blob: 3480cc72467a2b4f87312e64d11c0106c37ed2b4 [file] [log] [blame]
Auke Kok9d5c8242008-01-24 02:22:38 -08001/*******************************************************************************
2
3 Intel(R) Gigabit Ethernet Linux driver
4 Copyright(c) 2007 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26*******************************************************************************/
27
28#include <linux/module.h>
29#include <linux/types.h>
30#include <linux/init.h>
31#include <linux/vmalloc.h>
32#include <linux/pagemap.h>
33#include <linux/netdevice.h>
34#include <linux/tcp.h>
35#include <linux/ipv6.h>
36#include <net/checksum.h>
37#include <net/ip6_checksum.h>
38#include <linux/mii.h>
39#include <linux/ethtool.h>
40#include <linux/if_vlan.h>
41#include <linux/pci.h>
42#include <linux/delay.h>
43#include <linux/interrupt.h>
44#include <linux/if_ether.h>
45
46#include "igb.h"
47
48#define DRV_VERSION "1.0.8-k2"
49char igb_driver_name[] = "igb";
50char igb_driver_version[] = DRV_VERSION;
51static const char igb_driver_string[] =
52 "Intel(R) Gigabit Ethernet Network Driver";
53static const char igb_copyright[] = "Copyright (c) 2007 Intel Corporation.";
54
55
56static const struct e1000_info *igb_info_tbl[] = {
57 [board_82575] = &e1000_82575_info,
58};
59
60static struct pci_device_id igb_pci_tbl[] = {
61 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
62 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
63 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
64 /* required last entry */
65 {0, }
66};
67
68MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
69
70void igb_reset(struct igb_adapter *);
71static int igb_setup_all_tx_resources(struct igb_adapter *);
72static int igb_setup_all_rx_resources(struct igb_adapter *);
73static void igb_free_all_tx_resources(struct igb_adapter *);
74static void igb_free_all_rx_resources(struct igb_adapter *);
75static void igb_free_tx_resources(struct igb_adapter *, struct igb_ring *);
76static void igb_free_rx_resources(struct igb_adapter *, struct igb_ring *);
77void igb_update_stats(struct igb_adapter *);
78static int igb_probe(struct pci_dev *, const struct pci_device_id *);
79static void __devexit igb_remove(struct pci_dev *pdev);
80static int igb_sw_init(struct igb_adapter *);
81static int igb_open(struct net_device *);
82static int igb_close(struct net_device *);
83static void igb_configure_tx(struct igb_adapter *);
84static void igb_configure_rx(struct igb_adapter *);
85static void igb_setup_rctl(struct igb_adapter *);
86static void igb_clean_all_tx_rings(struct igb_adapter *);
87static void igb_clean_all_rx_rings(struct igb_adapter *);
88static void igb_clean_tx_ring(struct igb_adapter *, struct igb_ring *);
89static void igb_clean_rx_ring(struct igb_adapter *, struct igb_ring *);
90static void igb_set_multi(struct net_device *);
91static void igb_update_phy_info(unsigned long);
92static void igb_watchdog(unsigned long);
93static void igb_watchdog_task(struct work_struct *);
94static int igb_xmit_frame_ring_adv(struct sk_buff *, struct net_device *,
95 struct igb_ring *);
96static int igb_xmit_frame_adv(struct sk_buff *skb, struct net_device *);
97static struct net_device_stats *igb_get_stats(struct net_device *);
98static int igb_change_mtu(struct net_device *, int);
99static int igb_set_mac(struct net_device *, void *);
100static irqreturn_t igb_intr(int irq, void *);
101static irqreturn_t igb_intr_msi(int irq, void *);
102static irqreturn_t igb_msix_other(int irq, void *);
103static irqreturn_t igb_msix_rx(int irq, void *);
104static irqreturn_t igb_msix_tx(int irq, void *);
105static int igb_clean_rx_ring_msix(struct napi_struct *, int);
106static bool igb_clean_tx_irq(struct igb_adapter *, struct igb_ring *);
107static int igb_clean(struct napi_struct *, int);
108static bool igb_clean_rx_irq_adv(struct igb_adapter *,
109 struct igb_ring *, int *, int);
110static void igb_alloc_rx_buffers_adv(struct igb_adapter *,
111 struct igb_ring *, int);
112static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
113static void igb_tx_timeout(struct net_device *);
114static void igb_reset_task(struct work_struct *);
115static void igb_vlan_rx_register(struct net_device *, struct vlan_group *);
116static void igb_vlan_rx_add_vid(struct net_device *, u16);
117static void igb_vlan_rx_kill_vid(struct net_device *, u16);
118static void igb_restore_vlan(struct igb_adapter *);
119
120static int igb_suspend(struct pci_dev *, pm_message_t);
121#ifdef CONFIG_PM
122static int igb_resume(struct pci_dev *);
123#endif
124static void igb_shutdown(struct pci_dev *);
125
126#ifdef CONFIG_NET_POLL_CONTROLLER
127/* for netdump / net console */
128static void igb_netpoll(struct net_device *);
129#endif
130
131static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
132 pci_channel_state_t);
133static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
134static void igb_io_resume(struct pci_dev *);
135
136static struct pci_error_handlers igb_err_handler = {
137 .error_detected = igb_io_error_detected,
138 .slot_reset = igb_io_slot_reset,
139 .resume = igb_io_resume,
140};
141
142
143static struct pci_driver igb_driver = {
144 .name = igb_driver_name,
145 .id_table = igb_pci_tbl,
146 .probe = igb_probe,
147 .remove = __devexit_p(igb_remove),
148#ifdef CONFIG_PM
149 /* Power Managment Hooks */
150 .suspend = igb_suspend,
151 .resume = igb_resume,
152#endif
153 .shutdown = igb_shutdown,
154 .err_handler = &igb_err_handler
155};
156
157MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
158MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
159MODULE_LICENSE("GPL");
160MODULE_VERSION(DRV_VERSION);
161
162#ifdef DEBUG
163/**
164 * igb_get_hw_dev_name - return device name string
165 * used by hardware layer to print debugging information
166 **/
167char *igb_get_hw_dev_name(struct e1000_hw *hw)
168{
169 struct igb_adapter *adapter = hw->back;
170 return adapter->netdev->name;
171}
172#endif
173
174/**
175 * igb_init_module - Driver Registration Routine
176 *
177 * igb_init_module is the first routine called when the driver is
178 * loaded. All it does is register with the PCI subsystem.
179 **/
180static int __init igb_init_module(void)
181{
182 int ret;
183 printk(KERN_INFO "%s - version %s\n",
184 igb_driver_string, igb_driver_version);
185
186 printk(KERN_INFO "%s\n", igb_copyright);
187
188 ret = pci_register_driver(&igb_driver);
189 return ret;
190}
191
192module_init(igb_init_module);
193
194/**
195 * igb_exit_module - Driver Exit Cleanup Routine
196 *
197 * igb_exit_module is called just before the driver is removed
198 * from memory.
199 **/
200static void __exit igb_exit_module(void)
201{
202 pci_unregister_driver(&igb_driver);
203}
204
205module_exit(igb_exit_module);
206
207/**
208 * igb_alloc_queues - Allocate memory for all rings
209 * @adapter: board private structure to initialize
210 *
211 * We allocate one ring per queue at run-time since we don't know the
212 * number of queues at compile-time.
213 **/
214static int igb_alloc_queues(struct igb_adapter *adapter)
215{
216 int i;
217
218 adapter->tx_ring = kcalloc(adapter->num_tx_queues,
219 sizeof(struct igb_ring), GFP_KERNEL);
220 if (!adapter->tx_ring)
221 return -ENOMEM;
222
223 adapter->rx_ring = kcalloc(adapter->num_rx_queues,
224 sizeof(struct igb_ring), GFP_KERNEL);
225 if (!adapter->rx_ring) {
226 kfree(adapter->tx_ring);
227 return -ENOMEM;
228 }
229
230 for (i = 0; i < adapter->num_rx_queues; i++) {
231 struct igb_ring *ring = &(adapter->rx_ring[i]);
232 ring->adapter = adapter;
233 ring->itr_register = E1000_ITR;
234
235 if (!ring->napi.poll)
236 netif_napi_add(adapter->netdev, &ring->napi, igb_clean,
237 adapter->napi.weight /
238 adapter->num_rx_queues);
239 }
240 return 0;
241}
242
243#define IGB_N0_QUEUE -1
244static void igb_assign_vector(struct igb_adapter *adapter, int rx_queue,
245 int tx_queue, int msix_vector)
246{
247 u32 msixbm = 0;
248 struct e1000_hw *hw = &adapter->hw;
249 /* The 82575 assigns vectors using a bitmask, which matches the
250 bitmask for the EICR/EIMS/EIMC registers. To assign one
251 or more queues to a vector, we write the appropriate bits
252 into the MSIXBM register for that vector. */
253 if (rx_queue > IGB_N0_QUEUE) {
254 msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
255 adapter->rx_ring[rx_queue].eims_value = msixbm;
256 }
257 if (tx_queue > IGB_N0_QUEUE) {
258 msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
259 adapter->tx_ring[tx_queue].eims_value =
260 E1000_EICR_TX_QUEUE0 << tx_queue;
261 }
262 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
263}
264
265/**
266 * igb_configure_msix - Configure MSI-X hardware
267 *
268 * igb_configure_msix sets up the hardware to properly
269 * generate MSI-X interrupts.
270 **/
271static void igb_configure_msix(struct igb_adapter *adapter)
272{
273 u32 tmp;
274 int i, vector = 0;
275 struct e1000_hw *hw = &adapter->hw;
276
277 adapter->eims_enable_mask = 0;
278
279 for (i = 0; i < adapter->num_tx_queues; i++) {
280 struct igb_ring *tx_ring = &adapter->tx_ring[i];
281 igb_assign_vector(adapter, IGB_N0_QUEUE, i, vector++);
282 adapter->eims_enable_mask |= tx_ring->eims_value;
283 if (tx_ring->itr_val)
284 writel(1000000000 / (tx_ring->itr_val * 256),
285 hw->hw_addr + tx_ring->itr_register);
286 else
287 writel(1, hw->hw_addr + tx_ring->itr_register);
288 }
289
290 for (i = 0; i < adapter->num_rx_queues; i++) {
291 struct igb_ring *rx_ring = &adapter->rx_ring[i];
292 igb_assign_vector(adapter, i, IGB_N0_QUEUE, vector++);
293 adapter->eims_enable_mask |= rx_ring->eims_value;
294 if (rx_ring->itr_val)
295 writel(1000000000 / (rx_ring->itr_val * 256),
296 hw->hw_addr + rx_ring->itr_register);
297 else
298 writel(1, hw->hw_addr + rx_ring->itr_register);
299 }
300
301
302 /* set vector for other causes, i.e. link changes */
303 array_wr32(E1000_MSIXBM(0), vector++,
304 E1000_EIMS_OTHER);
305
306 /* disable IAM for ICR interrupt bits */
307 wr32(E1000_IAM, 0);
308
309 tmp = rd32(E1000_CTRL_EXT);
310 /* enable MSI-X PBA support*/
311 tmp |= E1000_CTRL_EXT_PBA_CLR;
312
313 /* Auto-Mask interrupts upon ICR read. */
314 tmp |= E1000_CTRL_EXT_EIAME;
315 tmp |= E1000_CTRL_EXT_IRCA;
316
317 wr32(E1000_CTRL_EXT, tmp);
318 adapter->eims_enable_mask |= E1000_EIMS_OTHER;
319
320 wrfl();
321}
322
323/**
324 * igb_request_msix - Initialize MSI-X interrupts
325 *
326 * igb_request_msix allocates MSI-X vectors and requests interrupts from the
327 * kernel.
328 **/
329static int igb_request_msix(struct igb_adapter *adapter)
330{
331 struct net_device *netdev = adapter->netdev;
332 int i, err = 0, vector = 0;
333
334 vector = 0;
335
336 for (i = 0; i < adapter->num_tx_queues; i++) {
337 struct igb_ring *ring = &(adapter->tx_ring[i]);
338 sprintf(ring->name, "%s-tx%d", netdev->name, i);
339 err = request_irq(adapter->msix_entries[vector].vector,
340 &igb_msix_tx, 0, ring->name,
341 &(adapter->tx_ring[i]));
342 if (err)
343 goto out;
344 ring->itr_register = E1000_EITR(0) + (vector << 2);
345 ring->itr_val = adapter->itr;
346 vector++;
347 }
348 for (i = 0; i < adapter->num_rx_queues; i++) {
349 struct igb_ring *ring = &(adapter->rx_ring[i]);
350 if (strlen(netdev->name) < (IFNAMSIZ - 5))
351 sprintf(ring->name, "%s-rx%d", netdev->name, i);
352 else
353 memcpy(ring->name, netdev->name, IFNAMSIZ);
354 err = request_irq(adapter->msix_entries[vector].vector,
355 &igb_msix_rx, 0, ring->name,
356 &(adapter->rx_ring[i]));
357 if (err)
358 goto out;
359 ring->itr_register = E1000_EITR(0) + (vector << 2);
360 ring->itr_val = adapter->itr;
361 vector++;
362 }
363
364 err = request_irq(adapter->msix_entries[vector].vector,
365 &igb_msix_other, 0, netdev->name, netdev);
366 if (err)
367 goto out;
368
369 adapter->napi.poll = igb_clean_rx_ring_msix;
370 for (i = 0; i < adapter->num_rx_queues; i++)
371 adapter->rx_ring[i].napi.poll = adapter->napi.poll;
372 igb_configure_msix(adapter);
373 return 0;
374out:
375 return err;
376}
377
378static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
379{
380 if (adapter->msix_entries) {
381 pci_disable_msix(adapter->pdev);
382 kfree(adapter->msix_entries);
383 adapter->msix_entries = NULL;
384 } else if (adapter->msi_enabled)
385 pci_disable_msi(adapter->pdev);
386 return;
387}
388
389
390/**
391 * igb_set_interrupt_capability - set MSI or MSI-X if supported
392 *
393 * Attempt to configure interrupts using the best available
394 * capabilities of the hardware and kernel.
395 **/
396static void igb_set_interrupt_capability(struct igb_adapter *adapter)
397{
398 int err;
399 int numvecs, i;
400
401 numvecs = adapter->num_tx_queues + adapter->num_rx_queues + 1;
402 adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
403 GFP_KERNEL);
404 if (!adapter->msix_entries)
405 goto msi_only;
406
407 for (i = 0; i < numvecs; i++)
408 adapter->msix_entries[i].entry = i;
409
410 err = pci_enable_msix(adapter->pdev,
411 adapter->msix_entries,
412 numvecs);
413 if (err == 0)
414 return;
415
416 igb_reset_interrupt_capability(adapter);
417
418 /* If we can't do MSI-X, try MSI */
419msi_only:
420 adapter->num_rx_queues = 1;
421 if (!pci_enable_msi(adapter->pdev))
422 adapter->msi_enabled = 1;
423 return;
424}
425
426/**
427 * igb_request_irq - initialize interrupts
428 *
429 * Attempts to configure interrupts using the best available
430 * capabilities of the hardware and kernel.
431 **/
432static int igb_request_irq(struct igb_adapter *adapter)
433{
434 struct net_device *netdev = adapter->netdev;
435 struct e1000_hw *hw = &adapter->hw;
436 int err = 0;
437
438 if (adapter->msix_entries) {
439 err = igb_request_msix(adapter);
440 if (!err) {
Auke Kok9d5c8242008-01-24 02:22:38 -0800441 /* enable IAM, auto-mask,
Andy Gospodarek6cb5e572008-02-15 14:05:25 -0800442 * DO NOT USE EIAM or IAM in legacy mode */
Auke Kok9d5c8242008-01-24 02:22:38 -0800443 wr32(E1000_IAM, IMS_ENABLE_MASK);
444 goto request_done;
445 }
446 /* fall back to MSI */
447 igb_reset_interrupt_capability(adapter);
448 if (!pci_enable_msi(adapter->pdev))
449 adapter->msi_enabled = 1;
450 igb_free_all_tx_resources(adapter);
451 igb_free_all_rx_resources(adapter);
452 adapter->num_rx_queues = 1;
453 igb_alloc_queues(adapter);
454 }
455 if (adapter->msi_enabled) {
456 err = request_irq(adapter->pdev->irq, &igb_intr_msi, 0,
457 netdev->name, netdev);
458 if (!err)
459 goto request_done;
460 /* fall back to legacy interrupts */
461 igb_reset_interrupt_capability(adapter);
462 adapter->msi_enabled = 0;
463 }
464
465 err = request_irq(adapter->pdev->irq, &igb_intr, IRQF_SHARED,
466 netdev->name, netdev);
467
Andy Gospodarek6cb5e572008-02-15 14:05:25 -0800468 if (err)
Auke Kok9d5c8242008-01-24 02:22:38 -0800469 dev_err(&adapter->pdev->dev, "Error %d getting interrupt\n",
470 err);
Auke Kok9d5c8242008-01-24 02:22:38 -0800471
472request_done:
473 return err;
474}
475
476static void igb_free_irq(struct igb_adapter *adapter)
477{
478 struct net_device *netdev = adapter->netdev;
479
480 if (adapter->msix_entries) {
481 int vector = 0, i;
482
483 for (i = 0; i < adapter->num_tx_queues; i++)
484 free_irq(adapter->msix_entries[vector++].vector,
485 &(adapter->tx_ring[i]));
486 for (i = 0; i < adapter->num_rx_queues; i++)
487 free_irq(adapter->msix_entries[vector++].vector,
488 &(adapter->rx_ring[i]));
489
490 free_irq(adapter->msix_entries[vector++].vector, netdev);
491 return;
492 }
493
494 free_irq(adapter->pdev->irq, netdev);
495}
496
497/**
498 * igb_irq_disable - Mask off interrupt generation on the NIC
499 * @adapter: board private structure
500 **/
501static void igb_irq_disable(struct igb_adapter *adapter)
502{
503 struct e1000_hw *hw = &adapter->hw;
504
505 if (adapter->msix_entries) {
506 wr32(E1000_EIMC, ~0);
507 wr32(E1000_EIAC, 0);
508 }
509 wr32(E1000_IMC, ~0);
510 wrfl();
511 synchronize_irq(adapter->pdev->irq);
512}
513
514/**
515 * igb_irq_enable - Enable default interrupt generation settings
516 * @adapter: board private structure
517 **/
518static void igb_irq_enable(struct igb_adapter *adapter)
519{
520 struct e1000_hw *hw = &adapter->hw;
521
522 if (adapter->msix_entries) {
523 wr32(E1000_EIMS,
524 adapter->eims_enable_mask);
525 wr32(E1000_EIAC,
526 adapter->eims_enable_mask);
527 wr32(E1000_IMS, E1000_IMS_LSC);
528 } else
529 wr32(E1000_IMS, IMS_ENABLE_MASK);
530}
531
532static void igb_update_mng_vlan(struct igb_adapter *adapter)
533{
534 struct net_device *netdev = adapter->netdev;
535 u16 vid = adapter->hw.mng_cookie.vlan_id;
536 u16 old_vid = adapter->mng_vlan_id;
537 if (adapter->vlgrp) {
538 if (!vlan_group_get_device(adapter->vlgrp, vid)) {
539 if (adapter->hw.mng_cookie.status &
540 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
541 igb_vlan_rx_add_vid(netdev, vid);
542 adapter->mng_vlan_id = vid;
543 } else
544 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
545
546 if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
547 (vid != old_vid) &&
548 !vlan_group_get_device(adapter->vlgrp, old_vid))
549 igb_vlan_rx_kill_vid(netdev, old_vid);
550 } else
551 adapter->mng_vlan_id = vid;
552 }
553}
554
555/**
556 * igb_release_hw_control - release control of the h/w to f/w
557 * @adapter: address of board private structure
558 *
559 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
560 * For ASF and Pass Through versions of f/w this means that the
561 * driver is no longer loaded.
562 *
563 **/
564static void igb_release_hw_control(struct igb_adapter *adapter)
565{
566 struct e1000_hw *hw = &adapter->hw;
567 u32 ctrl_ext;
568
569 /* Let firmware take over control of h/w */
570 ctrl_ext = rd32(E1000_CTRL_EXT);
571 wr32(E1000_CTRL_EXT,
572 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
573}
574
575
576/**
577 * igb_get_hw_control - get control of the h/w from f/w
578 * @adapter: address of board private structure
579 *
580 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
581 * For ASF and Pass Through versions of f/w this means that
582 * the driver is loaded.
583 *
584 **/
585static void igb_get_hw_control(struct igb_adapter *adapter)
586{
587 struct e1000_hw *hw = &adapter->hw;
588 u32 ctrl_ext;
589
590 /* Let firmware know the driver has taken over */
591 ctrl_ext = rd32(E1000_CTRL_EXT);
592 wr32(E1000_CTRL_EXT,
593 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
594}
595
596static void igb_init_manageability(struct igb_adapter *adapter)
597{
598 struct e1000_hw *hw = &adapter->hw;
599
600 if (adapter->en_mng_pt) {
601 u32 manc2h = rd32(E1000_MANC2H);
602 u32 manc = rd32(E1000_MANC);
603
Auke Kok9d5c8242008-01-24 02:22:38 -0800604 /* enable receiving management packets to the host */
605 /* this will probably generate destination unreachable messages
606 * from the host OS, but the packets will be handled on SMBUS */
607 manc |= E1000_MANC_EN_MNG2HOST;
608#define E1000_MNG2HOST_PORT_623 (1 << 5)
609#define E1000_MNG2HOST_PORT_664 (1 << 6)
610 manc2h |= E1000_MNG2HOST_PORT_623;
611 manc2h |= E1000_MNG2HOST_PORT_664;
612 wr32(E1000_MANC2H, manc2h);
613
614 wr32(E1000_MANC, manc);
615 }
616}
617
Auke Kok9d5c8242008-01-24 02:22:38 -0800618/**
619 * igb_configure - configure the hardware for RX and TX
620 * @adapter: private board structure
621 **/
622static void igb_configure(struct igb_adapter *adapter)
623{
624 struct net_device *netdev = adapter->netdev;
625 int i;
626
627 igb_get_hw_control(adapter);
628 igb_set_multi(netdev);
629
630 igb_restore_vlan(adapter);
631 igb_init_manageability(adapter);
632
633 igb_configure_tx(adapter);
634 igb_setup_rctl(adapter);
635 igb_configure_rx(adapter);
636 /* call IGB_DESC_UNUSED which always leaves
637 * at least 1 descriptor unused to make sure
638 * next_to_use != next_to_clean */
639 for (i = 0; i < adapter->num_rx_queues; i++) {
640 struct igb_ring *ring = &adapter->rx_ring[i];
641 igb_alloc_rx_buffers_adv(adapter, ring, IGB_DESC_UNUSED(ring));
642 }
643
644
645 adapter->tx_queue_len = netdev->tx_queue_len;
646}
647
648
649/**
650 * igb_up - Open the interface and prepare it to handle traffic
651 * @adapter: board private structure
652 **/
653
654int igb_up(struct igb_adapter *adapter)
655{
656 struct e1000_hw *hw = &adapter->hw;
657 int i;
658
659 /* hardware has been reset, we need to reload some things */
660 igb_configure(adapter);
661
662 clear_bit(__IGB_DOWN, &adapter->state);
663
664 napi_enable(&adapter->napi);
665
666 if (adapter->msix_entries) {
667 for (i = 0; i < adapter->num_rx_queues; i++)
668 napi_enable(&adapter->rx_ring[i].napi);
669 igb_configure_msix(adapter);
670 }
671
672 /* Clear any pending interrupts. */
673 rd32(E1000_ICR);
674 igb_irq_enable(adapter);
675
676 /* Fire a link change interrupt to start the watchdog. */
677 wr32(E1000_ICS, E1000_ICS_LSC);
678 return 0;
679}
680
681void igb_down(struct igb_adapter *adapter)
682{
683 struct e1000_hw *hw = &adapter->hw;
684 struct net_device *netdev = adapter->netdev;
685 u32 tctl, rctl;
686 int i;
687
688 /* signal that we're down so the interrupt handler does not
689 * reschedule our watchdog timer */
690 set_bit(__IGB_DOWN, &adapter->state);
691
692 /* disable receives in the hardware */
693 rctl = rd32(E1000_RCTL);
694 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
695 /* flush and sleep below */
696
697 netif_stop_queue(netdev);
698
699 /* disable transmits in the hardware */
700 tctl = rd32(E1000_TCTL);
701 tctl &= ~E1000_TCTL_EN;
702 wr32(E1000_TCTL, tctl);
703 /* flush both disables and wait for them to finish */
704 wrfl();
705 msleep(10);
706
707 napi_disable(&adapter->napi);
708
709 if (adapter->msix_entries)
710 for (i = 0; i < adapter->num_rx_queues; i++)
711 napi_disable(&adapter->rx_ring[i].napi);
712 igb_irq_disable(adapter);
713
714 del_timer_sync(&adapter->watchdog_timer);
715 del_timer_sync(&adapter->phy_info_timer);
716
717 netdev->tx_queue_len = adapter->tx_queue_len;
718 netif_carrier_off(netdev);
719 adapter->link_speed = 0;
720 adapter->link_duplex = 0;
721
722 igb_reset(adapter);
723 igb_clean_all_tx_rings(adapter);
724 igb_clean_all_rx_rings(adapter);
725}
726
727void igb_reinit_locked(struct igb_adapter *adapter)
728{
729 WARN_ON(in_interrupt());
730 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
731 msleep(1);
732 igb_down(adapter);
733 igb_up(adapter);
734 clear_bit(__IGB_RESETTING, &adapter->state);
735}
736
737void igb_reset(struct igb_adapter *adapter)
738{
739 struct e1000_hw *hw = &adapter->hw;
740 struct e1000_fc_info *fc = &adapter->hw.fc;
741 u32 pba = 0, tx_space, min_tx_space, min_rx_space;
742 u16 hwm;
743
744 /* Repartition Pba for greater than 9k mtu
745 * To take effect CTRL.RST is required.
746 */
747 pba = E1000_PBA_34K;
748
749 if (adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) {
750 /* adjust PBA for jumbo frames */
751 wr32(E1000_PBA, pba);
752
753 /* To maintain wire speed transmits, the Tx FIFO should be
754 * large enough to accommodate two full transmit packets,
755 * rounded up to the next 1KB and expressed in KB. Likewise,
756 * the Rx FIFO should be large enough to accommodate at least
757 * one full receive packet and is similarly rounded up and
758 * expressed in KB. */
759 pba = rd32(E1000_PBA);
760 /* upper 16 bits has Tx packet buffer allocation size in KB */
761 tx_space = pba >> 16;
762 /* lower 16 bits has Rx packet buffer allocation size in KB */
763 pba &= 0xffff;
764 /* the tx fifo also stores 16 bytes of information about the tx
765 * but don't include ethernet FCS because hardware appends it */
766 min_tx_space = (adapter->max_frame_size +
767 sizeof(struct e1000_tx_desc) -
768 ETH_FCS_LEN) * 2;
769 min_tx_space = ALIGN(min_tx_space, 1024);
770 min_tx_space >>= 10;
771 /* software strips receive CRC, so leave room for it */
772 min_rx_space = adapter->max_frame_size;
773 min_rx_space = ALIGN(min_rx_space, 1024);
774 min_rx_space >>= 10;
775
776 /* If current Tx allocation is less than the min Tx FIFO size,
777 * and the min Tx FIFO size is less than the current Rx FIFO
778 * allocation, take space away from current Rx allocation */
779 if (tx_space < min_tx_space &&
780 ((min_tx_space - tx_space) < pba)) {
781 pba = pba - (min_tx_space - tx_space);
782
783 /* if short on rx space, rx wins and must trump tx
784 * adjustment */
785 if (pba < min_rx_space)
786 pba = min_rx_space;
787 }
788 }
789 wr32(E1000_PBA, pba);
790
791 /* flow control settings */
792 /* The high water mark must be low enough to fit one full frame
793 * (or the size used for early receive) above it in the Rx FIFO.
794 * Set it to the lower of:
795 * - 90% of the Rx FIFO size, or
796 * - the full Rx FIFO size minus one full frame */
797 hwm = min(((pba << 10) * 9 / 10),
798 ((pba << 10) - adapter->max_frame_size));
799
800 fc->high_water = hwm & 0xFFF8; /* 8-byte granularity */
801 fc->low_water = fc->high_water - 8;
802 fc->pause_time = 0xFFFF;
803 fc->send_xon = 1;
804 fc->type = fc->original_type;
805
806 /* Allow time for pending master requests to run */
807 adapter->hw.mac.ops.reset_hw(&adapter->hw);
808 wr32(E1000_WUC, 0);
809
810 if (adapter->hw.mac.ops.init_hw(&adapter->hw))
811 dev_err(&adapter->pdev->dev, "Hardware Error\n");
812
813 igb_update_mng_vlan(adapter);
814
815 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
816 wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
817
818 igb_reset_adaptive(&adapter->hw);
819 adapter->hw.phy.ops.get_phy_info(&adapter->hw);
Auke Kok9d5c8242008-01-24 02:22:38 -0800820}
821
822/**
823 * igb_probe - Device Initialization Routine
824 * @pdev: PCI device information struct
825 * @ent: entry in igb_pci_tbl
826 *
827 * Returns 0 on success, negative on failure
828 *
829 * igb_probe initializes an adapter identified by a pci_dev structure.
830 * The OS initialization, configuring of the adapter private structure,
831 * and a hardware reset occur.
832 **/
833static int __devinit igb_probe(struct pci_dev *pdev,
834 const struct pci_device_id *ent)
835{
836 struct net_device *netdev;
837 struct igb_adapter *adapter;
838 struct e1000_hw *hw;
839 const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
840 unsigned long mmio_start, mmio_len;
841 static int cards_found;
842 int i, err, pci_using_dac;
843 u16 eeprom_data = 0;
844 u16 eeprom_apme_mask = IGB_EEPROM_APME;
845 u32 part_num;
846
847 err = pci_enable_device(pdev);
848 if (err)
849 return err;
850
851 pci_using_dac = 0;
852 err = pci_set_dma_mask(pdev, DMA_64BIT_MASK);
853 if (!err) {
854 err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
855 if (!err)
856 pci_using_dac = 1;
857 } else {
858 err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
859 if (err) {
860 err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
861 if (err) {
862 dev_err(&pdev->dev, "No usable DMA "
863 "configuration, aborting\n");
864 goto err_dma;
865 }
866 }
867 }
868
869 err = pci_request_regions(pdev, igb_driver_name);
870 if (err)
871 goto err_pci_reg;
872
873 pci_set_master(pdev);
874
875 err = -ENOMEM;
876 netdev = alloc_etherdev(sizeof(struct igb_adapter));
877 if (!netdev)
878 goto err_alloc_etherdev;
879
880 SET_NETDEV_DEV(netdev, &pdev->dev);
881
882 pci_set_drvdata(pdev, netdev);
883 adapter = netdev_priv(netdev);
884 adapter->netdev = netdev;
885 adapter->pdev = pdev;
886 hw = &adapter->hw;
887 hw->back = adapter;
888 adapter->msg_enable = NETIF_MSG_DRV | NETIF_MSG_PROBE;
889
890 mmio_start = pci_resource_start(pdev, 0);
891 mmio_len = pci_resource_len(pdev, 0);
892
893 err = -EIO;
894 adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
895 if (!adapter->hw.hw_addr)
896 goto err_ioremap;
897
898 netdev->open = &igb_open;
899 netdev->stop = &igb_close;
900 netdev->get_stats = &igb_get_stats;
901 netdev->set_multicast_list = &igb_set_multi;
902 netdev->set_mac_address = &igb_set_mac;
903 netdev->change_mtu = &igb_change_mtu;
904 netdev->do_ioctl = &igb_ioctl;
905 igb_set_ethtool_ops(netdev);
906 netdev->tx_timeout = &igb_tx_timeout;
907 netdev->watchdog_timeo = 5 * HZ;
908 netif_napi_add(netdev, &adapter->napi, igb_clean, 64);
909 netdev->vlan_rx_register = igb_vlan_rx_register;
910 netdev->vlan_rx_add_vid = igb_vlan_rx_add_vid;
911 netdev->vlan_rx_kill_vid = igb_vlan_rx_kill_vid;
912#ifdef CONFIG_NET_POLL_CONTROLLER
913 netdev->poll_controller = igb_netpoll;
914#endif
915 netdev->hard_start_xmit = &igb_xmit_frame_adv;
916
917 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
918
919 netdev->mem_start = mmio_start;
920 netdev->mem_end = mmio_start + mmio_len;
921
922 adapter->bd_number = cards_found;
923
924 /* PCI config space info */
925 hw->vendor_id = pdev->vendor;
926 hw->device_id = pdev->device;
927 hw->revision_id = pdev->revision;
928 hw->subsystem_vendor_id = pdev->subsystem_vendor;
929 hw->subsystem_device_id = pdev->subsystem_device;
930
931 /* setup the private structure */
932 hw->back = adapter;
933 /* Copy the default MAC, PHY and NVM function pointers */
934 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
935 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
936 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
937 /* Initialize skew-specific constants */
938 err = ei->get_invariants(hw);
939 if (err)
940 goto err_hw_init;
941
942 err = igb_sw_init(adapter);
943 if (err)
944 goto err_sw_init;
945
946 igb_get_bus_info_pcie(hw);
947
948 hw->phy.autoneg_wait_to_complete = false;
949 hw->mac.adaptive_ifs = true;
950
951 /* Copper options */
952 if (hw->phy.media_type == e1000_media_type_copper) {
953 hw->phy.mdix = AUTO_ALL_MODES;
954 hw->phy.disable_polarity_correction = false;
955 hw->phy.ms_type = e1000_ms_hw_default;
956 }
957
958 if (igb_check_reset_block(hw))
959 dev_info(&pdev->dev,
960 "PHY reset is blocked due to SOL/IDER session.\n");
961
962 netdev->features = NETIF_F_SG |
963 NETIF_F_HW_CSUM |
964 NETIF_F_HW_VLAN_TX |
965 NETIF_F_HW_VLAN_RX |
966 NETIF_F_HW_VLAN_FILTER;
967
968 netdev->features |= NETIF_F_TSO;
969
970 netdev->features |= NETIF_F_TSO6;
971 if (pci_using_dac)
972 netdev->features |= NETIF_F_HIGHDMA;
973
974 netdev->features |= NETIF_F_LLTX;
975 adapter->en_mng_pt = igb_enable_mng_pass_thru(&adapter->hw);
976
977 /* before reading the NVM, reset the controller to put the device in a
978 * known good starting state */
979 hw->mac.ops.reset_hw(hw);
980
981 /* make sure the NVM is good */
982 if (igb_validate_nvm_checksum(hw) < 0) {
983 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
984 err = -EIO;
985 goto err_eeprom;
986 }
987
988 /* copy the MAC address out of the NVM */
989 if (hw->mac.ops.read_mac_addr(hw))
990 dev_err(&pdev->dev, "NVM Read Error\n");
991
992 memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
993 memcpy(netdev->perm_addr, hw->mac.addr, netdev->addr_len);
994
995 if (!is_valid_ether_addr(netdev->perm_addr)) {
996 dev_err(&pdev->dev, "Invalid MAC Address\n");
997 err = -EIO;
998 goto err_eeprom;
999 }
1000
1001 init_timer(&adapter->watchdog_timer);
1002 adapter->watchdog_timer.function = &igb_watchdog;
1003 adapter->watchdog_timer.data = (unsigned long) adapter;
1004
1005 init_timer(&adapter->phy_info_timer);
1006 adapter->phy_info_timer.function = &igb_update_phy_info;
1007 adapter->phy_info_timer.data = (unsigned long) adapter;
1008
1009 INIT_WORK(&adapter->reset_task, igb_reset_task);
1010 INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
1011
1012 /* Initialize link & ring properties that are user-changeable */
1013 adapter->tx_ring->count = 256;
1014 for (i = 0; i < adapter->num_tx_queues; i++)
1015 adapter->tx_ring[i].count = adapter->tx_ring->count;
1016 adapter->rx_ring->count = 256;
1017 for (i = 0; i < adapter->num_rx_queues; i++)
1018 adapter->rx_ring[i].count = adapter->rx_ring->count;
1019
1020 adapter->fc_autoneg = true;
1021 hw->mac.autoneg = true;
1022 hw->phy.autoneg_advertised = 0x2f;
1023
1024 hw->fc.original_type = e1000_fc_default;
1025 hw->fc.type = e1000_fc_default;
1026
1027 adapter->itr_setting = 3;
1028 adapter->itr = IGB_START_ITR;
1029
1030 igb_validate_mdi_setting(hw);
1031
1032 adapter->rx_csum = 1;
1033
1034 /* Initial Wake on LAN setting If APM wake is enabled in the EEPROM,
1035 * enable the ACPI Magic Packet filter
1036 */
1037
1038 if (hw->bus.func == 0 ||
1039 hw->device_id == E1000_DEV_ID_82575EB_COPPER)
1040 hw->nvm.ops.read_nvm(hw, NVM_INIT_CONTROL3_PORT_A, 1,
1041 &eeprom_data);
1042
1043 if (eeprom_data & eeprom_apme_mask)
1044 adapter->eeprom_wol |= E1000_WUFC_MAG;
1045
1046 /* now that we have the eeprom settings, apply the special cases where
1047 * the eeprom may be wrong or the board simply won't support wake on
1048 * lan on a particular port */
1049 switch (pdev->device) {
1050 case E1000_DEV_ID_82575GB_QUAD_COPPER:
1051 adapter->eeprom_wol = 0;
1052 break;
1053 case E1000_DEV_ID_82575EB_FIBER_SERDES:
1054 /* Wake events only supported on port A for dual fiber
1055 * regardless of eeprom setting */
1056 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
1057 adapter->eeprom_wol = 0;
1058 break;
1059 }
1060
1061 /* initialize the wol settings based on the eeprom settings */
1062 adapter->wol = adapter->eeprom_wol;
1063
1064 /* reset the hardware with the new settings */
1065 igb_reset(adapter);
1066
1067 /* let the f/w know that the h/w is now under the control of the
1068 * driver. */
1069 igb_get_hw_control(adapter);
1070
1071 /* tell the stack to leave us alone until igb_open() is called */
1072 netif_carrier_off(netdev);
1073 netif_stop_queue(netdev);
1074
1075 strcpy(netdev->name, "eth%d");
1076 err = register_netdev(netdev);
1077 if (err)
1078 goto err_register;
1079
1080 dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
1081 /* print bus type/speed/width info */
1082 dev_info(&pdev->dev,
1083 "%s: (PCIe:%s:%s) %02x:%02x:%02x:%02x:%02x:%02x\n",
1084 netdev->name,
1085 ((hw->bus.speed == e1000_bus_speed_2500)
1086 ? "2.5Gb/s" : "unknown"),
1087 ((hw->bus.width == e1000_bus_width_pcie_x4)
1088 ? "Width x4" : (hw->bus.width == e1000_bus_width_pcie_x1)
1089 ? "Width x1" : "unknown"),
1090 netdev->dev_addr[0], netdev->dev_addr[1], netdev->dev_addr[2],
1091 netdev->dev_addr[3], netdev->dev_addr[4], netdev->dev_addr[5]);
1092
1093 igb_read_part_num(hw, &part_num);
1094 dev_info(&pdev->dev, "%s: PBA No: %06x-%03x\n", netdev->name,
1095 (part_num >> 8), (part_num & 0xff));
1096
1097 dev_info(&pdev->dev,
1098 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
1099 adapter->msix_entries ? "MSI-X" :
1100 adapter->msi_enabled ? "MSI" : "legacy",
1101 adapter->num_rx_queues, adapter->num_tx_queues);
1102
1103 cards_found++;
1104 return 0;
1105
1106err_register:
1107 igb_release_hw_control(adapter);
1108err_eeprom:
1109 if (!igb_check_reset_block(hw))
1110 hw->phy.ops.reset_phy(hw);
1111
1112 if (hw->flash_address)
1113 iounmap(hw->flash_address);
1114
1115 igb_remove_device(hw);
1116 kfree(adapter->tx_ring);
1117 kfree(adapter->rx_ring);
1118err_sw_init:
1119err_hw_init:
1120 iounmap(hw->hw_addr);
1121err_ioremap:
1122 free_netdev(netdev);
1123err_alloc_etherdev:
1124 pci_release_regions(pdev);
1125err_pci_reg:
1126err_dma:
1127 pci_disable_device(pdev);
1128 return err;
1129}
1130
1131/**
1132 * igb_remove - Device Removal Routine
1133 * @pdev: PCI device information struct
1134 *
1135 * igb_remove is called by the PCI subsystem to alert the driver
1136 * that it should release a PCI device. The could be caused by a
1137 * Hot-Plug event, or because the driver is going to be removed from
1138 * memory.
1139 **/
1140static void __devexit igb_remove(struct pci_dev *pdev)
1141{
1142 struct net_device *netdev = pci_get_drvdata(pdev);
1143 struct igb_adapter *adapter = netdev_priv(netdev);
1144
1145 /* flush_scheduled work may reschedule our watchdog task, so
1146 * explicitly disable watchdog tasks from being rescheduled */
1147 set_bit(__IGB_DOWN, &adapter->state);
1148 del_timer_sync(&adapter->watchdog_timer);
1149 del_timer_sync(&adapter->phy_info_timer);
1150
1151 flush_scheduled_work();
1152
Auke Kok9d5c8242008-01-24 02:22:38 -08001153 /* Release control of h/w to f/w. If f/w is AMT enabled, this
1154 * would have already happened in close and is redundant. */
1155 igb_release_hw_control(adapter);
1156
1157 unregister_netdev(netdev);
1158
1159 if (!igb_check_reset_block(&adapter->hw))
1160 adapter->hw.phy.ops.reset_phy(&adapter->hw);
1161
1162 igb_remove_device(&adapter->hw);
1163 igb_reset_interrupt_capability(adapter);
1164
1165 kfree(adapter->tx_ring);
1166 kfree(adapter->rx_ring);
1167
1168 iounmap(adapter->hw.hw_addr);
1169 if (adapter->hw.flash_address)
1170 iounmap(adapter->hw.flash_address);
1171 pci_release_regions(pdev);
1172
1173 free_netdev(netdev);
1174
1175 pci_disable_device(pdev);
1176}
1177
1178/**
1179 * igb_sw_init - Initialize general software structures (struct igb_adapter)
1180 * @adapter: board private structure to initialize
1181 *
1182 * igb_sw_init initializes the Adapter private data structure.
1183 * Fields are initialized based on PCI device information and
1184 * OS network device settings (MTU size).
1185 **/
1186static int __devinit igb_sw_init(struct igb_adapter *adapter)
1187{
1188 struct e1000_hw *hw = &adapter->hw;
1189 struct net_device *netdev = adapter->netdev;
1190 struct pci_dev *pdev = adapter->pdev;
1191
1192 pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
1193
1194 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1195 adapter->rx_ps_hdr_size = 0; /* disable packet split */
1196 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1197 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
1198
1199 /* Number of supported queues. */
1200 /* Having more queues than CPUs doesn't make sense. */
1201 adapter->num_tx_queues = 1;
1202 adapter->num_rx_queues = min(IGB_MAX_RX_QUEUES, num_online_cpus());
1203
1204 igb_set_interrupt_capability(adapter);
1205
1206 if (igb_alloc_queues(adapter)) {
1207 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
1208 return -ENOMEM;
1209 }
1210
1211 /* Explicitly disable IRQ since the NIC can be in any state. */
1212 igb_irq_disable(adapter);
1213
1214 set_bit(__IGB_DOWN, &adapter->state);
1215 return 0;
1216}
1217
1218/**
1219 * igb_open - Called when a network interface is made active
1220 * @netdev: network interface device structure
1221 *
1222 * Returns 0 on success, negative value on failure
1223 *
1224 * The open entry point is called when a network interface is made
1225 * active by the system (IFF_UP). At this point all resources needed
1226 * for transmit and receive operations are allocated, the interrupt
1227 * handler is registered with the OS, the watchdog timer is started,
1228 * and the stack is notified that the interface is ready.
1229 **/
1230static int igb_open(struct net_device *netdev)
1231{
1232 struct igb_adapter *adapter = netdev_priv(netdev);
1233 struct e1000_hw *hw = &adapter->hw;
1234 int err;
1235 int i;
1236
1237 /* disallow open during test */
1238 if (test_bit(__IGB_TESTING, &adapter->state))
1239 return -EBUSY;
1240
1241 /* allocate transmit descriptors */
1242 err = igb_setup_all_tx_resources(adapter);
1243 if (err)
1244 goto err_setup_tx;
1245
1246 /* allocate receive descriptors */
1247 err = igb_setup_all_rx_resources(adapter);
1248 if (err)
1249 goto err_setup_rx;
1250
1251 /* e1000_power_up_phy(adapter); */
1252
1253 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1254 if ((adapter->hw.mng_cookie.status &
1255 E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
1256 igb_update_mng_vlan(adapter);
1257
1258 /* before we allocate an interrupt, we must be ready to handle it.
1259 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1260 * as soon as we call pci_request_irq, so we have to setup our
1261 * clean_rx handler before we do so. */
1262 igb_configure(adapter);
1263
1264 err = igb_request_irq(adapter);
1265 if (err)
1266 goto err_req_irq;
1267
1268 /* From here on the code is the same as igb_up() */
1269 clear_bit(__IGB_DOWN, &adapter->state);
1270
1271 napi_enable(&adapter->napi);
1272 if (adapter->msix_entries)
1273 for (i = 0; i < adapter->num_rx_queues; i++)
1274 napi_enable(&adapter->rx_ring[i].napi);
1275
1276 igb_irq_enable(adapter);
1277
1278 /* Clear any pending interrupts. */
1279 rd32(E1000_ICR);
1280 /* Fire a link status change interrupt to start the watchdog. */
1281 wr32(E1000_ICS, E1000_ICS_LSC);
1282
1283 return 0;
1284
1285err_req_irq:
1286 igb_release_hw_control(adapter);
1287 /* e1000_power_down_phy(adapter); */
1288 igb_free_all_rx_resources(adapter);
1289err_setup_rx:
1290 igb_free_all_tx_resources(adapter);
1291err_setup_tx:
1292 igb_reset(adapter);
1293
1294 return err;
1295}
1296
1297/**
1298 * igb_close - Disables a network interface
1299 * @netdev: network interface device structure
1300 *
1301 * Returns 0, this is not allowed to fail
1302 *
1303 * The close entry point is called when an interface is de-activated
1304 * by the OS. The hardware is still under the driver's control, but
1305 * needs to be disabled. A global MAC reset is issued to stop the
1306 * hardware, and all transmit and receive resources are freed.
1307 **/
1308static int igb_close(struct net_device *netdev)
1309{
1310 struct igb_adapter *adapter = netdev_priv(netdev);
1311
1312 WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
1313 igb_down(adapter);
1314
1315 igb_free_irq(adapter);
1316
1317 igb_free_all_tx_resources(adapter);
1318 igb_free_all_rx_resources(adapter);
1319
1320 /* kill manageability vlan ID if supported, but not if a vlan with
1321 * the same ID is registered on the host OS (let 8021q kill it) */
1322 if ((adapter->hw.mng_cookie.status &
1323 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
1324 !(adapter->vlgrp &&
1325 vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id)))
1326 igb_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
1327
1328 return 0;
1329}
1330
1331/**
1332 * igb_setup_tx_resources - allocate Tx resources (Descriptors)
1333 * @adapter: board private structure
1334 * @tx_ring: tx descriptor ring (for a specific queue) to setup
1335 *
1336 * Return 0 on success, negative on failure
1337 **/
1338
1339int igb_setup_tx_resources(struct igb_adapter *adapter,
1340 struct igb_ring *tx_ring)
1341{
1342 struct pci_dev *pdev = adapter->pdev;
1343 int size;
1344
1345 size = sizeof(struct igb_buffer) * tx_ring->count;
1346 tx_ring->buffer_info = vmalloc(size);
1347 if (!tx_ring->buffer_info)
1348 goto err;
1349 memset(tx_ring->buffer_info, 0, size);
1350
1351 /* round up to nearest 4K */
1352 tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc)
1353 + sizeof(u32);
1354 tx_ring->size = ALIGN(tx_ring->size, 4096);
1355
1356 tx_ring->desc = pci_alloc_consistent(pdev, tx_ring->size,
1357 &tx_ring->dma);
1358
1359 if (!tx_ring->desc)
1360 goto err;
1361
1362 tx_ring->adapter = adapter;
1363 tx_ring->next_to_use = 0;
1364 tx_ring->next_to_clean = 0;
1365 spin_lock_init(&tx_ring->tx_clean_lock);
1366 spin_lock_init(&tx_ring->tx_lock);
1367 return 0;
1368
1369err:
1370 vfree(tx_ring->buffer_info);
1371 dev_err(&adapter->pdev->dev,
1372 "Unable to allocate memory for the transmit descriptor ring\n");
1373 return -ENOMEM;
1374}
1375
1376/**
1377 * igb_setup_all_tx_resources - wrapper to allocate Tx resources
1378 * (Descriptors) for all queues
1379 * @adapter: board private structure
1380 *
1381 * Return 0 on success, negative on failure
1382 **/
1383static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
1384{
1385 int i, err = 0;
1386
1387 for (i = 0; i < adapter->num_tx_queues; i++) {
1388 err = igb_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1389 if (err) {
1390 dev_err(&adapter->pdev->dev,
1391 "Allocation for Tx Queue %u failed\n", i);
1392 for (i--; i >= 0; i--)
1393 igb_free_tx_resources(adapter,
1394 &adapter->tx_ring[i]);
1395 break;
1396 }
1397 }
1398
1399 return err;
1400}
1401
1402/**
1403 * igb_configure_tx - Configure transmit Unit after Reset
1404 * @adapter: board private structure
1405 *
1406 * Configure the Tx unit of the MAC after a reset.
1407 **/
1408static void igb_configure_tx(struct igb_adapter *adapter)
1409{
1410 u64 tdba, tdwba;
1411 struct e1000_hw *hw = &adapter->hw;
1412 u32 tctl;
1413 u32 txdctl, txctrl;
1414 int i;
1415
1416 for (i = 0; i < adapter->num_tx_queues; i++) {
1417 struct igb_ring *ring = &(adapter->tx_ring[i]);
1418
1419 wr32(E1000_TDLEN(i),
1420 ring->count * sizeof(struct e1000_tx_desc));
1421 tdba = ring->dma;
1422 wr32(E1000_TDBAL(i),
1423 tdba & 0x00000000ffffffffULL);
1424 wr32(E1000_TDBAH(i), tdba >> 32);
1425
1426 tdwba = ring->dma + ring->count * sizeof(struct e1000_tx_desc);
1427 tdwba |= 1; /* enable head wb */
1428 wr32(E1000_TDWBAL(i),
1429 tdwba & 0x00000000ffffffffULL);
1430 wr32(E1000_TDWBAH(i), tdwba >> 32);
1431
1432 ring->head = E1000_TDH(i);
1433 ring->tail = E1000_TDT(i);
1434 writel(0, hw->hw_addr + ring->tail);
1435 writel(0, hw->hw_addr + ring->head);
1436 txdctl = rd32(E1000_TXDCTL(i));
1437 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
1438 wr32(E1000_TXDCTL(i), txdctl);
1439
1440 /* Turn off Relaxed Ordering on head write-backs. The
1441 * writebacks MUST be delivered in order or it will
1442 * completely screw up our bookeeping.
1443 */
1444 txctrl = rd32(E1000_DCA_TXCTRL(i));
1445 txctrl &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN;
1446 wr32(E1000_DCA_TXCTRL(i), txctrl);
1447 }
1448
1449
1450
1451 /* Use the default values for the Tx Inter Packet Gap (IPG) timer */
1452
1453 /* Program the Transmit Control Register */
1454
1455 tctl = rd32(E1000_TCTL);
1456 tctl &= ~E1000_TCTL_CT;
1457 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1458 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1459
1460 igb_config_collision_dist(hw);
1461
1462 /* Setup Transmit Descriptor Settings for eop descriptor */
1463 adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_RS;
1464
1465 /* Enable transmits */
1466 tctl |= E1000_TCTL_EN;
1467
1468 wr32(E1000_TCTL, tctl);
1469}
1470
1471/**
1472 * igb_setup_rx_resources - allocate Rx resources (Descriptors)
1473 * @adapter: board private structure
1474 * @rx_ring: rx descriptor ring (for a specific queue) to setup
1475 *
1476 * Returns 0 on success, negative on failure
1477 **/
1478
1479int igb_setup_rx_resources(struct igb_adapter *adapter,
1480 struct igb_ring *rx_ring)
1481{
1482 struct pci_dev *pdev = adapter->pdev;
1483 int size, desc_len;
1484
1485 size = sizeof(struct igb_buffer) * rx_ring->count;
1486 rx_ring->buffer_info = vmalloc(size);
1487 if (!rx_ring->buffer_info)
1488 goto err;
1489 memset(rx_ring->buffer_info, 0, size);
1490
1491 desc_len = sizeof(union e1000_adv_rx_desc);
1492
1493 /* Round up to nearest 4K */
1494 rx_ring->size = rx_ring->count * desc_len;
1495 rx_ring->size = ALIGN(rx_ring->size, 4096);
1496
1497 rx_ring->desc = pci_alloc_consistent(pdev, rx_ring->size,
1498 &rx_ring->dma);
1499
1500 if (!rx_ring->desc)
1501 goto err;
1502
1503 rx_ring->next_to_clean = 0;
1504 rx_ring->next_to_use = 0;
1505 rx_ring->pending_skb = NULL;
1506
1507 rx_ring->adapter = adapter;
1508 /* FIXME: do we want to setup ring->napi->poll here? */
1509 rx_ring->napi.poll = adapter->napi.poll;
1510
1511 return 0;
1512
1513err:
1514 vfree(rx_ring->buffer_info);
1515 dev_err(&adapter->pdev->dev, "Unable to allocate memory for "
1516 "the receive descriptor ring\n");
1517 return -ENOMEM;
1518}
1519
1520/**
1521 * igb_setup_all_rx_resources - wrapper to allocate Rx resources
1522 * (Descriptors) for all queues
1523 * @adapter: board private structure
1524 *
1525 * Return 0 on success, negative on failure
1526 **/
1527static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
1528{
1529 int i, err = 0;
1530
1531 for (i = 0; i < adapter->num_rx_queues; i++) {
1532 err = igb_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1533 if (err) {
1534 dev_err(&adapter->pdev->dev,
1535 "Allocation for Rx Queue %u failed\n", i);
1536 for (i--; i >= 0; i--)
1537 igb_free_rx_resources(adapter,
1538 &adapter->rx_ring[i]);
1539 break;
1540 }
1541 }
1542
1543 return err;
1544}
1545
1546/**
1547 * igb_setup_rctl - configure the receive control registers
1548 * @adapter: Board private structure
1549 **/
1550static void igb_setup_rctl(struct igb_adapter *adapter)
1551{
1552 struct e1000_hw *hw = &adapter->hw;
1553 u32 rctl;
1554 u32 srrctl = 0;
1555 int i;
1556
1557 rctl = rd32(E1000_RCTL);
1558
1559 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1560
1561 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
1562 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1563 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
1564
1565 /* disable the stripping of CRC because it breaks
1566 * BMC firmware connected over SMBUS
1567 rctl |= E1000_RCTL_SECRC;
1568 */
1569
1570 rctl &= ~E1000_RCTL_SBP;
1571
1572 if (adapter->netdev->mtu <= ETH_DATA_LEN)
1573 rctl &= ~E1000_RCTL_LPE;
1574 else
1575 rctl |= E1000_RCTL_LPE;
1576 if (adapter->rx_buffer_len <= IGB_RXBUFFER_2048) {
1577 /* Setup buffer sizes */
1578 rctl &= ~E1000_RCTL_SZ_4096;
1579 rctl |= E1000_RCTL_BSEX;
1580 switch (adapter->rx_buffer_len) {
1581 case IGB_RXBUFFER_256:
1582 rctl |= E1000_RCTL_SZ_256;
1583 rctl &= ~E1000_RCTL_BSEX;
1584 break;
1585 case IGB_RXBUFFER_512:
1586 rctl |= E1000_RCTL_SZ_512;
1587 rctl &= ~E1000_RCTL_BSEX;
1588 break;
1589 case IGB_RXBUFFER_1024:
1590 rctl |= E1000_RCTL_SZ_1024;
1591 rctl &= ~E1000_RCTL_BSEX;
1592 break;
1593 case IGB_RXBUFFER_2048:
1594 default:
1595 rctl |= E1000_RCTL_SZ_2048;
1596 rctl &= ~E1000_RCTL_BSEX;
1597 break;
1598 case IGB_RXBUFFER_4096:
1599 rctl |= E1000_RCTL_SZ_4096;
1600 break;
1601 case IGB_RXBUFFER_8192:
1602 rctl |= E1000_RCTL_SZ_8192;
1603 break;
1604 case IGB_RXBUFFER_16384:
1605 rctl |= E1000_RCTL_SZ_16384;
1606 break;
1607 }
1608 } else {
1609 rctl &= ~E1000_RCTL_BSEX;
1610 srrctl = adapter->rx_buffer_len >> E1000_SRRCTL_BSIZEPKT_SHIFT;
1611 }
1612
1613 /* 82575 and greater support packet-split where the protocol
1614 * header is placed in skb->data and the packet data is
1615 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
1616 * In the case of a non-split, skb->data is linearly filled,
1617 * followed by the page buffers. Therefore, skb->data is
1618 * sized to hold the largest protocol header.
1619 */
1620 /* allocations using alloc_page take too long for regular MTU
1621 * so only enable packet split for jumbo frames */
1622 if (rctl & E1000_RCTL_LPE) {
1623 adapter->rx_ps_hdr_size = IGB_RXBUFFER_128;
1624 srrctl = adapter->rx_ps_hdr_size <<
1625 E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
1626 /* buffer size is ALWAYS one page */
1627 srrctl |= PAGE_SIZE >> E1000_SRRCTL_BSIZEPKT_SHIFT;
1628 srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
1629 } else {
1630 adapter->rx_ps_hdr_size = 0;
1631 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
1632 }
1633
1634 for (i = 0; i < adapter->num_rx_queues; i++)
1635 wr32(E1000_SRRCTL(i), srrctl);
1636
1637 wr32(E1000_RCTL, rctl);
1638}
1639
1640/**
1641 * igb_configure_rx - Configure receive Unit after Reset
1642 * @adapter: board private structure
1643 *
1644 * Configure the Rx unit of the MAC after a reset.
1645 **/
1646static void igb_configure_rx(struct igb_adapter *adapter)
1647{
1648 u64 rdba;
1649 struct e1000_hw *hw = &adapter->hw;
1650 u32 rctl, rxcsum;
1651 u32 rxdctl;
1652 int i;
1653
1654 /* disable receives while setting up the descriptors */
1655 rctl = rd32(E1000_RCTL);
1656 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1657 wrfl();
1658 mdelay(10);
1659
1660 if (adapter->itr_setting > 3)
1661 wr32(E1000_ITR,
1662 1000000000 / (adapter->itr * 256));
1663
1664 /* Setup the HW Rx Head and Tail Descriptor Pointers and
1665 * the Base and Length of the Rx Descriptor Ring */
1666 for (i = 0; i < adapter->num_rx_queues; i++) {
1667 struct igb_ring *ring = &(adapter->rx_ring[i]);
1668 rdba = ring->dma;
1669 wr32(E1000_RDBAL(i),
1670 rdba & 0x00000000ffffffffULL);
1671 wr32(E1000_RDBAH(i), rdba >> 32);
1672 wr32(E1000_RDLEN(i),
1673 ring->count * sizeof(union e1000_adv_rx_desc));
1674
1675 ring->head = E1000_RDH(i);
1676 ring->tail = E1000_RDT(i);
1677 writel(0, hw->hw_addr + ring->tail);
1678 writel(0, hw->hw_addr + ring->head);
1679
1680 rxdctl = rd32(E1000_RXDCTL(i));
1681 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
1682 rxdctl &= 0xFFF00000;
1683 rxdctl |= IGB_RX_PTHRESH;
1684 rxdctl |= IGB_RX_HTHRESH << 8;
1685 rxdctl |= IGB_RX_WTHRESH << 16;
1686 wr32(E1000_RXDCTL(i), rxdctl);
1687 }
1688
1689 if (adapter->num_rx_queues > 1) {
1690 u32 random[10];
1691 u32 mrqc;
1692 u32 j, shift;
1693 union e1000_reta {
1694 u32 dword;
1695 u8 bytes[4];
1696 } reta;
1697
1698 get_random_bytes(&random[0], 40);
1699
1700 shift = 6;
1701 for (j = 0; j < (32 * 4); j++) {
1702 reta.bytes[j & 3] =
1703 (j % adapter->num_rx_queues) << shift;
1704 if ((j & 3) == 3)
1705 writel(reta.dword,
1706 hw->hw_addr + E1000_RETA(0) + (j & ~3));
1707 }
1708 mrqc = E1000_MRQC_ENABLE_RSS_4Q;
1709
1710 /* Fill out hash function seeds */
1711 for (j = 0; j < 10; j++)
1712 array_wr32(E1000_RSSRK(0), j, random[j]);
1713
1714 mrqc |= (E1000_MRQC_RSS_FIELD_IPV4 |
1715 E1000_MRQC_RSS_FIELD_IPV4_TCP);
1716 mrqc |= (E1000_MRQC_RSS_FIELD_IPV6 |
1717 E1000_MRQC_RSS_FIELD_IPV6_TCP);
1718 mrqc |= (E1000_MRQC_RSS_FIELD_IPV4_UDP |
1719 E1000_MRQC_RSS_FIELD_IPV6_UDP);
1720 mrqc |= (E1000_MRQC_RSS_FIELD_IPV6_UDP_EX |
1721 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
1722
1723
1724 wr32(E1000_MRQC, mrqc);
1725
1726 /* Multiqueue and raw packet checksumming are mutually
1727 * exclusive. Note that this not the same as TCP/IP
1728 * checksumming, which works fine. */
1729 rxcsum = rd32(E1000_RXCSUM);
1730 rxcsum |= E1000_RXCSUM_PCSD;
1731 wr32(E1000_RXCSUM, rxcsum);
1732 } else {
1733 /* Enable Receive Checksum Offload for TCP and UDP */
1734 rxcsum = rd32(E1000_RXCSUM);
1735 if (adapter->rx_csum) {
1736 rxcsum |= E1000_RXCSUM_TUOFL;
1737
1738 /* Enable IPv4 payload checksum for UDP fragments
1739 * Must be used in conjunction with packet-split. */
1740 if (adapter->rx_ps_hdr_size)
1741 rxcsum |= E1000_RXCSUM_IPPCSE;
1742 } else {
1743 rxcsum &= ~E1000_RXCSUM_TUOFL;
1744 /* don't need to clear IPPCSE as it defaults to 0 */
1745 }
1746 wr32(E1000_RXCSUM, rxcsum);
1747 }
1748
1749 if (adapter->vlgrp)
1750 wr32(E1000_RLPML,
1751 adapter->max_frame_size + VLAN_TAG_SIZE);
1752 else
1753 wr32(E1000_RLPML, adapter->max_frame_size);
1754
1755 /* Enable Receives */
1756 wr32(E1000_RCTL, rctl);
1757}
1758
1759/**
1760 * igb_free_tx_resources - Free Tx Resources per Queue
1761 * @adapter: board private structure
1762 * @tx_ring: Tx descriptor ring for a specific queue
1763 *
1764 * Free all transmit software resources
1765 **/
1766static void igb_free_tx_resources(struct igb_adapter *adapter,
1767 struct igb_ring *tx_ring)
1768{
1769 struct pci_dev *pdev = adapter->pdev;
1770
1771 igb_clean_tx_ring(adapter, tx_ring);
1772
1773 vfree(tx_ring->buffer_info);
1774 tx_ring->buffer_info = NULL;
1775
1776 pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma);
1777
1778 tx_ring->desc = NULL;
1779}
1780
1781/**
1782 * igb_free_all_tx_resources - Free Tx Resources for All Queues
1783 * @adapter: board private structure
1784 *
1785 * Free all transmit software resources
1786 **/
1787static void igb_free_all_tx_resources(struct igb_adapter *adapter)
1788{
1789 int i;
1790
1791 for (i = 0; i < adapter->num_tx_queues; i++)
1792 igb_free_tx_resources(adapter, &adapter->tx_ring[i]);
1793}
1794
1795static void igb_unmap_and_free_tx_resource(struct igb_adapter *adapter,
1796 struct igb_buffer *buffer_info)
1797{
1798 if (buffer_info->dma) {
1799 pci_unmap_page(adapter->pdev,
1800 buffer_info->dma,
1801 buffer_info->length,
1802 PCI_DMA_TODEVICE);
1803 buffer_info->dma = 0;
1804 }
1805 if (buffer_info->skb) {
1806 dev_kfree_skb_any(buffer_info->skb);
1807 buffer_info->skb = NULL;
1808 }
1809 buffer_info->time_stamp = 0;
1810 /* buffer_info must be completely set up in the transmit path */
1811}
1812
1813/**
1814 * igb_clean_tx_ring - Free Tx Buffers
1815 * @adapter: board private structure
1816 * @tx_ring: ring to be cleaned
1817 **/
1818static void igb_clean_tx_ring(struct igb_adapter *adapter,
1819 struct igb_ring *tx_ring)
1820{
1821 struct igb_buffer *buffer_info;
1822 unsigned long size;
1823 unsigned int i;
1824
1825 if (!tx_ring->buffer_info)
1826 return;
1827 /* Free all the Tx ring sk_buffs */
1828
1829 for (i = 0; i < tx_ring->count; i++) {
1830 buffer_info = &tx_ring->buffer_info[i];
1831 igb_unmap_and_free_tx_resource(adapter, buffer_info);
1832 }
1833
1834 size = sizeof(struct igb_buffer) * tx_ring->count;
1835 memset(tx_ring->buffer_info, 0, size);
1836
1837 /* Zero out the descriptor ring */
1838
1839 memset(tx_ring->desc, 0, tx_ring->size);
1840
1841 tx_ring->next_to_use = 0;
1842 tx_ring->next_to_clean = 0;
1843
1844 writel(0, adapter->hw.hw_addr + tx_ring->head);
1845 writel(0, adapter->hw.hw_addr + tx_ring->tail);
1846}
1847
1848/**
1849 * igb_clean_all_tx_rings - Free Tx Buffers for all queues
1850 * @adapter: board private structure
1851 **/
1852static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
1853{
1854 int i;
1855
1856 for (i = 0; i < adapter->num_tx_queues; i++)
1857 igb_clean_tx_ring(adapter, &adapter->tx_ring[i]);
1858}
1859
1860/**
1861 * igb_free_rx_resources - Free Rx Resources
1862 * @adapter: board private structure
1863 * @rx_ring: ring to clean the resources from
1864 *
1865 * Free all receive software resources
1866 **/
1867static void igb_free_rx_resources(struct igb_adapter *adapter,
1868 struct igb_ring *rx_ring)
1869{
1870 struct pci_dev *pdev = adapter->pdev;
1871
1872 igb_clean_rx_ring(adapter, rx_ring);
1873
1874 vfree(rx_ring->buffer_info);
1875 rx_ring->buffer_info = NULL;
1876
1877 pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
1878
1879 rx_ring->desc = NULL;
1880}
1881
1882/**
1883 * igb_free_all_rx_resources - Free Rx Resources for All Queues
1884 * @adapter: board private structure
1885 *
1886 * Free all receive software resources
1887 **/
1888static void igb_free_all_rx_resources(struct igb_adapter *adapter)
1889{
1890 int i;
1891
1892 for (i = 0; i < adapter->num_rx_queues; i++)
1893 igb_free_rx_resources(adapter, &adapter->rx_ring[i]);
1894}
1895
1896/**
1897 * igb_clean_rx_ring - Free Rx Buffers per Queue
1898 * @adapter: board private structure
1899 * @rx_ring: ring to free buffers from
1900 **/
1901static void igb_clean_rx_ring(struct igb_adapter *adapter,
1902 struct igb_ring *rx_ring)
1903{
1904 struct igb_buffer *buffer_info;
1905 struct pci_dev *pdev = adapter->pdev;
1906 unsigned long size;
1907 unsigned int i;
1908
1909 if (!rx_ring->buffer_info)
1910 return;
1911 /* Free all the Rx ring sk_buffs */
1912 for (i = 0; i < rx_ring->count; i++) {
1913 buffer_info = &rx_ring->buffer_info[i];
1914 if (buffer_info->dma) {
1915 if (adapter->rx_ps_hdr_size)
1916 pci_unmap_single(pdev, buffer_info->dma,
1917 adapter->rx_ps_hdr_size,
1918 PCI_DMA_FROMDEVICE);
1919 else
1920 pci_unmap_single(pdev, buffer_info->dma,
1921 adapter->rx_buffer_len,
1922 PCI_DMA_FROMDEVICE);
1923 buffer_info->dma = 0;
1924 }
1925
1926 if (buffer_info->skb) {
1927 dev_kfree_skb(buffer_info->skb);
1928 buffer_info->skb = NULL;
1929 }
1930 if (buffer_info->page) {
1931 pci_unmap_page(pdev, buffer_info->page_dma,
1932 PAGE_SIZE, PCI_DMA_FROMDEVICE);
1933 put_page(buffer_info->page);
1934 buffer_info->page = NULL;
1935 buffer_info->page_dma = 0;
1936 }
1937 }
1938
1939 /* there also may be some cached data from a chained receive */
1940 if (rx_ring->pending_skb) {
1941 dev_kfree_skb(rx_ring->pending_skb);
1942 rx_ring->pending_skb = NULL;
1943 }
1944
1945 size = sizeof(struct igb_buffer) * rx_ring->count;
1946 memset(rx_ring->buffer_info, 0, size);
1947
1948 /* Zero out the descriptor ring */
1949 memset(rx_ring->desc, 0, rx_ring->size);
1950
1951 rx_ring->next_to_clean = 0;
1952 rx_ring->next_to_use = 0;
1953
1954 writel(0, adapter->hw.hw_addr + rx_ring->head);
1955 writel(0, adapter->hw.hw_addr + rx_ring->tail);
1956}
1957
1958/**
1959 * igb_clean_all_rx_rings - Free Rx Buffers for all queues
1960 * @adapter: board private structure
1961 **/
1962static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
1963{
1964 int i;
1965
1966 for (i = 0; i < adapter->num_rx_queues; i++)
1967 igb_clean_rx_ring(adapter, &adapter->rx_ring[i]);
1968}
1969
1970/**
1971 * igb_set_mac - Change the Ethernet Address of the NIC
1972 * @netdev: network interface device structure
1973 * @p: pointer to an address structure
1974 *
1975 * Returns 0 on success, negative on failure
1976 **/
1977static int igb_set_mac(struct net_device *netdev, void *p)
1978{
1979 struct igb_adapter *adapter = netdev_priv(netdev);
1980 struct sockaddr *addr = p;
1981
1982 if (!is_valid_ether_addr(addr->sa_data))
1983 return -EADDRNOTAVAIL;
1984
1985 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
1986 memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
1987
1988 adapter->hw.mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
1989
1990 return 0;
1991}
1992
1993/**
1994 * igb_set_multi - Multicast and Promiscuous mode set
1995 * @netdev: network interface device structure
1996 *
1997 * The set_multi entry point is called whenever the multicast address
1998 * list or the network interface flags are updated. This routine is
1999 * responsible for configuring the hardware for proper multicast,
2000 * promiscuous mode, and all-multi behavior.
2001 **/
2002static void igb_set_multi(struct net_device *netdev)
2003{
2004 struct igb_adapter *adapter = netdev_priv(netdev);
2005 struct e1000_hw *hw = &adapter->hw;
2006 struct e1000_mac_info *mac = &hw->mac;
2007 struct dev_mc_list *mc_ptr;
2008 u8 *mta_list;
2009 u32 rctl;
2010 int i;
2011
2012 /* Check for Promiscuous and All Multicast modes */
2013
2014 rctl = rd32(E1000_RCTL);
2015
2016 if (netdev->flags & IFF_PROMISC)
2017 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2018 else if (netdev->flags & IFF_ALLMULTI) {
2019 rctl |= E1000_RCTL_MPE;
2020 rctl &= ~E1000_RCTL_UPE;
2021 } else
2022 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
2023
2024 wr32(E1000_RCTL, rctl);
2025
2026 if (!netdev->mc_count) {
2027 /* nothing to program, so clear mc list */
2028 igb_update_mc_addr_list(hw, NULL, 0, 1,
2029 mac->rar_entry_count);
2030 return;
2031 }
2032
2033 mta_list = kzalloc(netdev->mc_count * 6, GFP_ATOMIC);
2034 if (!mta_list)
2035 return;
2036
2037 /* The shared function expects a packed array of only addresses. */
2038 mc_ptr = netdev->mc_list;
2039
2040 for (i = 0; i < netdev->mc_count; i++) {
2041 if (!mc_ptr)
2042 break;
2043 memcpy(mta_list + (i*ETH_ALEN), mc_ptr->dmi_addr, ETH_ALEN);
2044 mc_ptr = mc_ptr->next;
2045 }
2046 igb_update_mc_addr_list(hw, mta_list, i, 1, mac->rar_entry_count);
2047 kfree(mta_list);
2048}
2049
2050/* Need to wait a few seconds after link up to get diagnostic information from
2051 * the phy */
2052static void igb_update_phy_info(unsigned long data)
2053{
2054 struct igb_adapter *adapter = (struct igb_adapter *) data;
2055 adapter->hw.phy.ops.get_phy_info(&adapter->hw);
2056}
2057
2058/**
2059 * igb_watchdog - Timer Call-back
2060 * @data: pointer to adapter cast into an unsigned long
2061 **/
2062static void igb_watchdog(unsigned long data)
2063{
2064 struct igb_adapter *adapter = (struct igb_adapter *)data;
2065 /* Do the rest outside of interrupt context */
2066 schedule_work(&adapter->watchdog_task);
2067}
2068
2069static void igb_watchdog_task(struct work_struct *work)
2070{
2071 struct igb_adapter *adapter = container_of(work,
2072 struct igb_adapter, watchdog_task);
2073 struct e1000_hw *hw = &adapter->hw;
2074
2075 struct net_device *netdev = adapter->netdev;
2076 struct igb_ring *tx_ring = adapter->tx_ring;
2077 struct e1000_mac_info *mac = &adapter->hw.mac;
2078 u32 link;
2079 s32 ret_val;
2080
2081 if ((netif_carrier_ok(netdev)) &&
2082 (rd32(E1000_STATUS) & E1000_STATUS_LU))
2083 goto link_up;
2084
2085 ret_val = hw->mac.ops.check_for_link(&adapter->hw);
2086 if ((ret_val == E1000_ERR_PHY) &&
2087 (hw->phy.type == e1000_phy_igp_3) &&
2088 (rd32(E1000_CTRL) &
2089 E1000_PHY_CTRL_GBE_DISABLE))
2090 dev_info(&adapter->pdev->dev,
2091 "Gigabit has been disabled, downgrading speed\n");
2092
2093 if ((hw->phy.media_type == e1000_media_type_internal_serdes) &&
2094 !(rd32(E1000_TXCW) & E1000_TXCW_ANE))
2095 link = mac->serdes_has_link;
2096 else
2097 link = rd32(E1000_STATUS) &
2098 E1000_STATUS_LU;
2099
2100 if (link) {
2101 if (!netif_carrier_ok(netdev)) {
2102 u32 ctrl;
2103 hw->mac.ops.get_speed_and_duplex(&adapter->hw,
2104 &adapter->link_speed,
2105 &adapter->link_duplex);
2106
2107 ctrl = rd32(E1000_CTRL);
2108 dev_info(&adapter->pdev->dev,
2109 "NIC Link is Up %d Mbps %s, "
2110 "Flow Control: %s\n",
2111 adapter->link_speed,
2112 adapter->link_duplex == FULL_DUPLEX ?
2113 "Full Duplex" : "Half Duplex",
2114 ((ctrl & E1000_CTRL_TFCE) && (ctrl &
2115 E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2116 E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2117 E1000_CTRL_TFCE) ? "TX" : "None")));
2118
2119 /* tweak tx_queue_len according to speed/duplex and
2120 * adjust the timeout factor */
2121 netdev->tx_queue_len = adapter->tx_queue_len;
2122 adapter->tx_timeout_factor = 1;
2123 switch (adapter->link_speed) {
2124 case SPEED_10:
2125 netdev->tx_queue_len = 10;
2126 adapter->tx_timeout_factor = 14;
2127 break;
2128 case SPEED_100:
2129 netdev->tx_queue_len = 100;
2130 /* maybe add some timeout factor ? */
2131 break;
2132 }
2133
2134 netif_carrier_on(netdev);
2135 netif_wake_queue(netdev);
2136
2137 if (!test_bit(__IGB_DOWN, &adapter->state))
2138 mod_timer(&adapter->phy_info_timer,
2139 round_jiffies(jiffies + 2 * HZ));
2140 }
2141 } else {
2142 if (netif_carrier_ok(netdev)) {
2143 adapter->link_speed = 0;
2144 adapter->link_duplex = 0;
2145 dev_info(&adapter->pdev->dev, "NIC Link is Down\n");
2146 netif_carrier_off(netdev);
2147 netif_stop_queue(netdev);
2148 if (!test_bit(__IGB_DOWN, &adapter->state))
2149 mod_timer(&adapter->phy_info_timer,
2150 round_jiffies(jiffies + 2 * HZ));
2151 }
2152 }
2153
2154link_up:
2155 igb_update_stats(adapter);
2156
2157 mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2158 adapter->tpt_old = adapter->stats.tpt;
2159 mac->collision_delta = adapter->stats.colc - adapter->colc_old;
2160 adapter->colc_old = adapter->stats.colc;
2161
2162 adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
2163 adapter->gorc_old = adapter->stats.gorc;
2164 adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
2165 adapter->gotc_old = adapter->stats.gotc;
2166
2167 igb_update_adaptive(&adapter->hw);
2168
2169 if (!netif_carrier_ok(netdev)) {
2170 if (IGB_DESC_UNUSED(tx_ring) + 1 < tx_ring->count) {
2171 /* We've lost link, so the controller stops DMA,
2172 * but we've got queued Tx work that's never going
2173 * to get done, so reset controller to flush Tx.
2174 * (Do the reset outside of interrupt context). */
2175 adapter->tx_timeout_count++;
2176 schedule_work(&adapter->reset_task);
2177 }
2178 }
2179
2180 /* Cause software interrupt to ensure rx ring is cleaned */
2181 wr32(E1000_ICS, E1000_ICS_RXDMT0);
2182
2183 /* Force detection of hung controller every watchdog period */
2184 tx_ring->detect_tx_hung = true;
2185
2186 /* Reset the timer */
2187 if (!test_bit(__IGB_DOWN, &adapter->state))
2188 mod_timer(&adapter->watchdog_timer,
2189 round_jiffies(jiffies + 2 * HZ));
2190}
2191
2192enum latency_range {
2193 lowest_latency = 0,
2194 low_latency = 1,
2195 bulk_latency = 2,
2196 latency_invalid = 255
2197};
2198
2199
2200static void igb_lower_rx_eitr(struct igb_adapter *adapter,
2201 struct igb_ring *rx_ring)
2202{
2203 struct e1000_hw *hw = &adapter->hw;
2204 int new_val;
2205
2206 new_val = rx_ring->itr_val / 2;
2207 if (new_val < IGB_MIN_DYN_ITR)
2208 new_val = IGB_MIN_DYN_ITR;
2209
2210 if (new_val != rx_ring->itr_val) {
2211 rx_ring->itr_val = new_val;
2212 wr32(rx_ring->itr_register,
2213 1000000000 / (new_val * 256));
2214 }
2215}
2216
2217static void igb_raise_rx_eitr(struct igb_adapter *adapter,
2218 struct igb_ring *rx_ring)
2219{
2220 struct e1000_hw *hw = &adapter->hw;
2221 int new_val;
2222
2223 new_val = rx_ring->itr_val * 2;
2224 if (new_val > IGB_MAX_DYN_ITR)
2225 new_val = IGB_MAX_DYN_ITR;
2226
2227 if (new_val != rx_ring->itr_val) {
2228 rx_ring->itr_val = new_val;
2229 wr32(rx_ring->itr_register,
2230 1000000000 / (new_val * 256));
2231 }
2232}
2233
2234/**
2235 * igb_update_itr - update the dynamic ITR value based on statistics
2236 * Stores a new ITR value based on packets and byte
2237 * counts during the last interrupt. The advantage of per interrupt
2238 * computation is faster updates and more accurate ITR for the current
2239 * traffic pattern. Constants in this function were computed
2240 * based on theoretical maximum wire speed and thresholds were set based
2241 * on testing data as well as attempting to minimize response time
2242 * while increasing bulk throughput.
2243 * this functionality is controlled by the InterruptThrottleRate module
2244 * parameter (see igb_param.c)
2245 * NOTE: These calculations are only valid when operating in a single-
2246 * queue environment.
2247 * @adapter: pointer to adapter
2248 * @itr_setting: current adapter->itr
2249 * @packets: the number of packets during this measurement interval
2250 * @bytes: the number of bytes during this measurement interval
2251 **/
2252static unsigned int igb_update_itr(struct igb_adapter *adapter, u16 itr_setting,
2253 int packets, int bytes)
2254{
2255 unsigned int retval = itr_setting;
2256
2257 if (packets == 0)
2258 goto update_itr_done;
2259
2260 switch (itr_setting) {
2261 case lowest_latency:
2262 /* handle TSO and jumbo frames */
2263 if (bytes/packets > 8000)
2264 retval = bulk_latency;
2265 else if ((packets < 5) && (bytes > 512))
2266 retval = low_latency;
2267 break;
2268 case low_latency: /* 50 usec aka 20000 ints/s */
2269 if (bytes > 10000) {
2270 /* this if handles the TSO accounting */
2271 if (bytes/packets > 8000) {
2272 retval = bulk_latency;
2273 } else if ((packets < 10) || ((bytes/packets) > 1200)) {
2274 retval = bulk_latency;
2275 } else if ((packets > 35)) {
2276 retval = lowest_latency;
2277 }
2278 } else if (bytes/packets > 2000) {
2279 retval = bulk_latency;
2280 } else if (packets <= 2 && bytes < 512) {
2281 retval = lowest_latency;
2282 }
2283 break;
2284 case bulk_latency: /* 250 usec aka 4000 ints/s */
2285 if (bytes > 25000) {
2286 if (packets > 35)
2287 retval = low_latency;
2288 } else if (bytes < 6000) {
2289 retval = low_latency;
2290 }
2291 break;
2292 }
2293
2294update_itr_done:
2295 return retval;
2296}
2297
2298static void igb_set_itr(struct igb_adapter *adapter, u16 itr_register,
2299 int rx_only)
2300{
2301 u16 current_itr;
2302 u32 new_itr = adapter->itr;
2303
2304 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2305 if (adapter->link_speed != SPEED_1000) {
2306 current_itr = 0;
2307 new_itr = 4000;
2308 goto set_itr_now;
2309 }
2310
2311 adapter->rx_itr = igb_update_itr(adapter,
2312 adapter->rx_itr,
2313 adapter->rx_ring->total_packets,
2314 adapter->rx_ring->total_bytes);
2315 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2316 if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2317 adapter->rx_itr = low_latency;
2318
2319 if (!rx_only) {
2320 adapter->tx_itr = igb_update_itr(adapter,
2321 adapter->tx_itr,
2322 adapter->tx_ring->total_packets,
2323 adapter->tx_ring->total_bytes);
2324 /* conservative mode (itr 3) eliminates the
2325 * lowest_latency setting */
2326 if (adapter->itr_setting == 3 &&
2327 adapter->tx_itr == lowest_latency)
2328 adapter->tx_itr = low_latency;
2329
2330 current_itr = max(adapter->rx_itr, adapter->tx_itr);
2331 } else {
2332 current_itr = adapter->rx_itr;
2333 }
2334
2335 switch (current_itr) {
2336 /* counts and packets in update_itr are dependent on these numbers */
2337 case lowest_latency:
2338 new_itr = 70000;
2339 break;
2340 case low_latency:
2341 new_itr = 20000; /* aka hwitr = ~200 */
2342 break;
2343 case bulk_latency:
2344 new_itr = 4000;
2345 break;
2346 default:
2347 break;
2348 }
2349
2350set_itr_now:
2351 if (new_itr != adapter->itr) {
2352 /* this attempts to bias the interrupt rate towards Bulk
2353 * by adding intermediate steps when interrupt rate is
2354 * increasing */
2355 new_itr = new_itr > adapter->itr ?
2356 min(adapter->itr + (new_itr >> 2), new_itr) :
2357 new_itr;
2358 /* Don't write the value here; it resets the adapter's
2359 * internal timer, and causes us to delay far longer than
2360 * we should between interrupts. Instead, we write the ITR
2361 * value at the beginning of the next interrupt so the timing
2362 * ends up being correct.
2363 */
2364 adapter->itr = new_itr;
2365 adapter->set_itr = 1;
2366 }
2367
2368 return;
2369}
2370
2371
2372#define IGB_TX_FLAGS_CSUM 0x00000001
2373#define IGB_TX_FLAGS_VLAN 0x00000002
2374#define IGB_TX_FLAGS_TSO 0x00000004
2375#define IGB_TX_FLAGS_IPV4 0x00000008
2376#define IGB_TX_FLAGS_VLAN_MASK 0xffff0000
2377#define IGB_TX_FLAGS_VLAN_SHIFT 16
2378
2379static inline int igb_tso_adv(struct igb_adapter *adapter,
2380 struct igb_ring *tx_ring,
2381 struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
2382{
2383 struct e1000_adv_tx_context_desc *context_desc;
2384 unsigned int i;
2385 int err;
2386 struct igb_buffer *buffer_info;
2387 u32 info = 0, tu_cmd = 0;
2388 u32 mss_l4len_idx, l4len;
2389 *hdr_len = 0;
2390
2391 if (skb_header_cloned(skb)) {
2392 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2393 if (err)
2394 return err;
2395 }
2396
2397 l4len = tcp_hdrlen(skb);
2398 *hdr_len += l4len;
2399
2400 if (skb->protocol == htons(ETH_P_IP)) {
2401 struct iphdr *iph = ip_hdr(skb);
2402 iph->tot_len = 0;
2403 iph->check = 0;
2404 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2405 iph->daddr, 0,
2406 IPPROTO_TCP,
2407 0);
2408 } else if (skb_shinfo(skb)->gso_type == SKB_GSO_TCPV6) {
2409 ipv6_hdr(skb)->payload_len = 0;
2410 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2411 &ipv6_hdr(skb)->daddr,
2412 0, IPPROTO_TCP, 0);
2413 }
2414
2415 i = tx_ring->next_to_use;
2416
2417 buffer_info = &tx_ring->buffer_info[i];
2418 context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
2419 /* VLAN MACLEN IPLEN */
2420 if (tx_flags & IGB_TX_FLAGS_VLAN)
2421 info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
2422 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
2423 *hdr_len += skb_network_offset(skb);
2424 info |= skb_network_header_len(skb);
2425 *hdr_len += skb_network_header_len(skb);
2426 context_desc->vlan_macip_lens = cpu_to_le32(info);
2427
2428 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
2429 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
2430
2431 if (skb->protocol == htons(ETH_P_IP))
2432 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
2433 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
2434
2435 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
2436
2437 /* MSS L4LEN IDX */
2438 mss_l4len_idx = (skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT);
2439 mss_l4len_idx |= (l4len << E1000_ADVTXD_L4LEN_SHIFT);
2440
2441 /* Context index must be unique per ring. Luckily, so is the interrupt
2442 * mask value. */
2443 mss_l4len_idx |= tx_ring->eims_value >> 4;
2444
2445 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
2446 context_desc->seqnum_seed = 0;
2447
2448 buffer_info->time_stamp = jiffies;
2449 buffer_info->dma = 0;
2450 i++;
2451 if (i == tx_ring->count)
2452 i = 0;
2453
2454 tx_ring->next_to_use = i;
2455
2456 return true;
2457}
2458
2459static inline bool igb_tx_csum_adv(struct igb_adapter *adapter,
2460 struct igb_ring *tx_ring,
2461 struct sk_buff *skb, u32 tx_flags)
2462{
2463 struct e1000_adv_tx_context_desc *context_desc;
2464 unsigned int i;
2465 struct igb_buffer *buffer_info;
2466 u32 info = 0, tu_cmd = 0;
2467
2468 if ((skb->ip_summed == CHECKSUM_PARTIAL) ||
2469 (tx_flags & IGB_TX_FLAGS_VLAN)) {
2470 i = tx_ring->next_to_use;
2471 buffer_info = &tx_ring->buffer_info[i];
2472 context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
2473
2474 if (tx_flags & IGB_TX_FLAGS_VLAN)
2475 info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
2476 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
2477 if (skb->ip_summed == CHECKSUM_PARTIAL)
2478 info |= skb_network_header_len(skb);
2479
2480 context_desc->vlan_macip_lens = cpu_to_le32(info);
2481
2482 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
2483
2484 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2485 if (skb->protocol == htons(ETH_P_IP))
2486 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
2487 if (skb->sk && (skb->sk->sk_protocol == IPPROTO_TCP))
2488 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
2489 }
2490
2491 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
2492 context_desc->seqnum_seed = 0;
2493 context_desc->mss_l4len_idx =
2494 cpu_to_le32(tx_ring->eims_value >> 4);
2495
2496 buffer_info->time_stamp = jiffies;
2497 buffer_info->dma = 0;
2498
2499 i++;
2500 if (i == tx_ring->count)
2501 i = 0;
2502 tx_ring->next_to_use = i;
2503
2504 return true;
2505 }
2506
2507
2508 return false;
2509}
2510
2511#define IGB_MAX_TXD_PWR 16
2512#define IGB_MAX_DATA_PER_TXD (1<<IGB_MAX_TXD_PWR)
2513
2514static inline int igb_tx_map_adv(struct igb_adapter *adapter,
2515 struct igb_ring *tx_ring,
2516 struct sk_buff *skb)
2517{
2518 struct igb_buffer *buffer_info;
2519 unsigned int len = skb_headlen(skb);
2520 unsigned int count = 0, i;
2521 unsigned int f;
2522
2523 i = tx_ring->next_to_use;
2524
2525 buffer_info = &tx_ring->buffer_info[i];
2526 BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
2527 buffer_info->length = len;
2528 /* set time_stamp *before* dma to help avoid a possible race */
2529 buffer_info->time_stamp = jiffies;
2530 buffer_info->dma = pci_map_single(adapter->pdev, skb->data, len,
2531 PCI_DMA_TODEVICE);
2532 count++;
2533 i++;
2534 if (i == tx_ring->count)
2535 i = 0;
2536
2537 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
2538 struct skb_frag_struct *frag;
2539
2540 frag = &skb_shinfo(skb)->frags[f];
2541 len = frag->size;
2542
2543 buffer_info = &tx_ring->buffer_info[i];
2544 BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
2545 buffer_info->length = len;
2546 buffer_info->time_stamp = jiffies;
2547 buffer_info->dma = pci_map_page(adapter->pdev,
2548 frag->page,
2549 frag->page_offset,
2550 len,
2551 PCI_DMA_TODEVICE);
2552
2553 count++;
2554 i++;
2555 if (i == tx_ring->count)
2556 i = 0;
2557 }
2558
2559 i = (i == 0) ? tx_ring->count - 1 : i - 1;
2560 tx_ring->buffer_info[i].skb = skb;
2561
2562 return count;
2563}
2564
2565static inline void igb_tx_queue_adv(struct igb_adapter *adapter,
2566 struct igb_ring *tx_ring,
2567 int tx_flags, int count, u32 paylen,
2568 u8 hdr_len)
2569{
2570 union e1000_adv_tx_desc *tx_desc = NULL;
2571 struct igb_buffer *buffer_info;
2572 u32 olinfo_status = 0, cmd_type_len;
2573 unsigned int i;
2574
2575 cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS |
2576 E1000_ADVTXD_DCMD_DEXT);
2577
2578 if (tx_flags & IGB_TX_FLAGS_VLAN)
2579 cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
2580
2581 if (tx_flags & IGB_TX_FLAGS_TSO) {
2582 cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
2583
2584 /* insert tcp checksum */
2585 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2586
2587 /* insert ip checksum */
2588 if (tx_flags & IGB_TX_FLAGS_IPV4)
2589 olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
2590
2591 } else if (tx_flags & IGB_TX_FLAGS_CSUM) {
2592 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2593 }
2594
2595 if (tx_flags & (IGB_TX_FLAGS_CSUM | IGB_TX_FLAGS_TSO |
2596 IGB_TX_FLAGS_VLAN))
2597 olinfo_status |= tx_ring->eims_value >> 4;
2598
2599 olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT);
2600
2601 i = tx_ring->next_to_use;
2602 while (count--) {
2603 buffer_info = &tx_ring->buffer_info[i];
2604 tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
2605 tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
2606 tx_desc->read.cmd_type_len =
2607 cpu_to_le32(cmd_type_len | buffer_info->length);
2608 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
2609 i++;
2610 if (i == tx_ring->count)
2611 i = 0;
2612 }
2613
2614 tx_desc->read.cmd_type_len |= cpu_to_le32(adapter->txd_cmd);
2615 /* Force memory writes to complete before letting h/w
2616 * know there are new descriptors to fetch. (Only
2617 * applicable for weak-ordered memory model archs,
2618 * such as IA-64). */
2619 wmb();
2620
2621 tx_ring->next_to_use = i;
2622 writel(i, adapter->hw.hw_addr + tx_ring->tail);
2623 /* we need this if more than one processor can write to our tail
2624 * at a time, it syncronizes IO on IA64/Altix systems */
2625 mmiowb();
2626}
2627
2628static int __igb_maybe_stop_tx(struct net_device *netdev,
2629 struct igb_ring *tx_ring, int size)
2630{
2631 struct igb_adapter *adapter = netdev_priv(netdev);
2632
2633 netif_stop_queue(netdev);
2634 /* Herbert's original patch had:
2635 * smp_mb__after_netif_stop_queue();
2636 * but since that doesn't exist yet, just open code it. */
2637 smp_mb();
2638
2639 /* We need to check again in a case another CPU has just
2640 * made room available. */
2641 if (IGB_DESC_UNUSED(tx_ring) < size)
2642 return -EBUSY;
2643
2644 /* A reprieve! */
2645 netif_start_queue(netdev);
2646 ++adapter->restart_queue;
2647 return 0;
2648}
2649
2650static int igb_maybe_stop_tx(struct net_device *netdev,
2651 struct igb_ring *tx_ring, int size)
2652{
2653 if (IGB_DESC_UNUSED(tx_ring) >= size)
2654 return 0;
2655 return __igb_maybe_stop_tx(netdev, tx_ring, size);
2656}
2657
2658#define TXD_USE_COUNT(S) (((S) >> (IGB_MAX_TXD_PWR)) + 1)
2659
2660static int igb_xmit_frame_ring_adv(struct sk_buff *skb,
2661 struct net_device *netdev,
2662 struct igb_ring *tx_ring)
2663{
2664 struct igb_adapter *adapter = netdev_priv(netdev);
2665 unsigned int tx_flags = 0;
2666 unsigned int len;
2667 unsigned long irq_flags;
2668 u8 hdr_len = 0;
2669 int tso = 0;
2670
2671 len = skb_headlen(skb);
2672
2673 if (test_bit(__IGB_DOWN, &adapter->state)) {
2674 dev_kfree_skb_any(skb);
2675 return NETDEV_TX_OK;
2676 }
2677
2678 if (skb->len <= 0) {
2679 dev_kfree_skb_any(skb);
2680 return NETDEV_TX_OK;
2681 }
2682
2683 if (!spin_trylock_irqsave(&tx_ring->tx_lock, irq_flags))
2684 /* Collision - tell upper layer to requeue */
2685 return NETDEV_TX_LOCKED;
2686
2687 /* need: 1 descriptor per page,
2688 * + 2 desc gap to keep tail from touching head,
2689 * + 1 desc for skb->data,
2690 * + 1 desc for context descriptor,
2691 * otherwise try next time */
2692 if (igb_maybe_stop_tx(netdev, tx_ring, skb_shinfo(skb)->nr_frags + 4)) {
2693 /* this is a hard error */
2694 spin_unlock_irqrestore(&tx_ring->tx_lock, irq_flags);
2695 return NETDEV_TX_BUSY;
2696 }
2697
2698 if (adapter->vlgrp && vlan_tx_tag_present(skb)) {
2699 tx_flags |= IGB_TX_FLAGS_VLAN;
2700 tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
2701 }
2702
2703 tso = skb_is_gso(skb) ? igb_tso_adv(adapter, tx_ring, skb, tx_flags,
2704 &hdr_len) : 0;
2705
2706 if (tso < 0) {
2707 dev_kfree_skb_any(skb);
2708 spin_unlock_irqrestore(&tx_ring->tx_lock, irq_flags);
2709 return NETDEV_TX_OK;
2710 }
2711
2712 if (tso)
2713 tx_flags |= IGB_TX_FLAGS_TSO;
2714 else if (igb_tx_csum_adv(adapter, tx_ring, skb, tx_flags))
2715 if (skb->ip_summed == CHECKSUM_PARTIAL)
2716 tx_flags |= IGB_TX_FLAGS_CSUM;
2717
2718 if (skb->protocol == htons(ETH_P_IP))
2719 tx_flags |= IGB_TX_FLAGS_IPV4;
2720
2721 igb_tx_queue_adv(adapter, tx_ring, tx_flags,
2722 igb_tx_map_adv(adapter, tx_ring, skb),
2723 skb->len, hdr_len);
2724
2725 netdev->trans_start = jiffies;
2726
2727 /* Make sure there is space in the ring for the next send. */
2728 igb_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 4);
2729
2730 spin_unlock_irqrestore(&tx_ring->tx_lock, irq_flags);
2731 return NETDEV_TX_OK;
2732}
2733
2734static int igb_xmit_frame_adv(struct sk_buff *skb, struct net_device *netdev)
2735{
2736 struct igb_adapter *adapter = netdev_priv(netdev);
2737 struct igb_ring *tx_ring = &adapter->tx_ring[0];
2738
2739 /* This goes back to the question of how to logically map a tx queue
2740 * to a flow. Right now, performance is impacted slightly negatively
2741 * if using multiple tx queues. If the stack breaks away from a
2742 * single qdisc implementation, we can look at this again. */
2743 return (igb_xmit_frame_ring_adv(skb, netdev, tx_ring));
2744}
2745
2746/**
2747 * igb_tx_timeout - Respond to a Tx Hang
2748 * @netdev: network interface device structure
2749 **/
2750static void igb_tx_timeout(struct net_device *netdev)
2751{
2752 struct igb_adapter *adapter = netdev_priv(netdev);
2753 struct e1000_hw *hw = &adapter->hw;
2754
2755 /* Do the reset outside of interrupt context */
2756 adapter->tx_timeout_count++;
2757 schedule_work(&adapter->reset_task);
2758 wr32(E1000_EICS, adapter->eims_enable_mask &
2759 ~(E1000_EIMS_TCP_TIMER | E1000_EIMS_OTHER));
2760}
2761
2762static void igb_reset_task(struct work_struct *work)
2763{
2764 struct igb_adapter *adapter;
2765 adapter = container_of(work, struct igb_adapter, reset_task);
2766
2767 igb_reinit_locked(adapter);
2768}
2769
2770/**
2771 * igb_get_stats - Get System Network Statistics
2772 * @netdev: network interface device structure
2773 *
2774 * Returns the address of the device statistics structure.
2775 * The statistics are actually updated from the timer callback.
2776 **/
2777static struct net_device_stats *
2778igb_get_stats(struct net_device *netdev)
2779{
2780 struct igb_adapter *adapter = netdev_priv(netdev);
2781
2782 /* only return the current stats */
2783 return &adapter->net_stats;
2784}
2785
2786/**
2787 * igb_change_mtu - Change the Maximum Transfer Unit
2788 * @netdev: network interface device structure
2789 * @new_mtu: new value for maximum frame size
2790 *
2791 * Returns 0 on success, negative on failure
2792 **/
2793static int igb_change_mtu(struct net_device *netdev, int new_mtu)
2794{
2795 struct igb_adapter *adapter = netdev_priv(netdev);
2796 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
2797
2798 if ((max_frame < ETH_ZLEN + ETH_FCS_LEN) ||
2799 (max_frame > MAX_JUMBO_FRAME_SIZE)) {
2800 dev_err(&adapter->pdev->dev, "Invalid MTU setting\n");
2801 return -EINVAL;
2802 }
2803
2804#define MAX_STD_JUMBO_FRAME_SIZE 9234
2805 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
2806 dev_err(&adapter->pdev->dev, "MTU > 9216 not supported.\n");
2807 return -EINVAL;
2808 }
2809
2810 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
2811 msleep(1);
2812 /* igb_down has a dependency on max_frame_size */
2813 adapter->max_frame_size = max_frame;
2814 if (netif_running(netdev))
2815 igb_down(adapter);
2816
2817 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
2818 * means we reserve 2 more, this pushes us to allocate from the next
2819 * larger slab size.
2820 * i.e. RXBUFFER_2048 --> size-4096 slab
2821 */
2822
2823 if (max_frame <= IGB_RXBUFFER_256)
2824 adapter->rx_buffer_len = IGB_RXBUFFER_256;
2825 else if (max_frame <= IGB_RXBUFFER_512)
2826 adapter->rx_buffer_len = IGB_RXBUFFER_512;
2827 else if (max_frame <= IGB_RXBUFFER_1024)
2828 adapter->rx_buffer_len = IGB_RXBUFFER_1024;
2829 else if (max_frame <= IGB_RXBUFFER_2048)
2830 adapter->rx_buffer_len = IGB_RXBUFFER_2048;
2831 else
2832 adapter->rx_buffer_len = IGB_RXBUFFER_4096;
2833 /* adjust allocation if LPE protects us, and we aren't using SBP */
2834 if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
2835 (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE))
2836 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
2837
2838 dev_info(&adapter->pdev->dev, "changing MTU from %d to %d\n",
2839 netdev->mtu, new_mtu);
2840 netdev->mtu = new_mtu;
2841
2842 if (netif_running(netdev))
2843 igb_up(adapter);
2844 else
2845 igb_reset(adapter);
2846
2847 clear_bit(__IGB_RESETTING, &adapter->state);
2848
2849 return 0;
2850}
2851
2852/**
2853 * igb_update_stats - Update the board statistics counters
2854 * @adapter: board private structure
2855 **/
2856
2857void igb_update_stats(struct igb_adapter *adapter)
2858{
2859 struct e1000_hw *hw = &adapter->hw;
2860 struct pci_dev *pdev = adapter->pdev;
2861 u16 phy_tmp;
2862
2863#define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
2864
2865 /*
2866 * Prevent stats update while adapter is being reset, or if the pci
2867 * connection is down.
2868 */
2869 if (adapter->link_speed == 0)
2870 return;
2871 if (pci_channel_offline(pdev))
2872 return;
2873
2874 adapter->stats.crcerrs += rd32(E1000_CRCERRS);
2875 adapter->stats.gprc += rd32(E1000_GPRC);
2876 adapter->stats.gorc += rd32(E1000_GORCL);
2877 rd32(E1000_GORCH); /* clear GORCL */
2878 adapter->stats.bprc += rd32(E1000_BPRC);
2879 adapter->stats.mprc += rd32(E1000_MPRC);
2880 adapter->stats.roc += rd32(E1000_ROC);
2881
2882 adapter->stats.prc64 += rd32(E1000_PRC64);
2883 adapter->stats.prc127 += rd32(E1000_PRC127);
2884 adapter->stats.prc255 += rd32(E1000_PRC255);
2885 adapter->stats.prc511 += rd32(E1000_PRC511);
2886 adapter->stats.prc1023 += rd32(E1000_PRC1023);
2887 adapter->stats.prc1522 += rd32(E1000_PRC1522);
2888 adapter->stats.symerrs += rd32(E1000_SYMERRS);
2889 adapter->stats.sec += rd32(E1000_SEC);
2890
2891 adapter->stats.mpc += rd32(E1000_MPC);
2892 adapter->stats.scc += rd32(E1000_SCC);
2893 adapter->stats.ecol += rd32(E1000_ECOL);
2894 adapter->stats.mcc += rd32(E1000_MCC);
2895 adapter->stats.latecol += rd32(E1000_LATECOL);
2896 adapter->stats.dc += rd32(E1000_DC);
2897 adapter->stats.rlec += rd32(E1000_RLEC);
2898 adapter->stats.xonrxc += rd32(E1000_XONRXC);
2899 adapter->stats.xontxc += rd32(E1000_XONTXC);
2900 adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
2901 adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
2902 adapter->stats.fcruc += rd32(E1000_FCRUC);
2903 adapter->stats.gptc += rd32(E1000_GPTC);
2904 adapter->stats.gotc += rd32(E1000_GOTCL);
2905 rd32(E1000_GOTCH); /* clear GOTCL */
2906 adapter->stats.rnbc += rd32(E1000_RNBC);
2907 adapter->stats.ruc += rd32(E1000_RUC);
2908 adapter->stats.rfc += rd32(E1000_RFC);
2909 adapter->stats.rjc += rd32(E1000_RJC);
2910 adapter->stats.tor += rd32(E1000_TORH);
2911 adapter->stats.tot += rd32(E1000_TOTH);
2912 adapter->stats.tpr += rd32(E1000_TPR);
2913
2914 adapter->stats.ptc64 += rd32(E1000_PTC64);
2915 adapter->stats.ptc127 += rd32(E1000_PTC127);
2916 adapter->stats.ptc255 += rd32(E1000_PTC255);
2917 adapter->stats.ptc511 += rd32(E1000_PTC511);
2918 adapter->stats.ptc1023 += rd32(E1000_PTC1023);
2919 adapter->stats.ptc1522 += rd32(E1000_PTC1522);
2920
2921 adapter->stats.mptc += rd32(E1000_MPTC);
2922 adapter->stats.bptc += rd32(E1000_BPTC);
2923
2924 /* used for adaptive IFS */
2925
2926 hw->mac.tx_packet_delta = rd32(E1000_TPT);
2927 adapter->stats.tpt += hw->mac.tx_packet_delta;
2928 hw->mac.collision_delta = rd32(E1000_COLC);
2929 adapter->stats.colc += hw->mac.collision_delta;
2930
2931 adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
2932 adapter->stats.rxerrc += rd32(E1000_RXERRC);
2933 adapter->stats.tncrs += rd32(E1000_TNCRS);
2934 adapter->stats.tsctc += rd32(E1000_TSCTC);
2935 adapter->stats.tsctfc += rd32(E1000_TSCTFC);
2936
2937 adapter->stats.iac += rd32(E1000_IAC);
2938 adapter->stats.icrxoc += rd32(E1000_ICRXOC);
2939 adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
2940 adapter->stats.icrxatc += rd32(E1000_ICRXATC);
2941 adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
2942 adapter->stats.ictxatc += rd32(E1000_ICTXATC);
2943 adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
2944 adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
2945 adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
2946
2947 /* Fill out the OS statistics structure */
2948 adapter->net_stats.multicast = adapter->stats.mprc;
2949 adapter->net_stats.collisions = adapter->stats.colc;
2950
2951 /* Rx Errors */
2952
2953 /* RLEC on some newer hardware can be incorrect so build
2954 * our own version based on RUC and ROC */
2955 adapter->net_stats.rx_errors = adapter->stats.rxerrc +
2956 adapter->stats.crcerrs + adapter->stats.algnerrc +
2957 adapter->stats.ruc + adapter->stats.roc +
2958 adapter->stats.cexterr;
2959 adapter->net_stats.rx_length_errors = adapter->stats.ruc +
2960 adapter->stats.roc;
2961 adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
2962 adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
2963 adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
2964
2965 /* Tx Errors */
2966 adapter->net_stats.tx_errors = adapter->stats.ecol +
2967 adapter->stats.latecol;
2968 adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
2969 adapter->net_stats.tx_window_errors = adapter->stats.latecol;
2970 adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
2971
2972 /* Tx Dropped needs to be maintained elsewhere */
2973
2974 /* Phy Stats */
2975 if (hw->phy.media_type == e1000_media_type_copper) {
2976 if ((adapter->link_speed == SPEED_1000) &&
2977 (!hw->phy.ops.read_phy_reg(hw, PHY_1000T_STATUS,
2978 &phy_tmp))) {
2979 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
2980 adapter->phy_stats.idle_errors += phy_tmp;
2981 }
2982 }
2983
2984 /* Management Stats */
2985 adapter->stats.mgptc += rd32(E1000_MGTPTC);
2986 adapter->stats.mgprc += rd32(E1000_MGTPRC);
2987 adapter->stats.mgpdc += rd32(E1000_MGTPDC);
2988}
2989
2990
2991static irqreturn_t igb_msix_other(int irq, void *data)
2992{
2993 struct net_device *netdev = data;
2994 struct igb_adapter *adapter = netdev_priv(netdev);
2995 struct e1000_hw *hw = &adapter->hw;
2996 u32 eicr;
2997 /* disable interrupts from the "other" bit, avoid re-entry */
2998 wr32(E1000_EIMC, E1000_EIMS_OTHER);
2999
3000 eicr = rd32(E1000_EICR);
3001
3002 if (eicr & E1000_EIMS_OTHER) {
3003 u32 icr = rd32(E1000_ICR);
3004 /* reading ICR causes bit 31 of EICR to be cleared */
3005 if (!(icr & E1000_ICR_LSC))
3006 goto no_link_interrupt;
3007 hw->mac.get_link_status = 1;
3008 /* guard against interrupt when we're going down */
3009 if (!test_bit(__IGB_DOWN, &adapter->state))
3010 mod_timer(&adapter->watchdog_timer, jiffies + 1);
3011 }
3012
3013no_link_interrupt:
3014 wr32(E1000_IMS, E1000_IMS_LSC);
3015 wr32(E1000_EIMS, E1000_EIMS_OTHER);
3016
3017 return IRQ_HANDLED;
3018}
3019
3020static irqreturn_t igb_msix_tx(int irq, void *data)
3021{
3022 struct igb_ring *tx_ring = data;
3023 struct igb_adapter *adapter = tx_ring->adapter;
3024 struct e1000_hw *hw = &adapter->hw;
3025
3026 if (!tx_ring->itr_val)
3027 wr32(E1000_EIMC, tx_ring->eims_value);
3028
3029 tx_ring->total_bytes = 0;
3030 tx_ring->total_packets = 0;
3031 if (!igb_clean_tx_irq(adapter, tx_ring))
3032 /* Ring was not completely cleaned, so fire another interrupt */
3033 wr32(E1000_EICS, tx_ring->eims_value);
3034
3035 if (!tx_ring->itr_val)
3036 wr32(E1000_EIMS, tx_ring->eims_value);
3037 return IRQ_HANDLED;
3038}
3039
3040static irqreturn_t igb_msix_rx(int irq, void *data)
3041{
3042 struct igb_ring *rx_ring = data;
3043 struct igb_adapter *adapter = rx_ring->adapter;
3044 struct e1000_hw *hw = &adapter->hw;
3045
3046 if (!rx_ring->itr_val)
3047 wr32(E1000_EIMC, rx_ring->eims_value);
3048
3049 if (netif_rx_schedule_prep(adapter->netdev, &rx_ring->napi)) {
3050 rx_ring->total_bytes = 0;
3051 rx_ring->total_packets = 0;
3052 rx_ring->no_itr_adjust = 0;
3053 __netif_rx_schedule(adapter->netdev, &rx_ring->napi);
3054 } else {
3055 if (!rx_ring->no_itr_adjust) {
3056 igb_lower_rx_eitr(adapter, rx_ring);
3057 rx_ring->no_itr_adjust = 1;
3058 }
3059 }
3060
3061 return IRQ_HANDLED;
3062}
3063
3064
3065/**
3066 * igb_intr_msi - Interrupt Handler
3067 * @irq: interrupt number
3068 * @data: pointer to a network interface device structure
3069 **/
3070static irqreturn_t igb_intr_msi(int irq, void *data)
3071{
3072 struct net_device *netdev = data;
3073 struct igb_adapter *adapter = netdev_priv(netdev);
3074 struct napi_struct *napi = &adapter->napi;
3075 struct e1000_hw *hw = &adapter->hw;
3076 /* read ICR disables interrupts using IAM */
3077 u32 icr = rd32(E1000_ICR);
3078
3079 /* Write the ITR value calculated at the end of the
3080 * previous interrupt.
3081 */
3082 if (adapter->set_itr) {
3083 wr32(E1000_ITR,
3084 1000000000 / (adapter->itr * 256));
3085 adapter->set_itr = 0;
3086 }
3087
3088 /* read ICR disables interrupts using IAM */
3089 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
3090 hw->mac.get_link_status = 1;
3091 if (!test_bit(__IGB_DOWN, &adapter->state))
3092 mod_timer(&adapter->watchdog_timer, jiffies + 1);
3093 }
3094
3095 if (netif_rx_schedule_prep(netdev, napi)) {
3096 adapter->tx_ring->total_bytes = 0;
3097 adapter->tx_ring->total_packets = 0;
3098 adapter->rx_ring->total_bytes = 0;
3099 adapter->rx_ring->total_packets = 0;
3100 __netif_rx_schedule(netdev, napi);
3101 }
3102
3103 return IRQ_HANDLED;
3104}
3105
3106/**
3107 * igb_intr - Interrupt Handler
3108 * @irq: interrupt number
3109 * @data: pointer to a network interface device structure
3110 **/
3111static irqreturn_t igb_intr(int irq, void *data)
3112{
3113 struct net_device *netdev = data;
3114 struct igb_adapter *adapter = netdev_priv(netdev);
3115 struct napi_struct *napi = &adapter->napi;
3116 struct e1000_hw *hw = &adapter->hw;
3117 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
3118 * need for the IMC write */
3119 u32 icr = rd32(E1000_ICR);
3120 u32 eicr = 0;
3121 if (!icr)
3122 return IRQ_NONE; /* Not our interrupt */
3123
3124 /* Write the ITR value calculated at the end of the
3125 * previous interrupt.
3126 */
3127 if (adapter->set_itr) {
3128 wr32(E1000_ITR,
3129 1000000000 / (adapter->itr * 256));
3130 adapter->set_itr = 0;
3131 }
3132
3133 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
3134 * not set, then the adapter didn't send an interrupt */
3135 if (!(icr & E1000_ICR_INT_ASSERTED))
3136 return IRQ_NONE;
3137
3138 eicr = rd32(E1000_EICR);
3139
3140 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
3141 hw->mac.get_link_status = 1;
3142 /* guard against interrupt when we're going down */
3143 if (!test_bit(__IGB_DOWN, &adapter->state))
3144 mod_timer(&adapter->watchdog_timer, jiffies + 1);
3145 }
3146
3147 if (netif_rx_schedule_prep(netdev, napi)) {
3148 adapter->tx_ring->total_bytes = 0;
3149 adapter->rx_ring->total_bytes = 0;
3150 adapter->tx_ring->total_packets = 0;
3151 adapter->rx_ring->total_packets = 0;
3152 __netif_rx_schedule(netdev, napi);
3153 }
3154
3155 return IRQ_HANDLED;
3156}
3157
3158/**
3159 * igb_clean - NAPI Rx polling callback
3160 * @adapter: board private structure
3161 **/
3162static int igb_clean(struct napi_struct *napi, int budget)
3163{
3164 struct igb_adapter *adapter = container_of(napi, struct igb_adapter,
3165 napi);
3166 struct net_device *netdev = adapter->netdev;
3167 int tx_clean_complete = 1, work_done = 0;
3168 int i;
3169
3170 /* Must NOT use netdev_priv macro here. */
3171 adapter = netdev->priv;
3172
3173 /* Keep link state information with original netdev */
3174 if (!netif_carrier_ok(netdev))
3175 goto quit_polling;
3176
3177 /* igb_clean is called per-cpu. This lock protects tx_ring[i] from
3178 * being cleaned by multiple cpus simultaneously. A failure obtaining
3179 * the lock means tx_ring[i] is currently being cleaned anyway. */
3180 for (i = 0; i < adapter->num_tx_queues; i++) {
3181 if (spin_trylock(&adapter->tx_ring[i].tx_clean_lock)) {
3182 tx_clean_complete &= igb_clean_tx_irq(adapter,
3183 &adapter->tx_ring[i]);
3184 spin_unlock(&adapter->tx_ring[i].tx_clean_lock);
3185 }
3186 }
3187
3188 for (i = 0; i < adapter->num_rx_queues; i++)
3189 igb_clean_rx_irq_adv(adapter, &adapter->rx_ring[i], &work_done,
3190 adapter->rx_ring[i].napi.weight);
3191
3192 /* If no Tx and not enough Rx work done, exit the polling mode */
3193 if ((tx_clean_complete && (work_done < budget)) ||
3194 !netif_running(netdev)) {
3195quit_polling:
3196 if (adapter->itr_setting & 3)
3197 igb_set_itr(adapter, E1000_ITR, false);
3198 netif_rx_complete(netdev, napi);
3199 if (!test_bit(__IGB_DOWN, &adapter->state))
3200 igb_irq_enable(adapter);
3201 return 0;
3202 }
3203
3204 return 1;
3205}
3206
3207static int igb_clean_rx_ring_msix(struct napi_struct *napi, int budget)
3208{
3209 struct igb_ring *rx_ring = container_of(napi, struct igb_ring, napi);
3210 struct igb_adapter *adapter = rx_ring->adapter;
3211 struct e1000_hw *hw = &adapter->hw;
3212 struct net_device *netdev = adapter->netdev;
3213 int work_done = 0;
3214
3215 /* Keep link state information with original netdev */
3216 if (!netif_carrier_ok(netdev))
3217 goto quit_polling;
3218
3219 igb_clean_rx_irq_adv(adapter, rx_ring, &work_done, budget);
3220
3221
3222 /* If not enough Rx work done, exit the polling mode */
3223 if ((work_done == 0) || !netif_running(netdev)) {
3224quit_polling:
3225 netif_rx_complete(netdev, napi);
3226
3227 wr32(E1000_EIMS, rx_ring->eims_value);
3228 if ((adapter->itr_setting & 3) && !rx_ring->no_itr_adjust &&
3229 (rx_ring->total_packets > IGB_DYN_ITR_PACKET_THRESHOLD)) {
3230 int mean_size = rx_ring->total_bytes /
3231 rx_ring->total_packets;
3232 if (mean_size < IGB_DYN_ITR_LENGTH_LOW)
3233 igb_raise_rx_eitr(adapter, rx_ring);
3234 else if (mean_size > IGB_DYN_ITR_LENGTH_HIGH)
3235 igb_lower_rx_eitr(adapter, rx_ring);
3236 }
3237 return 0;
3238 }
3239
3240 return 1;
3241}
3242/**
3243 * igb_clean_tx_irq - Reclaim resources after transmit completes
3244 * @adapter: board private structure
3245 * returns true if ring is completely cleaned
3246 **/
3247static bool igb_clean_tx_irq(struct igb_adapter *adapter,
3248 struct igb_ring *tx_ring)
3249{
3250 struct net_device *netdev = adapter->netdev;
3251 struct e1000_hw *hw = &adapter->hw;
3252 struct e1000_tx_desc *tx_desc;
3253 struct igb_buffer *buffer_info;
3254 struct sk_buff *skb;
3255 unsigned int i;
3256 u32 head, oldhead;
3257 unsigned int count = 0;
3258 bool cleaned = false;
3259 bool retval = true;
3260 unsigned int total_bytes = 0, total_packets = 0;
3261
3262 rmb();
3263 head = *(volatile u32 *)((struct e1000_tx_desc *)tx_ring->desc
3264 + tx_ring->count);
3265 head = le32_to_cpu(head);
3266 i = tx_ring->next_to_clean;
3267 while (1) {
3268 while (i != head) {
3269 cleaned = true;
3270 tx_desc = E1000_TX_DESC(*tx_ring, i);
3271 buffer_info = &tx_ring->buffer_info[i];
3272 skb = buffer_info->skb;
3273
3274 if (skb) {
3275 unsigned int segs, bytecount;
3276 /* gso_segs is currently only valid for tcp */
3277 segs = skb_shinfo(skb)->gso_segs ?: 1;
3278 /* multiply data chunks by size of headers */
3279 bytecount = ((segs - 1) * skb_headlen(skb)) +
3280 skb->len;
3281 total_packets += segs;
3282 total_bytes += bytecount;
3283 }
3284
3285 igb_unmap_and_free_tx_resource(adapter, buffer_info);
3286 tx_desc->upper.data = 0;
3287
3288 i++;
3289 if (i == tx_ring->count)
3290 i = 0;
3291
3292 count++;
3293 if (count == IGB_MAX_TX_CLEAN) {
3294 retval = false;
3295 goto done_cleaning;
3296 }
3297 }
3298 oldhead = head;
3299 rmb();
3300 head = *(volatile u32 *)((struct e1000_tx_desc *)tx_ring->desc
3301 + tx_ring->count);
3302 head = le32_to_cpu(head);
3303 if (head == oldhead)
3304 goto done_cleaning;
3305 } /* while (1) */
3306
3307done_cleaning:
3308 tx_ring->next_to_clean = i;
3309
3310 if (unlikely(cleaned &&
3311 netif_carrier_ok(netdev) &&
3312 IGB_DESC_UNUSED(tx_ring) >= IGB_TX_QUEUE_WAKE)) {
3313 /* Make sure that anybody stopping the queue after this
3314 * sees the new next_to_clean.
3315 */
3316 smp_mb();
3317 if (netif_queue_stopped(netdev) &&
3318 !(test_bit(__IGB_DOWN, &adapter->state))) {
3319 netif_wake_queue(netdev);
3320 ++adapter->restart_queue;
3321 }
3322 }
3323
3324 if (tx_ring->detect_tx_hung) {
3325 /* Detect a transmit hang in hardware, this serializes the
3326 * check with the clearing of time_stamp and movement of i */
3327 tx_ring->detect_tx_hung = false;
3328 if (tx_ring->buffer_info[i].time_stamp &&
3329 time_after(jiffies, tx_ring->buffer_info[i].time_stamp +
3330 (adapter->tx_timeout_factor * HZ))
3331 && !(rd32(E1000_STATUS) &
3332 E1000_STATUS_TXOFF)) {
3333
3334 tx_desc = E1000_TX_DESC(*tx_ring, i);
3335 /* detected Tx unit hang */
3336 dev_err(&adapter->pdev->dev,
3337 "Detected Tx Unit Hang\n"
3338 " Tx Queue <%lu>\n"
3339 " TDH <%x>\n"
3340 " TDT <%x>\n"
3341 " next_to_use <%x>\n"
3342 " next_to_clean <%x>\n"
3343 " head (WB) <%x>\n"
3344 "buffer_info[next_to_clean]\n"
3345 " time_stamp <%lx>\n"
3346 " jiffies <%lx>\n"
3347 " desc.status <%x>\n",
3348 (unsigned long)((tx_ring - adapter->tx_ring) /
3349 sizeof(struct igb_ring)),
3350 readl(adapter->hw.hw_addr + tx_ring->head),
3351 readl(adapter->hw.hw_addr + tx_ring->tail),
3352 tx_ring->next_to_use,
3353 tx_ring->next_to_clean,
3354 head,
3355 tx_ring->buffer_info[i].time_stamp,
3356 jiffies,
3357 tx_desc->upper.fields.status);
3358 netif_stop_queue(netdev);
3359 }
3360 }
3361 tx_ring->total_bytes += total_bytes;
3362 tx_ring->total_packets += total_packets;
3363 adapter->net_stats.tx_bytes += total_bytes;
3364 adapter->net_stats.tx_packets += total_packets;
3365 return retval;
3366}
3367
3368
3369/**
3370 * igb_receive_skb - helper function to handle rx indications
3371 * @adapter: board private structure
3372 * @status: descriptor status field as written by hardware
3373 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
3374 * @skb: pointer to sk_buff to be indicated to stack
3375 **/
3376static void igb_receive_skb(struct igb_adapter *adapter, u8 status, u16 vlan,
3377 struct sk_buff *skb)
3378{
3379 if (adapter->vlgrp && (status & E1000_RXD_STAT_VP))
3380 vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
3381 le16_to_cpu(vlan) &
3382 E1000_RXD_SPC_VLAN_MASK);
3383 else
3384 netif_receive_skb(skb);
3385}
3386
3387
3388static inline void igb_rx_checksum_adv(struct igb_adapter *adapter,
3389 u32 status_err, struct sk_buff *skb)
3390{
3391 skb->ip_summed = CHECKSUM_NONE;
3392
3393 /* Ignore Checksum bit is set or checksum is disabled through ethtool */
3394 if ((status_err & E1000_RXD_STAT_IXSM) || !adapter->rx_csum)
3395 return;
3396 /* TCP/UDP checksum error bit is set */
3397 if (status_err &
3398 (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) {
3399 /* let the stack verify checksum errors */
3400 adapter->hw_csum_err++;
3401 return;
3402 }
3403 /* It must be a TCP or UDP packet with a valid checksum */
3404 if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))
3405 skb->ip_summed = CHECKSUM_UNNECESSARY;
3406
3407 adapter->hw_csum_good++;
3408}
3409
3410static bool igb_clean_rx_irq_adv(struct igb_adapter *adapter,
3411 struct igb_ring *rx_ring,
3412 int *work_done, int budget)
3413{
3414 struct net_device *netdev = adapter->netdev;
3415 struct pci_dev *pdev = adapter->pdev;
3416 union e1000_adv_rx_desc *rx_desc , *next_rxd;
3417 struct igb_buffer *buffer_info , *next_buffer;
3418 struct sk_buff *skb;
3419 unsigned int i, j;
3420 u32 length, hlen, staterr;
3421 bool cleaned = false;
3422 int cleaned_count = 0;
3423 unsigned int total_bytes = 0, total_packets = 0;
3424
3425 i = rx_ring->next_to_clean;
3426 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
3427 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
3428
3429 while (staterr & E1000_RXD_STAT_DD) {
3430 if (*work_done >= budget)
3431 break;
3432 (*work_done)++;
3433 buffer_info = &rx_ring->buffer_info[i];
3434
3435 /* HW will not DMA in data larger than the given buffer, even
3436 * if it parses the (NFS, of course) header to be larger. In
3437 * that case, it fills the header buffer and spills the rest
3438 * into the page.
3439 */
3440 hlen = le16_to_cpu((rx_desc->wb.lower.lo_dword.hdr_info &
3441 E1000_RXDADV_HDRBUFLEN_MASK) >> E1000_RXDADV_HDRBUFLEN_SHIFT);
3442 if (hlen > adapter->rx_ps_hdr_size)
3443 hlen = adapter->rx_ps_hdr_size;
3444
3445 length = le16_to_cpu(rx_desc->wb.upper.length);
3446 cleaned = true;
3447 cleaned_count++;
3448
3449 if (rx_ring->pending_skb != NULL) {
3450 skb = rx_ring->pending_skb;
3451 rx_ring->pending_skb = NULL;
3452 j = rx_ring->pending_skb_page;
3453 } else {
3454 skb = buffer_info->skb;
3455 prefetch(skb->data - NET_IP_ALIGN);
3456 buffer_info->skb = NULL;
3457 if (hlen) {
3458 pci_unmap_single(pdev, buffer_info->dma,
3459 adapter->rx_ps_hdr_size +
3460 NET_IP_ALIGN,
3461 PCI_DMA_FROMDEVICE);
3462 skb_put(skb, hlen);
3463 } else {
3464 pci_unmap_single(pdev, buffer_info->dma,
3465 adapter->rx_buffer_len +
3466 NET_IP_ALIGN,
3467 PCI_DMA_FROMDEVICE);
3468 skb_put(skb, length);
3469 goto send_up;
3470 }
3471 j = 0;
3472 }
3473
3474 while (length) {
3475 pci_unmap_page(pdev, buffer_info->page_dma,
3476 PAGE_SIZE, PCI_DMA_FROMDEVICE);
3477 buffer_info->page_dma = 0;
3478 skb_fill_page_desc(skb, j, buffer_info->page,
3479 0, length);
3480 buffer_info->page = NULL;
3481
3482 skb->len += length;
3483 skb->data_len += length;
3484 skb->truesize += length;
3485 rx_desc->wb.upper.status_error = 0;
3486 if (staterr & E1000_RXD_STAT_EOP)
3487 break;
3488
3489 j++;
3490 cleaned_count++;
3491 i++;
3492 if (i == rx_ring->count)
3493 i = 0;
3494
3495 buffer_info = &rx_ring->buffer_info[i];
3496 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
3497 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
3498 length = le16_to_cpu(rx_desc->wb.upper.length);
3499 if (!(staterr & E1000_RXD_STAT_DD)) {
3500 rx_ring->pending_skb = skb;
3501 rx_ring->pending_skb_page = j;
3502 goto out;
3503 }
3504 }
3505send_up:
3506 pskb_trim(skb, skb->len - 4);
3507 i++;
3508 if (i == rx_ring->count)
3509 i = 0;
3510 next_rxd = E1000_RX_DESC_ADV(*rx_ring, i);
3511 prefetch(next_rxd);
3512 next_buffer = &rx_ring->buffer_info[i];
3513
3514 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
3515 dev_kfree_skb_irq(skb);
3516 goto next_desc;
3517 }
3518 rx_ring->no_itr_adjust |= (staterr & E1000_RXD_STAT_DYNINT);
3519
3520 total_bytes += skb->len;
3521 total_packets++;
3522
3523 igb_rx_checksum_adv(adapter, staterr, skb);
3524
3525 skb->protocol = eth_type_trans(skb, netdev);
3526
3527 igb_receive_skb(adapter, staterr, rx_desc->wb.upper.vlan, skb);
3528
3529 netdev->last_rx = jiffies;
3530
3531next_desc:
3532 rx_desc->wb.upper.status_error = 0;
3533
3534 /* return some buffers to hardware, one at a time is too slow */
3535 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
3536 igb_alloc_rx_buffers_adv(adapter, rx_ring,
3537 cleaned_count);
3538 cleaned_count = 0;
3539 }
3540
3541 /* use prefetched values */
3542 rx_desc = next_rxd;
3543 buffer_info = next_buffer;
3544
3545 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
3546 }
3547out:
3548 rx_ring->next_to_clean = i;
3549 cleaned_count = IGB_DESC_UNUSED(rx_ring);
3550
3551 if (cleaned_count)
3552 igb_alloc_rx_buffers_adv(adapter, rx_ring, cleaned_count);
3553
3554 rx_ring->total_packets += total_packets;
3555 rx_ring->total_bytes += total_bytes;
3556 rx_ring->rx_stats.packets += total_packets;
3557 rx_ring->rx_stats.bytes += total_bytes;
3558 adapter->net_stats.rx_bytes += total_bytes;
3559 adapter->net_stats.rx_packets += total_packets;
3560 return cleaned;
3561}
3562
3563
3564/**
3565 * igb_alloc_rx_buffers_adv - Replace used receive buffers; packet split
3566 * @adapter: address of board private structure
3567 **/
3568static void igb_alloc_rx_buffers_adv(struct igb_adapter *adapter,
3569 struct igb_ring *rx_ring,
3570 int cleaned_count)
3571{
3572 struct net_device *netdev = adapter->netdev;
3573 struct pci_dev *pdev = adapter->pdev;
3574 union e1000_adv_rx_desc *rx_desc;
3575 struct igb_buffer *buffer_info;
3576 struct sk_buff *skb;
3577 unsigned int i;
3578
3579 i = rx_ring->next_to_use;
3580 buffer_info = &rx_ring->buffer_info[i];
3581
3582 while (cleaned_count--) {
3583 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
3584
3585 if (adapter->rx_ps_hdr_size && !buffer_info->page) {
3586 buffer_info->page = alloc_page(GFP_ATOMIC);
3587 if (!buffer_info->page) {
3588 adapter->alloc_rx_buff_failed++;
3589 goto no_buffers;
3590 }
3591 buffer_info->page_dma =
3592 pci_map_page(pdev,
3593 buffer_info->page,
3594 0, PAGE_SIZE,
3595 PCI_DMA_FROMDEVICE);
3596 }
3597
3598 if (!buffer_info->skb) {
3599 int bufsz;
3600
3601 if (adapter->rx_ps_hdr_size)
3602 bufsz = adapter->rx_ps_hdr_size;
3603 else
3604 bufsz = adapter->rx_buffer_len;
3605 bufsz += NET_IP_ALIGN;
3606 skb = netdev_alloc_skb(netdev, bufsz);
3607
3608 if (!skb) {
3609 adapter->alloc_rx_buff_failed++;
3610 goto no_buffers;
3611 }
3612
3613 /* Make buffer alignment 2 beyond a 16 byte boundary
3614 * this will result in a 16 byte aligned IP header after
3615 * the 14 byte MAC header is removed
3616 */
3617 skb_reserve(skb, NET_IP_ALIGN);
3618
3619 buffer_info->skb = skb;
3620 buffer_info->dma = pci_map_single(pdev, skb->data,
3621 bufsz,
3622 PCI_DMA_FROMDEVICE);
3623
3624 }
3625 /* Refresh the desc even if buffer_addrs didn't change because
3626 * each write-back erases this info. */
3627 if (adapter->rx_ps_hdr_size) {
3628 rx_desc->read.pkt_addr =
3629 cpu_to_le64(buffer_info->page_dma);
3630 rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma);
3631 } else {
3632 rx_desc->read.pkt_addr =
3633 cpu_to_le64(buffer_info->dma);
3634 rx_desc->read.hdr_addr = 0;
3635 }
3636
3637 i++;
3638 if (i == rx_ring->count)
3639 i = 0;
3640 buffer_info = &rx_ring->buffer_info[i];
3641 }
3642
3643no_buffers:
3644 if (rx_ring->next_to_use != i) {
3645 rx_ring->next_to_use = i;
3646 if (i == 0)
3647 i = (rx_ring->count - 1);
3648 else
3649 i--;
3650
3651 /* Force memory writes to complete before letting h/w
3652 * know there are new descriptors to fetch. (Only
3653 * applicable for weak-ordered memory model archs,
3654 * such as IA-64). */
3655 wmb();
3656 writel(i, adapter->hw.hw_addr + rx_ring->tail);
3657 }
3658}
3659
3660/**
3661 * igb_mii_ioctl -
3662 * @netdev:
3663 * @ifreq:
3664 * @cmd:
3665 **/
3666static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
3667{
3668 struct igb_adapter *adapter = netdev_priv(netdev);
3669 struct mii_ioctl_data *data = if_mii(ifr);
3670
3671 if (adapter->hw.phy.media_type != e1000_media_type_copper)
3672 return -EOPNOTSUPP;
3673
3674 switch (cmd) {
3675 case SIOCGMIIPHY:
3676 data->phy_id = adapter->hw.phy.addr;
3677 break;
3678 case SIOCGMIIREG:
3679 if (!capable(CAP_NET_ADMIN))
3680 return -EPERM;
3681 if (adapter->hw.phy.ops.read_phy_reg(&adapter->hw,
3682 data->reg_num
3683 & 0x1F, &data->val_out))
3684 return -EIO;
3685 break;
3686 case SIOCSMIIREG:
3687 default:
3688 return -EOPNOTSUPP;
3689 }
3690 return 0;
3691}
3692
3693/**
3694 * igb_ioctl -
3695 * @netdev:
3696 * @ifreq:
3697 * @cmd:
3698 **/
3699static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
3700{
3701 switch (cmd) {
3702 case SIOCGMIIPHY:
3703 case SIOCGMIIREG:
3704 case SIOCSMIIREG:
3705 return igb_mii_ioctl(netdev, ifr, cmd);
3706 default:
3707 return -EOPNOTSUPP;
3708 }
3709}
3710
3711static void igb_vlan_rx_register(struct net_device *netdev,
3712 struct vlan_group *grp)
3713{
3714 struct igb_adapter *adapter = netdev_priv(netdev);
3715 struct e1000_hw *hw = &adapter->hw;
3716 u32 ctrl, rctl;
3717
3718 igb_irq_disable(adapter);
3719 adapter->vlgrp = grp;
3720
3721 if (grp) {
3722 /* enable VLAN tag insert/strip */
3723 ctrl = rd32(E1000_CTRL);
3724 ctrl |= E1000_CTRL_VME;
3725 wr32(E1000_CTRL, ctrl);
3726
3727 /* enable VLAN receive filtering */
3728 rctl = rd32(E1000_RCTL);
3729 rctl |= E1000_RCTL_VFE;
3730 rctl &= ~E1000_RCTL_CFIEN;
3731 wr32(E1000_RCTL, rctl);
3732 igb_update_mng_vlan(adapter);
3733 wr32(E1000_RLPML,
3734 adapter->max_frame_size + VLAN_TAG_SIZE);
3735 } else {
3736 /* disable VLAN tag insert/strip */
3737 ctrl = rd32(E1000_CTRL);
3738 ctrl &= ~E1000_CTRL_VME;
3739 wr32(E1000_CTRL, ctrl);
3740
3741 /* disable VLAN filtering */
3742 rctl = rd32(E1000_RCTL);
3743 rctl &= ~E1000_RCTL_VFE;
3744 wr32(E1000_RCTL, rctl);
3745 if (adapter->mng_vlan_id != (u16)IGB_MNG_VLAN_NONE) {
3746 igb_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
3747 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
3748 }
3749 wr32(E1000_RLPML,
3750 adapter->max_frame_size);
3751 }
3752
3753 if (!test_bit(__IGB_DOWN, &adapter->state))
3754 igb_irq_enable(adapter);
3755}
3756
3757static void igb_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
3758{
3759 struct igb_adapter *adapter = netdev_priv(netdev);
3760 struct e1000_hw *hw = &adapter->hw;
3761 u32 vfta, index;
3762
3763 if ((adapter->hw.mng_cookie.status &
3764 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
3765 (vid == adapter->mng_vlan_id))
3766 return;
3767 /* add VID to filter table */
3768 index = (vid >> 5) & 0x7F;
3769 vfta = array_rd32(E1000_VFTA, index);
3770 vfta |= (1 << (vid & 0x1F));
3771 igb_write_vfta(&adapter->hw, index, vfta);
3772}
3773
3774static void igb_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
3775{
3776 struct igb_adapter *adapter = netdev_priv(netdev);
3777 struct e1000_hw *hw = &adapter->hw;
3778 u32 vfta, index;
3779
3780 igb_irq_disable(adapter);
3781 vlan_group_set_device(adapter->vlgrp, vid, NULL);
3782
3783 if (!test_bit(__IGB_DOWN, &adapter->state))
3784 igb_irq_enable(adapter);
3785
3786 if ((adapter->hw.mng_cookie.status &
3787 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
3788 (vid == adapter->mng_vlan_id)) {
3789 /* release control to f/w */
3790 igb_release_hw_control(adapter);
3791 return;
3792 }
3793
3794 /* remove VID from filter table */
3795 index = (vid >> 5) & 0x7F;
3796 vfta = array_rd32(E1000_VFTA, index);
3797 vfta &= ~(1 << (vid & 0x1F));
3798 igb_write_vfta(&adapter->hw, index, vfta);
3799}
3800
3801static void igb_restore_vlan(struct igb_adapter *adapter)
3802{
3803 igb_vlan_rx_register(adapter->netdev, adapter->vlgrp);
3804
3805 if (adapter->vlgrp) {
3806 u16 vid;
3807 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
3808 if (!vlan_group_get_device(adapter->vlgrp, vid))
3809 continue;
3810 igb_vlan_rx_add_vid(adapter->netdev, vid);
3811 }
3812 }
3813}
3814
3815int igb_set_spd_dplx(struct igb_adapter *adapter, u16 spddplx)
3816{
3817 struct e1000_mac_info *mac = &adapter->hw.mac;
3818
3819 mac->autoneg = 0;
3820
3821 /* Fiber NICs only allow 1000 gbps Full duplex */
3822 if ((adapter->hw.phy.media_type == e1000_media_type_fiber) &&
3823 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
3824 dev_err(&adapter->pdev->dev,
3825 "Unsupported Speed/Duplex configuration\n");
3826 return -EINVAL;
3827 }
3828
3829 switch (spddplx) {
3830 case SPEED_10 + DUPLEX_HALF:
3831 mac->forced_speed_duplex = ADVERTISE_10_HALF;
3832 break;
3833 case SPEED_10 + DUPLEX_FULL:
3834 mac->forced_speed_duplex = ADVERTISE_10_FULL;
3835 break;
3836 case SPEED_100 + DUPLEX_HALF:
3837 mac->forced_speed_duplex = ADVERTISE_100_HALF;
3838 break;
3839 case SPEED_100 + DUPLEX_FULL:
3840 mac->forced_speed_duplex = ADVERTISE_100_FULL;
3841 break;
3842 case SPEED_1000 + DUPLEX_FULL:
3843 mac->autoneg = 1;
3844 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
3845 break;
3846 case SPEED_1000 + DUPLEX_HALF: /* not supported */
3847 default:
3848 dev_err(&adapter->pdev->dev,
3849 "Unsupported Speed/Duplex configuration\n");
3850 return -EINVAL;
3851 }
3852 return 0;
3853}
3854
3855
3856static int igb_suspend(struct pci_dev *pdev, pm_message_t state)
3857{
3858 struct net_device *netdev = pci_get_drvdata(pdev);
3859 struct igb_adapter *adapter = netdev_priv(netdev);
3860 struct e1000_hw *hw = &adapter->hw;
3861 u32 ctrl, ctrl_ext, rctl, status;
3862 u32 wufc = adapter->wol;
3863#ifdef CONFIG_PM
3864 int retval = 0;
3865#endif
3866
3867 netif_device_detach(netdev);
3868
3869 if (netif_running(netdev)) {
3870 WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
3871 igb_down(adapter);
3872 igb_free_irq(adapter);
3873 }
3874
3875#ifdef CONFIG_PM
3876 retval = pci_save_state(pdev);
3877 if (retval)
3878 return retval;
3879#endif
3880
3881 status = rd32(E1000_STATUS);
3882 if (status & E1000_STATUS_LU)
3883 wufc &= ~E1000_WUFC_LNKC;
3884
3885 if (wufc) {
3886 igb_setup_rctl(adapter);
3887 igb_set_multi(netdev);
3888
3889 /* turn on all-multi mode if wake on multicast is enabled */
3890 if (wufc & E1000_WUFC_MC) {
3891 rctl = rd32(E1000_RCTL);
3892 rctl |= E1000_RCTL_MPE;
3893 wr32(E1000_RCTL, rctl);
3894 }
3895
3896 ctrl = rd32(E1000_CTRL);
3897 /* advertise wake from D3Cold */
3898 #define E1000_CTRL_ADVD3WUC 0x00100000
3899 /* phy power management enable */
3900 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
3901 ctrl |= E1000_CTRL_ADVD3WUC;
3902 wr32(E1000_CTRL, ctrl);
3903
3904 if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
3905 adapter->hw.phy.media_type ==
3906 e1000_media_type_internal_serdes) {
3907 /* keep the laser running in D3 */
3908 ctrl_ext = rd32(E1000_CTRL_EXT);
3909 ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
3910 wr32(E1000_CTRL_EXT, ctrl_ext);
3911 }
3912
3913 /* Allow time for pending master requests to run */
3914 igb_disable_pcie_master(&adapter->hw);
3915
3916 wr32(E1000_WUC, E1000_WUC_PME_EN);
3917 wr32(E1000_WUFC, wufc);
3918 pci_enable_wake(pdev, PCI_D3hot, 1);
3919 pci_enable_wake(pdev, PCI_D3cold, 1);
3920 } else {
3921 wr32(E1000_WUC, 0);
3922 wr32(E1000_WUFC, 0);
3923 pci_enable_wake(pdev, PCI_D3hot, 0);
3924 pci_enable_wake(pdev, PCI_D3cold, 0);
3925 }
3926
Auke Kok9d5c8242008-01-24 02:22:38 -08003927 /* make sure adapter isn't asleep if manageability is enabled */
3928 if (adapter->en_mng_pt) {
3929 pci_enable_wake(pdev, PCI_D3hot, 1);
3930 pci_enable_wake(pdev, PCI_D3cold, 1);
3931 }
3932
3933 /* Release control of h/w to f/w. If f/w is AMT enabled, this
3934 * would have already happened in close and is redundant. */
3935 igb_release_hw_control(adapter);
3936
3937 pci_disable_device(pdev);
3938
3939 pci_set_power_state(pdev, pci_choose_state(pdev, state));
3940
3941 return 0;
3942}
3943
3944#ifdef CONFIG_PM
3945static int igb_resume(struct pci_dev *pdev)
3946{
3947 struct net_device *netdev = pci_get_drvdata(pdev);
3948 struct igb_adapter *adapter = netdev_priv(netdev);
3949 struct e1000_hw *hw = &adapter->hw;
3950 u32 err;
3951
3952 pci_set_power_state(pdev, PCI_D0);
3953 pci_restore_state(pdev);
3954 err = pci_enable_device(pdev);
3955 if (err) {
3956 dev_err(&pdev->dev,
3957 "igb: Cannot enable PCI device from suspend\n");
3958 return err;
3959 }
3960 pci_set_master(pdev);
3961
3962 pci_enable_wake(pdev, PCI_D3hot, 0);
3963 pci_enable_wake(pdev, PCI_D3cold, 0);
3964
3965 if (netif_running(netdev)) {
3966 err = igb_request_irq(adapter);
3967 if (err)
3968 return err;
3969 }
3970
3971 /* e1000_power_up_phy(adapter); */
3972
3973 igb_reset(adapter);
3974 wr32(E1000_WUS, ~0);
3975
3976 igb_init_manageability(adapter);
3977
3978 if (netif_running(netdev))
3979 igb_up(adapter);
3980
3981 netif_device_attach(netdev);
3982
3983 /* let the f/w know that the h/w is now under the control of the
3984 * driver. */
3985 igb_get_hw_control(adapter);
3986
3987 return 0;
3988}
3989#endif
3990
3991static void igb_shutdown(struct pci_dev *pdev)
3992{
3993 igb_suspend(pdev, PMSG_SUSPEND);
3994}
3995
3996#ifdef CONFIG_NET_POLL_CONTROLLER
3997/*
3998 * Polling 'interrupt' - used by things like netconsole to send skbs
3999 * without having to re-enable interrupts. It's not called while
4000 * the interrupt routine is executing.
4001 */
4002static void igb_netpoll(struct net_device *netdev)
4003{
4004 struct igb_adapter *adapter = netdev_priv(netdev);
4005 int i;
4006 int work_done = 0;
4007
4008 igb_irq_disable(adapter);
4009 for (i = 0; i < adapter->num_tx_queues; i++)
4010 igb_clean_tx_irq(adapter, &adapter->tx_ring[i]);
4011
4012 for (i = 0; i < adapter->num_rx_queues; i++)
4013 igb_clean_rx_irq_adv(adapter, &adapter->rx_ring[i],
4014 &work_done,
4015 adapter->rx_ring[i].napi.weight);
4016
4017 igb_irq_enable(adapter);
4018}
4019#endif /* CONFIG_NET_POLL_CONTROLLER */
4020
4021/**
4022 * igb_io_error_detected - called when PCI error is detected
4023 * @pdev: Pointer to PCI device
4024 * @state: The current pci connection state
4025 *
4026 * This function is called after a PCI bus error affecting
4027 * this device has been detected.
4028 */
4029static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
4030 pci_channel_state_t state)
4031{
4032 struct net_device *netdev = pci_get_drvdata(pdev);
4033 struct igb_adapter *adapter = netdev_priv(netdev);
4034
4035 netif_device_detach(netdev);
4036
4037 if (netif_running(netdev))
4038 igb_down(adapter);
4039 pci_disable_device(pdev);
4040
4041 /* Request a slot slot reset. */
4042 return PCI_ERS_RESULT_NEED_RESET;
4043}
4044
4045/**
4046 * igb_io_slot_reset - called after the pci bus has been reset.
4047 * @pdev: Pointer to PCI device
4048 *
4049 * Restart the card from scratch, as if from a cold-boot. Implementation
4050 * resembles the first-half of the igb_resume routine.
4051 */
4052static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
4053{
4054 struct net_device *netdev = pci_get_drvdata(pdev);
4055 struct igb_adapter *adapter = netdev_priv(netdev);
4056 struct e1000_hw *hw = &adapter->hw;
4057
4058 if (pci_enable_device(pdev)) {
4059 dev_err(&pdev->dev,
4060 "Cannot re-enable PCI device after reset.\n");
4061 return PCI_ERS_RESULT_DISCONNECT;
4062 }
4063 pci_set_master(pdev);
4064
4065 pci_enable_wake(pdev, PCI_D3hot, 0);
4066 pci_enable_wake(pdev, PCI_D3cold, 0);
4067
4068 igb_reset(adapter);
4069 wr32(E1000_WUS, ~0);
4070
4071 return PCI_ERS_RESULT_RECOVERED;
4072}
4073
4074/**
4075 * igb_io_resume - called when traffic can start flowing again.
4076 * @pdev: Pointer to PCI device
4077 *
4078 * This callback is called when the error recovery driver tells us that
4079 * its OK to resume normal operation. Implementation resembles the
4080 * second-half of the igb_resume routine.
4081 */
4082static void igb_io_resume(struct pci_dev *pdev)
4083{
4084 struct net_device *netdev = pci_get_drvdata(pdev);
4085 struct igb_adapter *adapter = netdev_priv(netdev);
4086
4087 igb_init_manageability(adapter);
4088
4089 if (netif_running(netdev)) {
4090 if (igb_up(adapter)) {
4091 dev_err(&pdev->dev, "igb_up failed after reset\n");
4092 return;
4093 }
4094 }
4095
4096 netif_device_attach(netdev);
4097
4098 /* let the f/w know that the h/w is now under the control of the
4099 * driver. */
4100 igb_get_hw_control(adapter);
4101
4102}
4103
4104/* igb_main.c */