blob: 402961e68c89fca4223fc07503274367668c9117 [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/* D-Link DL2000-based Gigabit Ethernet Adapter Linux driver */
2/*
3 Copyright (c) 2001, 2002 by D-Link Corporation
4 Written by Edward Peng.<edward_peng@dlink.com.tw>
5 Created 03-May-2001, base on Linux' sundance.c.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11*/
Linus Torvalds1da177e2005-04-16 15:20:36 -070012
Linus Torvalds1da177e2005-04-16 15:20:36 -070013#define DRV_NAME "D-Link DL2000-based linux driver"
Jeff Garzik03a8c662006-06-27 07:57:22 -040014#define DRV_VERSION "v1.18"
15#define DRV_RELDATE "2006/06/27"
Linus Torvalds1da177e2005-04-16 15:20:36 -070016#include "dl2k.h"
Andrew Mortonc4694c72006-05-15 09:44:43 -070017#include <linux/dma-mapping.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070018
19static char version[] __devinitdata =
20 KERN_INFO DRV_NAME " " DRV_VERSION " " DRV_RELDATE "\n";
21#define MAX_UNITS 8
22static int mtu[MAX_UNITS];
23static int vlan[MAX_UNITS];
24static int jumbo[MAX_UNITS];
25static char *media[MAX_UNITS];
26static int tx_flow=-1;
27static int rx_flow=-1;
28static int copy_thresh;
29static int rx_coalesce=10; /* Rx frame count each interrupt */
30static int rx_timeout=200; /* Rx DMA wait time in 640ns increments */
31static int tx_coalesce=16; /* HW xmit count each TxDMAComplete */
32
33
34MODULE_AUTHOR ("Edward Peng");
35MODULE_DESCRIPTION ("D-Link DL2000-based Gigabit Ethernet Adapter");
36MODULE_LICENSE("GPL");
37module_param_array(mtu, int, NULL, 0);
38module_param_array(media, charp, NULL, 0);
39module_param_array(vlan, int, NULL, 0);
40module_param_array(jumbo, int, NULL, 0);
41module_param(tx_flow, int, 0);
42module_param(rx_flow, int, 0);
43module_param(copy_thresh, int, 0);
44module_param(rx_coalesce, int, 0); /* Rx frame count each interrupt */
45module_param(rx_timeout, int, 0); /* Rx DMA wait time in 64ns increments */
46module_param(tx_coalesce, int, 0); /* HW xmit count each TxDMAComplete */
47
48
49/* Enable the default interrupts */
50#define DEFAULT_INTR (RxDMAComplete | HostError | IntRequested | TxDMAComplete| \
51 UpdateStats | LinkEvent)
52#define EnableInt() \
53writew(DEFAULT_INTR, ioaddr + IntEnable)
54
Arjan van de Venf71e1302006-03-03 21:33:57 -050055static const int max_intrloop = 50;
56static const int multicast_filter_limit = 0x40;
Linus Torvalds1da177e2005-04-16 15:20:36 -070057
58static int rio_open (struct net_device *dev);
59static void rio_timer (unsigned long data);
60static void rio_tx_timeout (struct net_device *dev);
61static void alloc_list (struct net_device *dev);
62static int start_xmit (struct sk_buff *skb, struct net_device *dev);
63static irqreturn_t rio_interrupt (int irq, void *dev_instance, struct pt_regs *regs);
64static void rio_free_tx (struct net_device *dev, int irq);
65static void tx_error (struct net_device *dev, int tx_status);
66static int receive_packet (struct net_device *dev);
67static void rio_error (struct net_device *dev, int int_status);
68static int change_mtu (struct net_device *dev, int new_mtu);
69static void set_multicast (struct net_device *dev);
70static struct net_device_stats *get_stats (struct net_device *dev);
71static int clear_stats (struct net_device *dev);
72static int rio_ioctl (struct net_device *dev, struct ifreq *rq, int cmd);
73static int rio_close (struct net_device *dev);
74static int find_miiphy (struct net_device *dev);
75static int parse_eeprom (struct net_device *dev);
76static int read_eeprom (long ioaddr, int eep_addr);
77static int mii_wait_link (struct net_device *dev, int wait);
78static int mii_set_media (struct net_device *dev);
79static int mii_get_media (struct net_device *dev);
80static int mii_set_media_pcs (struct net_device *dev);
81static int mii_get_media_pcs (struct net_device *dev);
82static int mii_read (struct net_device *dev, int phy_addr, int reg_num);
83static int mii_write (struct net_device *dev, int phy_addr, int reg_num,
84 u16 data);
85
86static struct ethtool_ops ethtool_ops;
87
88static int __devinit
89rio_probe1 (struct pci_dev *pdev, const struct pci_device_id *ent)
90{
91 struct net_device *dev;
92 struct netdev_private *np;
93 static int card_idx;
94 int chip_idx = ent->driver_data;
95 int err, irq;
96 long ioaddr;
97 static int version_printed;
98 void *ring_space;
99 dma_addr_t ring_dma;
100
101 if (!version_printed++)
102 printk ("%s", version);
103
104 err = pci_enable_device (pdev);
105 if (err)
106 return err;
107
108 irq = pdev->irq;
109 err = pci_request_regions (pdev, "dl2k");
110 if (err)
111 goto err_out_disable;
112
113 pci_set_master (pdev);
114 dev = alloc_etherdev (sizeof (*np));
115 if (!dev) {
116 err = -ENOMEM;
117 goto err_out_res;
118 }
119 SET_MODULE_OWNER (dev);
120 SET_NETDEV_DEV(dev, &pdev->dev);
121
122#ifdef MEM_MAPPING
123 ioaddr = pci_resource_start (pdev, 1);
124 ioaddr = (long) ioremap (ioaddr, RIO_IO_SIZE);
125 if (!ioaddr) {
126 err = -ENOMEM;
127 goto err_out_dev;
128 }
129#else
130 ioaddr = pci_resource_start (pdev, 0);
131#endif
132 dev->base_addr = ioaddr;
133 dev->irq = irq;
134 np = netdev_priv(dev);
135 np->chip_id = chip_idx;
136 np->pdev = pdev;
137 spin_lock_init (&np->tx_lock);
138 spin_lock_init (&np->rx_lock);
139
140 /* Parse manual configuration */
141 np->an_enable = 1;
142 np->tx_coalesce = 1;
143 if (card_idx < MAX_UNITS) {
144 if (media[card_idx] != NULL) {
145 np->an_enable = 0;
146 if (strcmp (media[card_idx], "auto") == 0 ||
147 strcmp (media[card_idx], "autosense") == 0 ||
148 strcmp (media[card_idx], "0") == 0 ) {
149 np->an_enable = 2;
150 } else if (strcmp (media[card_idx], "100mbps_fd") == 0 ||
151 strcmp (media[card_idx], "4") == 0) {
152 np->speed = 100;
153 np->full_duplex = 1;
154 } else if (strcmp (media[card_idx], "100mbps_hd") == 0
155 || strcmp (media[card_idx], "3") == 0) {
156 np->speed = 100;
157 np->full_duplex = 0;
158 } else if (strcmp (media[card_idx], "10mbps_fd") == 0 ||
159 strcmp (media[card_idx], "2") == 0) {
160 np->speed = 10;
161 np->full_duplex = 1;
162 } else if (strcmp (media[card_idx], "10mbps_hd") == 0 ||
163 strcmp (media[card_idx], "1") == 0) {
164 np->speed = 10;
165 np->full_duplex = 0;
166 } else if (strcmp (media[card_idx], "1000mbps_fd") == 0 ||
167 strcmp (media[card_idx], "6") == 0) {
168 np->speed=1000;
169 np->full_duplex=1;
170 } else if (strcmp (media[card_idx], "1000mbps_hd") == 0 ||
171 strcmp (media[card_idx], "5") == 0) {
172 np->speed = 1000;
173 np->full_duplex = 0;
174 } else {
175 np->an_enable = 1;
176 }
177 }
178 if (jumbo[card_idx] != 0) {
179 np->jumbo = 1;
180 dev->mtu = MAX_JUMBO;
181 } else {
182 np->jumbo = 0;
183 if (mtu[card_idx] > 0 && mtu[card_idx] < PACKET_SIZE)
184 dev->mtu = mtu[card_idx];
185 }
186 np->vlan = (vlan[card_idx] > 0 && vlan[card_idx] < 4096) ?
187 vlan[card_idx] : 0;
188 if (rx_coalesce > 0 && rx_timeout > 0) {
189 np->rx_coalesce = rx_coalesce;
190 np->rx_timeout = rx_timeout;
191 np->coalesce = 1;
192 }
193 np->tx_flow = (tx_flow == 0) ? 0 : 1;
194 np->rx_flow = (rx_flow == 0) ? 0 : 1;
195
196 if (tx_coalesce < 1)
197 tx_coalesce = 1;
198 else if (tx_coalesce > TX_RING_SIZE-1)
199 tx_coalesce = TX_RING_SIZE - 1;
200 }
201 dev->open = &rio_open;
202 dev->hard_start_xmit = &start_xmit;
203 dev->stop = &rio_close;
204 dev->get_stats = &get_stats;
205 dev->set_multicast_list = &set_multicast;
206 dev->do_ioctl = &rio_ioctl;
207 dev->tx_timeout = &rio_tx_timeout;
208 dev->watchdog_timeo = TX_TIMEOUT;
209 dev->change_mtu = &change_mtu;
210 SET_ETHTOOL_OPS(dev, &ethtool_ops);
211#if 0
212 dev->features = NETIF_F_IP_CSUM;
213#endif
214 pci_set_drvdata (pdev, dev);
215
216 ring_space = pci_alloc_consistent (pdev, TX_TOTAL_SIZE, &ring_dma);
217 if (!ring_space)
218 goto err_out_iounmap;
219 np->tx_ring = (struct netdev_desc *) ring_space;
220 np->tx_ring_dma = ring_dma;
221
222 ring_space = pci_alloc_consistent (pdev, RX_TOTAL_SIZE, &ring_dma);
223 if (!ring_space)
224 goto err_out_unmap_tx;
225 np->rx_ring = (struct netdev_desc *) ring_space;
226 np->rx_ring_dma = ring_dma;
227
228 /* Parse eeprom data */
229 parse_eeprom (dev);
230
231 /* Find PHY address */
232 err = find_miiphy (dev);
233 if (err)
234 goto err_out_unmap_rx;
235
236 /* Fiber device? */
237 np->phy_media = (readw(ioaddr + ASICCtrl) & PhyMedia) ? 1 : 0;
238 np->link_status = 0;
239 /* Set media and reset PHY */
240 if (np->phy_media) {
241 /* default Auto-Negotiation for fiber deivices */
242 if (np->an_enable == 2) {
243 np->an_enable = 1;
244 }
245 mii_set_media_pcs (dev);
246 } else {
247 /* Auto-Negotiation is mandatory for 1000BASE-T,
248 IEEE 802.3ab Annex 28D page 14 */
249 if (np->speed == 1000)
250 np->an_enable = 1;
251 mii_set_media (dev);
252 }
253 pci_read_config_byte(pdev, PCI_REVISION_ID, &np->pci_rev_id);
254
255 err = register_netdev (dev);
256 if (err)
257 goto err_out_unmap_rx;
258
259 card_idx++;
260
261 printk (KERN_INFO "%s: %s, %02x:%02x:%02x:%02x:%02x:%02x, IRQ %d\n",
262 dev->name, np->name,
263 dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2],
264 dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5], irq);
265 if (tx_coalesce > 1)
266 printk(KERN_INFO "tx_coalesce:\t%d packets\n",
267 tx_coalesce);
268 if (np->coalesce)
269 printk(KERN_INFO "rx_coalesce:\t%d packets\n"
270 KERN_INFO "rx_timeout: \t%d ns\n",
271 np->rx_coalesce, np->rx_timeout*640);
272 if (np->vlan)
273 printk(KERN_INFO "vlan(id):\t%d\n", np->vlan);
274 return 0;
275
276 err_out_unmap_rx:
277 pci_free_consistent (pdev, RX_TOTAL_SIZE, np->rx_ring, np->rx_ring_dma);
278 err_out_unmap_tx:
279 pci_free_consistent (pdev, TX_TOTAL_SIZE, np->tx_ring, np->tx_ring_dma);
280 err_out_iounmap:
281#ifdef MEM_MAPPING
282 iounmap ((void *) ioaddr);
283
284 err_out_dev:
285#endif
286 free_netdev (dev);
287
288 err_out_res:
289 pci_release_regions (pdev);
290
291 err_out_disable:
292 pci_disable_device (pdev);
293 return err;
294}
295
296int
297find_miiphy (struct net_device *dev)
298{
299 int i, phy_found = 0;
300 struct netdev_private *np;
301 long ioaddr;
302 np = netdev_priv(dev);
303 ioaddr = dev->base_addr;
304 np->phy_addr = 1;
305
306 for (i = 31; i >= 0; i--) {
307 int mii_status = mii_read (dev, i, 1);
308 if (mii_status != 0xffff && mii_status != 0x0000) {
309 np->phy_addr = i;
310 phy_found++;
311 }
312 }
313 if (!phy_found) {
314 printk (KERN_ERR "%s: No MII PHY found!\n", dev->name);
315 return -ENODEV;
316 }
317 return 0;
318}
319
320int
321parse_eeprom (struct net_device *dev)
322{
323 int i, j;
324 long ioaddr = dev->base_addr;
325 u8 sromdata[256];
326 u8 *psib;
327 u32 crc;
328 PSROM_t psrom = (PSROM_t) sromdata;
329 struct netdev_private *np = netdev_priv(dev);
330
331 int cid, next;
332
333#ifdef MEM_MAPPING
334 ioaddr = pci_resource_start (np->pdev, 0);
335#endif
336 /* Read eeprom */
337 for (i = 0; i < 128; i++) {
338 ((u16 *) sromdata)[i] = le16_to_cpu (read_eeprom (ioaddr, i));
339 }
340#ifdef MEM_MAPPING
341 ioaddr = dev->base_addr;
342#endif
343 /* Check CRC */
344 crc = ~ether_crc_le (256 - 4, sromdata);
345 if (psrom->crc != crc) {
346 printk (KERN_ERR "%s: EEPROM data CRC error.\n", dev->name);
347 return -1;
348 }
349
350 /* Set MAC address */
351 for (i = 0; i < 6; i++)
352 dev->dev_addr[i] = psrom->mac_addr[i];
353
Adrian Bunk47bdd712006-06-30 18:25:18 +0200354 /* Parse Software Information Block */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700355 i = 0x30;
356 psib = (u8 *) sromdata;
357 do {
358 cid = psib[i++];
359 next = psib[i++];
360 if ((cid == 0 && next == 0) || (cid == 0xff && next == 0xff)) {
361 printk (KERN_ERR "Cell data error\n");
362 return -1;
363 }
364 switch (cid) {
365 case 0: /* Format version */
366 break;
367 case 1: /* End of cell */
368 return 0;
369 case 2: /* Duplex Polarity */
370 np->duplex_polarity = psib[i];
371 writeb (readb (ioaddr + PhyCtrl) | psib[i],
372 ioaddr + PhyCtrl);
373 break;
374 case 3: /* Wake Polarity */
375 np->wake_polarity = psib[i];
376 break;
377 case 9: /* Adapter description */
378 j = (next - i > 255) ? 255 : next - i;
379 memcpy (np->name, &(psib[i]), j);
380 break;
381 case 4:
382 case 5:
383 case 6:
384 case 7:
385 case 8: /* Reversed */
386 break;
387 default: /* Unknown cell */
388 return -1;
389 }
390 i = next;
391 } while (1);
392
393 return 0;
394}
395
396static int
397rio_open (struct net_device *dev)
398{
399 struct netdev_private *np = netdev_priv(dev);
400 long ioaddr = dev->base_addr;
401 int i;
402 u16 macctrl;
403
Thomas Gleixner1fb9df52006-07-01 19:29:39 -0700404 i = request_irq (dev->irq, &rio_interrupt, IRQF_SHARED, dev->name, dev);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700405 if (i)
406 return i;
407
408 /* Reset all logic functions */
409 writew (GlobalReset | DMAReset | FIFOReset | NetworkReset | HostReset,
410 ioaddr + ASICCtrl + 2);
411 mdelay(10);
412
413 /* DebugCtrl bit 4, 5, 9 must set */
414 writel (readl (ioaddr + DebugCtrl) | 0x0230, ioaddr + DebugCtrl);
415
416 /* Jumbo frame */
417 if (np->jumbo != 0)
418 writew (MAX_JUMBO+14, ioaddr + MaxFrameSize);
419
420 alloc_list (dev);
421
422 /* Get station address */
423 for (i = 0; i < 6; i++)
424 writeb (dev->dev_addr[i], ioaddr + StationAddr0 + i);
425
426 set_multicast (dev);
427 if (np->coalesce) {
428 writel (np->rx_coalesce | np->rx_timeout << 16,
429 ioaddr + RxDMAIntCtrl);
430 }
431 /* Set RIO to poll every N*320nsec. */
432 writeb (0x20, ioaddr + RxDMAPollPeriod);
433 writeb (0xff, ioaddr + TxDMAPollPeriod);
434 writeb (0x30, ioaddr + RxDMABurstThresh);
435 writeb (0x30, ioaddr + RxDMAUrgentThresh);
436 writel (0x0007ffff, ioaddr + RmonStatMask);
437 /* clear statistics */
438 clear_stats (dev);
439
440 /* VLAN supported */
441 if (np->vlan) {
442 /* priority field in RxDMAIntCtrl */
443 writel (readl(ioaddr + RxDMAIntCtrl) | 0x7 << 10,
444 ioaddr + RxDMAIntCtrl);
445 /* VLANId */
446 writew (np->vlan, ioaddr + VLANId);
447 /* Length/Type should be 0x8100 */
448 writel (0x8100 << 16 | np->vlan, ioaddr + VLANTag);
449 /* Enable AutoVLANuntagging, but disable AutoVLANtagging.
450 VLAN information tagged by TFC' VID, CFI fields. */
451 writel (readl (ioaddr + MACCtrl) | AutoVLANuntagging,
452 ioaddr + MACCtrl);
453 }
454
455 init_timer (&np->timer);
456 np->timer.expires = jiffies + 1*HZ;
457 np->timer.data = (unsigned long) dev;
458 np->timer.function = &rio_timer;
459 add_timer (&np->timer);
460
461 /* Start Tx/Rx */
462 writel (readl (ioaddr + MACCtrl) | StatsEnable | RxEnable | TxEnable,
463 ioaddr + MACCtrl);
464
465 macctrl = 0;
466 macctrl |= (np->vlan) ? AutoVLANuntagging : 0;
467 macctrl |= (np->full_duplex) ? DuplexSelect : 0;
468 macctrl |= (np->tx_flow) ? TxFlowControlEnable : 0;
469 macctrl |= (np->rx_flow) ? RxFlowControlEnable : 0;
470 writew(macctrl, ioaddr + MACCtrl);
471
472 netif_start_queue (dev);
473
474 /* Enable default interrupts */
475 EnableInt ();
476 return 0;
477}
478
479static void
480rio_timer (unsigned long data)
481{
482 struct net_device *dev = (struct net_device *)data;
483 struct netdev_private *np = netdev_priv(dev);
484 unsigned int entry;
485 int next_tick = 1*HZ;
486 unsigned long flags;
487
488 spin_lock_irqsave(&np->rx_lock, flags);
489 /* Recover rx ring exhausted error */
490 if (np->cur_rx - np->old_rx >= RX_RING_SIZE) {
491 printk(KERN_INFO "Try to recover rx ring exhausted...\n");
492 /* Re-allocate skbuffs to fill the descriptor ring */
493 for (; np->cur_rx - np->old_rx > 0; np->old_rx++) {
494 struct sk_buff *skb;
495 entry = np->old_rx % RX_RING_SIZE;
496 /* Dropped packets don't need to re-allocate */
497 if (np->rx_skbuff[entry] == NULL) {
498 skb = dev_alloc_skb (np->rx_buf_sz);
499 if (skb == NULL) {
500 np->rx_ring[entry].fraginfo = 0;
501 printk (KERN_INFO
502 "%s: Still unable to re-allocate Rx skbuff.#%d\n",
503 dev->name, entry);
504 break;
505 }
506 np->rx_skbuff[entry] = skb;
507 skb->dev = dev;
508 /* 16 byte align the IP header */
509 skb_reserve (skb, 2);
510 np->rx_ring[entry].fraginfo =
511 cpu_to_le64 (pci_map_single
David S. Miller689be432005-06-28 15:25:31 -0700512 (np->pdev, skb->data, np->rx_buf_sz,
Linus Torvalds1da177e2005-04-16 15:20:36 -0700513 PCI_DMA_FROMDEVICE));
514 }
515 np->rx_ring[entry].fraginfo |=
516 cpu_to_le64 (np->rx_buf_sz) << 48;
517 np->rx_ring[entry].status = 0;
518 } /* end for */
519 } /* end if */
520 spin_unlock_irqrestore (&np->rx_lock, flags);
521 np->timer.expires = jiffies + next_tick;
522 add_timer(&np->timer);
523}
524
525static void
526rio_tx_timeout (struct net_device *dev)
527{
528 long ioaddr = dev->base_addr;
529
530 printk (KERN_INFO "%s: Tx timed out (%4.4x), is buffer full?\n",
531 dev->name, readl (ioaddr + TxStatus));
532 rio_free_tx(dev, 0);
533 dev->if_port = 0;
534 dev->trans_start = jiffies;
535}
536
537 /* allocate and initialize Tx and Rx descriptors */
538static void
539alloc_list (struct net_device *dev)
540{
541 struct netdev_private *np = netdev_priv(dev);
542 int i;
543
544 np->cur_rx = np->cur_tx = 0;
545 np->old_rx = np->old_tx = 0;
546 np->rx_buf_sz = (dev->mtu <= 1500 ? PACKET_SIZE : dev->mtu + 32);
547
548 /* Initialize Tx descriptors, TFDListPtr leaves in start_xmit(). */
549 for (i = 0; i < TX_RING_SIZE; i++) {
550 np->tx_skbuff[i] = NULL;
551 np->tx_ring[i].status = cpu_to_le64 (TFDDone);
552 np->tx_ring[i].next_desc = cpu_to_le64 (np->tx_ring_dma +
553 ((i+1)%TX_RING_SIZE) *
554 sizeof (struct netdev_desc));
555 }
556
557 /* Initialize Rx descriptors */
558 for (i = 0; i < RX_RING_SIZE; i++) {
559 np->rx_ring[i].next_desc = cpu_to_le64 (np->rx_ring_dma +
560 ((i + 1) % RX_RING_SIZE) *
561 sizeof (struct netdev_desc));
562 np->rx_ring[i].status = 0;
563 np->rx_ring[i].fraginfo = 0;
564 np->rx_skbuff[i] = NULL;
565 }
566
567 /* Allocate the rx buffers */
568 for (i = 0; i < RX_RING_SIZE; i++) {
569 /* Allocated fixed size of skbuff */
570 struct sk_buff *skb = dev_alloc_skb (np->rx_buf_sz);
571 np->rx_skbuff[i] = skb;
572 if (skb == NULL) {
573 printk (KERN_ERR
574 "%s: alloc_list: allocate Rx buffer error! ",
575 dev->name);
576 break;
577 }
578 skb->dev = dev; /* Mark as being used by this device. */
579 skb_reserve (skb, 2); /* 16 byte align the IP header. */
580 /* Rubicon now supports 40 bits of addressing space. */
581 np->rx_ring[i].fraginfo =
582 cpu_to_le64 ( pci_map_single (
David S. Miller689be432005-06-28 15:25:31 -0700583 np->pdev, skb->data, np->rx_buf_sz,
Linus Torvalds1da177e2005-04-16 15:20:36 -0700584 PCI_DMA_FROMDEVICE));
585 np->rx_ring[i].fraginfo |= cpu_to_le64 (np->rx_buf_sz) << 48;
586 }
587
588 /* Set RFDListPtr */
589 writel (cpu_to_le32 (np->rx_ring_dma), dev->base_addr + RFDListPtr0);
590 writel (0, dev->base_addr + RFDListPtr1);
591
592 return;
593}
594
595static int
596start_xmit (struct sk_buff *skb, struct net_device *dev)
597{
598 struct netdev_private *np = netdev_priv(dev);
599 struct netdev_desc *txdesc;
600 unsigned entry;
601 u32 ioaddr;
602 u64 tfc_vlan_tag = 0;
603
604 if (np->link_status == 0) { /* Link Down */
605 dev_kfree_skb(skb);
606 return 0;
607 }
608 ioaddr = dev->base_addr;
609 entry = np->cur_tx % TX_RING_SIZE;
610 np->tx_skbuff[entry] = skb;
611 txdesc = &np->tx_ring[entry];
612
613#if 0
614 if (skb->ip_summed == CHECKSUM_HW) {
615 txdesc->status |=
616 cpu_to_le64 (TCPChecksumEnable | UDPChecksumEnable |
617 IPChecksumEnable);
618 }
619#endif
620 if (np->vlan) {
621 tfc_vlan_tag =
622 cpu_to_le64 (VLANTagInsert) |
623 (cpu_to_le64 (np->vlan) << 32) |
624 (cpu_to_le64 (skb->priority) << 45);
625 }
626 txdesc->fraginfo = cpu_to_le64 (pci_map_single (np->pdev, skb->data,
627 skb->len,
628 PCI_DMA_TODEVICE));
629 txdesc->fraginfo |= cpu_to_le64 (skb->len) << 48;
630
631 /* DL2K bug: DMA fails to get next descriptor ptr in 10Mbps mode
632 * Work around: Always use 1 descriptor in 10Mbps mode */
633 if (entry % np->tx_coalesce == 0 || np->speed == 10)
634 txdesc->status = cpu_to_le64 (entry | tfc_vlan_tag |
635 WordAlignDisable |
636 TxDMAIndicate |
637 (1 << FragCountShift));
638 else
639 txdesc->status = cpu_to_le64 (entry | tfc_vlan_tag |
640 WordAlignDisable |
641 (1 << FragCountShift));
642
643 /* TxDMAPollNow */
644 writel (readl (ioaddr + DMACtrl) | 0x00001000, ioaddr + DMACtrl);
645 /* Schedule ISR */
646 writel(10000, ioaddr + CountDown);
647 np->cur_tx = (np->cur_tx + 1) % TX_RING_SIZE;
648 if ((np->cur_tx - np->old_tx + TX_RING_SIZE) % TX_RING_SIZE
649 < TX_QUEUE_LEN - 1 && np->speed != 10) {
650 /* do nothing */
651 } else if (!netif_queue_stopped(dev)) {
652 netif_stop_queue (dev);
653 }
654
655 /* The first TFDListPtr */
656 if (readl (dev->base_addr + TFDListPtr0) == 0) {
657 writel (np->tx_ring_dma + entry * sizeof (struct netdev_desc),
658 dev->base_addr + TFDListPtr0);
659 writel (0, dev->base_addr + TFDListPtr1);
660 }
661
662 /* NETDEV WATCHDOG timer */
663 dev->trans_start = jiffies;
664 return 0;
665}
666
667static irqreturn_t
668rio_interrupt (int irq, void *dev_instance, struct pt_regs *rgs)
669{
670 struct net_device *dev = dev_instance;
671 struct netdev_private *np;
672 unsigned int_status;
673 long ioaddr;
674 int cnt = max_intrloop;
675 int handled = 0;
676
677 ioaddr = dev->base_addr;
678 np = netdev_priv(dev);
679 while (1) {
680 int_status = readw (ioaddr + IntStatus);
681 writew (int_status, ioaddr + IntStatus);
682 int_status &= DEFAULT_INTR;
683 if (int_status == 0 || --cnt < 0)
684 break;
685 handled = 1;
686 /* Processing received packets */
687 if (int_status & RxDMAComplete)
688 receive_packet (dev);
689 /* TxDMAComplete interrupt */
690 if ((int_status & (TxDMAComplete|IntRequested))) {
691 int tx_status;
692 tx_status = readl (ioaddr + TxStatus);
693 if (tx_status & 0x01)
694 tx_error (dev, tx_status);
695 /* Free used tx skbuffs */
696 rio_free_tx (dev, 1);
697 }
698
699 /* Handle uncommon events */
700 if (int_status &
701 (HostError | LinkEvent | UpdateStats))
702 rio_error (dev, int_status);
703 }
704 if (np->cur_tx != np->old_tx)
705 writel (100, ioaddr + CountDown);
706 return IRQ_RETVAL(handled);
707}
708
709static void
710rio_free_tx (struct net_device *dev, int irq)
711{
712 struct netdev_private *np = netdev_priv(dev);
713 int entry = np->old_tx % TX_RING_SIZE;
714 int tx_use = 0;
715 unsigned long flag = 0;
716
717 if (irq)
718 spin_lock(&np->tx_lock);
719 else
720 spin_lock_irqsave(&np->tx_lock, flag);
721
722 /* Free used tx skbuffs */
723 while (entry != np->cur_tx) {
724 struct sk_buff *skb;
725
726 if (!(np->tx_ring[entry].status & TFDDone))
727 break;
728 skb = np->tx_skbuff[entry];
729 pci_unmap_single (np->pdev,
Francois Romieu4c1b4622006-05-10 12:48:57 -0700730 np->tx_ring[entry].fraginfo & DMA_48BIT_MASK,
Linus Torvalds1da177e2005-04-16 15:20:36 -0700731 skb->len, PCI_DMA_TODEVICE);
732 if (irq)
733 dev_kfree_skb_irq (skb);
734 else
735 dev_kfree_skb (skb);
736
737 np->tx_skbuff[entry] = NULL;
738 entry = (entry + 1) % TX_RING_SIZE;
739 tx_use++;
740 }
741 if (irq)
742 spin_unlock(&np->tx_lock);
743 else
744 spin_unlock_irqrestore(&np->tx_lock, flag);
745 np->old_tx = entry;
746
747 /* If the ring is no longer full, clear tx_full and
748 call netif_wake_queue() */
749
750 if (netif_queue_stopped(dev) &&
751 ((np->cur_tx - np->old_tx + TX_RING_SIZE) % TX_RING_SIZE
752 < TX_QUEUE_LEN - 1 || np->speed == 10)) {
753 netif_wake_queue (dev);
754 }
755}
756
757static void
758tx_error (struct net_device *dev, int tx_status)
759{
760 struct netdev_private *np;
761 long ioaddr = dev->base_addr;
762 int frame_id;
763 int i;
764
765 np = netdev_priv(dev);
766
767 frame_id = (tx_status & 0xffff0000);
768 printk (KERN_ERR "%s: Transmit error, TxStatus %4.4x, FrameId %d.\n",
769 dev->name, tx_status, frame_id);
770 np->stats.tx_errors++;
771 /* Ttransmit Underrun */
772 if (tx_status & 0x10) {
773 np->stats.tx_fifo_errors++;
774 writew (readw (ioaddr + TxStartThresh) + 0x10,
775 ioaddr + TxStartThresh);
776 /* Transmit Underrun need to set TxReset, DMARest, FIFOReset */
777 writew (TxReset | DMAReset | FIFOReset | NetworkReset,
778 ioaddr + ASICCtrl + 2);
779 /* Wait for ResetBusy bit clear */
780 for (i = 50; i > 0; i--) {
781 if ((readw (ioaddr + ASICCtrl + 2) & ResetBusy) == 0)
782 break;
783 mdelay (1);
784 }
785 rio_free_tx (dev, 1);
786 /* Reset TFDListPtr */
787 writel (np->tx_ring_dma +
788 np->old_tx * sizeof (struct netdev_desc),
789 dev->base_addr + TFDListPtr0);
790 writel (0, dev->base_addr + TFDListPtr1);
791
792 /* Let TxStartThresh stay default value */
793 }
794 /* Late Collision */
795 if (tx_status & 0x04) {
796 np->stats.tx_fifo_errors++;
797 /* TxReset and clear FIFO */
798 writew (TxReset | FIFOReset, ioaddr + ASICCtrl + 2);
799 /* Wait reset done */
800 for (i = 50; i > 0; i--) {
801 if ((readw (ioaddr + ASICCtrl + 2) & ResetBusy) == 0)
802 break;
803 mdelay (1);
804 }
805 /* Let TxStartThresh stay default value */
806 }
807 /* Maximum Collisions */
808#ifdef ETHER_STATS
809 if (tx_status & 0x08)
810 np->stats.collisions16++;
811#else
812 if (tx_status & 0x08)
813 np->stats.collisions++;
814#endif
815 /* Restart the Tx */
816 writel (readw (dev->base_addr + MACCtrl) | TxEnable, ioaddr + MACCtrl);
817}
818
819static int
820receive_packet (struct net_device *dev)
821{
822 struct netdev_private *np = netdev_priv(dev);
823 int entry = np->cur_rx % RX_RING_SIZE;
824 int cnt = 30;
825
826 /* If RFDDone, FrameStart and FrameEnd set, there is a new packet in. */
827 while (1) {
828 struct netdev_desc *desc = &np->rx_ring[entry];
829 int pkt_len;
830 u64 frame_status;
831
832 if (!(desc->status & RFDDone) ||
833 !(desc->status & FrameStart) || !(desc->status & FrameEnd))
834 break;
835
836 /* Chip omits the CRC. */
837 pkt_len = le64_to_cpu (desc->status & 0xffff);
838 frame_status = le64_to_cpu (desc->status);
839 if (--cnt < 0)
840 break;
841 /* Update rx error statistics, drop packet. */
842 if (frame_status & RFS_Errors) {
843 np->stats.rx_errors++;
844 if (frame_status & (RxRuntFrame | RxLengthError))
845 np->stats.rx_length_errors++;
846 if (frame_status & RxFCSError)
847 np->stats.rx_crc_errors++;
848 if (frame_status & RxAlignmentError && np->speed != 1000)
849 np->stats.rx_frame_errors++;
850 if (frame_status & RxFIFOOverrun)
851 np->stats.rx_fifo_errors++;
852 } else {
853 struct sk_buff *skb;
854
855 /* Small skbuffs for short packets */
856 if (pkt_len > copy_thresh) {
Jon Mason9ee09d92006-03-10 15:12:10 -0600857 pci_unmap_single (np->pdev,
Francois Romieu4c1b4622006-05-10 12:48:57 -0700858 desc->fraginfo & DMA_48BIT_MASK,
Linus Torvalds1da177e2005-04-16 15:20:36 -0700859 np->rx_buf_sz,
860 PCI_DMA_FROMDEVICE);
861 skb_put (skb = np->rx_skbuff[entry], pkt_len);
862 np->rx_skbuff[entry] = NULL;
863 } else if ((skb = dev_alloc_skb (pkt_len + 2)) != NULL) {
864 pci_dma_sync_single_for_cpu(np->pdev,
Jon Mason9ee09d92006-03-10 15:12:10 -0600865 desc->fraginfo &
Francois Romieu4c1b4622006-05-10 12:48:57 -0700866 DMA_48BIT_MASK,
Linus Torvalds1da177e2005-04-16 15:20:36 -0700867 np->rx_buf_sz,
868 PCI_DMA_FROMDEVICE);
869 skb->dev = dev;
870 /* 16 byte align the IP header */
871 skb_reserve (skb, 2);
872 eth_copy_and_sum (skb,
David S. Miller689be432005-06-28 15:25:31 -0700873 np->rx_skbuff[entry]->data,
Linus Torvalds1da177e2005-04-16 15:20:36 -0700874 pkt_len, 0);
875 skb_put (skb, pkt_len);
876 pci_dma_sync_single_for_device(np->pdev,
Jon Mason9ee09d92006-03-10 15:12:10 -0600877 desc->fraginfo &
Francois Romieu4c1b4622006-05-10 12:48:57 -0700878 DMA_48BIT_MASK,
Linus Torvalds1da177e2005-04-16 15:20:36 -0700879 np->rx_buf_sz,
880 PCI_DMA_FROMDEVICE);
881 }
882 skb->protocol = eth_type_trans (skb, dev);
883#if 0
884 /* Checksum done by hw, but csum value unavailable. */
885 if (np->pci_rev_id >= 0x0c &&
886 !(frame_status & (TCPError | UDPError | IPError))) {
887 skb->ip_summed = CHECKSUM_UNNECESSARY;
888 }
889#endif
890 netif_rx (skb);
891 dev->last_rx = jiffies;
892 }
893 entry = (entry + 1) % RX_RING_SIZE;
894 }
895 spin_lock(&np->rx_lock);
896 np->cur_rx = entry;
897 /* Re-allocate skbuffs to fill the descriptor ring */
898 entry = np->old_rx;
899 while (entry != np->cur_rx) {
900 struct sk_buff *skb;
901 /* Dropped packets don't need to re-allocate */
902 if (np->rx_skbuff[entry] == NULL) {
903 skb = dev_alloc_skb (np->rx_buf_sz);
904 if (skb == NULL) {
905 np->rx_ring[entry].fraginfo = 0;
906 printk (KERN_INFO
907 "%s: receive_packet: "
908 "Unable to re-allocate Rx skbuff.#%d\n",
909 dev->name, entry);
910 break;
911 }
912 np->rx_skbuff[entry] = skb;
913 skb->dev = dev;
914 /* 16 byte align the IP header */
915 skb_reserve (skb, 2);
916 np->rx_ring[entry].fraginfo =
917 cpu_to_le64 (pci_map_single
David S. Miller689be432005-06-28 15:25:31 -0700918 (np->pdev, skb->data, np->rx_buf_sz,
Linus Torvalds1da177e2005-04-16 15:20:36 -0700919 PCI_DMA_FROMDEVICE));
920 }
921 np->rx_ring[entry].fraginfo |=
922 cpu_to_le64 (np->rx_buf_sz) << 48;
923 np->rx_ring[entry].status = 0;
924 entry = (entry + 1) % RX_RING_SIZE;
925 }
926 np->old_rx = entry;
927 spin_unlock(&np->rx_lock);
928 return 0;
929}
930
931static void
932rio_error (struct net_device *dev, int int_status)
933{
934 long ioaddr = dev->base_addr;
935 struct netdev_private *np = netdev_priv(dev);
936 u16 macctrl;
937
938 /* Link change event */
939 if (int_status & LinkEvent) {
940 if (mii_wait_link (dev, 10) == 0) {
941 printk (KERN_INFO "%s: Link up\n", dev->name);
942 if (np->phy_media)
943 mii_get_media_pcs (dev);
944 else
945 mii_get_media (dev);
946 if (np->speed == 1000)
947 np->tx_coalesce = tx_coalesce;
948 else
949 np->tx_coalesce = 1;
950 macctrl = 0;
951 macctrl |= (np->vlan) ? AutoVLANuntagging : 0;
952 macctrl |= (np->full_duplex) ? DuplexSelect : 0;
953 macctrl |= (np->tx_flow) ?
954 TxFlowControlEnable : 0;
955 macctrl |= (np->rx_flow) ?
956 RxFlowControlEnable : 0;
957 writew(macctrl, ioaddr + MACCtrl);
958 np->link_status = 1;
959 netif_carrier_on(dev);
960 } else {
961 printk (KERN_INFO "%s: Link off\n", dev->name);
962 np->link_status = 0;
963 netif_carrier_off(dev);
964 }
965 }
966
967 /* UpdateStats statistics registers */
968 if (int_status & UpdateStats) {
969 get_stats (dev);
970 }
971
972 /* PCI Error, a catastronphic error related to the bus interface
973 occurs, set GlobalReset and HostReset to reset. */
974 if (int_status & HostError) {
975 printk (KERN_ERR "%s: HostError! IntStatus %4.4x.\n",
976 dev->name, int_status);
977 writew (GlobalReset | HostReset, ioaddr + ASICCtrl + 2);
978 mdelay (500);
979 }
980}
981
982static struct net_device_stats *
983get_stats (struct net_device *dev)
984{
985 long ioaddr = dev->base_addr;
986 struct netdev_private *np = netdev_priv(dev);
987#ifdef MEM_MAPPING
988 int i;
989#endif
990 unsigned int stat_reg;
991
992 /* All statistics registers need to be acknowledged,
993 else statistic overflow could cause problems */
994
995 np->stats.rx_packets += readl (ioaddr + FramesRcvOk);
996 np->stats.tx_packets += readl (ioaddr + FramesXmtOk);
997 np->stats.rx_bytes += readl (ioaddr + OctetRcvOk);
998 np->stats.tx_bytes += readl (ioaddr + OctetXmtOk);
999
1000 np->stats.multicast = readl (ioaddr + McstFramesRcvdOk);
1001 np->stats.collisions += readl (ioaddr + SingleColFrames)
1002 + readl (ioaddr + MultiColFrames);
1003
1004 /* detailed tx errors */
1005 stat_reg = readw (ioaddr + FramesAbortXSColls);
1006 np->stats.tx_aborted_errors += stat_reg;
1007 np->stats.tx_errors += stat_reg;
1008
1009 stat_reg = readw (ioaddr + CarrierSenseErrors);
1010 np->stats.tx_carrier_errors += stat_reg;
1011 np->stats.tx_errors += stat_reg;
1012
1013 /* Clear all other statistic register. */
1014 readl (ioaddr + McstOctetXmtOk);
1015 readw (ioaddr + BcstFramesXmtdOk);
1016 readl (ioaddr + McstFramesXmtdOk);
1017 readw (ioaddr + BcstFramesRcvdOk);
1018 readw (ioaddr + MacControlFramesRcvd);
1019 readw (ioaddr + FrameTooLongErrors);
1020 readw (ioaddr + InRangeLengthErrors);
1021 readw (ioaddr + FramesCheckSeqErrors);
1022 readw (ioaddr + FramesLostRxErrors);
1023 readl (ioaddr + McstOctetXmtOk);
1024 readl (ioaddr + BcstOctetXmtOk);
1025 readl (ioaddr + McstFramesXmtdOk);
1026 readl (ioaddr + FramesWDeferredXmt);
1027 readl (ioaddr + LateCollisions);
1028 readw (ioaddr + BcstFramesXmtdOk);
1029 readw (ioaddr + MacControlFramesXmtd);
1030 readw (ioaddr + FramesWEXDeferal);
1031
1032#ifdef MEM_MAPPING
1033 for (i = 0x100; i <= 0x150; i += 4)
1034 readl (ioaddr + i);
1035#endif
1036 readw (ioaddr + TxJumboFrames);
1037 readw (ioaddr + RxJumboFrames);
1038 readw (ioaddr + TCPCheckSumErrors);
1039 readw (ioaddr + UDPCheckSumErrors);
1040 readw (ioaddr + IPCheckSumErrors);
1041 return &np->stats;
1042}
1043
1044static int
1045clear_stats (struct net_device *dev)
1046{
1047 long ioaddr = dev->base_addr;
1048#ifdef MEM_MAPPING
1049 int i;
1050#endif
1051
1052 /* All statistics registers need to be acknowledged,
1053 else statistic overflow could cause problems */
1054 readl (ioaddr + FramesRcvOk);
1055 readl (ioaddr + FramesXmtOk);
1056 readl (ioaddr + OctetRcvOk);
1057 readl (ioaddr + OctetXmtOk);
1058
1059 readl (ioaddr + McstFramesRcvdOk);
1060 readl (ioaddr + SingleColFrames);
1061 readl (ioaddr + MultiColFrames);
1062 readl (ioaddr + LateCollisions);
1063 /* detailed rx errors */
1064 readw (ioaddr + FrameTooLongErrors);
1065 readw (ioaddr + InRangeLengthErrors);
1066 readw (ioaddr + FramesCheckSeqErrors);
1067 readw (ioaddr + FramesLostRxErrors);
1068
1069 /* detailed tx errors */
1070 readw (ioaddr + FramesAbortXSColls);
1071 readw (ioaddr + CarrierSenseErrors);
1072
1073 /* Clear all other statistic register. */
1074 readl (ioaddr + McstOctetXmtOk);
1075 readw (ioaddr + BcstFramesXmtdOk);
1076 readl (ioaddr + McstFramesXmtdOk);
1077 readw (ioaddr + BcstFramesRcvdOk);
1078 readw (ioaddr + MacControlFramesRcvd);
1079 readl (ioaddr + McstOctetXmtOk);
1080 readl (ioaddr + BcstOctetXmtOk);
1081 readl (ioaddr + McstFramesXmtdOk);
1082 readl (ioaddr + FramesWDeferredXmt);
1083 readw (ioaddr + BcstFramesXmtdOk);
1084 readw (ioaddr + MacControlFramesXmtd);
1085 readw (ioaddr + FramesWEXDeferal);
1086#ifdef MEM_MAPPING
1087 for (i = 0x100; i <= 0x150; i += 4)
1088 readl (ioaddr + i);
1089#endif
1090 readw (ioaddr + TxJumboFrames);
1091 readw (ioaddr + RxJumboFrames);
1092 readw (ioaddr + TCPCheckSumErrors);
1093 readw (ioaddr + UDPCheckSumErrors);
1094 readw (ioaddr + IPCheckSumErrors);
1095 return 0;
1096}
1097
1098
1099int
1100change_mtu (struct net_device *dev, int new_mtu)
1101{
1102 struct netdev_private *np = netdev_priv(dev);
1103 int max = (np->jumbo) ? MAX_JUMBO : 1536;
1104
1105 if ((new_mtu < 68) || (new_mtu > max)) {
1106 return -EINVAL;
1107 }
1108
1109 dev->mtu = new_mtu;
1110
1111 return 0;
1112}
1113
1114static void
1115set_multicast (struct net_device *dev)
1116{
1117 long ioaddr = dev->base_addr;
1118 u32 hash_table[2];
1119 u16 rx_mode = 0;
1120 struct netdev_private *np = netdev_priv(dev);
1121
1122 hash_table[0] = hash_table[1] = 0;
1123 /* RxFlowcontrol DA: 01-80-C2-00-00-01. Hash index=0x39 */
1124 hash_table[1] |= cpu_to_le32(0x02000000);
1125 if (dev->flags & IFF_PROMISC) {
1126 /* Receive all frames promiscuously. */
1127 rx_mode = ReceiveAllFrames;
1128 } else if ((dev->flags & IFF_ALLMULTI) ||
1129 (dev->mc_count > multicast_filter_limit)) {
1130 /* Receive broadcast and multicast frames */
1131 rx_mode = ReceiveBroadcast | ReceiveMulticast | ReceiveUnicast;
1132 } else if (dev->mc_count > 0) {
1133 int i;
1134 struct dev_mc_list *mclist;
1135 /* Receive broadcast frames and multicast frames filtering
1136 by Hashtable */
1137 rx_mode =
1138 ReceiveBroadcast | ReceiveMulticastHash | ReceiveUnicast;
1139 for (i=0, mclist = dev->mc_list; mclist && i < dev->mc_count;
1140 i++, mclist=mclist->next)
1141 {
1142 int bit, index = 0;
1143 int crc = ether_crc_le (ETH_ALEN, mclist->dmi_addr);
1144 /* The inverted high significant 6 bits of CRC are
1145 used as an index to hashtable */
1146 for (bit = 0; bit < 6; bit++)
1147 if (crc & (1 << (31 - bit)))
1148 index |= (1 << bit);
1149 hash_table[index / 32] |= (1 << (index % 32));
1150 }
1151 } else {
1152 rx_mode = ReceiveBroadcast | ReceiveUnicast;
1153 }
1154 if (np->vlan) {
1155 /* ReceiveVLANMatch field in ReceiveMode */
1156 rx_mode |= ReceiveVLANMatch;
1157 }
1158
1159 writel (hash_table[0], ioaddr + HashTable0);
1160 writel (hash_table[1], ioaddr + HashTable1);
1161 writew (rx_mode, ioaddr + ReceiveMode);
1162}
1163
1164static void rio_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1165{
1166 struct netdev_private *np = netdev_priv(dev);
1167 strcpy(info->driver, "dl2k");
1168 strcpy(info->version, DRV_VERSION);
1169 strcpy(info->bus_info, pci_name(np->pdev));
1170}
1171
1172static int rio_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1173{
1174 struct netdev_private *np = netdev_priv(dev);
1175 if (np->phy_media) {
1176 /* fiber device */
1177 cmd->supported = SUPPORTED_Autoneg | SUPPORTED_FIBRE;
1178 cmd->advertising= ADVERTISED_Autoneg | ADVERTISED_FIBRE;
1179 cmd->port = PORT_FIBRE;
1180 cmd->transceiver = XCVR_INTERNAL;
1181 } else {
1182 /* copper device */
1183 cmd->supported = SUPPORTED_10baseT_Half |
1184 SUPPORTED_10baseT_Full | SUPPORTED_100baseT_Half
1185 | SUPPORTED_100baseT_Full | SUPPORTED_1000baseT_Full |
1186 SUPPORTED_Autoneg | SUPPORTED_MII;
1187 cmd->advertising = ADVERTISED_10baseT_Half |
1188 ADVERTISED_10baseT_Full | ADVERTISED_100baseT_Half |
1189 ADVERTISED_100baseT_Full | ADVERTISED_1000baseT_Full|
1190 ADVERTISED_Autoneg | ADVERTISED_MII;
1191 cmd->port = PORT_MII;
1192 cmd->transceiver = XCVR_INTERNAL;
1193 }
1194 if ( np->link_status ) {
1195 cmd->speed = np->speed;
1196 cmd->duplex = np->full_duplex ? DUPLEX_FULL : DUPLEX_HALF;
1197 } else {
1198 cmd->speed = -1;
1199 cmd->duplex = -1;
1200 }
1201 if ( np->an_enable)
1202 cmd->autoneg = AUTONEG_ENABLE;
1203 else
1204 cmd->autoneg = AUTONEG_DISABLE;
1205
1206 cmd->phy_address = np->phy_addr;
1207 return 0;
1208}
1209
1210static int rio_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1211{
1212 struct netdev_private *np = netdev_priv(dev);
1213 netif_carrier_off(dev);
1214 if (cmd->autoneg == AUTONEG_ENABLE) {
1215 if (np->an_enable)
1216 return 0;
1217 else {
1218 np->an_enable = 1;
1219 mii_set_media(dev);
1220 return 0;
1221 }
1222 } else {
1223 np->an_enable = 0;
1224 if (np->speed == 1000) {
1225 cmd->speed = SPEED_100;
1226 cmd->duplex = DUPLEX_FULL;
1227 printk("Warning!! Can't disable Auto negotiation in 1000Mbps, change to Manual 100Mbps, Full duplex.\n");
1228 }
1229 switch(cmd->speed + cmd->duplex) {
1230
1231 case SPEED_10 + DUPLEX_HALF:
1232 np->speed = 10;
1233 np->full_duplex = 0;
1234 break;
1235
1236 case SPEED_10 + DUPLEX_FULL:
1237 np->speed = 10;
1238 np->full_duplex = 1;
1239 break;
1240 case SPEED_100 + DUPLEX_HALF:
1241 np->speed = 100;
1242 np->full_duplex = 0;
1243 break;
1244 case SPEED_100 + DUPLEX_FULL:
1245 np->speed = 100;
1246 np->full_duplex = 1;
1247 break;
1248 case SPEED_1000 + DUPLEX_HALF:/* not supported */
1249 case SPEED_1000 + DUPLEX_FULL:/* not supported */
1250 default:
1251 return -EINVAL;
1252 }
1253 mii_set_media(dev);
1254 }
1255 return 0;
1256}
1257
1258static u32 rio_get_link(struct net_device *dev)
1259{
1260 struct netdev_private *np = netdev_priv(dev);
1261 return np->link_status;
1262}
1263
1264static struct ethtool_ops ethtool_ops = {
1265 .get_drvinfo = rio_get_drvinfo,
1266 .get_settings = rio_get_settings,
1267 .set_settings = rio_set_settings,
1268 .get_link = rio_get_link,
1269};
1270
1271static int
1272rio_ioctl (struct net_device *dev, struct ifreq *rq, int cmd)
1273{
1274 int phy_addr;
1275 struct netdev_private *np = netdev_priv(dev);
1276 struct mii_data *miidata = (struct mii_data *) &rq->ifr_ifru;
1277
1278 struct netdev_desc *desc;
1279 int i;
1280
1281 phy_addr = np->phy_addr;
1282 switch (cmd) {
1283 case SIOCDEVPRIVATE:
1284 break;
1285
1286 case SIOCDEVPRIVATE + 1:
1287 miidata->out_value = mii_read (dev, phy_addr, miidata->reg_num);
1288 break;
1289 case SIOCDEVPRIVATE + 2:
1290 mii_write (dev, phy_addr, miidata->reg_num, miidata->in_value);
1291 break;
1292 case SIOCDEVPRIVATE + 3:
1293 break;
1294 case SIOCDEVPRIVATE + 4:
1295 break;
1296 case SIOCDEVPRIVATE + 5:
1297 netif_stop_queue (dev);
1298 break;
1299 case SIOCDEVPRIVATE + 6:
1300 netif_wake_queue (dev);
1301 break;
1302 case SIOCDEVPRIVATE + 7:
1303 printk
1304 ("tx_full=%x cur_tx=%lx old_tx=%lx cur_rx=%lx old_rx=%lx\n",
1305 netif_queue_stopped(dev), np->cur_tx, np->old_tx, np->cur_rx,
1306 np->old_rx);
1307 break;
1308 case SIOCDEVPRIVATE + 8:
1309 printk("TX ring:\n");
1310 for (i = 0; i < TX_RING_SIZE; i++) {
1311 desc = &np->tx_ring[i];
1312 printk
1313 ("%02x:cur:%08x next:%08x status:%08x frag1:%08x frag0:%08x",
1314 i,
1315 (u32) (np->tx_ring_dma + i * sizeof (*desc)),
1316 (u32) desc->next_desc,
1317 (u32) desc->status, (u32) (desc->fraginfo >> 32),
1318 (u32) desc->fraginfo);
1319 printk ("\n");
1320 }
1321 printk ("\n");
1322 break;
1323
1324 default:
1325 return -EOPNOTSUPP;
1326 }
1327 return 0;
1328}
1329
1330#define EEP_READ 0x0200
1331#define EEP_BUSY 0x8000
1332/* Read the EEPROM word */
1333/* We use I/O instruction to read/write eeprom to avoid fail on some machines */
1334int
1335read_eeprom (long ioaddr, int eep_addr)
1336{
1337 int i = 1000;
1338 outw (EEP_READ | (eep_addr & 0xff), ioaddr + EepromCtrl);
1339 while (i-- > 0) {
1340 if (!(inw (ioaddr + EepromCtrl) & EEP_BUSY)) {
1341 return inw (ioaddr + EepromData);
1342 }
1343 }
1344 return 0;
1345}
1346
1347enum phy_ctrl_bits {
1348 MII_READ = 0x00, MII_CLK = 0x01, MII_DATA1 = 0x02, MII_WRITE = 0x04,
1349 MII_DUPLEX = 0x08,
1350};
1351
1352#define mii_delay() readb(ioaddr)
1353static void
1354mii_sendbit (struct net_device *dev, u32 data)
1355{
1356 long ioaddr = dev->base_addr + PhyCtrl;
1357 data = (data) ? MII_DATA1 : 0;
1358 data |= MII_WRITE;
1359 data |= (readb (ioaddr) & 0xf8) | MII_WRITE;
1360 writeb (data, ioaddr);
1361 mii_delay ();
1362 writeb (data | MII_CLK, ioaddr);
1363 mii_delay ();
1364}
1365
1366static int
1367mii_getbit (struct net_device *dev)
1368{
1369 long ioaddr = dev->base_addr + PhyCtrl;
1370 u8 data;
1371
1372 data = (readb (ioaddr) & 0xf8) | MII_READ;
1373 writeb (data, ioaddr);
1374 mii_delay ();
1375 writeb (data | MII_CLK, ioaddr);
1376 mii_delay ();
1377 return ((readb (ioaddr) >> 1) & 1);
1378}
1379
1380static void
1381mii_send_bits (struct net_device *dev, u32 data, int len)
1382{
1383 int i;
1384 for (i = len - 1; i >= 0; i--) {
1385 mii_sendbit (dev, data & (1 << i));
1386 }
1387}
1388
1389static int
1390mii_read (struct net_device *dev, int phy_addr, int reg_num)
1391{
1392 u32 cmd;
1393 int i;
1394 u32 retval = 0;
1395
1396 /* Preamble */
1397 mii_send_bits (dev, 0xffffffff, 32);
1398 /* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
1399 /* ST,OP = 0110'b for read operation */
1400 cmd = (0x06 << 10 | phy_addr << 5 | reg_num);
1401 mii_send_bits (dev, cmd, 14);
1402 /* Turnaround */
1403 if (mii_getbit (dev))
1404 goto err_out;
1405 /* Read data */
1406 for (i = 0; i < 16; i++) {
1407 retval |= mii_getbit (dev);
1408 retval <<= 1;
1409 }
1410 /* End cycle */
1411 mii_getbit (dev);
1412 return (retval >> 1) & 0xffff;
1413
1414 err_out:
1415 return 0;
1416}
1417static int
1418mii_write (struct net_device *dev, int phy_addr, int reg_num, u16 data)
1419{
1420 u32 cmd;
1421
1422 /* Preamble */
1423 mii_send_bits (dev, 0xffffffff, 32);
1424 /* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
1425 /* ST,OP,AAAAA,RRRRR,TA = 0101xxxxxxxxxx10'b = 0x5002 for write */
1426 cmd = (0x5002 << 16) | (phy_addr << 23) | (reg_num << 18) | data;
1427 mii_send_bits (dev, cmd, 32);
1428 /* End cycle */
1429 mii_getbit (dev);
1430 return 0;
1431}
1432static int
1433mii_wait_link (struct net_device *dev, int wait)
1434{
1435 BMSR_t bmsr;
1436 int phy_addr;
1437 struct netdev_private *np;
1438
1439 np = netdev_priv(dev);
1440 phy_addr = np->phy_addr;
1441
1442 do {
1443 bmsr.image = mii_read (dev, phy_addr, MII_BMSR);
1444 if (bmsr.bits.link_status)
1445 return 0;
1446 mdelay (1);
1447 } while (--wait > 0);
1448 return -1;
1449}
1450static int
1451mii_get_media (struct net_device *dev)
1452{
1453 ANAR_t negotiate;
1454 BMSR_t bmsr;
1455 BMCR_t bmcr;
1456 MSCR_t mscr;
1457 MSSR_t mssr;
1458 int phy_addr;
1459 struct netdev_private *np;
1460
1461 np = netdev_priv(dev);
1462 phy_addr = np->phy_addr;
1463
1464 bmsr.image = mii_read (dev, phy_addr, MII_BMSR);
1465 if (np->an_enable) {
1466 if (!bmsr.bits.an_complete) {
1467 /* Auto-Negotiation not completed */
1468 return -1;
1469 }
1470 negotiate.image = mii_read (dev, phy_addr, MII_ANAR) &
1471 mii_read (dev, phy_addr, MII_ANLPAR);
1472 mscr.image = mii_read (dev, phy_addr, MII_MSCR);
1473 mssr.image = mii_read (dev, phy_addr, MII_MSSR);
1474 if (mscr.bits.media_1000BT_FD & mssr.bits.lp_1000BT_FD) {
1475 np->speed = 1000;
1476 np->full_duplex = 1;
1477 printk (KERN_INFO "Auto 1000 Mbps, Full duplex\n");
1478 } else if (mscr.bits.media_1000BT_HD & mssr.bits.lp_1000BT_HD) {
1479 np->speed = 1000;
1480 np->full_duplex = 0;
1481 printk (KERN_INFO "Auto 1000 Mbps, Half duplex\n");
1482 } else if (negotiate.bits.media_100BX_FD) {
1483 np->speed = 100;
1484 np->full_duplex = 1;
1485 printk (KERN_INFO "Auto 100 Mbps, Full duplex\n");
1486 } else if (negotiate.bits.media_100BX_HD) {
1487 np->speed = 100;
1488 np->full_duplex = 0;
1489 printk (KERN_INFO "Auto 100 Mbps, Half duplex\n");
1490 } else if (negotiate.bits.media_10BT_FD) {
1491 np->speed = 10;
1492 np->full_duplex = 1;
1493 printk (KERN_INFO "Auto 10 Mbps, Full duplex\n");
1494 } else if (negotiate.bits.media_10BT_HD) {
1495 np->speed = 10;
1496 np->full_duplex = 0;
1497 printk (KERN_INFO "Auto 10 Mbps, Half duplex\n");
1498 }
1499 if (negotiate.bits.pause) {
1500 np->tx_flow &= 1;
1501 np->rx_flow &= 1;
1502 } else if (negotiate.bits.asymmetric) {
1503 np->tx_flow = 0;
1504 np->rx_flow &= 1;
1505 }
1506 /* else tx_flow, rx_flow = user select */
1507 } else {
1508 bmcr.image = mii_read (dev, phy_addr, MII_BMCR);
1509 if (bmcr.bits.speed100 == 1 && bmcr.bits.speed1000 == 0) {
1510 printk (KERN_INFO "Operating at 100 Mbps, ");
1511 } else if (bmcr.bits.speed100 == 0 && bmcr.bits.speed1000 == 0) {
1512 printk (KERN_INFO "Operating at 10 Mbps, ");
1513 } else if (bmcr.bits.speed100 == 0 && bmcr.bits.speed1000 == 1) {
1514 printk (KERN_INFO "Operating at 1000 Mbps, ");
1515 }
1516 if (bmcr.bits.duplex_mode) {
1517 printk ("Full duplex\n");
1518 } else {
1519 printk ("Half duplex\n");
1520 }
1521 }
1522 if (np->tx_flow)
1523 printk(KERN_INFO "Enable Tx Flow Control\n");
1524 else
1525 printk(KERN_INFO "Disable Tx Flow Control\n");
1526 if (np->rx_flow)
1527 printk(KERN_INFO "Enable Rx Flow Control\n");
1528 else
1529 printk(KERN_INFO "Disable Rx Flow Control\n");
1530
1531 return 0;
1532}
1533
1534static int
1535mii_set_media (struct net_device *dev)
1536{
1537 PHY_SCR_t pscr;
1538 BMCR_t bmcr;
1539 BMSR_t bmsr;
1540 ANAR_t anar;
1541 int phy_addr;
1542 struct netdev_private *np;
1543 np = netdev_priv(dev);
1544 phy_addr = np->phy_addr;
1545
1546 /* Does user set speed? */
1547 if (np->an_enable) {
1548 /* Advertise capabilities */
1549 bmsr.image = mii_read (dev, phy_addr, MII_BMSR);
1550 anar.image = mii_read (dev, phy_addr, MII_ANAR);
1551 anar.bits.media_100BX_FD = bmsr.bits.media_100BX_FD;
1552 anar.bits.media_100BX_HD = bmsr.bits.media_100BX_HD;
1553 anar.bits.media_100BT4 = bmsr.bits.media_100BT4;
1554 anar.bits.media_10BT_FD = bmsr.bits.media_10BT_FD;
1555 anar.bits.media_10BT_HD = bmsr.bits.media_10BT_HD;
1556 anar.bits.pause = 1;
1557 anar.bits.asymmetric = 1;
1558 mii_write (dev, phy_addr, MII_ANAR, anar.image);
1559
1560 /* Enable Auto crossover */
1561 pscr.image = mii_read (dev, phy_addr, MII_PHY_SCR);
1562 pscr.bits.mdi_crossover_mode = 3; /* 11'b */
1563 mii_write (dev, phy_addr, MII_PHY_SCR, pscr.image);
1564
1565 /* Soft reset PHY */
1566 mii_write (dev, phy_addr, MII_BMCR, MII_BMCR_RESET);
1567 bmcr.image = 0;
1568 bmcr.bits.an_enable = 1;
1569 bmcr.bits.restart_an = 1;
1570 bmcr.bits.reset = 1;
1571 mii_write (dev, phy_addr, MII_BMCR, bmcr.image);
1572 mdelay(1);
1573 } else {
1574 /* Force speed setting */
1575 /* 1) Disable Auto crossover */
1576 pscr.image = mii_read (dev, phy_addr, MII_PHY_SCR);
1577 pscr.bits.mdi_crossover_mode = 0;
1578 mii_write (dev, phy_addr, MII_PHY_SCR, pscr.image);
1579
1580 /* 2) PHY Reset */
1581 bmcr.image = mii_read (dev, phy_addr, MII_BMCR);
1582 bmcr.bits.reset = 1;
1583 mii_write (dev, phy_addr, MII_BMCR, bmcr.image);
1584
1585 /* 3) Power Down */
1586 bmcr.image = 0x1940; /* must be 0x1940 */
1587 mii_write (dev, phy_addr, MII_BMCR, bmcr.image);
1588 mdelay (100); /* wait a certain time */
1589
1590 /* 4) Advertise nothing */
1591 mii_write (dev, phy_addr, MII_ANAR, 0);
1592
1593 /* 5) Set media and Power Up */
1594 bmcr.image = 0;
1595 bmcr.bits.power_down = 1;
1596 if (np->speed == 100) {
1597 bmcr.bits.speed100 = 1;
1598 bmcr.bits.speed1000 = 0;
1599 printk (KERN_INFO "Manual 100 Mbps, ");
1600 } else if (np->speed == 10) {
1601 bmcr.bits.speed100 = 0;
1602 bmcr.bits.speed1000 = 0;
1603 printk (KERN_INFO "Manual 10 Mbps, ");
1604 }
1605 if (np->full_duplex) {
1606 bmcr.bits.duplex_mode = 1;
1607 printk ("Full duplex\n");
1608 } else {
1609 bmcr.bits.duplex_mode = 0;
1610 printk ("Half duplex\n");
1611 }
1612#if 0
1613 /* Set 1000BaseT Master/Slave setting */
1614 mscr.image = mii_read (dev, phy_addr, MII_MSCR);
1615 mscr.bits.cfg_enable = 1;
1616 mscr.bits.cfg_value = 0;
1617#endif
1618 mii_write (dev, phy_addr, MII_BMCR, bmcr.image);
1619 mdelay(10);
1620 }
1621 return 0;
1622}
1623
1624static int
1625mii_get_media_pcs (struct net_device *dev)
1626{
1627 ANAR_PCS_t negotiate;
1628 BMSR_t bmsr;
1629 BMCR_t bmcr;
1630 int phy_addr;
1631 struct netdev_private *np;
1632
1633 np = netdev_priv(dev);
1634 phy_addr = np->phy_addr;
1635
1636 bmsr.image = mii_read (dev, phy_addr, PCS_BMSR);
1637 if (np->an_enable) {
1638 if (!bmsr.bits.an_complete) {
1639 /* Auto-Negotiation not completed */
1640 return -1;
1641 }
1642 negotiate.image = mii_read (dev, phy_addr, PCS_ANAR) &
1643 mii_read (dev, phy_addr, PCS_ANLPAR);
1644 np->speed = 1000;
1645 if (negotiate.bits.full_duplex) {
1646 printk (KERN_INFO "Auto 1000 Mbps, Full duplex\n");
1647 np->full_duplex = 1;
1648 } else {
1649 printk (KERN_INFO "Auto 1000 Mbps, half duplex\n");
1650 np->full_duplex = 0;
1651 }
1652 if (negotiate.bits.pause) {
1653 np->tx_flow &= 1;
1654 np->rx_flow &= 1;
1655 } else if (negotiate.bits.asymmetric) {
1656 np->tx_flow = 0;
1657 np->rx_flow &= 1;
1658 }
1659 /* else tx_flow, rx_flow = user select */
1660 } else {
1661 bmcr.image = mii_read (dev, phy_addr, PCS_BMCR);
1662 printk (KERN_INFO "Operating at 1000 Mbps, ");
1663 if (bmcr.bits.duplex_mode) {
1664 printk ("Full duplex\n");
1665 } else {
1666 printk ("Half duplex\n");
1667 }
1668 }
1669 if (np->tx_flow)
1670 printk(KERN_INFO "Enable Tx Flow Control\n");
1671 else
1672 printk(KERN_INFO "Disable Tx Flow Control\n");
1673 if (np->rx_flow)
1674 printk(KERN_INFO "Enable Rx Flow Control\n");
1675 else
1676 printk(KERN_INFO "Disable Rx Flow Control\n");
1677
1678 return 0;
1679}
1680
1681static int
1682mii_set_media_pcs (struct net_device *dev)
1683{
1684 BMCR_t bmcr;
1685 ESR_t esr;
1686 ANAR_PCS_t anar;
1687 int phy_addr;
1688 struct netdev_private *np;
1689 np = netdev_priv(dev);
1690 phy_addr = np->phy_addr;
1691
1692 /* Auto-Negotiation? */
1693 if (np->an_enable) {
1694 /* Advertise capabilities */
1695 esr.image = mii_read (dev, phy_addr, PCS_ESR);
1696 anar.image = mii_read (dev, phy_addr, MII_ANAR);
1697 anar.bits.half_duplex =
1698 esr.bits.media_1000BT_HD | esr.bits.media_1000BX_HD;
1699 anar.bits.full_duplex =
1700 esr.bits.media_1000BT_FD | esr.bits.media_1000BX_FD;
1701 anar.bits.pause = 1;
1702 anar.bits.asymmetric = 1;
1703 mii_write (dev, phy_addr, MII_ANAR, anar.image);
1704
1705 /* Soft reset PHY */
1706 mii_write (dev, phy_addr, MII_BMCR, MII_BMCR_RESET);
1707 bmcr.image = 0;
1708 bmcr.bits.an_enable = 1;
1709 bmcr.bits.restart_an = 1;
1710 bmcr.bits.reset = 1;
1711 mii_write (dev, phy_addr, MII_BMCR, bmcr.image);
1712 mdelay(1);
1713 } else {
1714 /* Force speed setting */
1715 /* PHY Reset */
1716 bmcr.image = 0;
1717 bmcr.bits.reset = 1;
1718 mii_write (dev, phy_addr, MII_BMCR, bmcr.image);
1719 mdelay(10);
1720 bmcr.image = 0;
1721 bmcr.bits.an_enable = 0;
1722 if (np->full_duplex) {
1723 bmcr.bits.duplex_mode = 1;
1724 printk (KERN_INFO "Manual full duplex\n");
1725 } else {
1726 bmcr.bits.duplex_mode = 0;
1727 printk (KERN_INFO "Manual half duplex\n");
1728 }
1729 mii_write (dev, phy_addr, MII_BMCR, bmcr.image);
1730 mdelay(10);
1731
1732 /* Advertise nothing */
1733 mii_write (dev, phy_addr, MII_ANAR, 0);
1734 }
1735 return 0;
1736}
1737
1738
1739static int
1740rio_close (struct net_device *dev)
1741{
1742 long ioaddr = dev->base_addr;
1743 struct netdev_private *np = netdev_priv(dev);
1744 struct sk_buff *skb;
1745 int i;
1746
1747 netif_stop_queue (dev);
1748
1749 /* Disable interrupts */
1750 writew (0, ioaddr + IntEnable);
1751
1752 /* Stop Tx and Rx logics */
1753 writel (TxDisable | RxDisable | StatsDisable, ioaddr + MACCtrl);
1754 synchronize_irq (dev->irq);
1755 free_irq (dev->irq, dev);
1756 del_timer_sync (&np->timer);
1757
1758 /* Free all the skbuffs in the queue. */
1759 for (i = 0; i < RX_RING_SIZE; i++) {
1760 np->rx_ring[i].status = 0;
1761 np->rx_ring[i].fraginfo = 0;
1762 skb = np->rx_skbuff[i];
1763 if (skb) {
Jon Mason9ee09d92006-03-10 15:12:10 -06001764 pci_unmap_single(np->pdev,
Francois Romieu4c1b4622006-05-10 12:48:57 -07001765 np->rx_ring[i].fraginfo & DMA_48BIT_MASK,
Jon Mason9ee09d92006-03-10 15:12:10 -06001766 skb->len, PCI_DMA_FROMDEVICE);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001767 dev_kfree_skb (skb);
1768 np->rx_skbuff[i] = NULL;
1769 }
1770 }
1771 for (i = 0; i < TX_RING_SIZE; i++) {
1772 skb = np->tx_skbuff[i];
1773 if (skb) {
Jon Mason9ee09d92006-03-10 15:12:10 -06001774 pci_unmap_single(np->pdev,
Francois Romieu4c1b4622006-05-10 12:48:57 -07001775 np->tx_ring[i].fraginfo & DMA_48BIT_MASK,
Jon Mason9ee09d92006-03-10 15:12:10 -06001776 skb->len, PCI_DMA_TODEVICE);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001777 dev_kfree_skb (skb);
1778 np->tx_skbuff[i] = NULL;
1779 }
1780 }
1781
1782 return 0;
1783}
1784
1785static void __devexit
1786rio_remove1 (struct pci_dev *pdev)
1787{
1788 struct net_device *dev = pci_get_drvdata (pdev);
1789
1790 if (dev) {
1791 struct netdev_private *np = netdev_priv(dev);
1792
1793 unregister_netdev (dev);
1794 pci_free_consistent (pdev, RX_TOTAL_SIZE, np->rx_ring,
1795 np->rx_ring_dma);
1796 pci_free_consistent (pdev, TX_TOTAL_SIZE, np->tx_ring,
1797 np->tx_ring_dma);
1798#ifdef MEM_MAPPING
1799 iounmap ((char *) (dev->base_addr));
1800#endif
1801 free_netdev (dev);
1802 pci_release_regions (pdev);
1803 pci_disable_device (pdev);
1804 }
1805 pci_set_drvdata (pdev, NULL);
1806}
1807
1808static struct pci_driver rio_driver = {
1809 .name = "dl2k",
1810 .id_table = rio_pci_tbl,
1811 .probe = rio_probe1,
1812 .remove = __devexit_p(rio_remove1),
1813};
1814
1815static int __init
1816rio_init (void)
1817{
1818 return pci_module_init (&rio_driver);
1819}
1820
1821static void __exit
1822rio_exit (void)
1823{
1824 pci_unregister_driver (&rio_driver);
1825}
1826
1827module_init (rio_init);
1828module_exit (rio_exit);
1829
1830/*
1831
1832Compile command:
1833
1834gcc -D__KERNEL__ -DMODULE -I/usr/src/linux/include -Wall -Wstrict-prototypes -O2 -c dl2k.c
1835
1836Read Documentation/networking/dl2k.txt for details.
1837
1838*/
1839