blob: 3627d5c1bc470d7b655416e9a941cd2b4e378e03 [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
Christoph Lameter2e892f42006-12-13 00:34:23 -08002 * Written by Mark Hemment, 1996 (markhe@nextd.demon.co.uk).
3 *
Christoph Lametercde53532008-07-04 09:59:22 -07004 * (C) SGI 2006, Christoph Lameter
Christoph Lameter2e892f42006-12-13 00:34:23 -08005 * Cleaned up and restructured to ease the addition of alternative
6 * implementations of SLAB allocators.
Christoph Lameterf1b6eb62013-09-04 16:35:34 +00007 * (C) Linux Foundation 2008-2013
8 * Unified interface for all slab allocators
Linus Torvalds1da177e2005-04-16 15:20:36 -07009 */
10
11#ifndef _LINUX_SLAB_H
12#define _LINUX_SLAB_H
13
Andrew Morton1b1cec42006-12-06 20:33:22 -080014#include <linux/gfp.h>
Andrew Morton1b1cec42006-12-06 20:33:22 -080015#include <linux/types.h>
Glauber Costa1f458cb2012-12-18 14:22:50 -080016#include <linux/workqueue.h>
17
Linus Torvalds1da177e2005-04-16 15:20:36 -070018
Christoph Lameter2e892f42006-12-13 00:34:23 -080019/*
20 * Flags to pass to kmem_cache_create().
David Rientjes124dee02015-04-14 15:44:28 -070021 * The ones marked DEBUG are only valid if CONFIG_DEBUG_SLAB is set.
Linus Torvalds1da177e2005-04-16 15:20:36 -070022 */
Christoph Lameter55935a32006-12-13 00:34:24 -080023#define SLAB_DEBUG_FREE 0x00000100UL /* DEBUG: Perform (expensive) checks on free */
Christoph Lameter55935a32006-12-13 00:34:24 -080024#define SLAB_RED_ZONE 0x00000400UL /* DEBUG: Red zone objs in a cache */
25#define SLAB_POISON 0x00000800UL /* DEBUG: Poison objects */
26#define SLAB_HWCACHE_ALIGN 0x00002000UL /* Align objs on cache lines */
Christoph Lameter2e892f42006-12-13 00:34:23 -080027#define SLAB_CACHE_DMA 0x00004000UL /* Use GFP_DMA memory */
Christoph Lameter2e892f42006-12-13 00:34:23 -080028#define SLAB_STORE_USER 0x00010000UL /* DEBUG: Store the last owner for bug hunting */
Christoph Lameter2e892f42006-12-13 00:34:23 -080029#define SLAB_PANIC 0x00040000UL /* Panic if kmem_cache_create() fails */
Peter Zijlstrad7de4c12008-11-13 20:40:12 +020030/*
31 * SLAB_DESTROY_BY_RCU - **WARNING** READ THIS!
32 *
33 * This delays freeing the SLAB page by a grace period, it does _NOT_
34 * delay object freeing. This means that if you do kmem_cache_free()
35 * that memory location is free to be reused at any time. Thus it may
36 * be possible to see another object there in the same RCU grace period.
37 *
38 * This feature only ensures the memory location backing the object
39 * stays valid, the trick to using this is relying on an independent
40 * object validation pass. Something like:
41 *
42 * rcu_read_lock()
43 * again:
44 * obj = lockless_lookup(key);
45 * if (obj) {
46 * if (!try_get_ref(obj)) // might fail for free objects
47 * goto again;
48 *
49 * if (obj->key != key) { // not the object we expected
50 * put_ref(obj);
51 * goto again;
52 * }
53 * }
54 * rcu_read_unlock();
55 *
Joonsoo Kim68126702013-10-24 10:07:42 +090056 * This is useful if we need to approach a kernel structure obliquely,
57 * from its address obtained without the usual locking. We can lock
58 * the structure to stabilize it and check it's still at the given address,
59 * only if we can be sure that the memory has not been meanwhile reused
60 * for some other kind of object (which our subsystem's lock might corrupt).
61 *
62 * rcu_read_lock before reading the address, then rcu_read_unlock after
63 * taking the spinlock within the structure expected at that address.
Peter Zijlstrad7de4c12008-11-13 20:40:12 +020064 */
Christoph Lameter2e892f42006-12-13 00:34:23 -080065#define SLAB_DESTROY_BY_RCU 0x00080000UL /* Defer freeing slabs to RCU */
Paul Jackson101a5002006-03-24 03:16:07 -080066#define SLAB_MEM_SPREAD 0x00100000UL /* Spread some memory over cpuset */
Christoph Lameter81819f02007-05-06 14:49:36 -070067#define SLAB_TRACE 0x00200000UL /* Trace allocations and frees */
Linus Torvalds1da177e2005-04-16 15:20:36 -070068
Thomas Gleixner30327ac2008-04-30 00:54:59 -070069/* Flag to prevent checks on free */
70#ifdef CONFIG_DEBUG_OBJECTS
71# define SLAB_DEBUG_OBJECTS 0x00400000UL
72#else
73# define SLAB_DEBUG_OBJECTS 0x00000000UL
74#endif
75
Catalin Marinasd5cff632009-06-11 13:22:40 +010076#define SLAB_NOLEAKTRACE 0x00800000UL /* Avoid kmemleak tracing */
77
Vegard Nossum2dff4402008-05-31 15:56:17 +020078/* Don't track use of uninitialized memory */
79#ifdef CONFIG_KMEMCHECK
80# define SLAB_NOTRACK 0x01000000UL
81#else
82# define SLAB_NOTRACK 0x00000000UL
83#endif
Dmitry Monakhov4c13dd32010-02-26 09:36:12 +030084#ifdef CONFIG_FAILSLAB
85# define SLAB_FAILSLAB 0x02000000UL /* Fault injection mark */
86#else
87# define SLAB_FAILSLAB 0x00000000UL
88#endif
Johannes Weiner127424c2016-01-20 15:02:32 -080089#if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB)
Vladimir Davydov230e9fc2016-01-14 15:18:15 -080090# define SLAB_ACCOUNT 0x04000000UL /* Account to memcg */
91#else
92# define SLAB_ACCOUNT 0x00000000UL
93#endif
Vegard Nossum2dff4402008-05-31 15:56:17 +020094
Mel Gormane12ba742007-10-16 01:25:52 -070095/* The following flags affect the page allocator grouping pages by mobility */
96#define SLAB_RECLAIM_ACCOUNT 0x00020000UL /* Objects are reclaimable */
97#define SLAB_TEMPORARY SLAB_RECLAIM_ACCOUNT /* Objects are short-lived */
Christoph Lameter2e892f42006-12-13 00:34:23 -080098/*
Christoph Lameter6cb8f912007-07-17 04:03:22 -070099 * ZERO_SIZE_PTR will be returned for zero sized kmalloc requests.
100 *
101 * Dereferencing ZERO_SIZE_PTR will lead to a distinct access fault.
102 *
103 * ZERO_SIZE_PTR can be passed to kfree though in the same way that NULL can.
104 * Both make kfree a no-op.
105 */
106#define ZERO_SIZE_PTR ((void *)16)
107
Roland Dreier1d4ec7b2007-07-20 12:13:20 -0700108#define ZERO_OR_NULL_PTR(x) ((unsigned long)(x) <= \
Christoph Lameter6cb8f912007-07-17 04:03:22 -0700109 (unsigned long)ZERO_SIZE_PTR)
110
Christoph Lameterf1b6eb62013-09-04 16:35:34 +0000111#include <linux/kmemleak.h>
Andrey Ryabinin0316bec2015-02-13 14:39:42 -0800112#include <linux/kasan.h>
Christoph Lameter3b0efdf2012-06-13 10:24:57 -0500113
Glauber Costa2633d7a2012-12-18 14:22:34 -0800114struct mem_cgroup;
Christoph Lameter3b0efdf2012-06-13 10:24:57 -0500115/*
Christoph Lameter2e892f42006-12-13 00:34:23 -0800116 * struct kmem_cache related prototypes
117 */
118void __init kmem_cache_init(void);
Denis Kirjanovfda90122015-11-05 18:44:59 -0800119bool slab_is_available(void);
Matt Mackall10cef602006-01-08 01:01:45 -0800120
Christoph Lameter2e892f42006-12-13 00:34:23 -0800121struct kmem_cache *kmem_cache_create(const char *, size_t, size_t,
Christoph Lameterebe29732006-12-06 20:32:59 -0800122 unsigned long,
Alexey Dobriyan51cc5062008-07-25 19:45:34 -0700123 void (*)(void *));
Christoph Lameter2e892f42006-12-13 00:34:23 -0800124void kmem_cache_destroy(struct kmem_cache *);
125int kmem_cache_shrink(struct kmem_cache *);
Vladimir Davydov2a4db7e2015-02-12 14:59:32 -0800126
127void memcg_create_kmem_cache(struct mem_cgroup *, struct kmem_cache *);
128void memcg_deactivate_kmem_caches(struct mem_cgroup *);
129void memcg_destroy_kmem_caches(struct mem_cgroup *);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700130
Christoph Lameter0a31bd52007-05-06 14:49:57 -0700131/*
132 * Please use this macro to create slab caches. Simply specify the
133 * name of the structure and maybe some flags that are listed above.
134 *
135 * The alignment of the struct determines object alignment. If you
136 * f.e. add ____cacheline_aligned_in_smp to the struct declaration
137 * then the objects will be properly aligned in SMP configurations.
138 */
139#define KMEM_CACHE(__struct, __flags) kmem_cache_create(#__struct,\
140 sizeof(struct __struct), __alignof__(struct __struct),\
Paul Mundt20c2df82007-07-20 10:11:58 +0900141 (__flags), NULL)
Christoph Lameter0a31bd52007-05-06 14:49:57 -0700142
Christoph Lameter2e892f42006-12-13 00:34:23 -0800143/*
Christoph Lameter34504662013-01-10 19:00:53 +0000144 * Common kmalloc functions provided by all allocators
145 */
146void * __must_check __krealloc(const void *, size_t, gfp_t);
147void * __must_check krealloc(const void *, size_t, gfp_t);
148void kfree(const void *);
149void kzfree(const void *);
150size_t ksize(const void *);
151
Christoph Lameterc601fd62013-02-05 16:36:47 +0000152/*
153 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
154 * alignment larger than the alignment of a 64-bit integer.
155 * Setting ARCH_KMALLOC_MINALIGN in arch headers allows that.
156 */
157#if defined(ARCH_DMA_MINALIGN) && ARCH_DMA_MINALIGN > 8
158#define ARCH_KMALLOC_MINALIGN ARCH_DMA_MINALIGN
159#define KMALLOC_MIN_SIZE ARCH_DMA_MINALIGN
160#define KMALLOC_SHIFT_LOW ilog2(ARCH_DMA_MINALIGN)
161#else
162#define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
163#endif
164
Christoph Lameter34504662013-01-10 19:00:53 +0000165/*
Rasmus Villemoes94a58c32015-11-20 15:56:48 -0800166 * Setting ARCH_SLAB_MINALIGN in arch headers allows a different alignment.
167 * Intended for arches that get misalignment faults even for 64 bit integer
168 * aligned buffers.
169 */
170#ifndef ARCH_SLAB_MINALIGN
171#define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
172#endif
173
174/*
175 * kmalloc and friends return ARCH_KMALLOC_MINALIGN aligned
176 * pointers. kmem_cache_alloc and friends return ARCH_SLAB_MINALIGN
177 * aligned pointers.
178 */
179#define __assume_kmalloc_alignment __assume_aligned(ARCH_KMALLOC_MINALIGN)
180#define __assume_slab_alignment __assume_aligned(ARCH_SLAB_MINALIGN)
181#define __assume_page_alignment __assume_aligned(PAGE_SIZE)
182
183/*
Christoph Lameter95a05b42013-01-10 19:14:19 +0000184 * Kmalloc array related definitions
185 */
186
187#ifdef CONFIG_SLAB
188/*
189 * The largest kmalloc size supported by the SLAB allocators is
Christoph Lameter0aa817f2007-05-16 22:11:01 -0700190 * 32 megabyte (2^25) or the maximum allocatable page order if that is
191 * less than 32 MB.
192 *
193 * WARNING: Its not easy to increase this value since the allocators have
194 * to do various tricks to work around compiler limitations in order to
195 * ensure proper constant folding.
196 */
Christoph Lameterdebee072007-06-23 17:16:43 -0700197#define KMALLOC_SHIFT_HIGH ((MAX_ORDER + PAGE_SHIFT - 1) <= 25 ? \
198 (MAX_ORDER + PAGE_SHIFT - 1) : 25)
Christoph Lameter95a05b42013-01-10 19:14:19 +0000199#define KMALLOC_SHIFT_MAX KMALLOC_SHIFT_HIGH
Christoph Lameterc601fd62013-02-05 16:36:47 +0000200#ifndef KMALLOC_SHIFT_LOW
Christoph Lameter95a05b42013-01-10 19:14:19 +0000201#define KMALLOC_SHIFT_LOW 5
Christoph Lameterc601fd62013-02-05 16:36:47 +0000202#endif
Christoph Lameter069e2b352013-06-14 19:55:13 +0000203#endif
204
205#ifdef CONFIG_SLUB
Christoph Lameter95a05b42013-01-10 19:14:19 +0000206/*
Dave Hansen433a91f2014-01-28 14:24:50 -0800207 * SLUB directly allocates requests fitting in to an order-1 page
208 * (PAGE_SIZE*2). Larger requests are passed to the page allocator.
Christoph Lameter95a05b42013-01-10 19:14:19 +0000209 */
210#define KMALLOC_SHIFT_HIGH (PAGE_SHIFT + 1)
211#define KMALLOC_SHIFT_MAX (MAX_ORDER + PAGE_SHIFT)
Christoph Lameterc601fd62013-02-05 16:36:47 +0000212#ifndef KMALLOC_SHIFT_LOW
Christoph Lameter95a05b42013-01-10 19:14:19 +0000213#define KMALLOC_SHIFT_LOW 3
214#endif
Christoph Lameterc601fd62013-02-05 16:36:47 +0000215#endif
Christoph Lameter0aa817f2007-05-16 22:11:01 -0700216
Christoph Lameter069e2b352013-06-14 19:55:13 +0000217#ifdef CONFIG_SLOB
218/*
Dave Hansen433a91f2014-01-28 14:24:50 -0800219 * SLOB passes all requests larger than one page to the page allocator.
Christoph Lameter069e2b352013-06-14 19:55:13 +0000220 * No kmalloc array is necessary since objects of different sizes can
221 * be allocated from the same page.
222 */
Christoph Lameter069e2b352013-06-14 19:55:13 +0000223#define KMALLOC_SHIFT_HIGH PAGE_SHIFT
Dave Hansen433a91f2014-01-28 14:24:50 -0800224#define KMALLOC_SHIFT_MAX 30
Christoph Lameter069e2b352013-06-14 19:55:13 +0000225#ifndef KMALLOC_SHIFT_LOW
226#define KMALLOC_SHIFT_LOW 3
227#endif
228#endif
229
Christoph Lameter95a05b42013-01-10 19:14:19 +0000230/* Maximum allocatable size */
231#define KMALLOC_MAX_SIZE (1UL << KMALLOC_SHIFT_MAX)
232/* Maximum size for which we actually use a slab cache */
233#define KMALLOC_MAX_CACHE_SIZE (1UL << KMALLOC_SHIFT_HIGH)
234/* Maximum order allocatable via the slab allocagtor */
235#define KMALLOC_MAX_ORDER (KMALLOC_SHIFT_MAX - PAGE_SHIFT)
Christoph Lameter0aa817f2007-05-16 22:11:01 -0700236
Christoph Lameter90810642011-06-23 09:36:12 -0500237/*
Christoph Lameterce6a5022013-01-10 19:14:19 +0000238 * Kmalloc subsystem.
239 */
Christoph Lameterc601fd62013-02-05 16:36:47 +0000240#ifndef KMALLOC_MIN_SIZE
Christoph Lameter95a05b42013-01-10 19:14:19 +0000241#define KMALLOC_MIN_SIZE (1 << KMALLOC_SHIFT_LOW)
Christoph Lameterce6a5022013-01-10 19:14:19 +0000242#endif
Christoph Lameterce6a5022013-01-10 19:14:19 +0000243
Joonsoo Kim24f870d2014-03-12 17:06:19 +0900244/*
245 * This restriction comes from byte sized index implementation.
246 * Page size is normally 2^12 bytes and, in this case, if we want to use
247 * byte sized index which can represent 2^8 entries, the size of the object
248 * should be equal or greater to 2^12 / 2^8 = 2^4 = 16.
249 * If minimum size of kmalloc is less than 16, we use it as minimum object
250 * size and give up to use byte sized index.
251 */
252#define SLAB_OBJ_MIN_SIZE (KMALLOC_MIN_SIZE < 16 ? \
253 (KMALLOC_MIN_SIZE) : 16)
254
Christoph Lameter069e2b352013-06-14 19:55:13 +0000255#ifndef CONFIG_SLOB
Christoph Lameter9425c582013-01-10 19:12:17 +0000256extern struct kmem_cache *kmalloc_caches[KMALLOC_SHIFT_HIGH + 1];
257#ifdef CONFIG_ZONE_DMA
258extern struct kmem_cache *kmalloc_dma_caches[KMALLOC_SHIFT_HIGH + 1];
259#endif
260
Christoph Lameterce6a5022013-01-10 19:14:19 +0000261/*
262 * Figure out which kmalloc slab an allocation of a certain size
263 * belongs to.
264 * 0 = zero alloc
265 * 1 = 65 .. 96 bytes
Rasmus Villemoes1ed58b62015-06-24 16:55:59 -0700266 * 2 = 129 .. 192 bytes
267 * n = 2^(n-1)+1 .. 2^n
Christoph Lameterce6a5022013-01-10 19:14:19 +0000268 */
269static __always_inline int kmalloc_index(size_t size)
270{
271 if (!size)
272 return 0;
273
274 if (size <= KMALLOC_MIN_SIZE)
275 return KMALLOC_SHIFT_LOW;
276
277 if (KMALLOC_MIN_SIZE <= 32 && size > 64 && size <= 96)
278 return 1;
279 if (KMALLOC_MIN_SIZE <= 64 && size > 128 && size <= 192)
280 return 2;
281 if (size <= 8) return 3;
282 if (size <= 16) return 4;
283 if (size <= 32) return 5;
284 if (size <= 64) return 6;
285 if (size <= 128) return 7;
286 if (size <= 256) return 8;
287 if (size <= 512) return 9;
288 if (size <= 1024) return 10;
289 if (size <= 2 * 1024) return 11;
290 if (size <= 4 * 1024) return 12;
291 if (size <= 8 * 1024) return 13;
292 if (size <= 16 * 1024) return 14;
293 if (size <= 32 * 1024) return 15;
294 if (size <= 64 * 1024) return 16;
295 if (size <= 128 * 1024) return 17;
296 if (size <= 256 * 1024) return 18;
297 if (size <= 512 * 1024) return 19;
298 if (size <= 1024 * 1024) return 20;
299 if (size <= 2 * 1024 * 1024) return 21;
300 if (size <= 4 * 1024 * 1024) return 22;
301 if (size <= 8 * 1024 * 1024) return 23;
302 if (size <= 16 * 1024 * 1024) return 24;
303 if (size <= 32 * 1024 * 1024) return 25;
304 if (size <= 64 * 1024 * 1024) return 26;
305 BUG();
306
307 /* Will never be reached. Needed because the compiler may complain */
308 return -1;
309}
Christoph Lameter069e2b352013-06-14 19:55:13 +0000310#endif /* !CONFIG_SLOB */
Christoph Lameterce6a5022013-01-10 19:14:19 +0000311
Rasmus Villemoes94a58c32015-11-20 15:56:48 -0800312void *__kmalloc(size_t size, gfp_t flags) __assume_kmalloc_alignment;
313void *kmem_cache_alloc(struct kmem_cache *, gfp_t flags) __assume_slab_alignment;
Vladimir Davydov2a4db7e2015-02-12 14:59:32 -0800314void kmem_cache_free(struct kmem_cache *, void *);
Christoph Lameterf1b6eb62013-09-04 16:35:34 +0000315
Christoph Lameter484748f2015-09-04 15:45:34 -0700316/*
317 * Bulk allocation and freeing operations. These are accellerated in an
318 * allocator specific way to avoid taking locks repeatedly or building
319 * metadata structures unnecessarily.
320 *
321 * Note that interrupts must be enabled when calling these functions.
322 */
323void kmem_cache_free_bulk(struct kmem_cache *, size_t, void **);
Jesper Dangaard Brouer865762a2015-11-20 15:57:58 -0800324int kmem_cache_alloc_bulk(struct kmem_cache *, gfp_t, size_t, void **);
Christoph Lameter484748f2015-09-04 15:45:34 -0700325
Christoph Lameterf1b6eb62013-09-04 16:35:34 +0000326#ifdef CONFIG_NUMA
Rasmus Villemoes94a58c32015-11-20 15:56:48 -0800327void *__kmalloc_node(size_t size, gfp_t flags, int node) __assume_kmalloc_alignment;
328void *kmem_cache_alloc_node(struct kmem_cache *, gfp_t flags, int node) __assume_slab_alignment;
Christoph Lameterf1b6eb62013-09-04 16:35:34 +0000329#else
330static __always_inline void *__kmalloc_node(size_t size, gfp_t flags, int node)
331{
332 return __kmalloc(size, flags);
333}
334
335static __always_inline void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t flags, int node)
336{
337 return kmem_cache_alloc(s, flags);
338}
339#endif
340
341#ifdef CONFIG_TRACING
Rasmus Villemoes94a58c32015-11-20 15:56:48 -0800342extern void *kmem_cache_alloc_trace(struct kmem_cache *, gfp_t, size_t) __assume_slab_alignment;
Christoph Lameterf1b6eb62013-09-04 16:35:34 +0000343
344#ifdef CONFIG_NUMA
345extern void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
346 gfp_t gfpflags,
Rasmus Villemoes94a58c32015-11-20 15:56:48 -0800347 int node, size_t size) __assume_slab_alignment;
Christoph Lameterf1b6eb62013-09-04 16:35:34 +0000348#else
349static __always_inline void *
350kmem_cache_alloc_node_trace(struct kmem_cache *s,
351 gfp_t gfpflags,
352 int node, size_t size)
353{
354 return kmem_cache_alloc_trace(s, gfpflags, size);
355}
356#endif /* CONFIG_NUMA */
357
358#else /* CONFIG_TRACING */
359static __always_inline void *kmem_cache_alloc_trace(struct kmem_cache *s,
360 gfp_t flags, size_t size)
361{
Andrey Ryabinin0316bec2015-02-13 14:39:42 -0800362 void *ret = kmem_cache_alloc(s, flags);
363
364 kasan_kmalloc(s, ret, size);
365 return ret;
Christoph Lameterf1b6eb62013-09-04 16:35:34 +0000366}
367
368static __always_inline void *
369kmem_cache_alloc_node_trace(struct kmem_cache *s,
370 gfp_t gfpflags,
371 int node, size_t size)
372{
Andrey Ryabinin0316bec2015-02-13 14:39:42 -0800373 void *ret = kmem_cache_alloc_node(s, gfpflags, node);
374
375 kasan_kmalloc(s, ret, size);
376 return ret;
Christoph Lameterf1b6eb62013-09-04 16:35:34 +0000377}
378#endif /* CONFIG_TRACING */
379
Rasmus Villemoes94a58c32015-11-20 15:56:48 -0800380extern void *kmalloc_order(size_t size, gfp_t flags, unsigned int order) __assume_page_alignment;
Christoph Lameterf1b6eb62013-09-04 16:35:34 +0000381
382#ifdef CONFIG_TRACING
Rasmus Villemoes94a58c32015-11-20 15:56:48 -0800383extern void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order) __assume_page_alignment;
Christoph Lameterf1b6eb62013-09-04 16:35:34 +0000384#else
385static __always_inline void *
386kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
387{
388 return kmalloc_order(size, flags, order);
389}
Christoph Lameterce6a5022013-01-10 19:14:19 +0000390#endif
391
Christoph Lameterf1b6eb62013-09-04 16:35:34 +0000392static __always_inline void *kmalloc_large(size_t size, gfp_t flags)
393{
394 unsigned int order = get_order(size);
395 return kmalloc_order_trace(size, flags, order);
396}
397
398/**
399 * kmalloc - allocate memory
400 * @size: how many bytes of memory are required.
Randy Dunlap7e3528c2013-11-22 18:14:38 -0800401 * @flags: the type of memory to allocate.
Christoph Lameterf1b6eb62013-09-04 16:35:34 +0000402 *
403 * kmalloc is the normal method of allocating memory
404 * for objects smaller than page size in the kernel.
Randy Dunlap7e3528c2013-11-22 18:14:38 -0800405 *
406 * The @flags argument may be one of:
407 *
408 * %GFP_USER - Allocate memory on behalf of user. May sleep.
409 *
410 * %GFP_KERNEL - Allocate normal kernel ram. May sleep.
411 *
412 * %GFP_ATOMIC - Allocation will not sleep. May use emergency pools.
413 * For example, use this inside interrupt handlers.
414 *
415 * %GFP_HIGHUSER - Allocate pages from high memory.
416 *
417 * %GFP_NOIO - Do not do any I/O at all while trying to get memory.
418 *
419 * %GFP_NOFS - Do not make any fs calls while trying to get memory.
420 *
421 * %GFP_NOWAIT - Allocation will not sleep.
422 *
Johannes Weinere97ca8e2014-03-10 15:49:43 -0700423 * %__GFP_THISNODE - Allocate node-local memory only.
Randy Dunlap7e3528c2013-11-22 18:14:38 -0800424 *
425 * %GFP_DMA - Allocation suitable for DMA.
426 * Should only be used for kmalloc() caches. Otherwise, use a
427 * slab created with SLAB_DMA.
428 *
429 * Also it is possible to set different flags by OR'ing
430 * in one or more of the following additional @flags:
431 *
432 * %__GFP_COLD - Request cache-cold pages instead of
433 * trying to return cache-warm pages.
434 *
435 * %__GFP_HIGH - This allocation has high priority and may use emergency pools.
436 *
437 * %__GFP_NOFAIL - Indicate that this allocation is in no way allowed to fail
438 * (think twice before using).
439 *
440 * %__GFP_NORETRY - If memory is not immediately available,
441 * then give up at once.
442 *
443 * %__GFP_NOWARN - If allocation fails, don't issue any warnings.
444 *
445 * %__GFP_REPEAT - If allocation fails initially, try once more before failing.
446 *
447 * There are other flags available as well, but these are not intended
448 * for general use, and so are not documented here. For a full list of
449 * potential flags, always refer to linux/gfp.h.
Christoph Lameterf1b6eb62013-09-04 16:35:34 +0000450 */
451static __always_inline void *kmalloc(size_t size, gfp_t flags)
452{
453 if (__builtin_constant_p(size)) {
454 if (size > KMALLOC_MAX_CACHE_SIZE)
455 return kmalloc_large(size, flags);
456#ifndef CONFIG_SLOB
457 if (!(flags & GFP_DMA)) {
458 int index = kmalloc_index(size);
459
460 if (!index)
461 return ZERO_SIZE_PTR;
462
463 return kmem_cache_alloc_trace(kmalloc_caches[index],
464 flags, size);
465 }
466#endif
467 }
468 return __kmalloc(size, flags);
469}
470
Christoph Lameterce6a5022013-01-10 19:14:19 +0000471/*
472 * Determine size used for the nth kmalloc cache.
473 * return size or 0 if a kmalloc cache for that
474 * size does not exist
475 */
476static __always_inline int kmalloc_size(int n)
477{
Christoph Lameter069e2b352013-06-14 19:55:13 +0000478#ifndef CONFIG_SLOB
Christoph Lameterce6a5022013-01-10 19:14:19 +0000479 if (n > 2)
480 return 1 << n;
481
482 if (n == 1 && KMALLOC_MIN_SIZE <= 32)
483 return 96;
484
485 if (n == 2 && KMALLOC_MIN_SIZE <= 64)
486 return 192;
Christoph Lameter069e2b352013-06-14 19:55:13 +0000487#endif
Christoph Lameterce6a5022013-01-10 19:14:19 +0000488 return 0;
489}
Christoph Lameterce6a5022013-01-10 19:14:19 +0000490
Christoph Lameterf1b6eb62013-09-04 16:35:34 +0000491static __always_inline void *kmalloc_node(size_t size, gfp_t flags, int node)
492{
493#ifndef CONFIG_SLOB
494 if (__builtin_constant_p(size) &&
Christoph Lameter23774a22013-09-04 19:58:08 +0000495 size <= KMALLOC_MAX_CACHE_SIZE && !(flags & GFP_DMA)) {
Christoph Lameterf1b6eb62013-09-04 16:35:34 +0000496 int i = kmalloc_index(size);
497
498 if (!i)
499 return ZERO_SIZE_PTR;
500
501 return kmem_cache_alloc_node_trace(kmalloc_caches[i],
502 flags, node, size);
503 }
504#endif
505 return __kmalloc_node(size, flags, node);
506}
507
Vladimir Davydovf7ce3192015-02-12 14:59:20 -0800508struct memcg_cache_array {
509 struct rcu_head rcu;
510 struct kmem_cache *entries[0];
511};
512
Christoph Lameter0aa817f2007-05-16 22:11:01 -0700513/*
Glauber Costaba6c4962012-12-18 14:22:27 -0800514 * This is the main placeholder for memcg-related information in kmem caches.
Glauber Costaba6c4962012-12-18 14:22:27 -0800515 * Both the root cache and the child caches will have it. For the root cache,
516 * this will hold a dynamically allocated array large enough to hold
Vladimir Davydovf8570262014-01-23 15:53:06 -0800517 * information about the currently limited memcgs in the system. To allow the
518 * array to be accessed without taking any locks, on relocation we free the old
519 * version only after a grace period.
Glauber Costaba6c4962012-12-18 14:22:27 -0800520 *
521 * Child caches will hold extra metadata needed for its operation. Fields are:
522 *
523 * @memcg: pointer to the memcg this cache belongs to
Glauber Costa2633d7a2012-12-18 14:22:34 -0800524 * @root_cache: pointer to the global, root cache, this cache was derived from
Vladimir Davydov426589f2015-02-12 14:59:23 -0800525 *
526 * Both root and child caches of the same kind are linked into a list chained
527 * through @list.
Glauber Costaba6c4962012-12-18 14:22:27 -0800528 */
529struct memcg_cache_params {
530 bool is_root_cache;
Vladimir Davydov426589f2015-02-12 14:59:23 -0800531 struct list_head list;
Glauber Costaba6c4962012-12-18 14:22:27 -0800532 union {
Vladimir Davydovf7ce3192015-02-12 14:59:20 -0800533 struct memcg_cache_array __rcu *memcg_caches;
Glauber Costa2633d7a2012-12-18 14:22:34 -0800534 struct {
535 struct mem_cgroup *memcg;
Glauber Costa2633d7a2012-12-18 14:22:34 -0800536 struct kmem_cache *root_cache;
537 };
Glauber Costaba6c4962012-12-18 14:22:27 -0800538 };
539};
540
Glauber Costa2633d7a2012-12-18 14:22:34 -0800541int memcg_update_all_caches(int num_memcgs);
542
Christoph Lameter2e892f42006-12-13 00:34:23 -0800543/**
Michael Opdenackere7efa612013-06-25 18:16:55 +0200544 * kmalloc_array - allocate memory for an array.
545 * @n: number of elements.
546 * @size: element size.
547 * @flags: the type of memory to allocate (see kmalloc).
Paul Drynoff800590f2006-06-23 02:03:48 -0700548 */
Xi Wanga8203722012-03-05 15:14:41 -0800549static inline void *kmalloc_array(size_t n, size_t size, gfp_t flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700550{
Xi Wanga3860c12012-05-31 16:26:04 -0700551 if (size != 0 && n > SIZE_MAX / size)
Paul Mundt6193a2f2007-07-15 23:38:22 -0700552 return NULL;
Xi Wanga8203722012-03-05 15:14:41 -0800553 return __kmalloc(n * size, flags);
554}
555
556/**
557 * kcalloc - allocate memory for an array. The memory is set to zero.
558 * @n: number of elements.
559 * @size: element size.
560 * @flags: the type of memory to allocate (see kmalloc).
561 */
562static inline void *kcalloc(size_t n, size_t size, gfp_t flags)
563{
564 return kmalloc_array(n, size, flags | __GFP_ZERO);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700565}
566
Christoph Hellwig1d2c8ee2006-10-04 02:15:25 -0700567/*
568 * kmalloc_track_caller is a special version of kmalloc that records the
569 * calling function of the routine calling it for slab leak tracking instead
570 * of just the calling function (confusing, eh?).
571 * It's useful when the call to kmalloc comes from a widely-used standard
572 * allocator where we care about the real place the memory allocation
573 * request comes from.
574 */
Eduard - Gabriel Munteanuce71e272008-08-19 20:43:25 +0300575extern void *__kmalloc_track_caller(size_t, gfp_t, unsigned long);
Christoph Hellwig1d2c8ee2006-10-04 02:15:25 -0700576#define kmalloc_track_caller(size, flags) \
Eduard - Gabriel Munteanuce71e272008-08-19 20:43:25 +0300577 __kmalloc_track_caller(size, flags, _RET_IP_)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700578
Manfred Spraul97e2bde2005-05-01 08:58:38 -0700579#ifdef CONFIG_NUMA
Eduard - Gabriel Munteanuce71e272008-08-19 20:43:25 +0300580extern void *__kmalloc_node_track_caller(size_t, gfp_t, int, unsigned long);
Christoph Hellwig8b98c162006-12-06 20:32:30 -0800581#define kmalloc_node_track_caller(size, flags, node) \
582 __kmalloc_node_track_caller(size, flags, node, \
Eduard - Gabriel Munteanuce71e272008-08-19 20:43:25 +0300583 _RET_IP_)
Christoph Lameter2e892f42006-12-13 00:34:23 -0800584
Christoph Hellwig8b98c162006-12-06 20:32:30 -0800585#else /* CONFIG_NUMA */
Christoph Lameter2e892f42006-12-13 00:34:23 -0800586
587#define kmalloc_node_track_caller(size, flags, node) \
588 kmalloc_track_caller(size, flags)
589
Pascal Terjandfcd3612008-11-25 15:08:19 +0100590#endif /* CONFIG_NUMA */
Christoph Hellwig8b98c162006-12-06 20:32:30 -0800591
Christoph Lameter81cda662007-07-17 04:03:29 -0700592/*
593 * Shortcuts
594 */
595static inline void *kmem_cache_zalloc(struct kmem_cache *k, gfp_t flags)
596{
597 return kmem_cache_alloc(k, flags | __GFP_ZERO);
598}
599
600/**
601 * kzalloc - allocate memory. The memory is set to zero.
602 * @size: how many bytes of memory are required.
603 * @flags: the type of memory to allocate (see kmalloc).
604 */
605static inline void *kzalloc(size_t size, gfp_t flags)
606{
607 return kmalloc(size, flags | __GFP_ZERO);
608}
609
Jeff Layton979b0fe2008-06-05 22:47:00 -0700610/**
611 * kzalloc_node - allocate zeroed memory from a particular memory node.
612 * @size: how many bytes of memory are required.
613 * @flags: the type of memory to allocate (see kmalloc).
614 * @node: memory node from which to allocate
615 */
616static inline void *kzalloc_node(size_t size, gfp_t flags, int node)
617{
618 return kmalloc_node(size, flags | __GFP_ZERO, node);
619}
620
Joonsoo Kim07f361b2014-10-09 15:26:00 -0700621unsigned int kmem_cache_size(struct kmem_cache *s);
Pekka Enberg7e85ee02009-06-12 14:03:06 +0300622void __init kmem_cache_init_late(void);
623
Linus Torvalds1da177e2005-04-16 15:20:36 -0700624#endif /* _LINUX_SLAB_H */