {
4668 cmd->autoneg = AUTONEG_DISABLE;
4669 cmd->speed =
4670 (bmcr & CAS_BMCR_SPEED1000) ?
4671 SPEED_1000 :
4672 ((bmcr & BMCR_SPEED100) ? SPEED_100:
4673 SPEED_10);
4674 cmd->duplex =
4675 (bmcr & BMCR_FULLDPLX) ?
4676 DUPLEX_FULL : DUPLEX_HALF;
4677 }
4678 if (linkstate != link_up) {
4679 /* Force these to "unknown" if the link is not up and
4680 * autonogotiation in enabled. We can set the link
4681 * speed to 0, but not cmd->duplex,
4682 * because its legal values are 0 and 1. Ethtool will
4683 * print the value reported in parentheses after the
4684 * word "Unknown" for unrecognized values.
4685 *
4686 * If in forced mode, we report the speed and duplex
4687 * settings that we configured.
4688 */
4689 if (cp->link_cntl & BMCR_ANENABLE) {
4690 cmd->speed = 0;
4691 cmd->duplex = 0xff;
David S. Miller1f26dac2005-09-27 15:24:13 -07004692 } else {
Al Viroa232f762005-10-03 14:01:37 -07004693 cmd->speed = SPEED_10;
4694 if (cp->link_cntl & BMCR_SPEED100) {
4695 cmd->speed = SPEED_100;
4696 } else if (cp->link_cntl & CAS_BMCR_SPEED1000) {
4697 cmd->speed = SPEED_1000;
4698 }
4699 cmd->duplex = (cp->link_cntl & BMCR_FULLDPLX)?
David S. Miller1f26dac2005-09-27 15:24:13 -07004700 DUPLEX_FULL : DUPLEX_HALF;
4701 }
David S. Miller1f26dac2005-09-27 15:24:13 -07004702 }
Al Viroa232f762005-10-03 14:01:37 -07004703 return 0;
David S. Miller1f26dac2005-09-27 15:24:13 -07004704}
4705
Al Viroa232f762005-10-03 14:01:37 -07004706static int cas_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
4707{
4708 struct cas *cp = netdev_priv(dev);
4709 unsigned long flags;
4710
4711 /* Verify the settings we care about. */
4712 if (cmd->autoneg != AUTONEG_ENABLE &&
4713 cmd->autoneg != AUTONEG_DISABLE)
4714 return -EINVAL;
4715
4716 if (cmd->autoneg == AUTONEG_DISABLE &&
4717 ((cmd->speed != SPEED_1000 &&
4718 cmd->speed != SPEED_100 &&
4719 cmd->speed != SPEED_10) ||
4720 (cmd->duplex != DUPLEX_HALF &&
4721 cmd->duplex != DUPLEX_FULL)))
4722 return -EINVAL;
4723
4724 /* Apply settings and restart link process. */
4725 spin_lock_irqsave(&cp->lock, flags);
4726 cas_begin_auto_negotiation(cp, cmd);
4727 spin_unlock_irqrestore(&cp->lock, flags);
4728 return 0;
4729}
4730
4731static int cas_nway_reset(struct net_device *dev)
4732{
4733 struct cas *cp = netdev_priv(dev);
4734 unsigned long flags;
4735
4736 if ((cp->link_cntl & BMCR_ANENABLE) == 0)
4737 return -EINVAL;
4738
4739 /* Restart link process. */
4740 spin_lock_irqsave(&cp->lock, flags);
4741 cas_begin_auto_negotiation(cp, NULL);
4742 spin_unlock_irqrestore(&cp->lock, flags);
4743
4744 return 0;
4745}
4746
4747static u32 cas_get_link(struct net_device *dev)
4748{
4749 struct cas *cp = netdev_priv(dev);
4750 return cp->lstate == link_up;
4751}
4752
4753static u32 cas_get_msglevel(struct net_device *dev)
4754{
4755 struct cas *cp = netdev_priv(dev);
4756 return cp->msg_enable;
4757}
4758
4759static void cas_set_msglevel(struct net_device *dev, u32 value)
4760{
4761 struct cas *cp = netdev_priv(dev);
4762 cp->msg_enable = value;
4763}
4764
4765static int cas_get_regs_len(struct net_device *dev)
4766{
4767 struct cas *cp = netdev_priv(dev);
4768 return cp->casreg_len < CAS_MAX_REGS ? cp->casreg_len: CAS_MAX_REGS;
4769}
4770
4771static void cas_get_regs(struct net_device *dev, struct ethtool_regs *regs,
4772 void *p)
4773{
4774 struct cas *cp = netdev_priv(dev);
4775 regs->version = 0;
4776 /* cas_read_regs handles locks (cp->lock). */
4777 cas_read_regs(cp, p, regs->len / sizeof(u32));
4778}
4779
4780static int cas_get_stats_count(struct net_device *dev)
4781{
4782 return CAS_NUM_STAT_KEYS;
4783}
4784
4785static void cas_get_strings(struct net_device *dev, u32 stringset, u8 *data)
4786{
4787 memcpy(data, &ethtool_cassini_statnames,
4788 CAS_NUM_STAT_KEYS * ETH_GSTRING_LEN);
4789}
4790
4791static void cas_get_ethtool_stats(struct net_device *dev,
4792 struct ethtool_stats *estats, u64 *data)
4793{
4794 struct cas *cp = netdev_priv(dev);
4795 struct net_device_stats *stats = cas_get_stats(cp->dev);
4796 int i = 0;
4797 data[i++] = stats->collisions;
4798 data[i++] = stats->rx_bytes;
4799 data[i++] = stats->rx_crc_errors;
4800 data[i++] = stats->rx_dropped;
4801 data[i++] = stats->rx_errors;
4802 data[i++] = stats->rx_fifo_errors;
4803 data[i++] = stats->rx_frame_errors;
4804 data[i++] = stats->rx_length_errors;
4805 data[i++] = stats->rx_over_errors;
4806 data[i++] = stats->rx_packets;
4807 data[i++] = stats->tx_aborted_errors;
4808 data[i++] = stats->tx_bytes;
4809 data[i++] = stats->tx_dropped;
4810 data[i++] = stats->tx_errors;
4811 data[i++] = stats->tx_fifo_errors;
4812 data[i++] = stats->tx_packets;
4813 BUG_ON(i != CAS_NUM_STAT_KEYS);
4814}
4815
4816static struct ethtool_ops cas_ethtool_ops = {
4817 .get_drvinfo = cas_get_drvinfo,
4818 .get_settings = cas_get_settings,
4819 .set_settings = cas_set_settings,
4820 .nway_reset = cas_nway_reset,
4821 .get_link = cas_get_link,
4822 .get_msglevel = cas_get_msglevel,
4823 .set_msglevel = cas_set_msglevel,
4824 .get_regs_len = cas_get_regs_len,
4825 .get_regs = cas_get_regs,
4826 .get_stats_count = cas_get_stats_count,
4827 .get_strings = cas_get_strings,
4828 .get_ethtool_stats = cas_get_ethtool_stats,
4829};
4830
David S. Miller1f26dac2005-09-27 15:24:13 -07004831static int cas_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
4832{
4833 struct cas *cp = netdev_priv(dev);
Al Viro46d70312005-09-30 03:21:45 +01004834 struct mii_ioctl_data *data = if_mii(ifr);
David S. Miller1f26dac2005-09-27 15:24:13 -07004835 unsigned long flags;
4836 int rc = -EOPNOTSUPP;
4837
Ingo Molnar758df692006-03-20 22:34:09 -08004838 /* Hold the PM mutex while doing ioctl's or we may collide
David S. Miller1f26dac2005-09-27 15:24:13 -07004839 * with open/close and power management and oops.
4840 */
Ingo Molnar758df692006-03-20 22:34:09 -08004841 mutex_lock(&cp->pm_mutex);
David S. Miller1f26dac2005-09-27 15:24:13 -07004842 switch (cmd) {
David S. Miller1f26dac2005-09-27 15:24:13 -07004843 case SIOCGMIIPHY: /* Get address of MII PHY in use. */
4844 data->phy_id = cp->phy_addr;
4845 /* Fallthrough... */
4846
4847 case SIOCGMIIREG: /* Read MII PHY register. */
4848 spin_lock_irqsave(&cp->lock, flags);
4849 cas_mif_poll(cp, 0);
4850 data->val_out = cas_phy_read(cp, data->reg_num & 0x1f);
4851 cas_mif_poll(cp, 1);
4852 spin_unlock_irqrestore(&cp->lock, flags);
4853 rc = 0;
4854 break;
4855
4856 case SIOCSMIIREG: /* Write MII PHY register. */
4857 if (!capable(CAP_NET_ADMIN)) {
4858 rc = -EPERM;
4859 break;
4860 }
4861 spin_lock_irqsave(&cp->lock, flags);
4862 cas_mif_poll(cp, 0);
4863 rc = cas_phy_write(cp, data->reg_num & 0x1f, data->val_in);
4864 cas_mif_poll(cp, 1);
4865 spin_unlock_irqrestore(&cp->lock, flags);
4866 break;
4867 default:
4868 break;
4869 };
4870
Ingo Molnar758df692006-03-20 22:34:09 -08004871 mutex_unlock(&cp->pm_mutex);
David S. Miller1f26dac2005-09-27 15:24:13 -07004872 return rc;
4873}
4874
4875static int __devinit cas_init_one(struct pci_dev *pdev,
4876 const struct pci_device_id *ent)
4877{
4878 static int cas_version_printed = 0;
Marc Zyngier18e37f22006-04-13 11:38:20 +02004879 unsigned long casreg_len;
David S. Miller1f26dac2005-09-27 15:24:13 -07004880 struct net_device *dev;
4881 struct cas *cp;
4882 int i, err, pci_using_dac;
4883 u16 pci_cmd;
4884 u8 orig_cacheline_size = 0, cas_cacheline_size = 0;
4885
4886 if (cas_version_printed++ == 0)
4887 printk(KERN_INFO "%s", version);
4888
4889 err = pci_enable_device(pdev);
4890 if (err) {
4891 printk(KERN_ERR PFX "Cannot enable PCI device, "
4892 "aborting.\n");
4893 return err;
4894 }
4895
4896 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
4897 printk(KERN_ERR PFX "Cannot find proper PCI device "
4898 "base address, aborting.\n");
4899 err = -ENODEV;
4900 goto err_out_disable_pdev;
4901 }
4902
4903 dev = alloc_etherdev(sizeof(*cp));
4904 if (!dev) {
4905 printk(KERN_ERR PFX "Etherdev alloc failed, aborting.\n");
4906 err = -ENOMEM;
4907 goto err_out_disable_pdev;
4908 }
4909 SET_MODULE_OWNER(dev);
4910 SET_NETDEV_DEV(dev, &pdev->dev);
4911
4912 err = pci_request_regions(pdev, dev->name);
4913 if (err) {
4914 printk(KERN_ERR PFX "Cannot obtain PCI resources, "
4915 "aborting.\n");
4916 goto err_out_free_netdev;
4917 }
4918 pci_set_master(pdev);
4919
4920 /* we must always turn on parity response or else parity
4921 * doesn't get generated properly. disable SERR/PERR as well.
4922 * in addition, we want to turn MWI on.
4923 */
4924 pci_read_config_word(pdev, PCI_COMMAND, &pci_cmd);
4925 pci_cmd &= ~PCI_COMMAND_SERR;
4926 pci_cmd |= PCI_COMMAND_PARITY;
4927 pci_write_config_word(pdev, PCI_COMMAND, pci_cmd);
4928 pci_set_mwi(pdev);
4929 /*
4930 * On some architectures, the default cache line size set
4931 * by pci_set_mwi reduces perforamnce. We have to increase
4932 * it for this case. To start, we'll print some configuration
4933 * data.
4934 */
4935#if 1
4936 pci_read_config_byte(pdev, PCI_CACHE_LINE_SIZE,
4937 &orig_cacheline_size);
4938 if (orig_cacheline_size < CAS_PREF_CACHELINE_SIZE) {
4939 cas_cacheline_size =
4940 (CAS_PREF_CACHELINE_SIZE < SMP_CACHE_BYTES) ?
4941 CAS_PREF_CACHELINE_SIZE : SMP_CACHE_BYTES;
4942 if (pci_write_config_byte(pdev,
4943 PCI_CACHE_LINE_SIZE,
4944 cas_cacheline_size)) {
4945 printk(KERN_ERR PFX "Could not set PCI cache "
4946 "line size\n");
4947 goto err_write_cacheline;
4948 }
4949 }
4950#endif
4951
4952
4953 /* Configure DMA attributes. */
4954 if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
4955 pci_using_dac = 1;
4956 err = pci_set_consistent_dma_mask(pdev,
4957 DMA_64BIT_MASK);
4958 if (err < 0) {
4959 printk(KERN_ERR PFX "Unable to obtain 64-bit DMA "
4960 "for consistent allocations\n");
4961 goto err_out_free_res;
4962 }
4963
4964 } else {
4965 err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
4966 if (err) {
4967 printk(KERN_ERR PFX "No usable DMA configuration, "
4968 "aborting.\n");
4969 goto err_out_free_res;
4970 }
4971 pci_using_dac = 0;
4972 }
4973
David S. Miller1f26dac2005-09-27 15:24:13 -07004974 casreg_len = pci_resource_len(pdev, 0);
4975
4976 cp = netdev_priv(dev);
4977 cp->pdev = pdev;
4978#if 1
4979 /* A value of 0 indicates we never explicitly set it */
4980 cp->orig_cacheline_size = cas_cacheline_size ? orig_cacheline_size: 0;
4981#endif
4982 cp->dev = dev;
4983 cp->msg_enable = (cassini_debug < 0) ? CAS_DEF_MSG_ENABLE :
4984 cassini_debug;
4985
4986 cp->link_transition = LINK_TRANSITION_UNKNOWN;
4987 cp->link_transition_jiffies_valid = 0;
4988
4989 spin_lock_init(&cp->lock);
4990 spin_lock_init(&cp->rx_inuse_lock);
4991 spin_lock_init(&cp->rx_spare_lock);
4992 for (i = 0; i < N_TX_RINGS; i++) {
4993 spin_lock_init(&cp->stat_lock[i]);
4994 spin_lock_init(&cp->tx_lock[i]);
4995 }
4996 spin_lock_init(&cp->stat_lock[N_TX_RINGS]);
Ingo Molnar758df692006-03-20 22:34:09 -08004997 mutex_init(&cp->pm_mutex);
David S. Miller1f26dac2005-09-27 15:24:13 -07004998
4999 init_timer(&cp->link_timer);
5000 cp->link_timer.function = cas_link_timer;
5001 cp->link_timer.data = (unsigned long) cp;
5002
5003#if 1
5004 /* Just in case the implementation of atomic operations
5005 * change so that an explicit initialization is necessary.
5006 */
5007 atomic_set(&cp->reset_task_pending, 0);
5008 atomic_set(&cp->reset_task_pending_all, 0);
5009 atomic_set(&cp->reset_task_pending_spare, 0);
5010 atomic_set(&cp->reset_task_pending_mtu, 0);
5011#endif
5012 INIT_WORK(&cp->reset_task, cas_reset_task, cp);
5013
5014 /* Default link parameters */
5015 if (link_mode >= 0 && link_mode <= 6)
5016 cp->link_cntl = link_modes[link_mode];
5017 else
5018 cp->link_cntl = BMCR_ANENABLE;
5019 cp->lstate = link_down;
5020 cp->link_transition = LINK_TRANSITION_LINK_DOWN;
5021 netif_carrier_off(cp->dev);
5022 cp->timer_ticks = 0;
5023
5024 /* give us access to cassini registers */
Marc Zyngier18e37f22006-04-13 11:38:20 +02005025 cp->regs = pci_iomap(pdev, 0, casreg_len);
David S. Miller1f26dac2005-09-27 15:24:13 -07005026 if (cp->regs == 0UL) {
5027 printk(KERN_ERR PFX "Cannot map device registers, "
5028 "aborting.\n");
5029 goto err_out_free_res;
5030 }
5031 cp->casreg_len = casreg_len;
5032
5033 pci_save_state(pdev);
5034 cas_check_pci_invariants(cp);
5035 cas_hard_reset(cp);
5036 cas_reset(cp, 0);
5037 if (cas_check_invariants(cp))
5038 goto err_out_iounmap;
5039
5040 cp->init_block = (struct cas_init_block *)
5041 pci_alloc_consistent(pdev, sizeof(struct cas_init_block),
5042 &cp->block_dvma);
5043 if (!cp->init_block) {
5044 printk(KERN_ERR PFX "Cannot allocate init block, "
5045 "aborting.\n");
5046 goto err_out_iounmap;
5047 }
5048
5049 for (i = 0; i < N_TX_RINGS; i++)
5050 cp->init_txds[i] = cp->init_block->txds[i];
5051
5052 for (i = 0; i < N_RX_DESC_RINGS; i++)
5053 cp->init_rxds[i] = cp->init_block->rxds[i];
5054
5055 for (i = 0; i < N_RX_COMP_RINGS; i++)
5056 cp->init_rxcs[i] = cp->init_block->rxcs[i];
5057
5058 for (i = 0; i < N_RX_FLOWS; i++)
5059 skb_queue_head_init(&cp->rx_flows[i]);
5060
5061 dev->open = cas_open;
5062 dev->stop = cas_close;
5063 dev->hard_start_xmit = cas_start_xmit;
5064 dev->get_stats = cas_get_stats;
5065 dev->set_multicast_list = cas_set_multicast;
5066 dev->do_ioctl = cas_ioctl;
Al Viroa232f762005-10-03 14:01:37 -07005067 dev->ethtool_ops = &cas_ethtool_ops;
David S. Miller1f26dac2005-09-27 15:24:13 -07005068 dev->tx_timeout = cas_tx_timeout;
5069 dev->watchdog_timeo = CAS_TX_TIMEOUT;
5070 dev->change_mtu = cas_change_mtu;
5071#ifdef USE_NAPI
5072 dev->poll = cas_poll;
5073 dev->weight = 64;
5074#endif
5075#ifdef CONFIG_NET_POLL_CONTROLLER
5076 dev->poll_controller = cas_netpoll;
5077#endif
5078 dev->irq = pdev->irq;
5079 dev->dma = 0;
5080
5081 /* Cassini features. */
5082 if ((cp->cas_flags & CAS_FLAG_NO_HW_CSUM) == 0)
5083 dev->features |= NETIF_F_HW_CSUM | NETIF_F_SG;
5084
5085 if (pci_using_dac)
5086 dev->features |= NETIF_F_HIGHDMA;
5087
5088 if (register_netdev(dev)) {
5089 printk(KERN_ERR PFX "Cannot register net device, "
5090 "aborting.\n");
5091 goto err_out_free_consistent;
5092 }
5093
5094 i = readl(cp->regs + REG_BIM_CFG);
5095 printk(KERN_INFO "%s: Sun Cassini%s (%sbit/%sMHz PCI/%s) "
5096 "Ethernet[%d] ", dev->name,
5097 (cp->cas_flags & CAS_FLAG_REG_PLUS) ? "+" : "",
5098 (i & BIM_CFG_32BIT) ? "32" : "64",
5099 (i & BIM_CFG_66MHZ) ? "66" : "33",
5100 (cp->phy_type == CAS_PHY_SERDES) ? "Fi" : "Cu", pdev->irq);
5101
5102 for (i = 0; i < 6; i++)
5103 printk("%2.2x%c", dev->dev_addr[i],
5104 i == 5 ? ' ' : ':');
5105 printk("\n");
5106
5107 pci_set_drvdata(pdev, dev);
5108 cp->hw_running = 1;
5109 cas_entropy_reset(cp);
5110 cas_phy_init(cp);
5111 cas_begin_auto_negotiation(cp, NULL);
5112 return 0;
5113
5114err_out_free_consistent:
5115 pci_free_consistent(pdev, sizeof(struct cas_init_block),
5116 cp->init_block, cp->block_dvma);
5117
5118err_out_iounmap:
Ingo Molnar758df692006-03-20 22:34:09 -08005119 mutex_lock(&cp->pm_mutex);
David S. Miller1f26dac2005-09-27 15:24:13 -07005120 if (cp->hw_running)
5121 cas_shutdown(cp);
Ingo Molnar758df692006-03-20 22:34:09 -08005122 mutex_unlock(&cp->pm_mutex);
David S. Miller1f26dac2005-09-27 15:24:13 -07005123
Marc Zyngier18e37f22006-04-13 11:38:20 +02005124 pci_iounmap(pdev, cp->regs);
David S. Miller1f26dac2005-09-27 15:24:13 -07005125
5126
5127err_out_free_res:
5128 pci_release_regions(pdev);
5129
5130err_write_cacheline:
5131 /* Try to restore it in case the error occured after we
5132 * set it.
5133 */
5134 pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, orig_cacheline_size);
5135
5136err_out_free_netdev:
5137 free_netdev(dev);
5138
5139err_out_disable_pdev:
5140 pci_disable_device(pdev);
5141 pci_set_drvdata(pdev, NULL);
5142 return -ENODEV;
5143}
5144
5145static void __devexit cas_remove_one(struct pci_dev *pdev)
5146{
5147 struct net_device *dev = pci_get_drvdata(pdev);
5148 struct cas *cp;
5149 if (!dev)
5150 return;
5151
5152 cp = netdev_priv(dev);
5153 unregister_netdev(dev);
5154
Ingo Molnar758df692006-03-20 22:34:09 -08005155 mutex_lock(&cp->pm_mutex);
David S. Miller1f26dac2005-09-27 15:24:13 -07005156 flush_scheduled_work();
5157 if (cp->hw_running)
5158 cas_shutdown(cp);
Ingo Molnar758df692006-03-20 22:34:09 -08005159 mutex_unlock(&cp->pm_mutex);
David S. Miller1f26dac2005-09-27 15:24:13 -07005160
5161#if 1
5162 if (cp->orig_cacheline_size) {
5163 /* Restore the cache line size if we had modified
5164 * it.
5165 */
5166 pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE,
5167 cp->orig_cacheline_size);
5168 }
5169#endif
5170 pci_free_consistent(pdev, sizeof(struct cas_init_block),
5171 cp->init_block, cp->block_dvma);
Marc Zyngier18e37f22006-04-13 11:38:20 +02005172 pci_iounmap(pdev, cp->regs);
David S. Miller1f26dac2005-09-27 15:24:13 -07005173 free_netdev(dev);
5174 pci_release_regions(pdev);
5175 pci_disable_device(pdev);
5176 pci_set_drvdata(pdev, NULL);
5177}
5178
5179#ifdef CONFIG_PM
Al Viro46d70312005-09-30 03:21:45 +01005180static int cas_suspend(struct pci_dev *pdev, pm_message_t state)
David S. Miller1f26dac2005-09-27 15:24:13 -07005181{
5182 struct net_device *dev = pci_get_drvdata(pdev);
5183 struct cas *cp = netdev_priv(dev);
5184 unsigned long flags;
5185
Ingo Molnar758df692006-03-20 22:34:09 -08005186 mutex_lock(&cp->pm_mutex);
David S. Miller1f26dac2005-09-27 15:24:13 -07005187
5188 /* If the driver is opened, we stop the DMA */
5189 if (cp->opened) {
5190 netif_device_detach(dev);
5191
5192 cas_lock_all_save(cp, flags);
5193
5194 /* We can set the second arg of cas_reset to 0
5195 * because on resume, we'll call cas_init_hw with
5196 * its second arg set so that autonegotiation is
5197 * restarted.
5198 */
5199 cas_reset(cp, 0);
5200 cas_clean_rings(cp);
5201 cas_unlock_all_restore(cp, flags);
5202 }
5203
5204 if (cp->hw_running)
5205 cas_shutdown(cp);
Ingo Molnar758df692006-03-20 22:34:09 -08005206 mutex_unlock(&cp->pm_mutex);
David S. Miller1f26dac2005-09-27 15:24:13 -07005207
5208 return 0;
5209}
5210
5211static int cas_resume(struct pci_dev *pdev)
5212{
5213 struct net_device *dev = pci_get_drvdata(pdev);
5214 struct cas *cp = netdev_priv(dev);
5215
5216 printk(KERN_INFO "%s: resuming\n", dev->name);
5217
Ingo Molnar758df692006-03-20 22:34:09 -08005218 mutex_lock(&cp->pm_mutex);
David S. Miller1f26dac2005-09-27 15:24:13 -07005219 cas_hard_reset(cp);
5220 if (cp->opened) {
5221 unsigned long flags;
5222 cas_lock_all_save(cp, flags);
5223 cas_reset(cp, 0);
5224 cp->hw_running = 1;
5225 cas_clean_rings(cp);
5226 cas_init_hw(cp, 1);
5227 cas_unlock_all_restore(cp, flags);
5228
5229 netif_device_attach(dev);
5230 }
Ingo Molnar758df692006-03-20 22:34:09 -08005231 mutex_unlock(&cp->pm_mutex);
David S. Miller1f26dac2005-09-27 15:24:13 -07005232 return 0;
5233}
5234#endif /* CONFIG_PM */
5235
5236static struct pci_driver cas_driver = {
5237 .name = DRV_MODULE_NAME,
5238 .id_table = cas_pci_tbl,
5239 .probe = cas_init_one,
5240 .remove = __devexit_p(cas_remove_one),
5241#ifdef CONFIG_PM
5242 .suspend = cas_suspend,
5243 .resume = cas_resume
5244#endif
5245};
5246
5247static int __init cas_init(void)
5248{
5249 if (linkdown_timeout > 0)
5250 link_transition_timeout = linkdown_timeout * HZ;
5251 else
5252 link_transition_timeout = 0;
5253
5254 return pci_module_init(&cas_driver);
5255}
5256
5257static void __exit cas_cleanup(void)
5258{
5259 pci_unregister_driver(&cas_driver);
5260}
5261
5262module_init(cas_init);
5263module_exit(cas_cleanup);