blob: 1a4ea551aae51c08fd70e4dd4693e97ca56f01de [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
Christoph Lameter2e892f42006-12-13 00:34:23 -08002 * Written by Mark Hemment, 1996 (markhe@nextd.demon.co.uk).
3 *
Christoph Lametercde53532008-07-04 09:59:22 -07004 * (C) SGI 2006, Christoph Lameter
Christoph Lameter2e892f42006-12-13 00:34:23 -08005 * Cleaned up and restructured to ease the addition of alternative
6 * implementations of SLAB allocators.
Christoph Lameterf1b6eb62013-09-04 16:35:34 +00007 * (C) Linux Foundation 2008-2013
8 * Unified interface for all slab allocators
Linus Torvalds1da177e2005-04-16 15:20:36 -07009 */
10
11#ifndef _LINUX_SLAB_H
12#define _LINUX_SLAB_H
13
Andrew Morton1b1cec42006-12-06 20:33:22 -080014#include <linux/gfp.h>
Andrew Morton1b1cec42006-12-06 20:33:22 -080015#include <linux/types.h>
Glauber Costa1f458cb2012-12-18 14:22:50 -080016#include <linux/workqueue.h>
17
Linus Torvalds1da177e2005-04-16 15:20:36 -070018
Christoph Lameter2e892f42006-12-13 00:34:23 -080019/*
20 * Flags to pass to kmem_cache_create().
David Rientjes124dee02015-04-14 15:44:28 -070021 * The ones marked DEBUG are only valid if CONFIG_DEBUG_SLAB is set.
Linus Torvalds1da177e2005-04-16 15:20:36 -070022 */
Laura Abbottbecfda62016-03-15 14:55:06 -070023#define SLAB_CONSISTENCY_CHECKS 0x00000100UL /* DEBUG: Perform (expensive) checks on alloc/free */
Christoph Lameter55935a32006-12-13 00:34:24 -080024#define SLAB_RED_ZONE 0x00000400UL /* DEBUG: Red zone objs in a cache */
25#define SLAB_POISON 0x00000800UL /* DEBUG: Poison objects */
26#define SLAB_HWCACHE_ALIGN 0x00002000UL /* Align objs on cache lines */
Christoph Lameter2e892f42006-12-13 00:34:23 -080027#define SLAB_CACHE_DMA 0x00004000UL /* Use GFP_DMA memory */
Christoph Lameter2e892f42006-12-13 00:34:23 -080028#define SLAB_STORE_USER 0x00010000UL /* DEBUG: Store the last owner for bug hunting */
Christoph Lameter2e892f42006-12-13 00:34:23 -080029#define SLAB_PANIC 0x00040000UL /* Panic if kmem_cache_create() fails */
Peter Zijlstrad7de4c12008-11-13 20:40:12 +020030/*
31 * SLAB_DESTROY_BY_RCU - **WARNING** READ THIS!
32 *
33 * This delays freeing the SLAB page by a grace period, it does _NOT_
34 * delay object freeing. This means that if you do kmem_cache_free()
35 * that memory location is free to be reused at any time. Thus it may
36 * be possible to see another object there in the same RCU grace period.
37 *
38 * This feature only ensures the memory location backing the object
39 * stays valid, the trick to using this is relying on an independent
40 * object validation pass. Something like:
41 *
42 * rcu_read_lock()
43 * again:
44 * obj = lockless_lookup(key);
45 * if (obj) {
46 * if (!try_get_ref(obj)) // might fail for free objects
47 * goto again;
48 *
49 * if (obj->key != key) { // not the object we expected
50 * put_ref(obj);
51 * goto again;
52 * }
53 * }
54 * rcu_read_unlock();
55 *
Joonsoo Kim68126702013-10-24 10:07:42 +090056 * This is useful if we need to approach a kernel structure obliquely,
57 * from its address obtained without the usual locking. We can lock
58 * the structure to stabilize it and check it's still at the given address,
59 * only if we can be sure that the memory has not been meanwhile reused
60 * for some other kind of object (which our subsystem's lock might corrupt).
61 *
62 * rcu_read_lock before reading the address, then rcu_read_unlock after
63 * taking the spinlock within the structure expected at that address.
Peter Zijlstrad7de4c12008-11-13 20:40:12 +020064 */
Christoph Lameter2e892f42006-12-13 00:34:23 -080065#define SLAB_DESTROY_BY_RCU 0x00080000UL /* Defer freeing slabs to RCU */
Paul Jackson101a5002006-03-24 03:16:07 -080066#define SLAB_MEM_SPREAD 0x00100000UL /* Spread some memory over cpuset */
Christoph Lameter81819f02007-05-06 14:49:36 -070067#define SLAB_TRACE 0x00200000UL /* Trace allocations and frees */
Linus Torvalds1da177e2005-04-16 15:20:36 -070068
Thomas Gleixner30327ac2008-04-30 00:54:59 -070069/* Flag to prevent checks on free */
70#ifdef CONFIG_DEBUG_OBJECTS
71# define SLAB_DEBUG_OBJECTS 0x00400000UL
72#else
73# define SLAB_DEBUG_OBJECTS 0x00000000UL
74#endif
75
Catalin Marinasd5cff632009-06-11 13:22:40 +010076#define SLAB_NOLEAKTRACE 0x00800000UL /* Avoid kmemleak tracing */
77
Vegard Nossum2dff4402008-05-31 15:56:17 +020078/* Don't track use of uninitialized memory */
79#ifdef CONFIG_KMEMCHECK
80# define SLAB_NOTRACK 0x01000000UL
81#else
82# define SLAB_NOTRACK 0x00000000UL
83#endif
Dmitry Monakhov4c13dd32010-02-26 09:36:12 +030084#ifdef CONFIG_FAILSLAB
85# define SLAB_FAILSLAB 0x02000000UL /* Fault injection mark */
86#else
87# define SLAB_FAILSLAB 0x00000000UL
88#endif
Johannes Weiner127424c2016-01-20 15:02:32 -080089#if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB)
Vladimir Davydov230e9fc2016-01-14 15:18:15 -080090# define SLAB_ACCOUNT 0x04000000UL /* Account to memcg */
91#else
92# define SLAB_ACCOUNT 0x00000000UL
93#endif
Vegard Nossum2dff4402008-05-31 15:56:17 +020094
Alexander Potapenko7ed2f9e2016-03-25 14:21:59 -070095#ifdef CONFIG_KASAN
96#define SLAB_KASAN 0x08000000UL
97#else
98#define SLAB_KASAN 0x00000000UL
99#endif
100
Mel Gormane12ba742007-10-16 01:25:52 -0700101/* The following flags affect the page allocator grouping pages by mobility */
102#define SLAB_RECLAIM_ACCOUNT 0x00020000UL /* Objects are reclaimable */
103#define SLAB_TEMPORARY SLAB_RECLAIM_ACCOUNT /* Objects are short-lived */
Christoph Lameter2e892f42006-12-13 00:34:23 -0800104/*
Christoph Lameter6cb8f912007-07-17 04:03:22 -0700105 * ZERO_SIZE_PTR will be returned for zero sized kmalloc requests.
106 *
107 * Dereferencing ZERO_SIZE_PTR will lead to a distinct access fault.
108 *
109 * ZERO_SIZE_PTR can be passed to kfree though in the same way that NULL can.
110 * Both make kfree a no-op.
111 */
112#define ZERO_SIZE_PTR ((void *)16)
113
Roland Dreier1d4ec7b2007-07-20 12:13:20 -0700114#define ZERO_OR_NULL_PTR(x) ((unsigned long)(x) <= \
Christoph Lameter6cb8f912007-07-17 04:03:22 -0700115 (unsigned long)ZERO_SIZE_PTR)
116
Christoph Lameterf1b6eb62013-09-04 16:35:34 +0000117#include <linux/kmemleak.h>
Andrey Ryabinin0316bec2015-02-13 14:39:42 -0800118#include <linux/kasan.h>
Christoph Lameter3b0efdf2012-06-13 10:24:57 -0500119
Glauber Costa2633d7a2012-12-18 14:22:34 -0800120struct mem_cgroup;
Christoph Lameter3b0efdf2012-06-13 10:24:57 -0500121/*
Christoph Lameter2e892f42006-12-13 00:34:23 -0800122 * struct kmem_cache related prototypes
123 */
124void __init kmem_cache_init(void);
Denis Kirjanovfda90122015-11-05 18:44:59 -0800125bool slab_is_available(void);
Matt Mackall10cef602006-01-08 01:01:45 -0800126
Christoph Lameter2e892f42006-12-13 00:34:23 -0800127struct kmem_cache *kmem_cache_create(const char *, size_t, size_t,
Christoph Lameterebe29732006-12-06 20:32:59 -0800128 unsigned long,
Alexey Dobriyan51cc5062008-07-25 19:45:34 -0700129 void (*)(void *));
Christoph Lameter2e892f42006-12-13 00:34:23 -0800130void kmem_cache_destroy(struct kmem_cache *);
131int kmem_cache_shrink(struct kmem_cache *);
Vladimir Davydov2a4db7e2015-02-12 14:59:32 -0800132
133void memcg_create_kmem_cache(struct mem_cgroup *, struct kmem_cache *);
134void memcg_deactivate_kmem_caches(struct mem_cgroup *);
135void memcg_destroy_kmem_caches(struct mem_cgroup *);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700136
Christoph Lameter0a31bd52007-05-06 14:49:57 -0700137/*
138 * Please use this macro to create slab caches. Simply specify the
139 * name of the structure and maybe some flags that are listed above.
140 *
141 * The alignment of the struct determines object alignment. If you
142 * f.e. add ____cacheline_aligned_in_smp to the struct declaration
143 * then the objects will be properly aligned in SMP configurations.
144 */
145#define KMEM_CACHE(__struct, __flags) kmem_cache_create(#__struct,\
146 sizeof(struct __struct), __alignof__(struct __struct),\
Paul Mundt20c2df82007-07-20 10:11:58 +0900147 (__flags), NULL)
Christoph Lameter0a31bd52007-05-06 14:49:57 -0700148
Christoph Lameter2e892f42006-12-13 00:34:23 -0800149/*
Christoph Lameter34504662013-01-10 19:00:53 +0000150 * Common kmalloc functions provided by all allocators
151 */
152void * __must_check __krealloc(const void *, size_t, gfp_t);
153void * __must_check krealloc(const void *, size_t, gfp_t);
154void kfree(const void *);
155void kzfree(const void *);
156size_t ksize(const void *);
157
Christoph Lameterc601fd62013-02-05 16:36:47 +0000158/*
159 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
160 * alignment larger than the alignment of a 64-bit integer.
161 * Setting ARCH_KMALLOC_MINALIGN in arch headers allows that.
162 */
163#if defined(ARCH_DMA_MINALIGN) && ARCH_DMA_MINALIGN > 8
164#define ARCH_KMALLOC_MINALIGN ARCH_DMA_MINALIGN
165#define KMALLOC_MIN_SIZE ARCH_DMA_MINALIGN
166#define KMALLOC_SHIFT_LOW ilog2(ARCH_DMA_MINALIGN)
167#else
168#define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
169#endif
170
Christoph Lameter34504662013-01-10 19:00:53 +0000171/*
Rasmus Villemoes94a58c32015-11-20 15:56:48 -0800172 * Setting ARCH_SLAB_MINALIGN in arch headers allows a different alignment.
173 * Intended for arches that get misalignment faults even for 64 bit integer
174 * aligned buffers.
175 */
176#ifndef ARCH_SLAB_MINALIGN
177#define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
178#endif
179
180/*
181 * kmalloc and friends return ARCH_KMALLOC_MINALIGN aligned
182 * pointers. kmem_cache_alloc and friends return ARCH_SLAB_MINALIGN
183 * aligned pointers.
184 */
185#define __assume_kmalloc_alignment __assume_aligned(ARCH_KMALLOC_MINALIGN)
186#define __assume_slab_alignment __assume_aligned(ARCH_SLAB_MINALIGN)
187#define __assume_page_alignment __assume_aligned(PAGE_SIZE)
188
189/*
Christoph Lameter95a05b42013-01-10 19:14:19 +0000190 * Kmalloc array related definitions
191 */
192
193#ifdef CONFIG_SLAB
194/*
195 * The largest kmalloc size supported by the SLAB allocators is
Christoph Lameter0aa817f2007-05-16 22:11:01 -0700196 * 32 megabyte (2^25) or the maximum allocatable page order if that is
197 * less than 32 MB.
198 *
199 * WARNING: Its not easy to increase this value since the allocators have
200 * to do various tricks to work around compiler limitations in order to
201 * ensure proper constant folding.
202 */
Christoph Lameterdebee072007-06-23 17:16:43 -0700203#define KMALLOC_SHIFT_HIGH ((MAX_ORDER + PAGE_SHIFT - 1) <= 25 ? \
204 (MAX_ORDER + PAGE_SHIFT - 1) : 25)
Christoph Lameter95a05b42013-01-10 19:14:19 +0000205#define KMALLOC_SHIFT_MAX KMALLOC_SHIFT_HIGH
Christoph Lameterc601fd62013-02-05 16:36:47 +0000206#ifndef KMALLOC_SHIFT_LOW
Christoph Lameter95a05b42013-01-10 19:14:19 +0000207#define KMALLOC_SHIFT_LOW 5
Christoph Lameterc601fd62013-02-05 16:36:47 +0000208#endif
Christoph Lameter069e2b352013-06-14 19:55:13 +0000209#endif
210
211#ifdef CONFIG_SLUB
Christoph Lameter95a05b42013-01-10 19:14:19 +0000212/*
Dave Hansen433a91f2014-01-28 14:24:50 -0800213 * SLUB directly allocates requests fitting in to an order-1 page
214 * (PAGE_SIZE*2). Larger requests are passed to the page allocator.
Christoph Lameter95a05b42013-01-10 19:14:19 +0000215 */
216#define KMALLOC_SHIFT_HIGH (PAGE_SHIFT + 1)
217#define KMALLOC_SHIFT_MAX (MAX_ORDER + PAGE_SHIFT)
Christoph Lameterc601fd62013-02-05 16:36:47 +0000218#ifndef KMALLOC_SHIFT_LOW
Christoph Lameter95a05b42013-01-10 19:14:19 +0000219#define KMALLOC_SHIFT_LOW 3
220#endif
Christoph Lameterc601fd62013-02-05 16:36:47 +0000221#endif
Christoph Lameter0aa817f2007-05-16 22:11:01 -0700222
Christoph Lameter069e2b352013-06-14 19:55:13 +0000223#ifdef CONFIG_SLOB
224/*
Dave Hansen433a91f2014-01-28 14:24:50 -0800225 * SLOB passes all requests larger than one page to the page allocator.
Christoph Lameter069e2b352013-06-14 19:55:13 +0000226 * No kmalloc array is necessary since objects of different sizes can
227 * be allocated from the same page.
228 */
Christoph Lameter069e2b352013-06-14 19:55:13 +0000229#define KMALLOC_SHIFT_HIGH PAGE_SHIFT
Dave Hansen433a91f2014-01-28 14:24:50 -0800230#define KMALLOC_SHIFT_MAX 30
Christoph Lameter069e2b352013-06-14 19:55:13 +0000231#ifndef KMALLOC_SHIFT_LOW
232#define KMALLOC_SHIFT_LOW 3
233#endif
234#endif
235
Christoph Lameter95a05b42013-01-10 19:14:19 +0000236/* Maximum allocatable size */
237#define KMALLOC_MAX_SIZE (1UL << KMALLOC_SHIFT_MAX)
238/* Maximum size for which we actually use a slab cache */
239#define KMALLOC_MAX_CACHE_SIZE (1UL << KMALLOC_SHIFT_HIGH)
240/* Maximum order allocatable via the slab allocagtor */
241#define KMALLOC_MAX_ORDER (KMALLOC_SHIFT_MAX - PAGE_SHIFT)
Christoph Lameter0aa817f2007-05-16 22:11:01 -0700242
Christoph Lameter90810642011-06-23 09:36:12 -0500243/*
Christoph Lameterce6a5022013-01-10 19:14:19 +0000244 * Kmalloc subsystem.
245 */
Christoph Lameterc601fd62013-02-05 16:36:47 +0000246#ifndef KMALLOC_MIN_SIZE
Christoph Lameter95a05b42013-01-10 19:14:19 +0000247#define KMALLOC_MIN_SIZE (1 << KMALLOC_SHIFT_LOW)
Christoph Lameterce6a5022013-01-10 19:14:19 +0000248#endif
Christoph Lameterce6a5022013-01-10 19:14:19 +0000249
Joonsoo Kim24f870d2014-03-12 17:06:19 +0900250/*
251 * This restriction comes from byte sized index implementation.
252 * Page size is normally 2^12 bytes and, in this case, if we want to use
253 * byte sized index which can represent 2^8 entries, the size of the object
254 * should be equal or greater to 2^12 / 2^8 = 2^4 = 16.
255 * If minimum size of kmalloc is less than 16, we use it as minimum object
256 * size and give up to use byte sized index.
257 */
258#define SLAB_OBJ_MIN_SIZE (KMALLOC_MIN_SIZE < 16 ? \
259 (KMALLOC_MIN_SIZE) : 16)
260
Christoph Lameter069e2b352013-06-14 19:55:13 +0000261#ifndef CONFIG_SLOB
Christoph Lameter9425c582013-01-10 19:12:17 +0000262extern struct kmem_cache *kmalloc_caches[KMALLOC_SHIFT_HIGH + 1];
263#ifdef CONFIG_ZONE_DMA
264extern struct kmem_cache *kmalloc_dma_caches[KMALLOC_SHIFT_HIGH + 1];
265#endif
266
Christoph Lameterce6a5022013-01-10 19:14:19 +0000267/*
268 * Figure out which kmalloc slab an allocation of a certain size
269 * belongs to.
270 * 0 = zero alloc
271 * 1 = 65 .. 96 bytes
Rasmus Villemoes1ed58b62015-06-24 16:55:59 -0700272 * 2 = 129 .. 192 bytes
273 * n = 2^(n-1)+1 .. 2^n
Christoph Lameterce6a5022013-01-10 19:14:19 +0000274 */
275static __always_inline int kmalloc_index(size_t size)
276{
277 if (!size)
278 return 0;
279
280 if (size <= KMALLOC_MIN_SIZE)
281 return KMALLOC_SHIFT_LOW;
282
283 if (KMALLOC_MIN_SIZE <= 32 && size > 64 && size <= 96)
284 return 1;
285 if (KMALLOC_MIN_SIZE <= 64 && size > 128 && size <= 192)
286 return 2;
287 if (size <= 8) return 3;
288 if (size <= 16) return 4;
289 if (size <= 32) return 5;
290 if (size <= 64) return 6;
291 if (size <= 128) return 7;
292 if (size <= 256) return 8;
293 if (size <= 512) return 9;
294 if (size <= 1024) return 10;
295 if (size <= 2 * 1024) return 11;
296 if (size <= 4 * 1024) return 12;
297 if (size <= 8 * 1024) return 13;
298 if (size <= 16 * 1024) return 14;
299 if (size <= 32 * 1024) return 15;
300 if (size <= 64 * 1024) return 16;
301 if (size <= 128 * 1024) return 17;
302 if (size <= 256 * 1024) return 18;
303 if (size <= 512 * 1024) return 19;
304 if (size <= 1024 * 1024) return 20;
305 if (size <= 2 * 1024 * 1024) return 21;
306 if (size <= 4 * 1024 * 1024) return 22;
307 if (size <= 8 * 1024 * 1024) return 23;
308 if (size <= 16 * 1024 * 1024) return 24;
309 if (size <= 32 * 1024 * 1024) return 25;
310 if (size <= 64 * 1024 * 1024) return 26;
311 BUG();
312
313 /* Will never be reached. Needed because the compiler may complain */
314 return -1;
315}
Christoph Lameter069e2b352013-06-14 19:55:13 +0000316#endif /* !CONFIG_SLOB */
Christoph Lameterce6a5022013-01-10 19:14:19 +0000317
Rasmus Villemoes48a27052016-05-19 17:10:55 -0700318void *__kmalloc(size_t size, gfp_t flags) __assume_kmalloc_alignment __malloc;
319void *kmem_cache_alloc(struct kmem_cache *, gfp_t flags) __assume_slab_alignment __malloc;
Vladimir Davydov2a4db7e2015-02-12 14:59:32 -0800320void kmem_cache_free(struct kmem_cache *, void *);
Christoph Lameterf1b6eb62013-09-04 16:35:34 +0000321
Christoph Lameter484748f2015-09-04 15:45:34 -0700322/*
Jesper Dangaard Brouer9f706d62016-03-15 14:54:03 -0700323 * Bulk allocation and freeing operations. These are accelerated in an
Christoph Lameter484748f2015-09-04 15:45:34 -0700324 * allocator specific way to avoid taking locks repeatedly or building
325 * metadata structures unnecessarily.
326 *
327 * Note that interrupts must be enabled when calling these functions.
328 */
329void kmem_cache_free_bulk(struct kmem_cache *, size_t, void **);
Jesper Dangaard Brouer865762a2015-11-20 15:57:58 -0800330int kmem_cache_alloc_bulk(struct kmem_cache *, gfp_t, size_t, void **);
Christoph Lameter484748f2015-09-04 15:45:34 -0700331
Jesper Dangaard Brouerca257192016-03-15 14:54:00 -0700332/*
333 * Caller must not use kfree_bulk() on memory not originally allocated
334 * by kmalloc(), because the SLOB allocator cannot handle this.
335 */
336static __always_inline void kfree_bulk(size_t size, void **p)
337{
338 kmem_cache_free_bulk(NULL, size, p);
339}
340
Christoph Lameterf1b6eb62013-09-04 16:35:34 +0000341#ifdef CONFIG_NUMA
Rasmus Villemoes48a27052016-05-19 17:10:55 -0700342void *__kmalloc_node(size_t size, gfp_t flags, int node) __assume_kmalloc_alignment __malloc;
343void *kmem_cache_alloc_node(struct kmem_cache *, gfp_t flags, int node) __assume_slab_alignment __malloc;
Christoph Lameterf1b6eb62013-09-04 16:35:34 +0000344#else
345static __always_inline void *__kmalloc_node(size_t size, gfp_t flags, int node)
346{
347 return __kmalloc(size, flags);
348}
349
350static __always_inline void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t flags, int node)
351{
352 return kmem_cache_alloc(s, flags);
353}
354#endif
355
356#ifdef CONFIG_TRACING
Rasmus Villemoes48a27052016-05-19 17:10:55 -0700357extern void *kmem_cache_alloc_trace(struct kmem_cache *, gfp_t, size_t) __assume_slab_alignment __malloc;
Christoph Lameterf1b6eb62013-09-04 16:35:34 +0000358
359#ifdef CONFIG_NUMA
360extern void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
361 gfp_t gfpflags,
Rasmus Villemoes48a27052016-05-19 17:10:55 -0700362 int node, size_t size) __assume_slab_alignment __malloc;
Christoph Lameterf1b6eb62013-09-04 16:35:34 +0000363#else
364static __always_inline void *
365kmem_cache_alloc_node_trace(struct kmem_cache *s,
366 gfp_t gfpflags,
367 int node, size_t size)
368{
369 return kmem_cache_alloc_trace(s, gfpflags, size);
370}
371#endif /* CONFIG_NUMA */
372
373#else /* CONFIG_TRACING */
374static __always_inline void *kmem_cache_alloc_trace(struct kmem_cache *s,
375 gfp_t flags, size_t size)
376{
Andrey Ryabinin0316bec2015-02-13 14:39:42 -0800377 void *ret = kmem_cache_alloc(s, flags);
378
Alexander Potapenko505f5dc2016-03-25 14:22:02 -0700379 kasan_kmalloc(s, ret, size, flags);
Andrey Ryabinin0316bec2015-02-13 14:39:42 -0800380 return ret;
Christoph Lameterf1b6eb62013-09-04 16:35:34 +0000381}
382
383static __always_inline void *
384kmem_cache_alloc_node_trace(struct kmem_cache *s,
385 gfp_t gfpflags,
386 int node, size_t size)
387{
Andrey Ryabinin0316bec2015-02-13 14:39:42 -0800388 void *ret = kmem_cache_alloc_node(s, gfpflags, node);
389
Alexander Potapenko505f5dc2016-03-25 14:22:02 -0700390 kasan_kmalloc(s, ret, size, gfpflags);
Andrey Ryabinin0316bec2015-02-13 14:39:42 -0800391 return ret;
Christoph Lameterf1b6eb62013-09-04 16:35:34 +0000392}
393#endif /* CONFIG_TRACING */
394
Rasmus Villemoes48a27052016-05-19 17:10:55 -0700395extern void *kmalloc_order(size_t size, gfp_t flags, unsigned int order) __assume_page_alignment __malloc;
Christoph Lameterf1b6eb62013-09-04 16:35:34 +0000396
397#ifdef CONFIG_TRACING
Rasmus Villemoes48a27052016-05-19 17:10:55 -0700398extern void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order) __assume_page_alignment __malloc;
Christoph Lameterf1b6eb62013-09-04 16:35:34 +0000399#else
400static __always_inline void *
401kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
402{
403 return kmalloc_order(size, flags, order);
404}
Christoph Lameterce6a5022013-01-10 19:14:19 +0000405#endif
406
Christoph Lameterf1b6eb62013-09-04 16:35:34 +0000407static __always_inline void *kmalloc_large(size_t size, gfp_t flags)
408{
409 unsigned int order = get_order(size);
410 return kmalloc_order_trace(size, flags, order);
411}
412
413/**
414 * kmalloc - allocate memory
415 * @size: how many bytes of memory are required.
Randy Dunlap7e3528c2013-11-22 18:14:38 -0800416 * @flags: the type of memory to allocate.
Christoph Lameterf1b6eb62013-09-04 16:35:34 +0000417 *
418 * kmalloc is the normal method of allocating memory
419 * for objects smaller than page size in the kernel.
Randy Dunlap7e3528c2013-11-22 18:14:38 -0800420 *
421 * The @flags argument may be one of:
422 *
423 * %GFP_USER - Allocate memory on behalf of user. May sleep.
424 *
425 * %GFP_KERNEL - Allocate normal kernel ram. May sleep.
426 *
427 * %GFP_ATOMIC - Allocation will not sleep. May use emergency pools.
428 * For example, use this inside interrupt handlers.
429 *
430 * %GFP_HIGHUSER - Allocate pages from high memory.
431 *
432 * %GFP_NOIO - Do not do any I/O at all while trying to get memory.
433 *
434 * %GFP_NOFS - Do not make any fs calls while trying to get memory.
435 *
436 * %GFP_NOWAIT - Allocation will not sleep.
437 *
Johannes Weinere97ca8e2014-03-10 15:49:43 -0700438 * %__GFP_THISNODE - Allocate node-local memory only.
Randy Dunlap7e3528c2013-11-22 18:14:38 -0800439 *
440 * %GFP_DMA - Allocation suitable for DMA.
441 * Should only be used for kmalloc() caches. Otherwise, use a
442 * slab created with SLAB_DMA.
443 *
444 * Also it is possible to set different flags by OR'ing
445 * in one or more of the following additional @flags:
446 *
447 * %__GFP_COLD - Request cache-cold pages instead of
448 * trying to return cache-warm pages.
449 *
450 * %__GFP_HIGH - This allocation has high priority and may use emergency pools.
451 *
452 * %__GFP_NOFAIL - Indicate that this allocation is in no way allowed to fail
453 * (think twice before using).
454 *
455 * %__GFP_NORETRY - If memory is not immediately available,
456 * then give up at once.
457 *
458 * %__GFP_NOWARN - If allocation fails, don't issue any warnings.
459 *
460 * %__GFP_REPEAT - If allocation fails initially, try once more before failing.
461 *
462 * There are other flags available as well, but these are not intended
463 * for general use, and so are not documented here. For a full list of
464 * potential flags, always refer to linux/gfp.h.
Christoph Lameterf1b6eb62013-09-04 16:35:34 +0000465 */
466static __always_inline void *kmalloc(size_t size, gfp_t flags)
467{
468 if (__builtin_constant_p(size)) {
469 if (size > KMALLOC_MAX_CACHE_SIZE)
470 return kmalloc_large(size, flags);
471#ifndef CONFIG_SLOB
472 if (!(flags & GFP_DMA)) {
473 int index = kmalloc_index(size);
474
475 if (!index)
476 return ZERO_SIZE_PTR;
477
478 return kmem_cache_alloc_trace(kmalloc_caches[index],
479 flags, size);
480 }
481#endif
482 }
483 return __kmalloc(size, flags);
484}
485
Christoph Lameterce6a5022013-01-10 19:14:19 +0000486/*
487 * Determine size used for the nth kmalloc cache.
488 * return size or 0 if a kmalloc cache for that
489 * size does not exist
490 */
491static __always_inline int kmalloc_size(int n)
492{
Christoph Lameter069e2b352013-06-14 19:55:13 +0000493#ifndef CONFIG_SLOB
Christoph Lameterce6a5022013-01-10 19:14:19 +0000494 if (n > 2)
495 return 1 << n;
496
497 if (n == 1 && KMALLOC_MIN_SIZE <= 32)
498 return 96;
499
500 if (n == 2 && KMALLOC_MIN_SIZE <= 64)
501 return 192;
Christoph Lameter069e2b352013-06-14 19:55:13 +0000502#endif
Christoph Lameterce6a5022013-01-10 19:14:19 +0000503 return 0;
504}
Christoph Lameterce6a5022013-01-10 19:14:19 +0000505
Christoph Lameterf1b6eb62013-09-04 16:35:34 +0000506static __always_inline void *kmalloc_node(size_t size, gfp_t flags, int node)
507{
508#ifndef CONFIG_SLOB
509 if (__builtin_constant_p(size) &&
Christoph Lameter23774a22013-09-04 19:58:08 +0000510 size <= KMALLOC_MAX_CACHE_SIZE && !(flags & GFP_DMA)) {
Christoph Lameterf1b6eb62013-09-04 16:35:34 +0000511 int i = kmalloc_index(size);
512
513 if (!i)
514 return ZERO_SIZE_PTR;
515
516 return kmem_cache_alloc_node_trace(kmalloc_caches[i],
517 flags, node, size);
518 }
519#endif
520 return __kmalloc_node(size, flags, node);
521}
522
Vladimir Davydovf7ce3192015-02-12 14:59:20 -0800523struct memcg_cache_array {
524 struct rcu_head rcu;
525 struct kmem_cache *entries[0];
526};
527
Christoph Lameter0aa817f2007-05-16 22:11:01 -0700528/*
Glauber Costaba6c4962012-12-18 14:22:27 -0800529 * This is the main placeholder for memcg-related information in kmem caches.
Glauber Costaba6c4962012-12-18 14:22:27 -0800530 * Both the root cache and the child caches will have it. For the root cache,
531 * this will hold a dynamically allocated array large enough to hold
Vladimir Davydovf8570262014-01-23 15:53:06 -0800532 * information about the currently limited memcgs in the system. To allow the
533 * array to be accessed without taking any locks, on relocation we free the old
534 * version only after a grace period.
Glauber Costaba6c4962012-12-18 14:22:27 -0800535 *
536 * Child caches will hold extra metadata needed for its operation. Fields are:
537 *
538 * @memcg: pointer to the memcg this cache belongs to
Glauber Costa2633d7a2012-12-18 14:22:34 -0800539 * @root_cache: pointer to the global, root cache, this cache was derived from
Vladimir Davydov426589f2015-02-12 14:59:23 -0800540 *
541 * Both root and child caches of the same kind are linked into a list chained
542 * through @list.
Glauber Costaba6c4962012-12-18 14:22:27 -0800543 */
544struct memcg_cache_params {
545 bool is_root_cache;
Vladimir Davydov426589f2015-02-12 14:59:23 -0800546 struct list_head list;
Glauber Costaba6c4962012-12-18 14:22:27 -0800547 union {
Vladimir Davydovf7ce3192015-02-12 14:59:20 -0800548 struct memcg_cache_array __rcu *memcg_caches;
Glauber Costa2633d7a2012-12-18 14:22:34 -0800549 struct {
550 struct mem_cgroup *memcg;
Glauber Costa2633d7a2012-12-18 14:22:34 -0800551 struct kmem_cache *root_cache;
552 };
Glauber Costaba6c4962012-12-18 14:22:27 -0800553 };
554};
555
Glauber Costa2633d7a2012-12-18 14:22:34 -0800556int memcg_update_all_caches(int num_memcgs);
557
Christoph Lameter2e892f42006-12-13 00:34:23 -0800558/**
Michael Opdenackere7efa612013-06-25 18:16:55 +0200559 * kmalloc_array - allocate memory for an array.
560 * @n: number of elements.
561 * @size: element size.
562 * @flags: the type of memory to allocate (see kmalloc).
Paul Drynoff800590f2006-06-23 02:03:48 -0700563 */
Xi Wanga8203722012-03-05 15:14:41 -0800564static inline void *kmalloc_array(size_t n, size_t size, gfp_t flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700565{
Xi Wanga3860c12012-05-31 16:26:04 -0700566 if (size != 0 && n > SIZE_MAX / size)
Paul Mundt6193a2f2007-07-15 23:38:22 -0700567 return NULL;
Alexey Dobriyan91c6a052016-07-26 15:22:08 -0700568 if (__builtin_constant_p(n) && __builtin_constant_p(size))
569 return kmalloc(n * size, flags);
Xi Wanga8203722012-03-05 15:14:41 -0800570 return __kmalloc(n * size, flags);
571}
572
573/**
574 * kcalloc - allocate memory for an array. The memory is set to zero.
575 * @n: number of elements.
576 * @size: element size.
577 * @flags: the type of memory to allocate (see kmalloc).
578 */
579static inline void *kcalloc(size_t n, size_t size, gfp_t flags)
580{
581 return kmalloc_array(n, size, flags | __GFP_ZERO);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700582}
583
Christoph Hellwig1d2c8ee2006-10-04 02:15:25 -0700584/*
585 * kmalloc_track_caller is a special version of kmalloc that records the
586 * calling function of the routine calling it for slab leak tracking instead
587 * of just the calling function (confusing, eh?).
588 * It's useful when the call to kmalloc comes from a widely-used standard
589 * allocator where we care about the real place the memory allocation
590 * request comes from.
591 */
Eduard - Gabriel Munteanuce71e272008-08-19 20:43:25 +0300592extern void *__kmalloc_track_caller(size_t, gfp_t, unsigned long);
Christoph Hellwig1d2c8ee2006-10-04 02:15:25 -0700593#define kmalloc_track_caller(size, flags) \
Eduard - Gabriel Munteanuce71e272008-08-19 20:43:25 +0300594 __kmalloc_track_caller(size, flags, _RET_IP_)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700595
Manfred Spraul97e2bde2005-05-01 08:58:38 -0700596#ifdef CONFIG_NUMA
Eduard - Gabriel Munteanuce71e272008-08-19 20:43:25 +0300597extern void *__kmalloc_node_track_caller(size_t, gfp_t, int, unsigned long);
Christoph Hellwig8b98c162006-12-06 20:32:30 -0800598#define kmalloc_node_track_caller(size, flags, node) \
599 __kmalloc_node_track_caller(size, flags, node, \
Eduard - Gabriel Munteanuce71e272008-08-19 20:43:25 +0300600 _RET_IP_)
Christoph Lameter2e892f42006-12-13 00:34:23 -0800601
Christoph Hellwig8b98c162006-12-06 20:32:30 -0800602#else /* CONFIG_NUMA */
Christoph Lameter2e892f42006-12-13 00:34:23 -0800603
604#define kmalloc_node_track_caller(size, flags, node) \
605 kmalloc_track_caller(size, flags)
606
Pascal Terjandfcd3612008-11-25 15:08:19 +0100607#endif /* CONFIG_NUMA */
Christoph Hellwig8b98c162006-12-06 20:32:30 -0800608
Christoph Lameter81cda662007-07-17 04:03:29 -0700609/*
610 * Shortcuts
611 */
612static inline void *kmem_cache_zalloc(struct kmem_cache *k, gfp_t flags)
613{
614 return kmem_cache_alloc(k, flags | __GFP_ZERO);
615}
616
617/**
618 * kzalloc - allocate memory. The memory is set to zero.
619 * @size: how many bytes of memory are required.
620 * @flags: the type of memory to allocate (see kmalloc).
621 */
622static inline void *kzalloc(size_t size, gfp_t flags)
623{
624 return kmalloc(size, flags | __GFP_ZERO);
625}
626
Jeff Layton979b0fe2008-06-05 22:47:00 -0700627/**
628 * kzalloc_node - allocate zeroed memory from a particular memory node.
629 * @size: how many bytes of memory are required.
630 * @flags: the type of memory to allocate (see kmalloc).
631 * @node: memory node from which to allocate
632 */
633static inline void *kzalloc_node(size_t size, gfp_t flags, int node)
634{
635 return kmalloc_node(size, flags | __GFP_ZERO, node);
636}
637
Joonsoo Kim07f361b2014-10-09 15:26:00 -0700638unsigned int kmem_cache_size(struct kmem_cache *s);
Pekka Enberg7e85ee02009-06-12 14:03:06 +0300639void __init kmem_cache_init_late(void);
640
Linus Torvalds1da177e2005-04-16 15:20:36 -0700641#endif /* _LINUX_SLAB_H */