Peter Zijlstra | b6efcb0 | 2016-11-14 18:06:19 +0100 | [diff] [blame] | 1 | #ifndef _LINUX_REFCOUNT_H |
| 2 | #define _LINUX_REFCOUNT_H |
| 3 | |
| 4 | /* |
| 5 | * Variant of atomic_t specialized for reference counts. |
| 6 | * |
| 7 | * The interface matches the atomic_t interface (to aid in porting) but only |
| 8 | * provides the few functions one should use for reference counting. |
| 9 | * |
| 10 | * It differs in that the counter saturates at UINT_MAX and will not move once |
| 11 | * there. This avoids wrapping the counter and causing 'spurious' |
| 12 | * use-after-free issues. |
| 13 | * |
| 14 | * Memory ordering rules are slightly relaxed wrt regular atomic_t functions |
| 15 | * and provide only what is strictly required for refcounts. |
| 16 | * |
| 17 | * The increments are fully relaxed; these will not provide ordering. The |
| 18 | * rationale is that whatever is used to obtain the object we're increasing the |
| 19 | * reference count on will provide the ordering. For locked data structures, |
| 20 | * its the lock acquire, for RCU/lockless data structures its the dependent |
| 21 | * load. |
| 22 | * |
| 23 | * Do note that inc_not_zero() provides a control dependency which will order |
| 24 | * future stores against the inc, this ensures we'll never modify the object |
| 25 | * if we did not in fact acquire a reference. |
| 26 | * |
| 27 | * The decrements will provide release order, such that all the prior loads and |
| 28 | * stores will be issued before, it also provides a control dependency, which |
| 29 | * will order us against the subsequent free(). |
| 30 | * |
| 31 | * The control dependency is against the load of the cmpxchg (ll/sc) that |
| 32 | * succeeded. This means the stores aren't fully ordered, but this is fine |
| 33 | * because the 1->0 transition indicates no concurrency. |
| 34 | * |
| 35 | * Note that the allocator is responsible for ordering things between free() |
| 36 | * and alloc(). |
| 37 | * |
| 38 | */ |
| 39 | |
| 40 | #include <linux/atomic.h> |
| 41 | #include <linux/bug.h> |
| 42 | #include <linux/mutex.h> |
| 43 | #include <linux/spinlock.h> |
| 44 | |
| 45 | #ifdef CONFIG_DEBUG_REFCOUNT |
| 46 | #define REFCOUNT_WARN(cond, str) WARN_ON(cond) |
| 47 | #define __refcount_check __must_check |
| 48 | #else |
| 49 | #define REFCOUNT_WARN(cond, str) (void)(cond) |
| 50 | #define __refcount_check |
| 51 | #endif |
| 52 | |
| 53 | typedef struct refcount_struct { |
| 54 | atomic_t refs; |
| 55 | } refcount_t; |
| 56 | |
| 57 | #define REFCOUNT_INIT(n) { .refs = ATOMIC_INIT(n), } |
| 58 | |
| 59 | static inline void refcount_set(refcount_t *r, unsigned int n) |
| 60 | { |
| 61 | atomic_set(&r->refs, n); |
| 62 | } |
| 63 | |
| 64 | static inline unsigned int refcount_read(const refcount_t *r) |
| 65 | { |
| 66 | return atomic_read(&r->refs); |
| 67 | } |
| 68 | |
| 69 | static inline __refcount_check |
| 70 | bool refcount_add_not_zero(unsigned int i, refcount_t *r) |
| 71 | { |
| 72 | unsigned int old, new, val = atomic_read(&r->refs); |
| 73 | |
| 74 | for (;;) { |
| 75 | if (!val) |
| 76 | return false; |
| 77 | |
| 78 | if (unlikely(val == UINT_MAX)) |
| 79 | return true; |
| 80 | |
| 81 | new = val + i; |
| 82 | if (new < val) |
| 83 | new = UINT_MAX; |
| 84 | old = atomic_cmpxchg_relaxed(&r->refs, val, new); |
| 85 | if (old == val) |
| 86 | break; |
| 87 | |
| 88 | val = old; |
| 89 | } |
| 90 | |
| 91 | REFCOUNT_WARN(new == UINT_MAX, "refcount_t: saturated; leaking memory.\n"); |
| 92 | |
| 93 | return true; |
| 94 | } |
| 95 | |
| 96 | static inline void refcount_add(unsigned int i, refcount_t *r) |
| 97 | { |
| 98 | REFCOUNT_WARN(!refcount_add_not_zero(i, r), "refcount_t: addition on 0; use-after-free.\n"); |
| 99 | } |
| 100 | |
| 101 | /* |
| 102 | * Similar to atomic_inc_not_zero(), will saturate at UINT_MAX and WARN. |
| 103 | * |
| 104 | * Provides no memory ordering, it is assumed the caller has guaranteed the |
| 105 | * object memory to be stable (RCU, etc.). It does provide a control dependency |
| 106 | * and thereby orders future stores. See the comment on top. |
| 107 | */ |
| 108 | static inline __refcount_check |
| 109 | bool refcount_inc_not_zero(refcount_t *r) |
| 110 | { |
| 111 | unsigned int old, new, val = atomic_read(&r->refs); |
| 112 | |
| 113 | for (;;) { |
| 114 | new = val + 1; |
| 115 | |
| 116 | if (!val) |
| 117 | return false; |
| 118 | |
| 119 | if (unlikely(!new)) |
| 120 | return true; |
| 121 | |
| 122 | old = atomic_cmpxchg_relaxed(&r->refs, val, new); |
| 123 | if (old == val) |
| 124 | break; |
| 125 | |
| 126 | val = old; |
| 127 | } |
| 128 | |
| 129 | REFCOUNT_WARN(new == UINT_MAX, "refcount_t: saturated; leaking memory.\n"); |
| 130 | |
| 131 | return true; |
| 132 | } |
| 133 | |
| 134 | /* |
| 135 | * Similar to atomic_inc(), will saturate at UINT_MAX and WARN. |
| 136 | * |
| 137 | * Provides no memory ordering, it is assumed the caller already has a |
| 138 | * reference on the object, will WARN when this is not so. |
| 139 | */ |
| 140 | static inline void refcount_inc(refcount_t *r) |
| 141 | { |
| 142 | REFCOUNT_WARN(!refcount_inc_not_zero(r), "refcount_t: increment on 0; use-after-free.\n"); |
| 143 | } |
| 144 | |
| 145 | /* |
| 146 | * Similar to atomic_dec_and_test(), it will WARN on underflow and fail to |
| 147 | * decrement when saturated at UINT_MAX. |
| 148 | * |
| 149 | * Provides release memory ordering, such that prior loads and stores are done |
| 150 | * before, and provides a control dependency such that free() must come after. |
| 151 | * See the comment on top. |
| 152 | */ |
| 153 | static inline __refcount_check |
| 154 | bool refcount_sub_and_test(unsigned int i, refcount_t *r) |
| 155 | { |
| 156 | unsigned int old, new, val = atomic_read(&r->refs); |
| 157 | |
| 158 | for (;;) { |
| 159 | if (unlikely(val == UINT_MAX)) |
| 160 | return false; |
| 161 | |
| 162 | new = val - i; |
| 163 | if (new > val) { |
| 164 | REFCOUNT_WARN(new > val, "refcount_t: underflow; use-after-free.\n"); |
| 165 | return false; |
| 166 | } |
| 167 | |
| 168 | old = atomic_cmpxchg_release(&r->refs, val, new); |
| 169 | if (old == val) |
| 170 | break; |
| 171 | |
| 172 | val = old; |
| 173 | } |
| 174 | |
| 175 | return !new; |
| 176 | } |
| 177 | |
| 178 | static inline __refcount_check |
| 179 | bool refcount_dec_and_test(refcount_t *r) |
| 180 | { |
| 181 | return refcount_sub_and_test(1, r); |
| 182 | } |
| 183 | |
| 184 | /* |
| 185 | * Similar to atomic_dec(), it will WARN on underflow and fail to decrement |
| 186 | * when saturated at UINT_MAX. |
| 187 | * |
| 188 | * Provides release memory ordering, such that prior loads and stores are done |
| 189 | * before. |
| 190 | */ |
| 191 | static inline |
| 192 | void refcount_dec(refcount_t *r) |
| 193 | { |
| 194 | REFCOUNT_WARN(refcount_dec_and_test(r), "refcount_t: decrement hit 0; leaking memory.\n"); |
| 195 | } |
| 196 | |
| 197 | /* |
| 198 | * No atomic_t counterpart, it attempts a 1 -> 0 transition and returns the |
| 199 | * success thereof. |
| 200 | * |
| 201 | * Like all decrement operations, it provides release memory order and provides |
| 202 | * a control dependency. |
| 203 | * |
| 204 | * It can be used like a try-delete operator; this explicit case is provided |
| 205 | * and not cmpxchg in generic, because that would allow implementing unsafe |
| 206 | * operations. |
| 207 | */ |
| 208 | static inline __refcount_check |
| 209 | bool refcount_dec_if_one(refcount_t *r) |
| 210 | { |
| 211 | return atomic_cmpxchg_release(&r->refs, 1, 0) == 1; |
| 212 | } |
| 213 | |
| 214 | /* |
| 215 | * No atomic_t counterpart, it decrements unless the value is 1, in which case |
| 216 | * it will return false. |
| 217 | * |
| 218 | * Was often done like: atomic_add_unless(&var, -1, 1) |
| 219 | */ |
| 220 | static inline __refcount_check |
| 221 | bool refcount_dec_not_one(refcount_t *r) |
| 222 | { |
| 223 | unsigned int old, new, val = atomic_read(&r->refs); |
| 224 | |
| 225 | for (;;) { |
| 226 | if (unlikely(val == UINT_MAX)) |
| 227 | return true; |
| 228 | |
| 229 | if (val == 1) |
| 230 | return false; |
| 231 | |
| 232 | new = val - 1; |
| 233 | if (new > val) { |
| 234 | REFCOUNT_WARN(new > val, "refcount_t: underflow; use-after-free.\n"); |
| 235 | return true; |
| 236 | } |
| 237 | |
| 238 | old = atomic_cmpxchg_release(&r->refs, val, new); |
| 239 | if (old == val) |
| 240 | break; |
| 241 | |
| 242 | val = old; |
| 243 | } |
| 244 | |
| 245 | return true; |
| 246 | } |
| 247 | |
| 248 | /* |
| 249 | * Similar to atomic_dec_and_mutex_lock(), it will WARN on underflow and fail |
| 250 | * to decrement when saturated at UINT_MAX. |
| 251 | * |
| 252 | * Provides release memory ordering, such that prior loads and stores are done |
| 253 | * before, and provides a control dependency such that free() must come after. |
| 254 | * See the comment on top. |
| 255 | */ |
| 256 | static inline __refcount_check |
| 257 | bool refcount_dec_and_mutex_lock(refcount_t *r, struct mutex *lock) |
| 258 | { |
| 259 | if (refcount_dec_not_one(r)) |
| 260 | return false; |
| 261 | |
| 262 | mutex_lock(lock); |
| 263 | if (!refcount_dec_and_test(r)) { |
| 264 | mutex_unlock(lock); |
| 265 | return false; |
| 266 | } |
| 267 | |
| 268 | return true; |
| 269 | } |
| 270 | |
| 271 | /* |
| 272 | * Similar to atomic_dec_and_lock(), it will WARN on underflow and fail to |
| 273 | * decrement when saturated at UINT_MAX. |
| 274 | * |
| 275 | * Provides release memory ordering, such that prior loads and stores are done |
| 276 | * before, and provides a control dependency such that free() must come after. |
| 277 | * See the comment on top. |
| 278 | */ |
| 279 | static inline __refcount_check |
| 280 | bool refcount_dec_and_lock(refcount_t *r, spinlock_t *lock) |
| 281 | { |
| 282 | if (refcount_dec_not_one(r)) |
| 283 | return false; |
| 284 | |
| 285 | spin_lock(lock); |
| 286 | if (!refcount_dec_and_test(r)) { |
| 287 | spin_unlock(lock); |
| 288 | return false; |
| 289 | } |
| 290 | |
| 291 | return true; |
| 292 | } |
| 293 | |
| 294 | #endif /* _LINUX_REFCOUNT_H */ |