blob: 8b028f128547947656290db6f2a287111c9fdcea [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
Nathan Scott7b718762005-11-02 14:58:39 +11002 * Copyright (c) 2000-2001,2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
Linus Torvalds1da177e2005-04-16 15:20:36 -07004 *
Nathan Scott7b718762005-11-02 14:58:39 +11005 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
Linus Torvalds1da177e2005-04-16 15:20:36 -07007 * published by the Free Software Foundation.
8 *
Nathan Scott7b718762005-11-02 14:58:39 +11009 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
Linus Torvalds1da177e2005-04-16 15:20:36 -070013 *
Nathan Scott7b718762005-11-02 14:58:39 +110014 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
Linus Torvalds1da177e2005-04-16 15:20:36 -070017 */
Linus Torvalds1da177e2005-04-16 15:20:36 -070018#include "xfs.h"
Nathan Scotta844f452005-11-02 14:38:42 +110019#include "xfs_fs.h"
Linus Torvalds1da177e2005-04-16 15:20:36 -070020#include "xfs_types.h"
Linus Torvalds1da177e2005-04-16 15:20:36 -070021#include "xfs_log.h"
Nathan Scotta844f452005-11-02 14:38:42 +110022#include "xfs_inum.h"
Linus Torvalds1da177e2005-04-16 15:20:36 -070023#include "xfs_trans.h"
24#include "xfs_buf_item.h"
25#include "xfs_sb.h"
26#include "xfs_dir.h"
27#include "xfs_dmapi.h"
28#include "xfs_mount.h"
29#include "xfs_trans_priv.h"
30#include "xfs_extfree_item.h"
31
32
33kmem_zone_t *xfs_efi_zone;
34kmem_zone_t *xfs_efd_zone;
35
36STATIC void xfs_efi_item_unlock(xfs_efi_log_item_t *);
37STATIC void xfs_efi_item_abort(xfs_efi_log_item_t *);
38STATIC void xfs_efd_item_abort(xfs_efd_log_item_t *);
39
40
Christoph Hellwig7d795ca2005-06-21 15:41:19 +100041void
42xfs_efi_item_free(xfs_efi_log_item_t *efip)
43{
44 int nexts = efip->efi_format.efi_nextents;
45
46 if (nexts > XFS_EFI_MAX_FAST_EXTENTS) {
47 kmem_free(efip, sizeof(xfs_efi_log_item_t) +
48 (nexts - 1) * sizeof(xfs_extent_t));
49 } else {
50 kmem_zone_free(xfs_efi_zone, efip);
51 }
52}
Linus Torvalds1da177e2005-04-16 15:20:36 -070053
54/*
55 * This returns the number of iovecs needed to log the given efi item.
56 * We only need 1 iovec for an efi item. It just logs the efi_log_format
57 * structure.
58 */
59/*ARGSUSED*/
60STATIC uint
61xfs_efi_item_size(xfs_efi_log_item_t *efip)
62{
63 return 1;
64}
65
66/*
67 * This is called to fill in the vector of log iovecs for the
68 * given efi log item. We use only 1 iovec, and we point that
69 * at the efi_log_format structure embedded in the efi item.
70 * It is at this point that we assert that all of the extent
71 * slots in the efi item have been filled.
72 */
73STATIC void
74xfs_efi_item_format(xfs_efi_log_item_t *efip,
75 xfs_log_iovec_t *log_vector)
76{
77 uint size;
78
79 ASSERT(efip->efi_next_extent == efip->efi_format.efi_nextents);
80
81 efip->efi_format.efi_type = XFS_LI_EFI;
82
83 size = sizeof(xfs_efi_log_format_t);
84 size += (efip->efi_format.efi_nextents - 1) * sizeof(xfs_extent_t);
85 efip->efi_format.efi_size = 1;
86
87 log_vector->i_addr = (xfs_caddr_t)&(efip->efi_format);
88 log_vector->i_len = size;
Tim Shimmin7e9c6392005-09-02 16:42:05 +100089 XLOG_VEC_SET_TYPE(log_vector, XLOG_REG_TYPE_EFI_FORMAT);
Linus Torvalds1da177e2005-04-16 15:20:36 -070090 ASSERT(size >= sizeof(xfs_efi_log_format_t));
91}
92
93
94/*
95 * Pinning has no meaning for an efi item, so just return.
96 */
97/*ARGSUSED*/
98STATIC void
99xfs_efi_item_pin(xfs_efi_log_item_t *efip)
100{
101 return;
102}
103
104
105/*
106 * While EFIs cannot really be pinned, the unpin operation is the
107 * last place at which the EFI is manipulated during a transaction.
108 * Here we coordinate with xfs_efi_cancel() to determine who gets to
109 * free the EFI.
110 */
111/*ARGSUSED*/
112STATIC void
113xfs_efi_item_unpin(xfs_efi_log_item_t *efip, int stale)
114{
Linus Torvalds1da177e2005-04-16 15:20:36 -0700115 xfs_mount_t *mp;
116 SPLDECL(s);
117
118 mp = efip->efi_item.li_mountp;
119 AIL_LOCK(mp, s);
120 if (efip->efi_flags & XFS_EFI_CANCELED) {
121 /*
122 * xfs_trans_delete_ail() drops the AIL lock.
123 */
124 xfs_trans_delete_ail(mp, (xfs_log_item_t *)efip, s);
Christoph Hellwig7d795ca2005-06-21 15:41:19 +1000125 xfs_efi_item_free(efip);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700126 } else {
127 efip->efi_flags |= XFS_EFI_COMMITTED;
128 AIL_UNLOCK(mp, s);
129 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700130}
131
132/*
133 * like unpin only we have to also clear the xaction descriptor
134 * pointing the log item if we free the item. This routine duplicates
135 * unpin because efi_flags is protected by the AIL lock. Freeing
136 * the descriptor and then calling unpin would force us to drop the AIL
137 * lock which would open up a race condition.
138 */
139STATIC void
140xfs_efi_item_unpin_remove(xfs_efi_log_item_t *efip, xfs_trans_t *tp)
141{
Linus Torvalds1da177e2005-04-16 15:20:36 -0700142 xfs_mount_t *mp;
143 xfs_log_item_desc_t *lidp;
144 SPLDECL(s);
145
146 mp = efip->efi_item.li_mountp;
147 AIL_LOCK(mp, s);
148 if (efip->efi_flags & XFS_EFI_CANCELED) {
149 /*
150 * free the xaction descriptor pointing to this item
151 */
152 lidp = xfs_trans_find_item(tp, (xfs_log_item_t *) efip);
153 xfs_trans_free_item(tp, lidp);
154 /*
155 * pull the item off the AIL.
156 * xfs_trans_delete_ail() drops the AIL lock.
157 */
158 xfs_trans_delete_ail(mp, (xfs_log_item_t *)efip, s);
Christoph Hellwig7d795ca2005-06-21 15:41:19 +1000159 xfs_efi_item_free(efip);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700160 } else {
161 efip->efi_flags |= XFS_EFI_COMMITTED;
162 AIL_UNLOCK(mp, s);
163 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700164}
165
166/*
167 * Efi items have no locking or pushing. However, since EFIs are
168 * pulled from the AIL when their corresponding EFDs are committed
169 * to disk, their situation is very similar to being pinned. Return
170 * XFS_ITEM_PINNED so that the caller will eventually flush the log.
171 * This should help in getting the EFI out of the AIL.
172 */
173/*ARGSUSED*/
174STATIC uint
175xfs_efi_item_trylock(xfs_efi_log_item_t *efip)
176{
177 return XFS_ITEM_PINNED;
178}
179
180/*
181 * Efi items have no locking, so just return.
182 */
183/*ARGSUSED*/
184STATIC void
185xfs_efi_item_unlock(xfs_efi_log_item_t *efip)
186{
187 if (efip->efi_item.li_flags & XFS_LI_ABORTED)
188 xfs_efi_item_abort(efip);
189 return;
190}
191
192/*
193 * The EFI is logged only once and cannot be moved in the log, so
194 * simply return the lsn at which it's been logged. The canceled
195 * flag is not paid any attention here. Checking for that is delayed
196 * until the EFI is unpinned.
197 */
198/*ARGSUSED*/
199STATIC xfs_lsn_t
200xfs_efi_item_committed(xfs_efi_log_item_t *efip, xfs_lsn_t lsn)
201{
202 return lsn;
203}
204
205/*
206 * This is called when the transaction logging the EFI is aborted.
207 * Free up the EFI and return. No need to clean up the slot for
208 * the item in the transaction. That was done by the unpin code
209 * which is called prior to this routine in the abort/fs-shutdown path.
210 */
211STATIC void
212xfs_efi_item_abort(xfs_efi_log_item_t *efip)
213{
Christoph Hellwig7d795ca2005-06-21 15:41:19 +1000214 xfs_efi_item_free(efip);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700215}
216
217/*
218 * There isn't much you can do to push on an efi item. It is simply
219 * stuck waiting for all of its corresponding efd items to be
220 * committed to disk.
221 */
222/*ARGSUSED*/
223STATIC void
224xfs_efi_item_push(xfs_efi_log_item_t *efip)
225{
226 return;
227}
228
229/*
230 * The EFI dependency tracking op doesn't do squat. It can't because
231 * it doesn't know where the free extent is coming from. The dependency
232 * tracking has to be handled by the "enclosing" metadata object. For
233 * example, for inodes, the inode is locked throughout the extent freeing
234 * so the dependency should be recorded there.
235 */
236/*ARGSUSED*/
237STATIC void
238xfs_efi_item_committing(xfs_efi_log_item_t *efip, xfs_lsn_t lsn)
239{
240 return;
241}
242
243/*
244 * This is the ops vector shared by all efi log items.
245 */
Christoph Hellwigba0f32d2005-06-21 15:36:52 +1000246STATIC struct xfs_item_ops xfs_efi_item_ops = {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700247 .iop_size = (uint(*)(xfs_log_item_t*))xfs_efi_item_size,
248 .iop_format = (void(*)(xfs_log_item_t*, xfs_log_iovec_t*))
249 xfs_efi_item_format,
250 .iop_pin = (void(*)(xfs_log_item_t*))xfs_efi_item_pin,
251 .iop_unpin = (void(*)(xfs_log_item_t*, int))xfs_efi_item_unpin,
252 .iop_unpin_remove = (void(*)(xfs_log_item_t*, xfs_trans_t *))
253 xfs_efi_item_unpin_remove,
254 .iop_trylock = (uint(*)(xfs_log_item_t*))xfs_efi_item_trylock,
255 .iop_unlock = (void(*)(xfs_log_item_t*))xfs_efi_item_unlock,
256 .iop_committed = (xfs_lsn_t(*)(xfs_log_item_t*, xfs_lsn_t))
257 xfs_efi_item_committed,
258 .iop_push = (void(*)(xfs_log_item_t*))xfs_efi_item_push,
259 .iop_abort = (void(*)(xfs_log_item_t*))xfs_efi_item_abort,
260 .iop_pushbuf = NULL,
261 .iop_committing = (void(*)(xfs_log_item_t*, xfs_lsn_t))
262 xfs_efi_item_committing
263};
264
265
266/*
267 * Allocate and initialize an efi item with the given number of extents.
268 */
269xfs_efi_log_item_t *
270xfs_efi_init(xfs_mount_t *mp,
271 uint nextents)
272
273{
274 xfs_efi_log_item_t *efip;
275 uint size;
276
277 ASSERT(nextents > 0);
278 if (nextents > XFS_EFI_MAX_FAST_EXTENTS) {
279 size = (uint)(sizeof(xfs_efi_log_item_t) +
280 ((nextents - 1) * sizeof(xfs_extent_t)));
281 efip = (xfs_efi_log_item_t*)kmem_zalloc(size, KM_SLEEP);
282 } else {
283 efip = (xfs_efi_log_item_t*)kmem_zone_zalloc(xfs_efi_zone,
284 KM_SLEEP);
285 }
286
287 efip->efi_item.li_type = XFS_LI_EFI;
288 efip->efi_item.li_ops = &xfs_efi_item_ops;
289 efip->efi_item.li_mountp = mp;
290 efip->efi_format.efi_nextents = nextents;
291 efip->efi_format.efi_id = (__psint_t)(void*)efip;
292
293 return (efip);
294}
295
296/*
Tim Shimmin6d192a92006-06-09 14:55:38 +1000297 * Copy an EFI format buffer from the given buf, and into the destination
298 * EFI format structure.
299 * The given buffer can be in 32 bit or 64 bit form (which has different padding),
300 * one of which will be the native format for this kernel.
301 * It will handle the conversion of formats if necessary.
302 */
303int
304xfs_efi_copy_format(xfs_log_iovec_t *buf, xfs_efi_log_format_t *dst_efi_fmt)
305{
306 xfs_efi_log_format_t *src_efi_fmt = (xfs_efi_log_format_t *)buf->i_addr;
307 uint i;
308 uint len = sizeof(xfs_efi_log_format_t) +
309 (src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_t);
310 uint len32 = sizeof(xfs_efi_log_format_32_t) +
311 (src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_32_t);
312 uint len64 = sizeof(xfs_efi_log_format_64_t) +
313 (src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_64_t);
314
315 if (buf->i_len == len) {
316 memcpy((char *)dst_efi_fmt, (char*)src_efi_fmt, len);
317 return 0;
318 } else if (buf->i_len == len32) {
319 xfs_efi_log_format_32_t *src_efi_fmt_32 =
320 (xfs_efi_log_format_32_t *)buf->i_addr;
321
322 dst_efi_fmt->efi_type = src_efi_fmt_32->efi_type;
323 dst_efi_fmt->efi_size = src_efi_fmt_32->efi_size;
324 dst_efi_fmt->efi_nextents = src_efi_fmt_32->efi_nextents;
325 dst_efi_fmt->efi_id = src_efi_fmt_32->efi_id;
326 for (i = 0; i < dst_efi_fmt->efi_nextents; i++) {
327 dst_efi_fmt->efi_extents[i].ext_start =
328 src_efi_fmt_32->efi_extents[i].ext_start;
329 dst_efi_fmt->efi_extents[i].ext_len =
330 src_efi_fmt_32->efi_extents[i].ext_len;
331 }
332 return 0;
333 } else if (buf->i_len == len64) {
334 xfs_efi_log_format_64_t *src_efi_fmt_64 =
335 (xfs_efi_log_format_64_t *)buf->i_addr;
336
337 dst_efi_fmt->efi_type = src_efi_fmt_64->efi_type;
338 dst_efi_fmt->efi_size = src_efi_fmt_64->efi_size;
339 dst_efi_fmt->efi_nextents = src_efi_fmt_64->efi_nextents;
340 dst_efi_fmt->efi_id = src_efi_fmt_64->efi_id;
341 for (i = 0; i < dst_efi_fmt->efi_nextents; i++) {
342 dst_efi_fmt->efi_extents[i].ext_start =
343 src_efi_fmt_64->efi_extents[i].ext_start;
344 dst_efi_fmt->efi_extents[i].ext_len =
345 src_efi_fmt_64->efi_extents[i].ext_len;
346 }
347 return 0;
348 }
349 return EFSCORRUPTED;
350}
351
352/*
Linus Torvalds1da177e2005-04-16 15:20:36 -0700353 * This is called by the efd item code below to release references to
354 * the given efi item. Each efd calls this with the number of
355 * extents that it has logged, and when the sum of these reaches
356 * the total number of extents logged by this efi item we can free
357 * the efi item.
358 *
359 * Freeing the efi item requires that we remove it from the AIL.
360 * We'll use the AIL lock to protect our counters as well as
361 * the removal from the AIL.
362 */
363void
364xfs_efi_release(xfs_efi_log_item_t *efip,
365 uint nextents)
366{
367 xfs_mount_t *mp;
368 int extents_left;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700369 SPLDECL(s);
370
371 mp = efip->efi_item.li_mountp;
372 ASSERT(efip->efi_next_extent > 0);
373 ASSERT(efip->efi_flags & XFS_EFI_COMMITTED);
374
375 AIL_LOCK(mp, s);
376 ASSERT(efip->efi_next_extent >= nextents);
377 efip->efi_next_extent -= nextents;
378 extents_left = efip->efi_next_extent;
379 if (extents_left == 0) {
380 /*
381 * xfs_trans_delete_ail() drops the AIL lock.
382 */
383 xfs_trans_delete_ail(mp, (xfs_log_item_t *)efip, s);
Christoph Hellwig7d795ca2005-06-21 15:41:19 +1000384 xfs_efi_item_free(efip);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700385 } else {
386 AIL_UNLOCK(mp, s);
387 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700388}
389
390/*
391 * This is called when the transaction that should be committing the
392 * EFD corresponding to the given EFI is aborted. The committed and
393 * canceled flags are used to coordinate the freeing of the EFI and
394 * the references by the transaction that committed it.
395 */
396STATIC void
397xfs_efi_cancel(
398 xfs_efi_log_item_t *efip)
399{
Linus Torvalds1da177e2005-04-16 15:20:36 -0700400 xfs_mount_t *mp;
401 SPLDECL(s);
402
403 mp = efip->efi_item.li_mountp;
404 AIL_LOCK(mp, s);
405 if (efip->efi_flags & XFS_EFI_COMMITTED) {
406 /*
407 * xfs_trans_delete_ail() drops the AIL lock.
408 */
409 xfs_trans_delete_ail(mp, (xfs_log_item_t *)efip, s);
Christoph Hellwig7d795ca2005-06-21 15:41:19 +1000410 xfs_efi_item_free(efip);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700411 } else {
412 efip->efi_flags |= XFS_EFI_CANCELED;
413 AIL_UNLOCK(mp, s);
414 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700415}
416
Christoph Hellwig7d795ca2005-06-21 15:41:19 +1000417STATIC void
418xfs_efd_item_free(xfs_efd_log_item_t *efdp)
419{
420 int nexts = efdp->efd_format.efd_nextents;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700421
Christoph Hellwig7d795ca2005-06-21 15:41:19 +1000422 if (nexts > XFS_EFD_MAX_FAST_EXTENTS) {
423 kmem_free(efdp, sizeof(xfs_efd_log_item_t) +
424 (nexts - 1) * sizeof(xfs_extent_t));
425 } else {
426 kmem_zone_free(xfs_efd_zone, efdp);
427 }
428}
Linus Torvalds1da177e2005-04-16 15:20:36 -0700429
430/*
431 * This returns the number of iovecs needed to log the given efd item.
432 * We only need 1 iovec for an efd item. It just logs the efd_log_format
433 * structure.
434 */
435/*ARGSUSED*/
436STATIC uint
437xfs_efd_item_size(xfs_efd_log_item_t *efdp)
438{
439 return 1;
440}
441
442/*
443 * This is called to fill in the vector of log iovecs for the
444 * given efd log item. We use only 1 iovec, and we point that
445 * at the efd_log_format structure embedded in the efd item.
446 * It is at this point that we assert that all of the extent
447 * slots in the efd item have been filled.
448 */
449STATIC void
450xfs_efd_item_format(xfs_efd_log_item_t *efdp,
451 xfs_log_iovec_t *log_vector)
452{
453 uint size;
454
455 ASSERT(efdp->efd_next_extent == efdp->efd_format.efd_nextents);
456
457 efdp->efd_format.efd_type = XFS_LI_EFD;
458
459 size = sizeof(xfs_efd_log_format_t);
460 size += (efdp->efd_format.efd_nextents - 1) * sizeof(xfs_extent_t);
461 efdp->efd_format.efd_size = 1;
462
463 log_vector->i_addr = (xfs_caddr_t)&(efdp->efd_format);
464 log_vector->i_len = size;
Tim Shimmin7e9c6392005-09-02 16:42:05 +1000465 XLOG_VEC_SET_TYPE(log_vector, XLOG_REG_TYPE_EFD_FORMAT);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700466 ASSERT(size >= sizeof(xfs_efd_log_format_t));
467}
468
469
470/*
471 * Pinning has no meaning for an efd item, so just return.
472 */
473/*ARGSUSED*/
474STATIC void
475xfs_efd_item_pin(xfs_efd_log_item_t *efdp)
476{
477 return;
478}
479
480
481/*
482 * Since pinning has no meaning for an efd item, unpinning does
483 * not either.
484 */
485/*ARGSUSED*/
486STATIC void
487xfs_efd_item_unpin(xfs_efd_log_item_t *efdp, int stale)
488{
489 return;
490}
491
492/*ARGSUSED*/
493STATIC void
494xfs_efd_item_unpin_remove(xfs_efd_log_item_t *efdp, xfs_trans_t *tp)
495{
496 return;
497}
498
499/*
500 * Efd items have no locking, so just return success.
501 */
502/*ARGSUSED*/
503STATIC uint
504xfs_efd_item_trylock(xfs_efd_log_item_t *efdp)
505{
506 return XFS_ITEM_LOCKED;
507}
508
509/*
510 * Efd items have no locking or pushing, so return failure
511 * so that the caller doesn't bother with us.
512 */
513/*ARGSUSED*/
514STATIC void
515xfs_efd_item_unlock(xfs_efd_log_item_t *efdp)
516{
517 if (efdp->efd_item.li_flags & XFS_LI_ABORTED)
518 xfs_efd_item_abort(efdp);
519 return;
520}
521
522/*
523 * When the efd item is committed to disk, all we need to do
524 * is delete our reference to our partner efi item and then
525 * free ourselves. Since we're freeing ourselves we must
526 * return -1 to keep the transaction code from further referencing
527 * this item.
528 */
529/*ARGSUSED*/
530STATIC xfs_lsn_t
531xfs_efd_item_committed(xfs_efd_log_item_t *efdp, xfs_lsn_t lsn)
532{
Linus Torvalds1da177e2005-04-16 15:20:36 -0700533 /*
534 * If we got a log I/O error, it's always the case that the LR with the
535 * EFI got unpinned and freed before the EFD got aborted.
536 */
537 if ((efdp->efd_item.li_flags & XFS_LI_ABORTED) == 0)
538 xfs_efi_release(efdp->efd_efip, efdp->efd_format.efd_nextents);
539
Christoph Hellwig7d795ca2005-06-21 15:41:19 +1000540 xfs_efd_item_free(efdp);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700541 return (xfs_lsn_t)-1;
542}
543
544/*
545 * The transaction of which this EFD is a part has been aborted.
546 * Inform its companion EFI of this fact and then clean up after
547 * ourselves. No need to clean up the slot for the item in the
548 * transaction. That was done by the unpin code which is called
549 * prior to this routine in the abort/fs-shutdown path.
550 */
551STATIC void
552xfs_efd_item_abort(xfs_efd_log_item_t *efdp)
553{
Linus Torvalds1da177e2005-04-16 15:20:36 -0700554 /*
555 * If we got a log I/O error, it's always the case that the LR with the
556 * EFI got unpinned and freed before the EFD got aborted. So don't
557 * reference the EFI at all in that case.
558 */
559 if ((efdp->efd_item.li_flags & XFS_LI_ABORTED) == 0)
560 xfs_efi_cancel(efdp->efd_efip);
561
Christoph Hellwig7d795ca2005-06-21 15:41:19 +1000562 xfs_efd_item_free(efdp);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700563}
564
565/*
566 * There isn't much you can do to push on an efd item. It is simply
567 * stuck waiting for the log to be flushed to disk.
568 */
569/*ARGSUSED*/
570STATIC void
571xfs_efd_item_push(xfs_efd_log_item_t *efdp)
572{
573 return;
574}
575
576/*
577 * The EFD dependency tracking op doesn't do squat. It can't because
578 * it doesn't know where the free extent is coming from. The dependency
579 * tracking has to be handled by the "enclosing" metadata object. For
580 * example, for inodes, the inode is locked throughout the extent freeing
581 * so the dependency should be recorded there.
582 */
583/*ARGSUSED*/
584STATIC void
585xfs_efd_item_committing(xfs_efd_log_item_t *efip, xfs_lsn_t lsn)
586{
587 return;
588}
589
590/*
591 * This is the ops vector shared by all efd log items.
592 */
Christoph Hellwigba0f32d2005-06-21 15:36:52 +1000593STATIC struct xfs_item_ops xfs_efd_item_ops = {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700594 .iop_size = (uint(*)(xfs_log_item_t*))xfs_efd_item_size,
595 .iop_format = (void(*)(xfs_log_item_t*, xfs_log_iovec_t*))
596 xfs_efd_item_format,
597 .iop_pin = (void(*)(xfs_log_item_t*))xfs_efd_item_pin,
598 .iop_unpin = (void(*)(xfs_log_item_t*, int))xfs_efd_item_unpin,
599 .iop_unpin_remove = (void(*)(xfs_log_item_t*, xfs_trans_t*))
600 xfs_efd_item_unpin_remove,
601 .iop_trylock = (uint(*)(xfs_log_item_t*))xfs_efd_item_trylock,
602 .iop_unlock = (void(*)(xfs_log_item_t*))xfs_efd_item_unlock,
603 .iop_committed = (xfs_lsn_t(*)(xfs_log_item_t*, xfs_lsn_t))
604 xfs_efd_item_committed,
605 .iop_push = (void(*)(xfs_log_item_t*))xfs_efd_item_push,
606 .iop_abort = (void(*)(xfs_log_item_t*))xfs_efd_item_abort,
607 .iop_pushbuf = NULL,
608 .iop_committing = (void(*)(xfs_log_item_t*, xfs_lsn_t))
609 xfs_efd_item_committing
610};
611
612
613/*
614 * Allocate and initialize an efd item with the given number of extents.
615 */
616xfs_efd_log_item_t *
617xfs_efd_init(xfs_mount_t *mp,
618 xfs_efi_log_item_t *efip,
619 uint nextents)
620
621{
622 xfs_efd_log_item_t *efdp;
623 uint size;
624
625 ASSERT(nextents > 0);
626 if (nextents > XFS_EFD_MAX_FAST_EXTENTS) {
627 size = (uint)(sizeof(xfs_efd_log_item_t) +
628 ((nextents - 1) * sizeof(xfs_extent_t)));
629 efdp = (xfs_efd_log_item_t*)kmem_zalloc(size, KM_SLEEP);
630 } else {
631 efdp = (xfs_efd_log_item_t*)kmem_zone_zalloc(xfs_efd_zone,
632 KM_SLEEP);
633 }
634
635 efdp->efd_item.li_type = XFS_LI_EFD;
636 efdp->efd_item.li_ops = &xfs_efd_item_ops;
637 efdp->efd_item.li_mountp = mp;
638 efdp->efd_efip = efip;
639 efdp->efd_format.efd_nextents = nextents;
640 efdp->efd_format.efd_efi_id = efip->efi_format.efi_id;
641
642 return (efdp);
643}