Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* |
| 2 | * drivers/mtd/nand/rtc_from4.c |
| 3 | * |
| 4 | * Copyright (C) 2004 Red Hat, Inc. |
| 5 | * |
| 6 | * Derived from drivers/mtd/nand/spia.c |
| 7 | * Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com) |
| 8 | * |
| 9 | * $Id: rtc_from4.c,v 1.7 2004/11/04 12:53:10 gleixner Exp $ |
| 10 | * |
| 11 | * This program is free software; you can redistribute it and/or modify |
| 12 | * it under the terms of the GNU General Public License version 2 as |
| 13 | * published by the Free Software Foundation. |
| 14 | * |
| 15 | * Overview: |
| 16 | * This is a device driver for the AG-AND flash device found on the |
| 17 | * Renesas Technology Corp. Flash ROM 4-slot interface board (FROM_BOARD4), |
| 18 | * which utilizes the Renesas HN29V1G91T-30 part. |
| 19 | * This chip is a 1 GBibit (128MiB x 8 bits) AG-AND flash device. |
| 20 | */ |
| 21 | |
| 22 | #include <linux/delay.h> |
| 23 | #include <linux/kernel.h> |
| 24 | #include <linux/init.h> |
| 25 | #include <linux/slab.h> |
| 26 | #include <linux/rslib.h> |
| 27 | #include <linux/module.h> |
| 28 | #include <linux/mtd/compatmac.h> |
| 29 | #include <linux/mtd/mtd.h> |
| 30 | #include <linux/mtd/nand.h> |
| 31 | #include <linux/mtd/partitions.h> |
| 32 | #include <asm/io.h> |
| 33 | |
| 34 | /* |
| 35 | * MTD structure for Renesas board |
| 36 | */ |
| 37 | static struct mtd_info *rtc_from4_mtd = NULL; |
| 38 | |
| 39 | #define RTC_FROM4_MAX_CHIPS 2 |
| 40 | |
| 41 | /* HS77x9 processor register defines */ |
| 42 | #define SH77X9_BCR1 ((volatile unsigned short *)(0xFFFFFF60)) |
| 43 | #define SH77X9_BCR2 ((volatile unsigned short *)(0xFFFFFF62)) |
| 44 | #define SH77X9_WCR1 ((volatile unsigned short *)(0xFFFFFF64)) |
| 45 | #define SH77X9_WCR2 ((volatile unsigned short *)(0xFFFFFF66)) |
| 46 | #define SH77X9_MCR ((volatile unsigned short *)(0xFFFFFF68)) |
| 47 | #define SH77X9_PCR ((volatile unsigned short *)(0xFFFFFF6C)) |
| 48 | #define SH77X9_FRQCR ((volatile unsigned short *)(0xFFFFFF80)) |
| 49 | |
| 50 | /* |
| 51 | * Values specific to the Renesas Technology Corp. FROM_BOARD4 (used with HS77x9 processor) |
| 52 | */ |
| 53 | /* Address where flash is mapped */ |
| 54 | #define RTC_FROM4_FIO_BASE 0x14000000 |
| 55 | |
| 56 | /* CLE and ALE are tied to address lines 5 & 4, respectively */ |
| 57 | #define RTC_FROM4_CLE (1 << 5) |
| 58 | #define RTC_FROM4_ALE (1 << 4) |
| 59 | |
| 60 | /* address lines A24-A22 used for chip selection */ |
| 61 | #define RTC_FROM4_NAND_ADDR_SLOT3 (0x00800000) |
| 62 | #define RTC_FROM4_NAND_ADDR_SLOT4 (0x00C00000) |
| 63 | #define RTC_FROM4_NAND_ADDR_FPGA (0x01000000) |
| 64 | /* mask address lines A24-A22 used for chip selection */ |
| 65 | #define RTC_FROM4_NAND_ADDR_MASK (RTC_FROM4_NAND_ADDR_SLOT3 | RTC_FROM4_NAND_ADDR_SLOT4 | RTC_FROM4_NAND_ADDR_FPGA) |
| 66 | |
| 67 | /* FPGA status register for checking device ready (bit zero) */ |
| 68 | #define RTC_FROM4_FPGA_SR (RTC_FROM4_NAND_ADDR_FPGA | 0x00000002) |
| 69 | #define RTC_FROM4_DEVICE_READY 0x0001 |
| 70 | |
| 71 | /* FPGA Reed-Solomon ECC Control register */ |
| 72 | |
| 73 | #define RTC_FROM4_RS_ECC_CTL (RTC_FROM4_NAND_ADDR_FPGA | 0x00000050) |
| 74 | #define RTC_FROM4_RS_ECC_CTL_CLR (1 << 7) |
| 75 | #define RTC_FROM4_RS_ECC_CTL_GEN (1 << 6) |
| 76 | #define RTC_FROM4_RS_ECC_CTL_FD_E (1 << 5) |
| 77 | |
| 78 | /* FPGA Reed-Solomon ECC code base */ |
| 79 | #define RTC_FROM4_RS_ECC (RTC_FROM4_NAND_ADDR_FPGA | 0x00000060) |
| 80 | #define RTC_FROM4_RS_ECCN (RTC_FROM4_NAND_ADDR_FPGA | 0x00000080) |
| 81 | |
| 82 | /* FPGA Reed-Solomon ECC check register */ |
| 83 | #define RTC_FROM4_RS_ECC_CHK (RTC_FROM4_NAND_ADDR_FPGA | 0x00000070) |
| 84 | #define RTC_FROM4_RS_ECC_CHK_ERROR (1 << 7) |
| 85 | |
| 86 | /* Undefine for software ECC */ |
| 87 | #define RTC_FROM4_HWECC 1 |
| 88 | |
| 89 | /* |
| 90 | * Module stuff |
| 91 | */ |
| 92 | static void __iomem *rtc_from4_fio_base = P2SEGADDR(RTC_FROM4_FIO_BASE); |
| 93 | |
| 94 | const static struct mtd_partition partition_info[] = { |
| 95 | { |
| 96 | .name = "Renesas flash partition 1", |
| 97 | .offset = 0, |
| 98 | .size = MTDPART_SIZ_FULL |
| 99 | }, |
| 100 | }; |
| 101 | #define NUM_PARTITIONS 1 |
| 102 | |
| 103 | /* |
| 104 | * hardware specific flash bbt decriptors |
| 105 | * Note: this is to allow debugging by disabling |
| 106 | * NAND_BBT_CREATE and/or NAND_BBT_WRITE |
| 107 | * |
| 108 | */ |
| 109 | static uint8_t bbt_pattern[] = {'B', 'b', 't', '0' }; |
| 110 | static uint8_t mirror_pattern[] = {'1', 't', 'b', 'B' }; |
| 111 | |
| 112 | static struct nand_bbt_descr rtc_from4_bbt_main_descr = { |
| 113 | .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
| 114 | | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP, |
| 115 | .offs = 40, |
| 116 | .len = 4, |
| 117 | .veroffs = 44, |
| 118 | .maxblocks = 4, |
| 119 | .pattern = bbt_pattern |
| 120 | }; |
| 121 | |
| 122 | static struct nand_bbt_descr rtc_from4_bbt_mirror_descr = { |
| 123 | .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
| 124 | | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP, |
| 125 | .offs = 40, |
| 126 | .len = 4, |
| 127 | .veroffs = 44, |
| 128 | .maxblocks = 4, |
| 129 | .pattern = mirror_pattern |
| 130 | }; |
| 131 | |
| 132 | |
| 133 | |
| 134 | #ifdef RTC_FROM4_HWECC |
| 135 | |
| 136 | /* the Reed Solomon control structure */ |
| 137 | static struct rs_control *rs_decoder; |
| 138 | |
| 139 | /* |
| 140 | * hardware specific Out Of Band information |
| 141 | */ |
| 142 | static struct nand_oobinfo rtc_from4_nand_oobinfo = { |
| 143 | .useecc = MTD_NANDECC_AUTOPLACE, |
| 144 | .eccbytes = 32, |
| 145 | .eccpos = { |
| 146 | 0, 1, 2, 3, 4, 5, 6, 7, |
| 147 | 8, 9, 10, 11, 12, 13, 14, 15, |
| 148 | 16, 17, 18, 19, 20, 21, 22, 23, |
| 149 | 24, 25, 26, 27, 28, 29, 30, 31}, |
| 150 | .oobfree = { {32, 32} } |
| 151 | }; |
| 152 | |
| 153 | /* Aargh. I missed the reversed bit order, when I |
| 154 | * was talking to Renesas about the FPGA. |
| 155 | * |
| 156 | * The table is used for bit reordering and inversion |
| 157 | * of the ecc byte which we get from the FPGA |
| 158 | */ |
| 159 | static uint8_t revbits[256] = { |
| 160 | 0x00, 0x80, 0x40, 0xc0, 0x20, 0xa0, 0x60, 0xe0, |
| 161 | 0x10, 0x90, 0x50, 0xd0, 0x30, 0xb0, 0x70, 0xf0, |
| 162 | 0x08, 0x88, 0x48, 0xc8, 0x28, 0xa8, 0x68, 0xe8, |
| 163 | 0x18, 0x98, 0x58, 0xd8, 0x38, 0xb8, 0x78, 0xf8, |
| 164 | 0x04, 0x84, 0x44, 0xc4, 0x24, 0xa4, 0x64, 0xe4, |
| 165 | 0x14, 0x94, 0x54, 0xd4, 0x34, 0xb4, 0x74, 0xf4, |
| 166 | 0x0c, 0x8c, 0x4c, 0xcc, 0x2c, 0xac, 0x6c, 0xec, |
| 167 | 0x1c, 0x9c, 0x5c, 0xdc, 0x3c, 0xbc, 0x7c, 0xfc, |
| 168 | 0x02, 0x82, 0x42, 0xc2, 0x22, 0xa2, 0x62, 0xe2, |
| 169 | 0x12, 0x92, 0x52, 0xd2, 0x32, 0xb2, 0x72, 0xf2, |
| 170 | 0x0a, 0x8a, 0x4a, 0xca, 0x2a, 0xaa, 0x6a, 0xea, |
| 171 | 0x1a, 0x9a, 0x5a, 0xda, 0x3a, 0xba, 0x7a, 0xfa, |
| 172 | 0x06, 0x86, 0x46, 0xc6, 0x26, 0xa6, 0x66, 0xe6, |
| 173 | 0x16, 0x96, 0x56, 0xd6, 0x36, 0xb6, 0x76, 0xf6, |
| 174 | 0x0e, 0x8e, 0x4e, 0xce, 0x2e, 0xae, 0x6e, 0xee, |
| 175 | 0x1e, 0x9e, 0x5e, 0xde, 0x3e, 0xbe, 0x7e, 0xfe, |
| 176 | 0x01, 0x81, 0x41, 0xc1, 0x21, 0xa1, 0x61, 0xe1, |
| 177 | 0x11, 0x91, 0x51, 0xd1, 0x31, 0xb1, 0x71, 0xf1, |
| 178 | 0x09, 0x89, 0x49, 0xc9, 0x29, 0xa9, 0x69, 0xe9, |
| 179 | 0x19, 0x99, 0x59, 0xd9, 0x39, 0xb9, 0x79, 0xf9, |
| 180 | 0x05, 0x85, 0x45, 0xc5, 0x25, 0xa5, 0x65, 0xe5, |
| 181 | 0x15, 0x95, 0x55, 0xd5, 0x35, 0xb5, 0x75, 0xf5, |
| 182 | 0x0d, 0x8d, 0x4d, 0xcd, 0x2d, 0xad, 0x6d, 0xed, |
| 183 | 0x1d, 0x9d, 0x5d, 0xdd, 0x3d, 0xbd, 0x7d, 0xfd, |
| 184 | 0x03, 0x83, 0x43, 0xc3, 0x23, 0xa3, 0x63, 0xe3, |
| 185 | 0x13, 0x93, 0x53, 0xd3, 0x33, 0xb3, 0x73, 0xf3, |
| 186 | 0x0b, 0x8b, 0x4b, 0xcb, 0x2b, 0xab, 0x6b, 0xeb, |
| 187 | 0x1b, 0x9b, 0x5b, 0xdb, 0x3b, 0xbb, 0x7b, 0xfb, |
| 188 | 0x07, 0x87, 0x47, 0xc7, 0x27, 0xa7, 0x67, 0xe7, |
| 189 | 0x17, 0x97, 0x57, 0xd7, 0x37, 0xb7, 0x77, 0xf7, |
| 190 | 0x0f, 0x8f, 0x4f, 0xcf, 0x2f, 0xaf, 0x6f, 0xef, |
| 191 | 0x1f, 0x9f, 0x5f, 0xdf, 0x3f, 0xbf, 0x7f, 0xff, |
| 192 | }; |
| 193 | |
| 194 | #endif |
| 195 | |
| 196 | |
| 197 | |
| 198 | /* |
| 199 | * rtc_from4_hwcontrol - hardware specific access to control-lines |
| 200 | * @mtd: MTD device structure |
| 201 | * @cmd: hardware control command |
| 202 | * |
| 203 | * Address lines (A5 and A4) are used to control Command and Address Latch |
| 204 | * Enable on this board, so set the read/write address appropriately. |
| 205 | * |
| 206 | * Chip Enable is also controlled by the Chip Select (CS5) and |
| 207 | * Address lines (A24-A22), so no action is required here. |
| 208 | * |
| 209 | */ |
| 210 | static void rtc_from4_hwcontrol(struct mtd_info *mtd, int cmd) |
| 211 | { |
| 212 | struct nand_chip* this = (struct nand_chip *) (mtd->priv); |
| 213 | |
| 214 | switch(cmd) { |
| 215 | |
| 216 | case NAND_CTL_SETCLE: |
| 217 | this->IO_ADDR_W = (void __iomem *)((unsigned long)this->IO_ADDR_W | RTC_FROM4_CLE); |
| 218 | break; |
| 219 | case NAND_CTL_CLRCLE: |
| 220 | this->IO_ADDR_W = (void __iomem *)((unsigned long)this->IO_ADDR_W & ~RTC_FROM4_CLE); |
| 221 | break; |
| 222 | |
| 223 | case NAND_CTL_SETALE: |
| 224 | this->IO_ADDR_W = (void __iomem *)((unsigned long)this->IO_ADDR_W | RTC_FROM4_ALE); |
| 225 | break; |
| 226 | case NAND_CTL_CLRALE: |
| 227 | this->IO_ADDR_W = (void __iomem *)((unsigned long)this->IO_ADDR_W & ~RTC_FROM4_ALE); |
| 228 | break; |
| 229 | |
| 230 | case NAND_CTL_SETNCE: |
| 231 | break; |
| 232 | case NAND_CTL_CLRNCE: |
| 233 | break; |
| 234 | |
| 235 | } |
| 236 | } |
| 237 | |
| 238 | |
| 239 | /* |
| 240 | * rtc_from4_nand_select_chip - hardware specific chip select |
| 241 | * @mtd: MTD device structure |
| 242 | * @chip: Chip to select (0 == slot 3, 1 == slot 4) |
| 243 | * |
| 244 | * The chip select is based on address lines A24-A22. |
| 245 | * This driver uses flash slots 3 and 4 (A23-A22). |
| 246 | * |
| 247 | */ |
| 248 | static void rtc_from4_nand_select_chip(struct mtd_info *mtd, int chip) |
| 249 | { |
| 250 | struct nand_chip *this = mtd->priv; |
| 251 | |
| 252 | this->IO_ADDR_R = (void __iomem *)((unsigned long)this->IO_ADDR_R & ~RTC_FROM4_NAND_ADDR_MASK); |
| 253 | this->IO_ADDR_W = (void __iomem *)((unsigned long)this->IO_ADDR_W & ~RTC_FROM4_NAND_ADDR_MASK); |
| 254 | |
| 255 | switch(chip) { |
| 256 | |
| 257 | case 0: /* select slot 3 chip */ |
| 258 | this->IO_ADDR_R = (void __iomem *)((unsigned long)this->IO_ADDR_R | RTC_FROM4_NAND_ADDR_SLOT3); |
| 259 | this->IO_ADDR_W = (void __iomem *)((unsigned long)this->IO_ADDR_W | RTC_FROM4_NAND_ADDR_SLOT3); |
| 260 | break; |
| 261 | case 1: /* select slot 4 chip */ |
| 262 | this->IO_ADDR_R = (void __iomem *)((unsigned long)this->IO_ADDR_R | RTC_FROM4_NAND_ADDR_SLOT4); |
| 263 | this->IO_ADDR_W = (void __iomem *)((unsigned long)this->IO_ADDR_W | RTC_FROM4_NAND_ADDR_SLOT4); |
| 264 | break; |
| 265 | |
| 266 | } |
| 267 | } |
| 268 | |
| 269 | |
| 270 | |
| 271 | /* |
| 272 | * rtc_from4_nand_device_ready - hardware specific ready/busy check |
| 273 | * @mtd: MTD device structure |
| 274 | * |
| 275 | * This board provides the Ready/Busy state in the status register |
| 276 | * of the FPGA. Bit zero indicates the RDY(1)/BSY(0) signal. |
| 277 | * |
| 278 | */ |
| 279 | static int rtc_from4_nand_device_ready(struct mtd_info *mtd) |
| 280 | { |
| 281 | unsigned short status; |
| 282 | |
| 283 | status = *((volatile unsigned short *)(rtc_from4_fio_base + RTC_FROM4_FPGA_SR)); |
| 284 | |
| 285 | return (status & RTC_FROM4_DEVICE_READY); |
| 286 | |
| 287 | } |
| 288 | |
| 289 | #ifdef RTC_FROM4_HWECC |
| 290 | /* |
| 291 | * rtc_from4_enable_hwecc - hardware specific hardware ECC enable function |
| 292 | * @mtd: MTD device structure |
| 293 | * @mode: I/O mode; read or write |
| 294 | * |
| 295 | * enable hardware ECC for data read or write |
| 296 | * |
| 297 | */ |
| 298 | static void rtc_from4_enable_hwecc(struct mtd_info *mtd, int mode) |
| 299 | { |
| 300 | volatile unsigned short * rs_ecc_ctl = (volatile unsigned short *)(rtc_from4_fio_base + RTC_FROM4_RS_ECC_CTL); |
| 301 | unsigned short status; |
| 302 | |
| 303 | switch (mode) { |
| 304 | case NAND_ECC_READ : |
| 305 | status = RTC_FROM4_RS_ECC_CTL_CLR |
| 306 | | RTC_FROM4_RS_ECC_CTL_FD_E; |
| 307 | |
| 308 | *rs_ecc_ctl = status; |
| 309 | break; |
| 310 | |
| 311 | case NAND_ECC_READSYN : |
| 312 | status = 0x00; |
| 313 | |
| 314 | *rs_ecc_ctl = status; |
| 315 | break; |
| 316 | |
| 317 | case NAND_ECC_WRITE : |
| 318 | status = RTC_FROM4_RS_ECC_CTL_CLR |
| 319 | | RTC_FROM4_RS_ECC_CTL_GEN |
| 320 | | RTC_FROM4_RS_ECC_CTL_FD_E; |
| 321 | |
| 322 | *rs_ecc_ctl = status; |
| 323 | break; |
| 324 | |
| 325 | default: |
| 326 | BUG(); |
| 327 | break; |
| 328 | } |
| 329 | |
| 330 | } |
| 331 | |
| 332 | /* |
| 333 | * rtc_from4_calculate_ecc - hardware specific code to read ECC code |
| 334 | * @mtd: MTD device structure |
| 335 | * @dat: buffer containing the data to generate ECC codes |
| 336 | * @ecc_code ECC codes calculated |
| 337 | * |
| 338 | * The ECC code is calculated by the FPGA. All we have to do is read the values |
| 339 | * from the FPGA registers. |
| 340 | * |
| 341 | * Note: We read from the inverted registers, since data is inverted before |
| 342 | * the code is calculated. So all 0xff data (blank page) results in all 0xff rs code |
| 343 | * |
| 344 | */ |
| 345 | static void rtc_from4_calculate_ecc(struct mtd_info *mtd, const u_char *dat, u_char *ecc_code) |
| 346 | { |
| 347 | volatile unsigned short * rs_eccn = (volatile unsigned short *)(rtc_from4_fio_base + RTC_FROM4_RS_ECCN); |
| 348 | unsigned short value; |
| 349 | int i; |
| 350 | |
| 351 | for (i = 0; i < 8; i++) { |
| 352 | value = *rs_eccn; |
| 353 | ecc_code[i] = (unsigned char)value; |
| 354 | rs_eccn++; |
| 355 | } |
| 356 | ecc_code[7] |= 0x0f; /* set the last four bits (not used) */ |
| 357 | } |
| 358 | |
| 359 | /* |
| 360 | * rtc_from4_correct_data - hardware specific code to correct data using ECC code |
| 361 | * @mtd: MTD device structure |
| 362 | * @buf: buffer containing the data to generate ECC codes |
| 363 | * @ecc1 ECC codes read |
| 364 | * @ecc2 ECC codes calculated |
| 365 | * |
| 366 | * The FPGA tells us fast, if there's an error or not. If no, we go back happy |
| 367 | * else we read the ecc results from the fpga and call the rs library to decode |
| 368 | * and hopefully correct the error |
| 369 | * |
| 370 | * For now I use the code, which we read from the FLASH to use the RS lib, |
| 371 | * as the syndrom conversion has a unresolved issue. |
| 372 | */ |
| 373 | static int rtc_from4_correct_data(struct mtd_info *mtd, const u_char *buf, u_char *ecc1, u_char *ecc2) |
| 374 | { |
| 375 | int i, j, res; |
| 376 | unsigned short status; |
| 377 | uint16_t par[6], syn[6], tmp; |
| 378 | uint8_t ecc[8]; |
| 379 | volatile unsigned short *rs_ecc; |
| 380 | |
| 381 | status = *((volatile unsigned short *)(rtc_from4_fio_base + RTC_FROM4_RS_ECC_CHK)); |
| 382 | |
| 383 | if (!(status & RTC_FROM4_RS_ECC_CHK_ERROR)) { |
| 384 | return 0; |
| 385 | } |
| 386 | |
| 387 | /* Read the syndrom pattern from the FPGA and correct the bitorder */ |
| 388 | rs_ecc = (volatile unsigned short *)(rtc_from4_fio_base + RTC_FROM4_RS_ECC); |
| 389 | for (i = 0; i < 8; i++) { |
| 390 | ecc[i] = revbits[(*rs_ecc) & 0xFF]; |
| 391 | rs_ecc++; |
| 392 | } |
| 393 | |
| 394 | /* convert into 6 10bit syndrome fields */ |
| 395 | par[5] = rs_decoder->index_of[(((uint16_t)ecc[0] >> 0) & 0x0ff) | |
| 396 | (((uint16_t)ecc[1] << 8) & 0x300)]; |
| 397 | par[4] = rs_decoder->index_of[(((uint16_t)ecc[1] >> 2) & 0x03f) | |
| 398 | (((uint16_t)ecc[2] << 6) & 0x3c0)]; |
| 399 | par[3] = rs_decoder->index_of[(((uint16_t)ecc[2] >> 4) & 0x00f) | |
| 400 | (((uint16_t)ecc[3] << 4) & 0x3f0)]; |
| 401 | par[2] = rs_decoder->index_of[(((uint16_t)ecc[3] >> 6) & 0x003) | |
| 402 | (((uint16_t)ecc[4] << 2) & 0x3fc)]; |
| 403 | par[1] = rs_decoder->index_of[(((uint16_t)ecc[5] >> 0) & 0x0ff) | |
| 404 | (((uint16_t)ecc[6] << 8) & 0x300)]; |
| 405 | par[0] = (((uint16_t)ecc[6] >> 2) & 0x03f) | (((uint16_t)ecc[7] << 6) & 0x3c0); |
| 406 | |
| 407 | /* Convert to computable syndrome */ |
| 408 | for (i = 0; i < 6; i++) { |
| 409 | syn[i] = par[0]; |
| 410 | for (j = 1; j < 6; j++) |
| 411 | if (par[j] != rs_decoder->nn) |
| 412 | syn[i] ^= rs_decoder->alpha_to[rs_modnn(rs_decoder, par[j] + i * j)]; |
| 413 | |
| 414 | /* Convert to index form */ |
| 415 | syn[i] = rs_decoder->index_of[syn[i]]; |
| 416 | } |
| 417 | |
| 418 | /* Let the library code do its magic.*/ |
| 419 | res = decode_rs8(rs_decoder, buf, par, 512, syn, 0, NULL, 0xff, NULL); |
| 420 | if (res > 0) { |
| 421 | DEBUG (MTD_DEBUG_LEVEL0, "rtc_from4_correct_data: " |
| 422 | "ECC corrected %d errors on read\n", res); |
| 423 | } |
| 424 | return res; |
| 425 | } |
| 426 | #endif |
| 427 | |
| 428 | /* |
| 429 | * Main initialization routine |
| 430 | */ |
| 431 | int __init rtc_from4_init (void) |
| 432 | { |
| 433 | struct nand_chip *this; |
| 434 | unsigned short bcr1, bcr2, wcr2; |
| 435 | |
| 436 | /* Allocate memory for MTD device structure and private data */ |
| 437 | rtc_from4_mtd = kmalloc(sizeof(struct mtd_info) + sizeof (struct nand_chip), |
| 438 | GFP_KERNEL); |
| 439 | if (!rtc_from4_mtd) { |
| 440 | printk ("Unable to allocate Renesas NAND MTD device structure.\n"); |
| 441 | return -ENOMEM; |
| 442 | } |
| 443 | |
| 444 | /* Get pointer to private data */ |
| 445 | this = (struct nand_chip *) (&rtc_from4_mtd[1]); |
| 446 | |
| 447 | /* Initialize structures */ |
| 448 | memset((char *) rtc_from4_mtd, 0, sizeof(struct mtd_info)); |
| 449 | memset((char *) this, 0, sizeof(struct nand_chip)); |
| 450 | |
| 451 | /* Link the private data with the MTD structure */ |
| 452 | rtc_from4_mtd->priv = this; |
| 453 | |
| 454 | /* set area 5 as PCMCIA mode to clear the spec of tDH(Data hold time;9ns min) */ |
| 455 | bcr1 = *SH77X9_BCR1 & ~0x0002; |
| 456 | bcr1 |= 0x0002; |
| 457 | *SH77X9_BCR1 = bcr1; |
| 458 | |
| 459 | /* set */ |
| 460 | bcr2 = *SH77X9_BCR2 & ~0x0c00; |
| 461 | bcr2 |= 0x0800; |
| 462 | *SH77X9_BCR2 = bcr2; |
| 463 | |
| 464 | /* set area 5 wait states */ |
| 465 | wcr2 = *SH77X9_WCR2 & ~0x1c00; |
| 466 | wcr2 |= 0x1c00; |
| 467 | *SH77X9_WCR2 = wcr2; |
| 468 | |
| 469 | /* Set address of NAND IO lines */ |
| 470 | this->IO_ADDR_R = rtc_from4_fio_base; |
| 471 | this->IO_ADDR_W = rtc_from4_fio_base; |
| 472 | /* Set address of hardware control function */ |
| 473 | this->hwcontrol = rtc_from4_hwcontrol; |
| 474 | /* Set address of chip select function */ |
| 475 | this->select_chip = rtc_from4_nand_select_chip; |
| 476 | /* command delay time (in us) */ |
| 477 | this->chip_delay = 100; |
| 478 | /* return the status of the Ready/Busy line */ |
| 479 | this->dev_ready = rtc_from4_nand_device_ready; |
| 480 | |
| 481 | #ifdef RTC_FROM4_HWECC |
| 482 | printk(KERN_INFO "rtc_from4_init: using hardware ECC detection.\n"); |
| 483 | |
| 484 | this->eccmode = NAND_ECC_HW8_512; |
| 485 | this->options |= NAND_HWECC_SYNDROME; |
| 486 | /* set the nand_oobinfo to support FPGA H/W error detection */ |
| 487 | this->autooob = &rtc_from4_nand_oobinfo; |
| 488 | this->enable_hwecc = rtc_from4_enable_hwecc; |
| 489 | this->calculate_ecc = rtc_from4_calculate_ecc; |
| 490 | this->correct_data = rtc_from4_correct_data; |
| 491 | #else |
| 492 | printk(KERN_INFO "rtc_from4_init: using software ECC detection.\n"); |
| 493 | |
| 494 | this->eccmode = NAND_ECC_SOFT; |
| 495 | #endif |
| 496 | |
| 497 | /* set the bad block tables to support debugging */ |
| 498 | this->bbt_td = &rtc_from4_bbt_main_descr; |
| 499 | this->bbt_md = &rtc_from4_bbt_mirror_descr; |
| 500 | |
| 501 | /* Scan to find existence of the device */ |
| 502 | if (nand_scan(rtc_from4_mtd, RTC_FROM4_MAX_CHIPS)) { |
| 503 | kfree(rtc_from4_mtd); |
| 504 | return -ENXIO; |
| 505 | } |
| 506 | |
| 507 | /* Register the partitions */ |
| 508 | add_mtd_partitions(rtc_from4_mtd, partition_info, NUM_PARTITIONS); |
| 509 | |
| 510 | #ifdef RTC_FROM4_HWECC |
| 511 | /* We could create the decoder on demand, if memory is a concern. |
| 512 | * This way we have it handy, if an error happens |
| 513 | * |
| 514 | * Symbolsize is 10 (bits) |
| 515 | * Primitve polynomial is x^10+x^3+1 |
| 516 | * first consecutive root is 0 |
| 517 | * primitve element to generate roots = 1 |
| 518 | * generator polinomial degree = 6 |
| 519 | */ |
| 520 | rs_decoder = init_rs(10, 0x409, 0, 1, 6); |
| 521 | if (!rs_decoder) { |
| 522 | printk (KERN_ERR "Could not create a RS decoder\n"); |
| 523 | nand_release(rtc_from4_mtd); |
| 524 | kfree(rtc_from4_mtd); |
| 525 | return -ENOMEM; |
| 526 | } |
| 527 | #endif |
| 528 | /* Return happy */ |
| 529 | return 0; |
| 530 | } |
| 531 | module_init(rtc_from4_init); |
| 532 | |
| 533 | |
| 534 | /* |
| 535 | * Clean up routine |
| 536 | */ |
| 537 | #ifdef MODULE |
| 538 | static void __exit rtc_from4_cleanup (void) |
| 539 | { |
| 540 | /* Release resource, unregister partitions */ |
| 541 | nand_release(rtc_from4_mtd); |
| 542 | |
| 543 | /* Free the MTD device structure */ |
| 544 | kfree (rtc_from4_mtd); |
| 545 | |
| 546 | #ifdef RTC_FROM4_HWECC |
| 547 | /* Free the reed solomon resources */ |
| 548 | if (rs_decoder) { |
| 549 | free_rs(rs_decoder); |
| 550 | } |
| 551 | #endif |
| 552 | } |
| 553 | module_exit(rtc_from4_cleanup); |
| 554 | #endif |
| 555 | |
| 556 | MODULE_LICENSE("GPL"); |
| 557 | MODULE_AUTHOR("d.marlin <dmarlin@redhat.com"); |
| 558 | MODULE_DESCRIPTION("Board-specific glue layer for AG-AND flash on Renesas FROM_BOARD4"); |
| 559 | |