blob: d8a6a56a157129be18c9abf39dbc67f970f9bac4 [file] [log] [blame]
Sage Weil31b80062009-10-06 11:31:13 -07001#include "ceph_debug.h"
2
3#include <linux/crc32c.h>
4#include <linux/ctype.h>
5#include <linux/highmem.h>
6#include <linux/inet.h>
7#include <linux/kthread.h>
8#include <linux/net.h>
9#include <linux/socket.h>
10#include <linux/string.h>
11#include <net/tcp.h>
12
13#include "super.h"
14#include "messenger.h"
Sage Weil63f2d212009-11-03 15:17:56 -080015#include "decode.h"
Sage Weil31b80062009-10-06 11:31:13 -070016
17/*
18 * Ceph uses the messenger to exchange ceph_msg messages with other
19 * hosts in the system. The messenger provides ordered and reliable
20 * delivery. We tolerate TCP disconnects by reconnecting (with
21 * exponential backoff) in the case of a fault (disconnection, bad
22 * crc, protocol error). Acks allow sent messages to be discarded by
23 * the sender.
24 */
25
26/* static tag bytes (protocol control messages) */
27static char tag_msg = CEPH_MSGR_TAG_MSG;
28static char tag_ack = CEPH_MSGR_TAG_ACK;
29static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE;
30
31
32static void queue_con(struct ceph_connection *con);
33static void con_work(struct work_struct *);
34static void ceph_fault(struct ceph_connection *con);
35
36const char *ceph_name_type_str(int t)
37{
38 switch (t) {
39 case CEPH_ENTITY_TYPE_MON: return "mon";
40 case CEPH_ENTITY_TYPE_MDS: return "mds";
41 case CEPH_ENTITY_TYPE_OSD: return "osd";
42 case CEPH_ENTITY_TYPE_CLIENT: return "client";
43 case CEPH_ENTITY_TYPE_ADMIN: return "admin";
44 default: return "???";
45 }
46}
47
48/*
49 * nicely render a sockaddr as a string.
50 */
51#define MAX_ADDR_STR 20
52static char addr_str[MAX_ADDR_STR][40];
53static DEFINE_SPINLOCK(addr_str_lock);
54static int last_addr_str;
55
56const char *pr_addr(const struct sockaddr_storage *ss)
57{
58 int i;
59 char *s;
60 struct sockaddr_in *in4 = (void *)ss;
61 unsigned char *quad = (void *)&in4->sin_addr.s_addr;
62 struct sockaddr_in6 *in6 = (void *)ss;
63
64 spin_lock(&addr_str_lock);
65 i = last_addr_str++;
66 if (last_addr_str == MAX_ADDR_STR)
67 last_addr_str = 0;
68 spin_unlock(&addr_str_lock);
69 s = addr_str[i];
70
71 switch (ss->ss_family) {
72 case AF_INET:
73 sprintf(s, "%u.%u.%u.%u:%u",
74 (unsigned int)quad[0],
75 (unsigned int)quad[1],
76 (unsigned int)quad[2],
77 (unsigned int)quad[3],
78 (unsigned int)ntohs(in4->sin_port));
79 break;
80
81 case AF_INET6:
82 sprintf(s, "%04x:%04x:%04x:%04x:%04x:%04x:%04x:%04x:%u",
83 in6->sin6_addr.s6_addr16[0],
84 in6->sin6_addr.s6_addr16[1],
85 in6->sin6_addr.s6_addr16[2],
86 in6->sin6_addr.s6_addr16[3],
87 in6->sin6_addr.s6_addr16[4],
88 in6->sin6_addr.s6_addr16[5],
89 in6->sin6_addr.s6_addr16[6],
90 in6->sin6_addr.s6_addr16[7],
91 (unsigned int)ntohs(in6->sin6_port));
92 break;
93
94 default:
95 sprintf(s, "(unknown sockaddr family %d)", (int)ss->ss_family);
96 }
97
98 return s;
99}
100
Sage Weil63f2d212009-11-03 15:17:56 -0800101static void encode_my_addr(struct ceph_messenger *msgr)
102{
103 memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr));
104 ceph_encode_addr(&msgr->my_enc_addr);
105}
106
Sage Weil31b80062009-10-06 11:31:13 -0700107/*
108 * work queue for all reading and writing to/from the socket.
109 */
110struct workqueue_struct *ceph_msgr_wq;
111
112int __init ceph_msgr_init(void)
113{
114 ceph_msgr_wq = create_workqueue("ceph-msgr");
115 if (IS_ERR(ceph_msgr_wq)) {
116 int ret = PTR_ERR(ceph_msgr_wq);
117 pr_err("msgr_init failed to create workqueue: %d\n", ret);
118 ceph_msgr_wq = NULL;
119 return ret;
120 }
121 return 0;
122}
123
124void ceph_msgr_exit(void)
125{
126 destroy_workqueue(ceph_msgr_wq);
127}
128
129/*
130 * socket callback functions
131 */
132
133/* data available on socket, or listen socket received a connect */
134static void ceph_data_ready(struct sock *sk, int count_unused)
135{
136 struct ceph_connection *con =
137 (struct ceph_connection *)sk->sk_user_data;
138 if (sk->sk_state != TCP_CLOSE_WAIT) {
139 dout("ceph_data_ready on %p state = %lu, queueing work\n",
140 con, con->state);
141 queue_con(con);
142 }
143}
144
145/* socket has buffer space for writing */
146static void ceph_write_space(struct sock *sk)
147{
148 struct ceph_connection *con =
149 (struct ceph_connection *)sk->sk_user_data;
150
151 /* only queue to workqueue if there is data we want to write. */
152 if (test_bit(WRITE_PENDING, &con->state)) {
153 dout("ceph_write_space %p queueing write work\n", con);
154 queue_con(con);
155 } else {
156 dout("ceph_write_space %p nothing to write\n", con);
157 }
158
159 /* since we have our own write_space, clear the SOCK_NOSPACE flag */
160 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
161}
162
163/* socket's state has changed */
164static void ceph_state_change(struct sock *sk)
165{
166 struct ceph_connection *con =
167 (struct ceph_connection *)sk->sk_user_data;
168
169 dout("ceph_state_change %p state = %lu sk_state = %u\n",
170 con, con->state, sk->sk_state);
171
172 if (test_bit(CLOSED, &con->state))
173 return;
174
175 switch (sk->sk_state) {
176 case TCP_CLOSE:
177 dout("ceph_state_change TCP_CLOSE\n");
178 case TCP_CLOSE_WAIT:
179 dout("ceph_state_change TCP_CLOSE_WAIT\n");
180 if (test_and_set_bit(SOCK_CLOSED, &con->state) == 0) {
181 if (test_bit(CONNECTING, &con->state))
182 con->error_msg = "connection failed";
183 else
184 con->error_msg = "socket closed";
185 queue_con(con);
186 }
187 break;
188 case TCP_ESTABLISHED:
189 dout("ceph_state_change TCP_ESTABLISHED\n");
190 queue_con(con);
191 break;
192 }
193}
194
195/*
196 * set up socket callbacks
197 */
198static void set_sock_callbacks(struct socket *sock,
199 struct ceph_connection *con)
200{
201 struct sock *sk = sock->sk;
202 sk->sk_user_data = (void *)con;
203 sk->sk_data_ready = ceph_data_ready;
204 sk->sk_write_space = ceph_write_space;
205 sk->sk_state_change = ceph_state_change;
206}
207
208
209/*
210 * socket helpers
211 */
212
213/*
214 * initiate connection to a remote socket.
215 */
216static struct socket *ceph_tcp_connect(struct ceph_connection *con)
217{
218 struct sockaddr *paddr = (struct sockaddr *)&con->peer_addr.in_addr;
219 struct socket *sock;
220 int ret;
221
222 BUG_ON(con->sock);
223 ret = sock_create_kern(AF_INET, SOCK_STREAM, IPPROTO_TCP, &sock);
224 if (ret)
225 return ERR_PTR(ret);
226 con->sock = sock;
227 sock->sk->sk_allocation = GFP_NOFS;
228
229 set_sock_callbacks(sock, con);
230
231 dout("connect %s\n", pr_addr(&con->peer_addr.in_addr));
232
233 ret = sock->ops->connect(sock, paddr, sizeof(*paddr), O_NONBLOCK);
234 if (ret == -EINPROGRESS) {
235 dout("connect %s EINPROGRESS sk_state = %u\n",
236 pr_addr(&con->peer_addr.in_addr),
237 sock->sk->sk_state);
238 ret = 0;
239 }
240 if (ret < 0) {
241 pr_err("connect %s error %d\n",
242 pr_addr(&con->peer_addr.in_addr), ret);
243 sock_release(sock);
244 con->sock = NULL;
245 con->error_msg = "connect error";
246 }
247
248 if (ret < 0)
249 return ERR_PTR(ret);
250 return sock;
251}
252
253static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len)
254{
255 struct kvec iov = {buf, len};
256 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
257
258 return kernel_recvmsg(sock, &msg, &iov, 1, len, msg.msg_flags);
259}
260
261/*
262 * write something. @more is true if caller will be sending more data
263 * shortly.
264 */
265static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov,
266 size_t kvlen, size_t len, int more)
267{
268 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
269
270 if (more)
271 msg.msg_flags |= MSG_MORE;
272 else
273 msg.msg_flags |= MSG_EOR; /* superfluous, but what the hell */
274
275 return kernel_sendmsg(sock, &msg, iov, kvlen, len);
276}
277
278
279/*
280 * Shutdown/close the socket for the given connection.
281 */
282static int con_close_socket(struct ceph_connection *con)
283{
284 int rc;
285
286 dout("con_close_socket on %p sock %p\n", con, con->sock);
287 if (!con->sock)
288 return 0;
289 set_bit(SOCK_CLOSED, &con->state);
290 rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
291 sock_release(con->sock);
292 con->sock = NULL;
293 clear_bit(SOCK_CLOSED, &con->state);
294 return rc;
295}
296
297/*
298 * Reset a connection. Discard all incoming and outgoing messages
299 * and clear *_seq state.
300 */
301static void ceph_msg_remove(struct ceph_msg *msg)
302{
303 list_del_init(&msg->list_head);
304 ceph_msg_put(msg);
305}
306static void ceph_msg_remove_list(struct list_head *head)
307{
308 while (!list_empty(head)) {
309 struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
310 list_head);
311 ceph_msg_remove(msg);
312 }
313}
314
315static void reset_connection(struct ceph_connection *con)
316{
317 /* reset connection, out_queue, msg_ and connect_seq */
318 /* discard existing out_queue and msg_seq */
319 mutex_lock(&con->out_mutex);
320 ceph_msg_remove_list(&con->out_queue);
321 ceph_msg_remove_list(&con->out_sent);
322
323 con->connect_seq = 0;
324 con->out_seq = 0;
325 con->out_msg = NULL;
326 con->in_seq = 0;
327 mutex_unlock(&con->out_mutex);
328}
329
330/*
331 * mark a peer down. drop any open connections.
332 */
333void ceph_con_close(struct ceph_connection *con)
334{
335 dout("con_close %p peer %s\n", con, pr_addr(&con->peer_addr.in_addr));
336 set_bit(CLOSED, &con->state); /* in case there's queued work */
337 clear_bit(STANDBY, &con->state); /* avoid connect_seq bump */
338 reset_connection(con);
339 queue_con(con);
340}
341
342/*
Sage Weil31b80062009-10-06 11:31:13 -0700343 * Reopen a closed connection, with a new peer address.
344 */
345void ceph_con_open(struct ceph_connection *con, struct ceph_entity_addr *addr)
346{
347 dout("con_open %p %s\n", con, pr_addr(&addr->in_addr));
348 set_bit(OPENING, &con->state);
349 clear_bit(CLOSED, &con->state);
350 memcpy(&con->peer_addr, addr, sizeof(*addr));
351 queue_con(con);
352}
353
354/*
355 * generic get/put
356 */
357struct ceph_connection *ceph_con_get(struct ceph_connection *con)
358{
359 dout("con_get %p nref = %d -> %d\n", con,
360 atomic_read(&con->nref), atomic_read(&con->nref) + 1);
361 if (atomic_inc_not_zero(&con->nref))
362 return con;
363 return NULL;
364}
365
366void ceph_con_put(struct ceph_connection *con)
367{
368 dout("con_put %p nref = %d -> %d\n", con,
369 atomic_read(&con->nref), atomic_read(&con->nref) - 1);
370 BUG_ON(atomic_read(&con->nref) == 0);
371 if (atomic_dec_and_test(&con->nref)) {
Sage Weil71ececd2009-11-18 11:27:06 -0800372 BUG_ON(con->sock);
Sage Weil31b80062009-10-06 11:31:13 -0700373 kfree(con);
374 }
375}
376
377/*
378 * initialize a new connection.
379 */
380void ceph_con_init(struct ceph_messenger *msgr, struct ceph_connection *con)
381{
382 dout("con_init %p\n", con);
383 memset(con, 0, sizeof(*con));
384 atomic_set(&con->nref, 1);
385 con->msgr = msgr;
386 mutex_init(&con->out_mutex);
387 INIT_LIST_HEAD(&con->out_queue);
388 INIT_LIST_HEAD(&con->out_sent);
389 INIT_DELAYED_WORK(&con->work, con_work);
390}
391
392
393/*
394 * We maintain a global counter to order connection attempts. Get
395 * a unique seq greater than @gt.
396 */
397static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt)
398{
399 u32 ret;
400
401 spin_lock(&msgr->global_seq_lock);
402 if (msgr->global_seq < gt)
403 msgr->global_seq = gt;
404 ret = ++msgr->global_seq;
405 spin_unlock(&msgr->global_seq_lock);
406 return ret;
407}
408
409
410/*
411 * Prepare footer for currently outgoing message, and finish things
412 * off. Assumes out_kvec* are already valid.. we just add on to the end.
413 */
414static void prepare_write_message_footer(struct ceph_connection *con, int v)
415{
416 struct ceph_msg *m = con->out_msg;
417
418 dout("prepare_write_message_footer %p\n", con);
419 con->out_kvec_is_msg = true;
420 con->out_kvec[v].iov_base = &m->footer;
421 con->out_kvec[v].iov_len = sizeof(m->footer);
422 con->out_kvec_bytes += sizeof(m->footer);
423 con->out_kvec_left++;
424 con->out_more = m->more_to_follow;
425 con->out_msg = NULL; /* we're done with this one */
426}
427
428/*
429 * Prepare headers for the next outgoing message.
430 */
431static void prepare_write_message(struct ceph_connection *con)
432{
433 struct ceph_msg *m;
434 int v = 0;
435
436 con->out_kvec_bytes = 0;
437 con->out_kvec_is_msg = true;
438
439 /* Sneak an ack in there first? If we can get it into the same
440 * TCP packet that's a good thing. */
441 if (con->in_seq > con->in_seq_acked) {
442 con->in_seq_acked = con->in_seq;
443 con->out_kvec[v].iov_base = &tag_ack;
444 con->out_kvec[v++].iov_len = 1;
445 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
446 con->out_kvec[v].iov_base = &con->out_temp_ack;
447 con->out_kvec[v++].iov_len = sizeof(con->out_temp_ack);
448 con->out_kvec_bytes = 1 + sizeof(con->out_temp_ack);
449 }
450
451 /* move message to sending/sent list */
452 m = list_first_entry(&con->out_queue,
453 struct ceph_msg, list_head);
454 list_move_tail(&m->list_head, &con->out_sent);
455 con->out_msg = m; /* we don't bother taking a reference here. */
456
457 m->hdr.seq = cpu_to_le64(++con->out_seq);
458
459 dout("prepare_write_message %p seq %lld type %d len %d+%d+%d %d pgs\n",
460 m, con->out_seq, le16_to_cpu(m->hdr.type),
461 le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len),
462 le32_to_cpu(m->hdr.data_len),
463 m->nr_pages);
464 BUG_ON(le32_to_cpu(m->hdr.front_len) != m->front.iov_len);
465
466 /* tag + hdr + front + middle */
467 con->out_kvec[v].iov_base = &tag_msg;
468 con->out_kvec[v++].iov_len = 1;
469 con->out_kvec[v].iov_base = &m->hdr;
470 con->out_kvec[v++].iov_len = sizeof(m->hdr);
471 con->out_kvec[v++] = m->front;
472 if (m->middle)
473 con->out_kvec[v++] = m->middle->vec;
474 con->out_kvec_left = v;
475 con->out_kvec_bytes += 1 + sizeof(m->hdr) + m->front.iov_len +
476 (m->middle ? m->middle->vec.iov_len : 0);
477 con->out_kvec_cur = con->out_kvec;
478
479 /* fill in crc (except data pages), footer */
480 con->out_msg->hdr.crc =
481 cpu_to_le32(crc32c(0, (void *)&m->hdr,
482 sizeof(m->hdr) - sizeof(m->hdr.crc)));
483 con->out_msg->footer.flags = CEPH_MSG_FOOTER_COMPLETE;
484 con->out_msg->footer.front_crc =
485 cpu_to_le32(crc32c(0, m->front.iov_base, m->front.iov_len));
486 if (m->middle)
487 con->out_msg->footer.middle_crc =
488 cpu_to_le32(crc32c(0, m->middle->vec.iov_base,
489 m->middle->vec.iov_len));
490 else
491 con->out_msg->footer.middle_crc = 0;
492 con->out_msg->footer.data_crc = 0;
493 dout("prepare_write_message front_crc %u data_crc %u\n",
494 le32_to_cpu(con->out_msg->footer.front_crc),
495 le32_to_cpu(con->out_msg->footer.middle_crc));
496
497 /* is there a data payload? */
498 if (le32_to_cpu(m->hdr.data_len) > 0) {
499 /* initialize page iterator */
500 con->out_msg_pos.page = 0;
501 con->out_msg_pos.page_pos =
502 le16_to_cpu(m->hdr.data_off) & ~PAGE_MASK;
503 con->out_msg_pos.data_pos = 0;
504 con->out_msg_pos.did_page_crc = 0;
505 con->out_more = 1; /* data + footer will follow */
506 } else {
507 /* no, queue up footer too and be done */
508 prepare_write_message_footer(con, v);
509 }
510
511 set_bit(WRITE_PENDING, &con->state);
512}
513
514/*
515 * Prepare an ack.
516 */
517static void prepare_write_ack(struct ceph_connection *con)
518{
519 dout("prepare_write_ack %p %llu -> %llu\n", con,
520 con->in_seq_acked, con->in_seq);
521 con->in_seq_acked = con->in_seq;
522
523 con->out_kvec[0].iov_base = &tag_ack;
524 con->out_kvec[0].iov_len = 1;
525 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
526 con->out_kvec[1].iov_base = &con->out_temp_ack;
527 con->out_kvec[1].iov_len = sizeof(con->out_temp_ack);
528 con->out_kvec_left = 2;
529 con->out_kvec_bytes = 1 + sizeof(con->out_temp_ack);
530 con->out_kvec_cur = con->out_kvec;
531 con->out_more = 1; /* more will follow.. eventually.. */
532 set_bit(WRITE_PENDING, &con->state);
533}
534
535/*
536 * Prepare to write keepalive byte.
537 */
538static void prepare_write_keepalive(struct ceph_connection *con)
539{
540 dout("prepare_write_keepalive %p\n", con);
541 con->out_kvec[0].iov_base = &tag_keepalive;
542 con->out_kvec[0].iov_len = 1;
543 con->out_kvec_left = 1;
544 con->out_kvec_bytes = 1;
545 con->out_kvec_cur = con->out_kvec;
546 set_bit(WRITE_PENDING, &con->state);
547}
548
549/*
550 * Connection negotiation.
551 */
552
553/*
554 * We connected to a peer and are saying hello.
555 */
Sage Weileed0ef22009-11-10 14:34:36 -0800556static void prepare_write_banner(struct ceph_messenger *msgr,
557 struct ceph_connection *con)
Sage Weil31b80062009-10-06 11:31:13 -0700558{
559 int len = strlen(CEPH_BANNER);
Sage Weileed0ef22009-11-10 14:34:36 -0800560
561 con->out_kvec[0].iov_base = CEPH_BANNER;
562 con->out_kvec[0].iov_len = len;
563 con->out_kvec[1].iov_base = &msgr->my_enc_addr;
564 con->out_kvec[1].iov_len = sizeof(msgr->my_enc_addr);
565 con->out_kvec_left = 2;
566 con->out_kvec_bytes = len + sizeof(msgr->my_enc_addr);
567 con->out_kvec_cur = con->out_kvec;
568 con->out_more = 0;
569 set_bit(WRITE_PENDING, &con->state);
570}
571
572static void prepare_write_connect(struct ceph_messenger *msgr,
573 struct ceph_connection *con,
574 int after_banner)
575{
Sage Weil31b80062009-10-06 11:31:13 -0700576 unsigned global_seq = get_global_seq(con->msgr, 0);
577 int proto;
578
579 switch (con->peer_name.type) {
580 case CEPH_ENTITY_TYPE_MON:
581 proto = CEPH_MONC_PROTOCOL;
582 break;
583 case CEPH_ENTITY_TYPE_OSD:
584 proto = CEPH_OSDC_PROTOCOL;
585 break;
586 case CEPH_ENTITY_TYPE_MDS:
587 proto = CEPH_MDSC_PROTOCOL;
588 break;
589 default:
590 BUG();
591 }
592
593 dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con,
594 con->connect_seq, global_seq, proto);
595 con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT);
596 con->out_connect.connect_seq = cpu_to_le32(con->connect_seq);
597 con->out_connect.global_seq = cpu_to_le32(global_seq);
598 con->out_connect.protocol_version = cpu_to_le32(proto);
599 con->out_connect.flags = 0;
600 if (test_bit(LOSSYTX, &con->state))
601 con->out_connect.flags = CEPH_MSG_CONNECT_LOSSY;
602
Sage Weileed0ef22009-11-10 14:34:36 -0800603 if (!after_banner) {
604 con->out_kvec_left = 0;
605 con->out_kvec_bytes = 0;
606 }
607 con->out_kvec[con->out_kvec_left].iov_base = &con->out_connect;
608 con->out_kvec[con->out_kvec_left].iov_len = sizeof(con->out_connect);
609 con->out_kvec_left++;
610 con->out_kvec_bytes += sizeof(con->out_connect);
Sage Weil31b80062009-10-06 11:31:13 -0700611 con->out_kvec_cur = con->out_kvec;
612 con->out_more = 0;
613 set_bit(WRITE_PENDING, &con->state);
614}
615
616
617/*
618 * write as much of pending kvecs to the socket as we can.
619 * 1 -> done
620 * 0 -> socket full, but more to do
621 * <0 -> error
622 */
623static int write_partial_kvec(struct ceph_connection *con)
624{
625 int ret;
626
627 dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes);
628 while (con->out_kvec_bytes > 0) {
629 ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur,
630 con->out_kvec_left, con->out_kvec_bytes,
631 con->out_more);
632 if (ret <= 0)
633 goto out;
634 con->out_kvec_bytes -= ret;
635 if (con->out_kvec_bytes == 0)
636 break; /* done */
637 while (ret > 0) {
638 if (ret >= con->out_kvec_cur->iov_len) {
639 ret -= con->out_kvec_cur->iov_len;
640 con->out_kvec_cur++;
641 con->out_kvec_left--;
642 } else {
643 con->out_kvec_cur->iov_len -= ret;
644 con->out_kvec_cur->iov_base += ret;
645 ret = 0;
646 break;
647 }
648 }
649 }
650 con->out_kvec_left = 0;
651 con->out_kvec_is_msg = false;
652 ret = 1;
653out:
654 dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con,
655 con->out_kvec_bytes, con->out_kvec_left, ret);
656 return ret; /* done! */
657}
658
659/*
660 * Write as much message data payload as we can. If we finish, queue
661 * up the footer.
662 * 1 -> done, footer is now queued in out_kvec[].
663 * 0 -> socket full, but more to do
664 * <0 -> error
665 */
666static int write_partial_msg_pages(struct ceph_connection *con)
667{
668 struct ceph_msg *msg = con->out_msg;
669 unsigned data_len = le32_to_cpu(msg->hdr.data_len);
670 size_t len;
671 int crc = con->msgr->nocrc;
672 int ret;
673
674 dout("write_partial_msg_pages %p msg %p page %d/%d offset %d\n",
675 con, con->out_msg, con->out_msg_pos.page, con->out_msg->nr_pages,
676 con->out_msg_pos.page_pos);
677
678 while (con->out_msg_pos.page < con->out_msg->nr_pages) {
679 struct page *page = NULL;
680 void *kaddr = NULL;
681
682 /*
683 * if we are calculating the data crc (the default), we need
684 * to map the page. if our pages[] has been revoked, use the
685 * zero page.
686 */
687 if (msg->pages) {
688 page = msg->pages[con->out_msg_pos.page];
689 if (crc)
690 kaddr = kmap(page);
691 } else {
692 page = con->msgr->zero_page;
693 if (crc)
694 kaddr = page_address(con->msgr->zero_page);
695 }
696 len = min((int)(PAGE_SIZE - con->out_msg_pos.page_pos),
697 (int)(data_len - con->out_msg_pos.data_pos));
698 if (crc && !con->out_msg_pos.did_page_crc) {
699 void *base = kaddr + con->out_msg_pos.page_pos;
700 u32 tmpcrc = le32_to_cpu(con->out_msg->footer.data_crc);
701
702 BUG_ON(kaddr == NULL);
703 con->out_msg->footer.data_crc =
704 cpu_to_le32(crc32c(tmpcrc, base, len));
705 con->out_msg_pos.did_page_crc = 1;
706 }
707
708 ret = kernel_sendpage(con->sock, page,
709 con->out_msg_pos.page_pos, len,
710 MSG_DONTWAIT | MSG_NOSIGNAL |
711 MSG_MORE);
712
713 if (crc && msg->pages)
714 kunmap(page);
715
716 if (ret <= 0)
717 goto out;
718
719 con->out_msg_pos.data_pos += ret;
720 con->out_msg_pos.page_pos += ret;
721 if (ret == len) {
722 con->out_msg_pos.page_pos = 0;
723 con->out_msg_pos.page++;
724 con->out_msg_pos.did_page_crc = 0;
725 }
726 }
727
728 dout("write_partial_msg_pages %p msg %p done\n", con, msg);
729
730 /* prepare and queue up footer, too */
731 if (!crc)
732 con->out_msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC;
733 con->out_kvec_bytes = 0;
734 con->out_kvec_left = 0;
735 con->out_kvec_cur = con->out_kvec;
736 prepare_write_message_footer(con, 0);
737 ret = 1;
738out:
739 return ret;
740}
741
742/*
743 * write some zeros
744 */
745static int write_partial_skip(struct ceph_connection *con)
746{
747 int ret;
748
749 while (con->out_skip > 0) {
750 struct kvec iov = {
751 .iov_base = page_address(con->msgr->zero_page),
752 .iov_len = min(con->out_skip, (int)PAGE_CACHE_SIZE)
753 };
754
755 ret = ceph_tcp_sendmsg(con->sock, &iov, 1, iov.iov_len, 1);
756 if (ret <= 0)
757 goto out;
758 con->out_skip -= ret;
759 }
760 ret = 1;
761out:
762 return ret;
763}
764
765/*
766 * Prepare to read connection handshake, or an ack.
767 */
Sage Weileed0ef22009-11-10 14:34:36 -0800768static void prepare_read_banner(struct ceph_connection *con)
769{
770 dout("prepare_read_banner %p\n", con);
771 con->in_base_pos = 0;
772}
773
Sage Weil31b80062009-10-06 11:31:13 -0700774static void prepare_read_connect(struct ceph_connection *con)
775{
776 dout("prepare_read_connect %p\n", con);
777 con->in_base_pos = 0;
778}
779
780static void prepare_read_ack(struct ceph_connection *con)
781{
782 dout("prepare_read_ack %p\n", con);
783 con->in_base_pos = 0;
784}
785
786static void prepare_read_tag(struct ceph_connection *con)
787{
788 dout("prepare_read_tag %p\n", con);
789 con->in_base_pos = 0;
790 con->in_tag = CEPH_MSGR_TAG_READY;
791}
792
793/*
794 * Prepare to read a message.
795 */
796static int prepare_read_message(struct ceph_connection *con)
797{
798 dout("prepare_read_message %p\n", con);
799 BUG_ON(con->in_msg != NULL);
800 con->in_base_pos = 0;
801 con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0;
802 return 0;
803}
804
805
806static int read_partial(struct ceph_connection *con,
807 int *to, int size, void *object)
808{
809 *to += size;
810 while (con->in_base_pos < *to) {
811 int left = *to - con->in_base_pos;
812 int have = size - left;
813 int ret = ceph_tcp_recvmsg(con->sock, object + have, left);
814 if (ret <= 0)
815 return ret;
816 con->in_base_pos += ret;
817 }
818 return 1;
819}
820
821
822/*
823 * Read all or part of the connect-side handshake on a new connection
824 */
Sage Weileed0ef22009-11-10 14:34:36 -0800825static int read_partial_banner(struct ceph_connection *con)
Sage Weil31b80062009-10-06 11:31:13 -0700826{
827 int ret, to = 0;
828
Sage Weileed0ef22009-11-10 14:34:36 -0800829 dout("read_partial_banner %p at %d\n", con, con->in_base_pos);
Sage Weil31b80062009-10-06 11:31:13 -0700830
831 /* peer's banner */
832 ret = read_partial(con, &to, strlen(CEPH_BANNER), con->in_banner);
833 if (ret <= 0)
834 goto out;
835 ret = read_partial(con, &to, sizeof(con->actual_peer_addr),
836 &con->actual_peer_addr);
837 if (ret <= 0)
838 goto out;
839 ret = read_partial(con, &to, sizeof(con->peer_addr_for_me),
840 &con->peer_addr_for_me);
841 if (ret <= 0)
842 goto out;
Sage Weileed0ef22009-11-10 14:34:36 -0800843out:
844 return ret;
845}
846
847static int read_partial_connect(struct ceph_connection *con)
848{
849 int ret, to = 0;
850
851 dout("read_partial_connect %p at %d\n", con, con->in_base_pos);
852
Sage Weil31b80062009-10-06 11:31:13 -0700853 ret = read_partial(con, &to, sizeof(con->in_reply), &con->in_reply);
854 if (ret <= 0)
855 goto out;
856
857 dout("read_partial_connect %p connect_seq = %u, global_seq = %u\n",
858 con, le32_to_cpu(con->in_reply.connect_seq),
859 le32_to_cpu(con->in_reply.global_seq));
860out:
861 return ret;
Sage Weileed0ef22009-11-10 14:34:36 -0800862
Sage Weil31b80062009-10-06 11:31:13 -0700863}
864
865/*
866 * Verify the hello banner looks okay.
867 */
868static int verify_hello(struct ceph_connection *con)
869{
870 if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) {
Sage Weil13e38c82009-10-09 16:36:34 -0700871 pr_err("connect to %s got bad banner\n",
Sage Weil31b80062009-10-06 11:31:13 -0700872 pr_addr(&con->peer_addr.in_addr));
873 con->error_msg = "protocol error, bad banner";
874 return -1;
875 }
876 return 0;
877}
878
879static bool addr_is_blank(struct sockaddr_storage *ss)
880{
881 switch (ss->ss_family) {
882 case AF_INET:
883 return ((struct sockaddr_in *)ss)->sin_addr.s_addr == 0;
884 case AF_INET6:
885 return
886 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[0] == 0 &&
887 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[1] == 0 &&
888 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[2] == 0 &&
889 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[3] == 0;
890 }
891 return false;
892}
893
894static int addr_port(struct sockaddr_storage *ss)
895{
896 switch (ss->ss_family) {
897 case AF_INET:
Sage Weilf28bcfb2009-11-04 11:46:35 -0800898 return ntohs(((struct sockaddr_in *)ss)->sin_port);
Sage Weil31b80062009-10-06 11:31:13 -0700899 case AF_INET6:
Sage Weilf28bcfb2009-11-04 11:46:35 -0800900 return ntohs(((struct sockaddr_in6 *)ss)->sin6_port);
Sage Weil31b80062009-10-06 11:31:13 -0700901 }
902 return 0;
903}
904
905static void addr_set_port(struct sockaddr_storage *ss, int p)
906{
907 switch (ss->ss_family) {
908 case AF_INET:
909 ((struct sockaddr_in *)ss)->sin_port = htons(p);
910 case AF_INET6:
911 ((struct sockaddr_in6 *)ss)->sin6_port = htons(p);
912 }
913}
914
915/*
916 * Parse an ip[:port] list into an addr array. Use the default
917 * monitor port if a port isn't specified.
918 */
919int ceph_parse_ips(const char *c, const char *end,
920 struct ceph_entity_addr *addr,
921 int max_count, int *count)
922{
923 int i;
924 const char *p = c;
925
926 dout("parse_ips on '%.*s'\n", (int)(end-c), c);
927 for (i = 0; i < max_count; i++) {
928 const char *ipend;
929 struct sockaddr_storage *ss = &addr[i].in_addr;
930 struct sockaddr_in *in4 = (void *)ss;
931 struct sockaddr_in6 *in6 = (void *)ss;
932 int port;
933
934 memset(ss, 0, sizeof(*ss));
935 if (in4_pton(p, end - p, (u8 *)&in4->sin_addr.s_addr,
936 ',', &ipend)) {
937 ss->ss_family = AF_INET;
938 } else if (in6_pton(p, end - p, (u8 *)&in6->sin6_addr.s6_addr,
939 ',', &ipend)) {
940 ss->ss_family = AF_INET6;
941 } else {
942 goto bad;
943 }
944 p = ipend;
945
946 /* port? */
947 if (p < end && *p == ':') {
948 port = 0;
949 p++;
950 while (p < end && *p >= '0' && *p <= '9') {
951 port = (port * 10) + (*p - '0');
952 p++;
953 }
954 if (port > 65535 || port == 0)
955 goto bad;
956 } else {
957 port = CEPH_MON_PORT;
958 }
959
960 addr_set_port(ss, port);
961
962 dout("parse_ips got %s\n", pr_addr(ss));
963
964 if (p == end)
965 break;
966 if (*p != ',')
967 goto bad;
968 p++;
969 }
970
971 if (p != end)
972 goto bad;
973
974 if (count)
975 *count = i + 1;
976 return 0;
977
978bad:
979 pr_err("parse_ips bad ip '%s'\n", c);
980 return -EINVAL;
981}
982
Sage Weileed0ef22009-11-10 14:34:36 -0800983static int process_banner(struct ceph_connection *con)
Sage Weil31b80062009-10-06 11:31:13 -0700984{
Sage Weileed0ef22009-11-10 14:34:36 -0800985 dout("process_banner on %p\n", con);
Sage Weil31b80062009-10-06 11:31:13 -0700986
987 if (verify_hello(con) < 0)
988 return -1;
989
Sage Weil63f2d212009-11-03 15:17:56 -0800990 ceph_decode_addr(&con->actual_peer_addr);
991 ceph_decode_addr(&con->peer_addr_for_me);
992
Sage Weil31b80062009-10-06 11:31:13 -0700993 /*
994 * Make sure the other end is who we wanted. note that the other
995 * end may not yet know their ip address, so if it's 0.0.0.0, give
996 * them the benefit of the doubt.
997 */
998 if (!ceph_entity_addr_is_local(&con->peer_addr,
999 &con->actual_peer_addr) &&
1000 !(addr_is_blank(&con->actual_peer_addr.in_addr) &&
1001 con->actual_peer_addr.nonce == con->peer_addr.nonce)) {
1002 pr_err("wrong peer, want %s/%d, "
1003 "got %s/%d, wtf\n",
1004 pr_addr(&con->peer_addr.in_addr),
1005 con->peer_addr.nonce,
1006 pr_addr(&con->actual_peer_addr.in_addr),
1007 con->actual_peer_addr.nonce);
1008 con->error_msg = "protocol error, wrong peer";
1009 return -1;
1010 }
1011
1012 /*
1013 * did we learn our address?
1014 */
1015 if (addr_is_blank(&con->msgr->inst.addr.in_addr)) {
1016 int port = addr_port(&con->msgr->inst.addr.in_addr);
1017
1018 memcpy(&con->msgr->inst.addr.in_addr,
1019 &con->peer_addr_for_me.in_addr,
1020 sizeof(con->peer_addr_for_me.in_addr));
1021 addr_set_port(&con->msgr->inst.addr.in_addr, port);
Sage Weil63f2d212009-11-03 15:17:56 -08001022 encode_my_addr(con->msgr);
Sage Weileed0ef22009-11-10 14:34:36 -08001023 dout("process_banner learned my addr is %s\n",
Sage Weil31b80062009-10-06 11:31:13 -07001024 pr_addr(&con->msgr->inst.addr.in_addr));
1025 }
1026
Sage Weileed0ef22009-11-10 14:34:36 -08001027 set_bit(NEGOTIATING, &con->state);
1028 prepare_read_connect(con);
1029 return 0;
1030}
1031
1032static int process_connect(struct ceph_connection *con)
1033{
1034 dout("process_connect on %p tag %d\n", con, (int)con->in_tag);
1035
Sage Weil31b80062009-10-06 11:31:13 -07001036 switch (con->in_reply.tag) {
1037 case CEPH_MSGR_TAG_BADPROTOVER:
1038 dout("process_connect got BADPROTOVER my %d != their %d\n",
1039 le32_to_cpu(con->out_connect.protocol_version),
1040 le32_to_cpu(con->in_reply.protocol_version));
1041 pr_err("%s%lld %s protocol version mismatch,"
1042 " my %d != server's %d\n",
1043 ENTITY_NAME(con->peer_name),
1044 pr_addr(&con->peer_addr.in_addr),
1045 le32_to_cpu(con->out_connect.protocol_version),
1046 le32_to_cpu(con->in_reply.protocol_version));
1047 con->error_msg = "protocol version mismatch";
1048 if (con->ops->bad_proto)
1049 con->ops->bad_proto(con);
1050 reset_connection(con);
1051 set_bit(CLOSED, &con->state); /* in case there's queued work */
1052 return -1;
1053
1054
1055 case CEPH_MSGR_TAG_RESETSESSION:
1056 /*
1057 * If we connected with a large connect_seq but the peer
1058 * has no record of a session with us (no connection, or
1059 * connect_seq == 0), they will send RESETSESION to indicate
1060 * that they must have reset their session, and may have
1061 * dropped messages.
1062 */
1063 dout("process_connect got RESET peer seq %u\n",
1064 le32_to_cpu(con->in_connect.connect_seq));
1065 pr_err("%s%lld %s connection reset\n",
1066 ENTITY_NAME(con->peer_name),
1067 pr_addr(&con->peer_addr.in_addr));
1068 reset_connection(con);
Sage Weileed0ef22009-11-10 14:34:36 -08001069 prepare_write_connect(con->msgr, con, 0);
Sage Weil31b80062009-10-06 11:31:13 -07001070 prepare_read_connect(con);
1071
1072 /* Tell ceph about it. */
1073 pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name));
1074 if (con->ops->peer_reset)
1075 con->ops->peer_reset(con);
1076 break;
1077
1078 case CEPH_MSGR_TAG_RETRY_SESSION:
1079 /*
1080 * If we sent a smaller connect_seq than the peer has, try
1081 * again with a larger value.
1082 */
1083 dout("process_connect got RETRY my seq = %u, peer_seq = %u\n",
1084 le32_to_cpu(con->out_connect.connect_seq),
1085 le32_to_cpu(con->in_connect.connect_seq));
1086 con->connect_seq = le32_to_cpu(con->in_connect.connect_seq);
Sage Weileed0ef22009-11-10 14:34:36 -08001087 prepare_write_connect(con->msgr, con, 0);
Sage Weil31b80062009-10-06 11:31:13 -07001088 prepare_read_connect(con);
1089 break;
1090
1091 case CEPH_MSGR_TAG_RETRY_GLOBAL:
1092 /*
1093 * If we sent a smaller global_seq than the peer has, try
1094 * again with a larger value.
1095 */
Sage Weileed0ef22009-11-10 14:34:36 -08001096 dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
Sage Weil31b80062009-10-06 11:31:13 -07001097 con->peer_global_seq,
1098 le32_to_cpu(con->in_connect.global_seq));
1099 get_global_seq(con->msgr,
1100 le32_to_cpu(con->in_connect.global_seq));
Sage Weileed0ef22009-11-10 14:34:36 -08001101 prepare_write_connect(con->msgr, con, 0);
Sage Weil31b80062009-10-06 11:31:13 -07001102 prepare_read_connect(con);
1103 break;
1104
1105 case CEPH_MSGR_TAG_READY:
1106 clear_bit(CONNECTING, &con->state);
Sage Weil31b80062009-10-06 11:31:13 -07001107 con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq);
1108 con->connect_seq++;
1109 dout("process_connect got READY gseq %d cseq %d (%d)\n",
1110 con->peer_global_seq,
1111 le32_to_cpu(con->in_reply.connect_seq),
1112 con->connect_seq);
1113 WARN_ON(con->connect_seq !=
1114 le32_to_cpu(con->in_reply.connect_seq));
1115
1116 con->delay = 0; /* reset backoff memory */
1117 prepare_read_tag(con);
1118 break;
1119
1120 case CEPH_MSGR_TAG_WAIT:
1121 /*
1122 * If there is a connection race (we are opening
1123 * connections to each other), one of us may just have
1124 * to WAIT. This shouldn't happen if we are the
1125 * client.
1126 */
1127 pr_err("process_connect peer connecting WAIT\n");
1128
1129 default:
1130 pr_err("connect protocol error, will retry\n");
1131 con->error_msg = "protocol error, garbage tag during connect";
1132 return -1;
1133 }
1134 return 0;
1135}
1136
1137
1138/*
1139 * read (part of) an ack
1140 */
1141static int read_partial_ack(struct ceph_connection *con)
1142{
1143 int to = 0;
1144
1145 return read_partial(con, &to, sizeof(con->in_temp_ack),
1146 &con->in_temp_ack);
1147}
1148
1149
1150/*
1151 * We can finally discard anything that's been acked.
1152 */
1153static void process_ack(struct ceph_connection *con)
1154{
1155 struct ceph_msg *m;
1156 u64 ack = le64_to_cpu(con->in_temp_ack);
1157 u64 seq;
1158
1159 mutex_lock(&con->out_mutex);
1160 while (!list_empty(&con->out_sent)) {
1161 m = list_first_entry(&con->out_sent, struct ceph_msg,
1162 list_head);
1163 seq = le64_to_cpu(m->hdr.seq);
1164 if (seq > ack)
1165 break;
1166 dout("got ack for seq %llu type %d at %p\n", seq,
1167 le16_to_cpu(m->hdr.type), m);
1168 ceph_msg_remove(m);
1169 }
1170 mutex_unlock(&con->out_mutex);
1171 prepare_read_tag(con);
1172}
1173
1174
1175
1176
1177
1178
1179/*
1180 * read (part of) a message.
1181 */
1182static int read_partial_message(struct ceph_connection *con)
1183{
1184 struct ceph_msg *m = con->in_msg;
1185 void *p;
1186 int ret;
1187 int to, want, left;
1188 unsigned front_len, middle_len, data_len, data_off;
1189 int datacrc = con->msgr->nocrc;
1190
1191 dout("read_partial_message con %p msg %p\n", con, m);
1192
1193 /* header */
1194 while (con->in_base_pos < sizeof(con->in_hdr)) {
1195 left = sizeof(con->in_hdr) - con->in_base_pos;
1196 ret = ceph_tcp_recvmsg(con->sock,
1197 (char *)&con->in_hdr + con->in_base_pos,
1198 left);
1199 if (ret <= 0)
1200 return ret;
1201 con->in_base_pos += ret;
1202 if (con->in_base_pos == sizeof(con->in_hdr)) {
1203 u32 crc = crc32c(0, (void *)&con->in_hdr,
1204 sizeof(con->in_hdr) - sizeof(con->in_hdr.crc));
1205 if (crc != le32_to_cpu(con->in_hdr.crc)) {
1206 pr_err("read_partial_message bad hdr "
1207 " crc %u != expected %u\n",
1208 crc, con->in_hdr.crc);
1209 return -EBADMSG;
1210 }
1211 }
1212 }
1213
1214 front_len = le32_to_cpu(con->in_hdr.front_len);
1215 if (front_len > CEPH_MSG_MAX_FRONT_LEN)
1216 return -EIO;
1217 middle_len = le32_to_cpu(con->in_hdr.middle_len);
1218 if (middle_len > CEPH_MSG_MAX_DATA_LEN)
1219 return -EIO;
1220 data_len = le32_to_cpu(con->in_hdr.data_len);
1221 if (data_len > CEPH_MSG_MAX_DATA_LEN)
1222 return -EIO;
1223
1224 /* allocate message? */
1225 if (!con->in_msg) {
1226 dout("got hdr type %d front %d data %d\n", con->in_hdr.type,
1227 con->in_hdr.front_len, con->in_hdr.data_len);
1228 con->in_msg = con->ops->alloc_msg(con, &con->in_hdr);
1229 if (!con->in_msg) {
1230 /* skip this message */
1231 dout("alloc_msg returned NULL, skipping message\n");
1232 con->in_base_pos = -front_len - middle_len - data_len -
1233 sizeof(m->footer);
1234 con->in_tag = CEPH_MSGR_TAG_READY;
1235 return 0;
1236 }
1237 if (IS_ERR(con->in_msg)) {
1238 ret = PTR_ERR(con->in_msg);
1239 con->in_msg = NULL;
1240 con->error_msg = "out of memory for incoming message";
1241 return ret;
1242 }
1243 m = con->in_msg;
1244 m->front.iov_len = 0; /* haven't read it yet */
1245 memcpy(&m->hdr, &con->in_hdr, sizeof(con->in_hdr));
1246 }
1247
1248 /* front */
1249 while (m->front.iov_len < front_len) {
1250 BUG_ON(m->front.iov_base == NULL);
1251 left = front_len - m->front.iov_len;
1252 ret = ceph_tcp_recvmsg(con->sock, (char *)m->front.iov_base +
1253 m->front.iov_len, left);
1254 if (ret <= 0)
1255 return ret;
1256 m->front.iov_len += ret;
1257 if (m->front.iov_len == front_len)
1258 con->in_front_crc = crc32c(0, m->front.iov_base,
1259 m->front.iov_len);
1260 }
1261
1262 /* middle */
1263 while (middle_len > 0 && (!m->middle ||
1264 m->middle->vec.iov_len < middle_len)) {
1265 if (m->middle == NULL) {
1266 ret = -EOPNOTSUPP;
1267 if (con->ops->alloc_middle)
1268 ret = con->ops->alloc_middle(con, m);
1269 if (ret < 0) {
1270 dout("alloc_middle failed, skipping payload\n");
1271 con->in_base_pos = -middle_len - data_len
1272 - sizeof(m->footer);
1273 ceph_msg_put(con->in_msg);
1274 con->in_msg = NULL;
1275 con->in_tag = CEPH_MSGR_TAG_READY;
1276 return 0;
1277 }
1278 m->middle->vec.iov_len = 0;
1279 }
1280 left = middle_len - m->middle->vec.iov_len;
1281 ret = ceph_tcp_recvmsg(con->sock,
1282 (char *)m->middle->vec.iov_base +
1283 m->middle->vec.iov_len, left);
1284 if (ret <= 0)
1285 return ret;
1286 m->middle->vec.iov_len += ret;
1287 if (m->middle->vec.iov_len == middle_len)
1288 con->in_middle_crc = crc32c(0, m->middle->vec.iov_base,
1289 m->middle->vec.iov_len);
1290 }
1291
1292 /* (page) data */
1293 data_off = le16_to_cpu(m->hdr.data_off);
1294 if (data_len == 0)
1295 goto no_data;
1296
1297 if (m->nr_pages == 0) {
1298 con->in_msg_pos.page = 0;
1299 con->in_msg_pos.page_pos = data_off & ~PAGE_MASK;
1300 con->in_msg_pos.data_pos = 0;
1301 /* find pages for data payload */
1302 want = calc_pages_for(data_off & ~PAGE_MASK, data_len);
1303 ret = -1;
1304 if (con->ops->prepare_pages)
1305 ret = con->ops->prepare_pages(con, m, want);
1306 if (ret < 0) {
1307 dout("%p prepare_pages failed, skipping payload\n", m);
1308 con->in_base_pos = -data_len - sizeof(m->footer);
1309 ceph_msg_put(con->in_msg);
1310 con->in_msg = NULL;
1311 con->in_tag = CEPH_MSGR_TAG_READY;
1312 return 0;
1313 }
1314 BUG_ON(m->nr_pages < want);
1315 }
1316 while (con->in_msg_pos.data_pos < data_len) {
1317 left = min((int)(data_len - con->in_msg_pos.data_pos),
1318 (int)(PAGE_SIZE - con->in_msg_pos.page_pos));
1319 BUG_ON(m->pages == NULL);
1320 p = kmap(m->pages[con->in_msg_pos.page]);
1321 ret = ceph_tcp_recvmsg(con->sock, p + con->in_msg_pos.page_pos,
1322 left);
1323 if (ret > 0 && datacrc)
1324 con->in_data_crc =
1325 crc32c(con->in_data_crc,
1326 p + con->in_msg_pos.page_pos, ret);
1327 kunmap(m->pages[con->in_msg_pos.page]);
1328 if (ret <= 0)
1329 return ret;
1330 con->in_msg_pos.data_pos += ret;
1331 con->in_msg_pos.page_pos += ret;
1332 if (con->in_msg_pos.page_pos == PAGE_SIZE) {
1333 con->in_msg_pos.page_pos = 0;
1334 con->in_msg_pos.page++;
1335 }
1336 }
1337
1338no_data:
1339 /* footer */
1340 to = sizeof(m->hdr) + sizeof(m->footer);
1341 while (con->in_base_pos < to) {
1342 left = to - con->in_base_pos;
1343 ret = ceph_tcp_recvmsg(con->sock, (char *)&m->footer +
1344 (con->in_base_pos - sizeof(m->hdr)),
1345 left);
1346 if (ret <= 0)
1347 return ret;
1348 con->in_base_pos += ret;
1349 }
1350 dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
1351 m, front_len, m->footer.front_crc, middle_len,
1352 m->footer.middle_crc, data_len, m->footer.data_crc);
1353
1354 /* crc ok? */
1355 if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) {
1356 pr_err("read_partial_message %p front crc %u != exp. %u\n",
1357 m, con->in_front_crc, m->footer.front_crc);
1358 return -EBADMSG;
1359 }
1360 if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) {
1361 pr_err("read_partial_message %p middle crc %u != exp %u\n",
1362 m, con->in_middle_crc, m->footer.middle_crc);
1363 return -EBADMSG;
1364 }
1365 if (datacrc &&
1366 (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 &&
1367 con->in_data_crc != le32_to_cpu(m->footer.data_crc)) {
1368 pr_err("read_partial_message %p data crc %u != exp. %u\n", m,
1369 con->in_data_crc, le32_to_cpu(m->footer.data_crc));
1370 return -EBADMSG;
1371 }
1372
1373 return 1; /* done! */
1374}
1375
1376/*
1377 * Process message. This happens in the worker thread. The callback should
1378 * be careful not to do anything that waits on other incoming messages or it
1379 * may deadlock.
1380 */
1381static void process_message(struct ceph_connection *con)
1382{
1383 struct ceph_msg *msg = con->in_msg;
1384
1385 con->in_msg = NULL;
1386
1387 /* if first message, set peer_name */
1388 if (con->peer_name.type == 0)
1389 con->peer_name = msg->hdr.src.name;
1390
1391 mutex_lock(&con->out_mutex);
1392 con->in_seq++;
1393 mutex_unlock(&con->out_mutex);
1394
1395 dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
1396 msg, le64_to_cpu(msg->hdr.seq),
1397 ENTITY_NAME(msg->hdr.src.name),
1398 le16_to_cpu(msg->hdr.type),
1399 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
1400 le32_to_cpu(msg->hdr.front_len),
1401 le32_to_cpu(msg->hdr.data_len),
1402 con->in_front_crc, con->in_middle_crc, con->in_data_crc);
1403 con->ops->dispatch(con, msg);
1404 prepare_read_tag(con);
1405}
1406
1407
1408/*
1409 * Write something to the socket. Called in a worker thread when the
1410 * socket appears to be writeable and we have something ready to send.
1411 */
1412static int try_write(struct ceph_connection *con)
1413{
1414 struct ceph_messenger *msgr = con->msgr;
1415 int ret = 1;
1416
1417 dout("try_write start %p state %lu nref %d\n", con, con->state,
1418 atomic_read(&con->nref));
1419
1420 mutex_lock(&con->out_mutex);
1421more:
1422 dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes);
1423
1424 /* open the socket first? */
1425 if (con->sock == NULL) {
1426 /*
1427 * if we were STANDBY and are reconnecting _this_
1428 * connection, bump connect_seq now. Always bump
1429 * global_seq.
1430 */
1431 if (test_and_clear_bit(STANDBY, &con->state))
1432 con->connect_seq++;
1433
Sage Weileed0ef22009-11-10 14:34:36 -08001434 prepare_write_banner(msgr, con);
1435 prepare_write_connect(msgr, con, 1);
1436 prepare_read_banner(con);
Sage Weil31b80062009-10-06 11:31:13 -07001437 set_bit(CONNECTING, &con->state);
Sage Weileed0ef22009-11-10 14:34:36 -08001438 clear_bit(NEGOTIATING, &con->state);
Sage Weil31b80062009-10-06 11:31:13 -07001439
1440 con->in_tag = CEPH_MSGR_TAG_READY;
1441 dout("try_write initiating connect on %p new state %lu\n",
1442 con, con->state);
1443 con->sock = ceph_tcp_connect(con);
1444 if (IS_ERR(con->sock)) {
1445 con->sock = NULL;
1446 con->error_msg = "connect error";
1447 ret = -1;
1448 goto out;
1449 }
1450 }
1451
1452more_kvec:
1453 /* kvec data queued? */
1454 if (con->out_skip) {
1455 ret = write_partial_skip(con);
1456 if (ret <= 0)
1457 goto done;
1458 if (ret < 0) {
1459 dout("try_write write_partial_skip err %d\n", ret);
1460 goto done;
1461 }
1462 }
1463 if (con->out_kvec_left) {
1464 ret = write_partial_kvec(con);
1465 if (ret <= 0)
1466 goto done;
1467 if (ret < 0) {
1468 dout("try_write write_partial_kvec err %d\n", ret);
1469 goto done;
1470 }
1471 }
1472
1473 /* msg pages? */
1474 if (con->out_msg) {
1475 ret = write_partial_msg_pages(con);
1476 if (ret == 1)
1477 goto more_kvec; /* we need to send the footer, too! */
1478 if (ret == 0)
1479 goto done;
1480 if (ret < 0) {
1481 dout("try_write write_partial_msg_pages err %d\n",
1482 ret);
1483 goto done;
1484 }
1485 }
1486
1487 if (!test_bit(CONNECTING, &con->state)) {
1488 /* is anything else pending? */
1489 if (!list_empty(&con->out_queue)) {
1490 prepare_write_message(con);
1491 goto more;
1492 }
1493 if (con->in_seq > con->in_seq_acked) {
1494 prepare_write_ack(con);
1495 goto more;
1496 }
1497 if (test_and_clear_bit(KEEPALIVE_PENDING, &con->state)) {
1498 prepare_write_keepalive(con);
1499 goto more;
1500 }
1501 }
1502
1503 /* Nothing to do! */
1504 clear_bit(WRITE_PENDING, &con->state);
1505 dout("try_write nothing else to write.\n");
1506done:
1507 ret = 0;
1508out:
1509 mutex_unlock(&con->out_mutex);
1510 dout("try_write done on %p\n", con);
1511 return ret;
1512}
1513
1514
1515
1516/*
1517 * Read what we can from the socket.
1518 */
1519static int try_read(struct ceph_connection *con)
1520{
1521 struct ceph_messenger *msgr;
1522 int ret = -1;
1523
1524 if (!con->sock)
1525 return 0;
1526
1527 if (test_bit(STANDBY, &con->state))
1528 return 0;
1529
1530 dout("try_read start on %p\n", con);
1531 msgr = con->msgr;
1532
1533more:
1534 dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag,
1535 con->in_base_pos);
1536 if (test_bit(CONNECTING, &con->state)) {
Sage Weileed0ef22009-11-10 14:34:36 -08001537 if (!test_bit(NEGOTIATING, &con->state)) {
1538 dout("try_read connecting\n");
1539 ret = read_partial_banner(con);
1540 if (ret <= 0)
1541 goto done;
1542 if (process_banner(con) < 0) {
1543 ret = -1;
1544 goto out;
1545 }
1546 }
Sage Weil31b80062009-10-06 11:31:13 -07001547 ret = read_partial_connect(con);
1548 if (ret <= 0)
1549 goto done;
1550 if (process_connect(con) < 0) {
1551 ret = -1;
1552 goto out;
1553 }
1554 goto more;
1555 }
1556
1557 if (con->in_base_pos < 0) {
1558 /*
1559 * skipping + discarding content.
1560 *
1561 * FIXME: there must be a better way to do this!
1562 */
1563 static char buf[1024];
1564 int skip = min(1024, -con->in_base_pos);
1565 dout("skipping %d / %d bytes\n", skip, -con->in_base_pos);
1566 ret = ceph_tcp_recvmsg(con->sock, buf, skip);
1567 if (ret <= 0)
1568 goto done;
1569 con->in_base_pos += ret;
1570 if (con->in_base_pos)
1571 goto more;
1572 }
1573 if (con->in_tag == CEPH_MSGR_TAG_READY) {
1574 /*
1575 * what's next?
1576 */
1577 ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1);
1578 if (ret <= 0)
1579 goto done;
1580 dout("try_read got tag %d\n", (int)con->in_tag);
1581 switch (con->in_tag) {
1582 case CEPH_MSGR_TAG_MSG:
1583 prepare_read_message(con);
1584 break;
1585 case CEPH_MSGR_TAG_ACK:
1586 prepare_read_ack(con);
1587 break;
1588 case CEPH_MSGR_TAG_CLOSE:
1589 set_bit(CLOSED, &con->state); /* fixme */
1590 goto done;
1591 default:
1592 goto bad_tag;
1593 }
1594 }
1595 if (con->in_tag == CEPH_MSGR_TAG_MSG) {
1596 ret = read_partial_message(con);
1597 if (ret <= 0) {
1598 switch (ret) {
1599 case -EBADMSG:
1600 con->error_msg = "bad crc";
1601 ret = -EIO;
1602 goto out;
1603 case -EIO:
1604 con->error_msg = "io error";
1605 goto out;
1606 default:
1607 goto done;
1608 }
1609 }
1610 if (con->in_tag == CEPH_MSGR_TAG_READY)
1611 goto more;
1612 process_message(con);
1613 goto more;
1614 }
1615 if (con->in_tag == CEPH_MSGR_TAG_ACK) {
1616 ret = read_partial_ack(con);
1617 if (ret <= 0)
1618 goto done;
1619 process_ack(con);
1620 goto more;
1621 }
1622
1623done:
1624 ret = 0;
1625out:
1626 dout("try_read done on %p\n", con);
1627 return ret;
1628
1629bad_tag:
1630 pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag);
1631 con->error_msg = "protocol error, garbage tag";
1632 ret = -1;
1633 goto out;
1634}
1635
1636
1637/*
1638 * Atomically queue work on a connection. Bump @con reference to
1639 * avoid races with connection teardown.
1640 *
1641 * There is some trickery going on with QUEUED and BUSY because we
1642 * only want a _single_ thread operating on each connection at any
1643 * point in time, but we want to use all available CPUs.
1644 *
1645 * The worker thread only proceeds if it can atomically set BUSY. It
1646 * clears QUEUED and does it's thing. When it thinks it's done, it
1647 * clears BUSY, then rechecks QUEUED.. if it's set again, it loops
1648 * (tries again to set BUSY).
1649 *
1650 * To queue work, we first set QUEUED, _then_ if BUSY isn't set, we
1651 * try to queue work. If that fails (work is already queued, or BUSY)
1652 * we give up (work also already being done or is queued) but leave QUEUED
1653 * set so that the worker thread will loop if necessary.
1654 */
1655static void queue_con(struct ceph_connection *con)
1656{
1657 if (test_bit(DEAD, &con->state)) {
1658 dout("queue_con %p ignoring: DEAD\n",
1659 con);
1660 return;
1661 }
1662
1663 if (!con->ops->get(con)) {
1664 dout("queue_con %p ref count 0\n", con);
1665 return;
1666 }
1667
1668 set_bit(QUEUED, &con->state);
1669 if (test_bit(BUSY, &con->state)) {
1670 dout("queue_con %p - already BUSY\n", con);
1671 con->ops->put(con);
1672 } else if (!queue_work(ceph_msgr_wq, &con->work.work)) {
1673 dout("queue_con %p - already queued\n", con);
1674 con->ops->put(con);
1675 } else {
1676 dout("queue_con %p\n", con);
1677 }
1678}
1679
1680/*
1681 * Do some work on a connection. Drop a connection ref when we're done.
1682 */
1683static void con_work(struct work_struct *work)
1684{
1685 struct ceph_connection *con = container_of(work, struct ceph_connection,
1686 work.work);
1687 int backoff = 0;
1688
1689more:
1690 if (test_and_set_bit(BUSY, &con->state) != 0) {
1691 dout("con_work %p BUSY already set\n", con);
1692 goto out;
1693 }
1694 dout("con_work %p start, clearing QUEUED\n", con);
1695 clear_bit(QUEUED, &con->state);
1696
1697 if (test_bit(CLOSED, &con->state)) { /* e.g. if we are replaced */
1698 dout("con_work CLOSED\n");
1699 con_close_socket(con);
1700 goto done;
1701 }
1702 if (test_and_clear_bit(OPENING, &con->state)) {
1703 /* reopen w/ new peer */
1704 dout("con_work OPENING\n");
1705 con_close_socket(con);
1706 }
1707
1708 if (test_and_clear_bit(SOCK_CLOSED, &con->state) ||
1709 try_read(con) < 0 ||
1710 try_write(con) < 0) {
1711 backoff = 1;
1712 ceph_fault(con); /* error/fault path */
1713 }
1714
1715done:
1716 clear_bit(BUSY, &con->state);
1717 dout("con->state=%lu\n", con->state);
1718 if (test_bit(QUEUED, &con->state)) {
1719 if (!backoff) {
1720 dout("con_work %p QUEUED reset, looping\n", con);
1721 goto more;
1722 }
1723 dout("con_work %p QUEUED reset, but just faulted\n", con);
1724 clear_bit(QUEUED, &con->state);
1725 }
1726 dout("con_work %p done\n", con);
1727
1728out:
1729 con->ops->put(con);
1730}
1731
1732
1733/*
1734 * Generic error/fault handler. A retry mechanism is used with
1735 * exponential backoff
1736 */
1737static void ceph_fault(struct ceph_connection *con)
1738{
1739 pr_err("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
1740 pr_addr(&con->peer_addr.in_addr), con->error_msg);
1741 dout("fault %p state %lu to peer %s\n",
1742 con, con->state, pr_addr(&con->peer_addr.in_addr));
1743
1744 if (test_bit(LOSSYTX, &con->state)) {
1745 dout("fault on LOSSYTX channel\n");
1746 goto out;
1747 }
1748
1749 clear_bit(BUSY, &con->state); /* to avoid an improbable race */
1750
1751 con_close_socket(con);
1752 con->in_msg = NULL;
1753
1754 /* If there are no messages in the queue, place the connection
1755 * in a STANDBY state (i.e., don't try to reconnect just yet). */
1756 mutex_lock(&con->out_mutex);
1757 if (list_empty(&con->out_queue) && !con->out_keepalive_pending) {
1758 dout("fault setting STANDBY\n");
1759 set_bit(STANDBY, &con->state);
1760 mutex_unlock(&con->out_mutex);
1761 goto out;
1762 }
1763
1764 /* Requeue anything that hasn't been acked, and retry after a
1765 * delay. */
1766 list_splice_init(&con->out_sent, &con->out_queue);
1767 mutex_unlock(&con->out_mutex);
1768
1769 if (con->delay == 0)
1770 con->delay = BASE_DELAY_INTERVAL;
1771 else if (con->delay < MAX_DELAY_INTERVAL)
1772 con->delay *= 2;
1773
1774 /* explicitly schedule work to try to reconnect again later. */
1775 dout("fault queueing %p delay %lu\n", con, con->delay);
1776 con->ops->get(con);
1777 if (queue_delayed_work(ceph_msgr_wq, &con->work,
1778 round_jiffies_relative(con->delay)) == 0)
1779 con->ops->put(con);
1780
1781out:
1782 if (con->ops->fault)
1783 con->ops->fault(con);
1784}
1785
1786
1787
1788/*
1789 * create a new messenger instance
1790 */
1791struct ceph_messenger *ceph_messenger_create(struct ceph_entity_addr *myaddr)
1792{
1793 struct ceph_messenger *msgr;
1794
1795 msgr = kzalloc(sizeof(*msgr), GFP_KERNEL);
1796 if (msgr == NULL)
1797 return ERR_PTR(-ENOMEM);
1798
1799 spin_lock_init(&msgr->global_seq_lock);
1800
1801 /* the zero page is needed if a request is "canceled" while the message
1802 * is being written over the socket */
1803 msgr->zero_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
1804 if (!msgr->zero_page) {
1805 kfree(msgr);
1806 return ERR_PTR(-ENOMEM);
1807 }
1808 kmap(msgr->zero_page);
1809
1810 if (myaddr)
1811 msgr->inst.addr = *myaddr;
1812
1813 /* select a random nonce */
1814 get_random_bytes(&msgr->inst.addr.nonce,
1815 sizeof(msgr->inst.addr.nonce));
Sage Weil63f2d212009-11-03 15:17:56 -08001816 encode_my_addr(msgr);
Sage Weil31b80062009-10-06 11:31:13 -07001817
1818 dout("messenger_create %p\n", msgr);
1819 return msgr;
1820}
1821
1822void ceph_messenger_destroy(struct ceph_messenger *msgr)
1823{
1824 dout("destroy %p\n", msgr);
1825 kunmap(msgr->zero_page);
1826 __free_page(msgr->zero_page);
1827 kfree(msgr);
1828 dout("destroyed messenger %p\n", msgr);
1829}
1830
1831/*
1832 * Queue up an outgoing message on the given connection.
1833 */
1834void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
1835{
1836 if (test_bit(CLOSED, &con->state)) {
1837 dout("con_send %p closed, dropping %p\n", con, msg);
1838 ceph_msg_put(msg);
1839 return;
1840 }
1841
1842 /* set src+dst */
Sage Weil63f2d212009-11-03 15:17:56 -08001843 msg->hdr.src.name = con->msgr->inst.name;
1844 msg->hdr.src.addr = con->msgr->my_enc_addr;
1845 msg->hdr.orig_src = msg->hdr.src;
Sage Weil31b80062009-10-06 11:31:13 -07001846 msg->hdr.dst_erank = con->peer_addr.erank;
1847
1848 /* queue */
1849 mutex_lock(&con->out_mutex);
1850 BUG_ON(!list_empty(&msg->list_head));
1851 list_add_tail(&msg->list_head, &con->out_queue);
1852 dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
1853 ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
1854 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
1855 le32_to_cpu(msg->hdr.front_len),
1856 le32_to_cpu(msg->hdr.middle_len),
1857 le32_to_cpu(msg->hdr.data_len));
1858 mutex_unlock(&con->out_mutex);
1859
1860 /* if there wasn't anything waiting to send before, queue
1861 * new work */
1862 if (test_and_set_bit(WRITE_PENDING, &con->state) == 0)
1863 queue_con(con);
1864}
1865
1866/*
1867 * Revoke a message that was previously queued for send
1868 */
1869void ceph_con_revoke(struct ceph_connection *con, struct ceph_msg *msg)
1870{
1871 mutex_lock(&con->out_mutex);
1872 if (!list_empty(&msg->list_head)) {
1873 dout("con_revoke %p msg %p\n", con, msg);
1874 list_del_init(&msg->list_head);
1875 ceph_msg_put(msg);
1876 msg->hdr.seq = 0;
1877 if (con->out_msg == msg)
1878 con->out_msg = NULL;
1879 if (con->out_kvec_is_msg) {
1880 con->out_skip = con->out_kvec_bytes;
1881 con->out_kvec_is_msg = false;
1882 }
1883 } else {
1884 dout("con_revoke %p msg %p - not queued (sent?)\n", con, msg);
1885 }
1886 mutex_unlock(&con->out_mutex);
1887}
1888
1889/*
1890 * Queue a keepalive byte to ensure the tcp connection is alive.
1891 */
1892void ceph_con_keepalive(struct ceph_connection *con)
1893{
1894 if (test_and_set_bit(KEEPALIVE_PENDING, &con->state) == 0 &&
1895 test_and_set_bit(WRITE_PENDING, &con->state) == 0)
1896 queue_con(con);
1897}
1898
1899
1900/*
1901 * construct a new message with given type, size
1902 * the new msg has a ref count of 1.
1903 */
1904struct ceph_msg *ceph_msg_new(int type, int front_len,
1905 int page_len, int page_off, struct page **pages)
1906{
1907 struct ceph_msg *m;
1908
1909 m = kmalloc(sizeof(*m), GFP_NOFS);
1910 if (m == NULL)
1911 goto out;
1912 atomic_set(&m->nref, 1);
1913 INIT_LIST_HEAD(&m->list_head);
1914
1915 m->hdr.type = cpu_to_le16(type);
1916 m->hdr.front_len = cpu_to_le32(front_len);
1917 m->hdr.middle_len = 0;
1918 m->hdr.data_len = cpu_to_le32(page_len);
1919 m->hdr.data_off = cpu_to_le16(page_off);
1920 m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
1921 m->footer.front_crc = 0;
1922 m->footer.middle_crc = 0;
1923 m->footer.data_crc = 0;
1924 m->front_max = front_len;
1925 m->front_is_vmalloc = false;
1926 m->more_to_follow = false;
1927 m->pool = NULL;
1928
1929 /* front */
1930 if (front_len) {
1931 if (front_len > PAGE_CACHE_SIZE) {
1932 m->front.iov_base = __vmalloc(front_len, GFP_NOFS,
1933 PAGE_KERNEL);
1934 m->front_is_vmalloc = true;
1935 } else {
1936 m->front.iov_base = kmalloc(front_len, GFP_NOFS);
1937 }
1938 if (m->front.iov_base == NULL) {
1939 pr_err("msg_new can't allocate %d bytes\n",
1940 front_len);
1941 goto out2;
1942 }
1943 } else {
1944 m->front.iov_base = NULL;
1945 }
1946 m->front.iov_len = front_len;
1947
1948 /* middle */
1949 m->middle = NULL;
1950
1951 /* data */
1952 m->nr_pages = calc_pages_for(page_off, page_len);
1953 m->pages = pages;
1954
1955 dout("ceph_msg_new %p page %d~%d -> %d\n", m, page_off, page_len,
1956 m->nr_pages);
1957 return m;
1958
1959out2:
1960 ceph_msg_put(m);
1961out:
1962 pr_err("msg_new can't create type %d len %d\n", type, front_len);
1963 return ERR_PTR(-ENOMEM);
1964}
1965
1966/*
1967 * Generic message allocator, for incoming messages.
1968 */
1969struct ceph_msg *ceph_alloc_msg(struct ceph_connection *con,
1970 struct ceph_msg_header *hdr)
1971{
1972 int type = le16_to_cpu(hdr->type);
1973 int front_len = le32_to_cpu(hdr->front_len);
1974 struct ceph_msg *msg = ceph_msg_new(type, front_len, 0, 0, NULL);
1975
1976 if (!msg) {
1977 pr_err("unable to allocate msg type %d len %d\n",
1978 type, front_len);
1979 return ERR_PTR(-ENOMEM);
1980 }
1981 return msg;
1982}
1983
1984/*
1985 * Allocate "middle" portion of a message, if it is needed and wasn't
1986 * allocated by alloc_msg. This allows us to read a small fixed-size
1987 * per-type header in the front and then gracefully fail (i.e.,
1988 * propagate the error to the caller based on info in the front) when
1989 * the middle is too large.
1990 */
1991int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
1992{
1993 int type = le16_to_cpu(msg->hdr.type);
1994 int middle_len = le32_to_cpu(msg->hdr.middle_len);
1995
1996 dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
1997 ceph_msg_type_name(type), middle_len);
1998 BUG_ON(!middle_len);
1999 BUG_ON(msg->middle);
2000
2001 msg->middle = ceph_buffer_new_alloc(middle_len, GFP_NOFS);
2002 if (!msg->middle)
2003 return -ENOMEM;
2004 return 0;
2005}
2006
2007
2008/*
2009 * Free a generically kmalloc'd message.
2010 */
2011void ceph_msg_kfree(struct ceph_msg *m)
2012{
2013 dout("msg_kfree %p\n", m);
2014 if (m->front_is_vmalloc)
2015 vfree(m->front.iov_base);
2016 else
2017 kfree(m->front.iov_base);
2018 kfree(m);
2019}
2020
2021/*
2022 * Drop a msg ref. Destroy as needed.
2023 */
2024void ceph_msg_put(struct ceph_msg *m)
2025{
2026 dout("ceph_msg_put %p %d -> %d\n", m, atomic_read(&m->nref),
2027 atomic_read(&m->nref)-1);
2028 if (atomic_read(&m->nref) <= 0) {
2029 pr_err("bad ceph_msg_put on %p %llu %d=%s %d+%d\n",
2030 m, le64_to_cpu(m->hdr.seq),
2031 le16_to_cpu(m->hdr.type),
2032 ceph_msg_type_name(le16_to_cpu(m->hdr.type)),
2033 le32_to_cpu(m->hdr.front_len),
2034 le32_to_cpu(m->hdr.data_len));
2035 WARN_ON(1);
2036 }
2037 if (atomic_dec_and_test(&m->nref)) {
2038 dout("ceph_msg_put last one on %p\n", m);
2039 WARN_ON(!list_empty(&m->list_head));
2040
2041 /* drop middle, data, if any */
2042 if (m->middle) {
2043 ceph_buffer_put(m->middle);
2044 m->middle = NULL;
2045 }
2046 m->nr_pages = 0;
2047 m->pages = NULL;
2048
2049 if (m->pool)
2050 ceph_msgpool_put(m->pool, m);
2051 else
2052 ceph_msg_kfree(m);
2053 }
2054}