blob: 6926546939f6378a1efee1562e57ed086537868d [file] [log] [blame]
Alexander Block31db9f72012-07-25 23:19:24 +02001/*
2 * Copyright (C) 2012 Alexander Block. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19#include <linux/bsearch.h>
20#include <linux/fs.h>
21#include <linux/file.h>
22#include <linux/sort.h>
23#include <linux/mount.h>
24#include <linux/xattr.h>
25#include <linux/posix_acl_xattr.h>
26#include <linux/radix-tree.h>
27#include <linux/crc32c.h>
Stephen Rothwella1857eb2012-07-27 10:11:13 +100028#include <linux/vmalloc.h>
Alexander Block31db9f72012-07-25 23:19:24 +020029
30#include "send.h"
31#include "backref.h"
32#include "locking.h"
33#include "disk-io.h"
34#include "btrfs_inode.h"
35#include "transaction.h"
36
37static int g_verbose = 0;
38
39#define verbose_printk(...) if (g_verbose) printk(__VA_ARGS__)
40
41/*
42 * A fs_path is a helper to dynamically build path names with unknown size.
43 * It reallocates the internal buffer on demand.
44 * It allows fast adding of path elements on the right side (normal path) and
45 * fast adding to the left side (reversed path). A reversed path can also be
46 * unreversed if needed.
47 */
48struct fs_path {
49 union {
50 struct {
51 char *start;
52 char *end;
53 char *prepared;
54
55 char *buf;
56 int buf_len;
57 int reversed:1;
58 int virtual_mem:1;
59 char inline_buf[];
60 };
61 char pad[PAGE_SIZE];
62 };
63};
64#define FS_PATH_INLINE_SIZE \
65 (sizeof(struct fs_path) - offsetof(struct fs_path, inline_buf))
66
67
68/* reused for each extent */
69struct clone_root {
70 struct btrfs_root *root;
71 u64 ino;
72 u64 offset;
73
74 u64 found_refs;
75};
76
77#define SEND_CTX_MAX_NAME_CACHE_SIZE 128
78#define SEND_CTX_NAME_CACHE_CLEAN_SIZE (SEND_CTX_MAX_NAME_CACHE_SIZE * 2)
79
80struct send_ctx {
81 struct file *send_filp;
82 loff_t send_off;
83 char *send_buf;
84 u32 send_size;
85 u32 send_max_size;
86 u64 total_send_size;
87 u64 cmd_send_size[BTRFS_SEND_C_MAX + 1];
88
89 struct vfsmount *mnt;
90
91 struct btrfs_root *send_root;
92 struct btrfs_root *parent_root;
93 struct clone_root *clone_roots;
94 int clone_roots_cnt;
95
96 /* current state of the compare_tree call */
97 struct btrfs_path *left_path;
98 struct btrfs_path *right_path;
99 struct btrfs_key *cmp_key;
100
101 /*
102 * infos of the currently processed inode. In case of deleted inodes,
103 * these are the values from the deleted inode.
104 */
105 u64 cur_ino;
106 u64 cur_inode_gen;
107 int cur_inode_new;
108 int cur_inode_new_gen;
109 int cur_inode_deleted;
Alexander Block31db9f72012-07-25 23:19:24 +0200110 u64 cur_inode_size;
111 u64 cur_inode_mode;
112
113 u64 send_progress;
114
115 struct list_head new_refs;
116 struct list_head deleted_refs;
117
118 struct radix_tree_root name_cache;
119 struct list_head name_cache_list;
120 int name_cache_size;
121
122 struct file *cur_inode_filp;
123 char *read_buf;
124};
125
126struct name_cache_entry {
127 struct list_head list;
Alexander Block7e0926f2012-07-28 14:20:58 +0200128 /*
129 * radix_tree has only 32bit entries but we need to handle 64bit inums.
130 * We use the lower 32bit of the 64bit inum to store it in the tree. If
131 * more then one inum would fall into the same entry, we use radix_list
132 * to store the additional entries. radix_list is also used to store
133 * entries where two entries have the same inum but different
134 * generations.
135 */
136 struct list_head radix_list;
Alexander Block31db9f72012-07-25 23:19:24 +0200137 u64 ino;
138 u64 gen;
139 u64 parent_ino;
140 u64 parent_gen;
141 int ret;
142 int need_later_update;
143 int name_len;
144 char name[];
145};
146
147static void fs_path_reset(struct fs_path *p)
148{
149 if (p->reversed) {
150 p->start = p->buf + p->buf_len - 1;
151 p->end = p->start;
152 *p->start = 0;
153 } else {
154 p->start = p->buf;
155 p->end = p->start;
156 *p->start = 0;
157 }
158}
159
160static struct fs_path *fs_path_alloc(struct send_ctx *sctx)
161{
162 struct fs_path *p;
163
164 p = kmalloc(sizeof(*p), GFP_NOFS);
165 if (!p)
166 return NULL;
167 p->reversed = 0;
168 p->virtual_mem = 0;
169 p->buf = p->inline_buf;
170 p->buf_len = FS_PATH_INLINE_SIZE;
171 fs_path_reset(p);
172 return p;
173}
174
175static struct fs_path *fs_path_alloc_reversed(struct send_ctx *sctx)
176{
177 struct fs_path *p;
178
179 p = fs_path_alloc(sctx);
180 if (!p)
181 return NULL;
182 p->reversed = 1;
183 fs_path_reset(p);
184 return p;
185}
186
187static void fs_path_free(struct send_ctx *sctx, struct fs_path *p)
188{
189 if (!p)
190 return;
191 if (p->buf != p->inline_buf) {
192 if (p->virtual_mem)
193 vfree(p->buf);
194 else
195 kfree(p->buf);
196 }
197 kfree(p);
198}
199
200static int fs_path_len(struct fs_path *p)
201{
202 return p->end - p->start;
203}
204
205static int fs_path_ensure_buf(struct fs_path *p, int len)
206{
207 char *tmp_buf;
208 int path_len;
209 int old_buf_len;
210
211 len++;
212
213 if (p->buf_len >= len)
214 return 0;
215
216 path_len = p->end - p->start;
217 old_buf_len = p->buf_len;
218 len = PAGE_ALIGN(len);
219
220 if (p->buf == p->inline_buf) {
221 tmp_buf = kmalloc(len, GFP_NOFS);
222 if (!tmp_buf) {
223 tmp_buf = vmalloc(len);
224 if (!tmp_buf)
225 return -ENOMEM;
226 p->virtual_mem = 1;
227 }
228 memcpy(tmp_buf, p->buf, p->buf_len);
229 p->buf = tmp_buf;
230 p->buf_len = len;
231 } else {
232 if (p->virtual_mem) {
233 tmp_buf = vmalloc(len);
234 if (!tmp_buf)
235 return -ENOMEM;
236 memcpy(tmp_buf, p->buf, p->buf_len);
237 vfree(p->buf);
238 } else {
239 tmp_buf = krealloc(p->buf, len, GFP_NOFS);
240 if (!tmp_buf) {
241 tmp_buf = vmalloc(len);
242 if (!tmp_buf)
243 return -ENOMEM;
244 memcpy(tmp_buf, p->buf, p->buf_len);
245 kfree(p->buf);
246 p->virtual_mem = 1;
247 }
248 }
249 p->buf = tmp_buf;
250 p->buf_len = len;
251 }
252 if (p->reversed) {
253 tmp_buf = p->buf + old_buf_len - path_len - 1;
254 p->end = p->buf + p->buf_len - 1;
255 p->start = p->end - path_len;
256 memmove(p->start, tmp_buf, path_len + 1);
257 } else {
258 p->start = p->buf;
259 p->end = p->start + path_len;
260 }
261 return 0;
262}
263
264static int fs_path_prepare_for_add(struct fs_path *p, int name_len)
265{
266 int ret;
267 int new_len;
268
269 new_len = p->end - p->start + name_len;
270 if (p->start != p->end)
271 new_len++;
272 ret = fs_path_ensure_buf(p, new_len);
273 if (ret < 0)
274 goto out;
275
276 if (p->reversed) {
277 if (p->start != p->end)
278 *--p->start = '/';
279 p->start -= name_len;
280 p->prepared = p->start;
281 } else {
282 if (p->start != p->end)
283 *p->end++ = '/';
284 p->prepared = p->end;
285 p->end += name_len;
286 *p->end = 0;
287 }
288
289out:
290 return ret;
291}
292
293static int fs_path_add(struct fs_path *p, const char *name, int name_len)
294{
295 int ret;
296
297 ret = fs_path_prepare_for_add(p, name_len);
298 if (ret < 0)
299 goto out;
300 memcpy(p->prepared, name, name_len);
301 p->prepared = NULL;
302
303out:
304 return ret;
305}
306
307static int fs_path_add_path(struct fs_path *p, struct fs_path *p2)
308{
309 int ret;
310
311 ret = fs_path_prepare_for_add(p, p2->end - p2->start);
312 if (ret < 0)
313 goto out;
314 memcpy(p->prepared, p2->start, p2->end - p2->start);
315 p->prepared = NULL;
316
317out:
318 return ret;
319}
320
321static int fs_path_add_from_extent_buffer(struct fs_path *p,
322 struct extent_buffer *eb,
323 unsigned long off, int len)
324{
325 int ret;
326
327 ret = fs_path_prepare_for_add(p, len);
328 if (ret < 0)
329 goto out;
330
331 read_extent_buffer(eb, p->prepared, off, len);
332 p->prepared = NULL;
333
334out:
335 return ret;
336}
337
Alexander Block9ea3ef52012-07-28 11:08:09 +0200338#if 0
Alexander Block31db9f72012-07-25 23:19:24 +0200339static void fs_path_remove(struct fs_path *p)
340{
341 BUG_ON(p->reversed);
342 while (p->start != p->end && *p->end != '/')
343 p->end--;
344 *p->end = 0;
345}
Alexander Block9ea3ef52012-07-28 11:08:09 +0200346#endif
Alexander Block31db9f72012-07-25 23:19:24 +0200347
348static int fs_path_copy(struct fs_path *p, struct fs_path *from)
349{
350 int ret;
351
352 p->reversed = from->reversed;
353 fs_path_reset(p);
354
355 ret = fs_path_add_path(p, from);
356
357 return ret;
358}
359
360
361static void fs_path_unreverse(struct fs_path *p)
362{
363 char *tmp;
364 int len;
365
366 if (!p->reversed)
367 return;
368
369 tmp = p->start;
370 len = p->end - p->start;
371 p->start = p->buf;
372 p->end = p->start + len;
373 memmove(p->start, tmp, len + 1);
374 p->reversed = 0;
375}
376
377static struct btrfs_path *alloc_path_for_send(void)
378{
379 struct btrfs_path *path;
380
381 path = btrfs_alloc_path();
382 if (!path)
383 return NULL;
384 path->search_commit_root = 1;
385 path->skip_locking = 1;
386 return path;
387}
388
389static int write_buf(struct send_ctx *sctx, const void *buf, u32 len)
390{
391 int ret;
392 mm_segment_t old_fs;
393 u32 pos = 0;
394
395 old_fs = get_fs();
396 set_fs(KERNEL_DS);
397
398 while (pos < len) {
399 ret = vfs_write(sctx->send_filp, (char *)buf + pos, len - pos,
400 &sctx->send_off);
401 /* TODO handle that correctly */
402 /*if (ret == -ERESTARTSYS) {
403 continue;
404 }*/
405 if (ret < 0)
406 goto out;
407 if (ret == 0) {
408 ret = -EIO;
409 goto out;
410 }
411 pos += ret;
412 }
413
414 ret = 0;
415
416out:
417 set_fs(old_fs);
418 return ret;
419}
420
421static int tlv_put(struct send_ctx *sctx, u16 attr, const void *data, int len)
422{
423 struct btrfs_tlv_header *hdr;
424 int total_len = sizeof(*hdr) + len;
425 int left = sctx->send_max_size - sctx->send_size;
426
427 if (unlikely(left < total_len))
428 return -EOVERFLOW;
429
430 hdr = (struct btrfs_tlv_header *) (sctx->send_buf + sctx->send_size);
431 hdr->tlv_type = cpu_to_le16(attr);
432 hdr->tlv_len = cpu_to_le16(len);
433 memcpy(hdr + 1, data, len);
434 sctx->send_size += total_len;
435
436 return 0;
437}
438
439#if 0
440static int tlv_put_u8(struct send_ctx *sctx, u16 attr, u8 value)
441{
442 return tlv_put(sctx, attr, &value, sizeof(value));
443}
444
445static int tlv_put_u16(struct send_ctx *sctx, u16 attr, u16 value)
446{
447 __le16 tmp = cpu_to_le16(value);
448 return tlv_put(sctx, attr, &tmp, sizeof(tmp));
449}
450
451static int tlv_put_u32(struct send_ctx *sctx, u16 attr, u32 value)
452{
453 __le32 tmp = cpu_to_le32(value);
454 return tlv_put(sctx, attr, &tmp, sizeof(tmp));
455}
456#endif
457
458static int tlv_put_u64(struct send_ctx *sctx, u16 attr, u64 value)
459{
460 __le64 tmp = cpu_to_le64(value);
461 return tlv_put(sctx, attr, &tmp, sizeof(tmp));
462}
463
464static int tlv_put_string(struct send_ctx *sctx, u16 attr,
465 const char *str, int len)
466{
467 if (len == -1)
468 len = strlen(str);
469 return tlv_put(sctx, attr, str, len);
470}
471
472static int tlv_put_uuid(struct send_ctx *sctx, u16 attr,
473 const u8 *uuid)
474{
475 return tlv_put(sctx, attr, uuid, BTRFS_UUID_SIZE);
476}
477
478#if 0
479static int tlv_put_timespec(struct send_ctx *sctx, u16 attr,
480 struct timespec *ts)
481{
482 struct btrfs_timespec bts;
483 bts.sec = cpu_to_le64(ts->tv_sec);
484 bts.nsec = cpu_to_le32(ts->tv_nsec);
485 return tlv_put(sctx, attr, &bts, sizeof(bts));
486}
487#endif
488
489static int tlv_put_btrfs_timespec(struct send_ctx *sctx, u16 attr,
490 struct extent_buffer *eb,
491 struct btrfs_timespec *ts)
492{
493 struct btrfs_timespec bts;
494 read_extent_buffer(eb, &bts, (unsigned long)ts, sizeof(bts));
495 return tlv_put(sctx, attr, &bts, sizeof(bts));
496}
497
498
499#define TLV_PUT(sctx, attrtype, attrlen, data) \
500 do { \
501 ret = tlv_put(sctx, attrtype, attrlen, data); \
502 if (ret < 0) \
503 goto tlv_put_failure; \
504 } while (0)
505
506#define TLV_PUT_INT(sctx, attrtype, bits, value) \
507 do { \
508 ret = tlv_put_u##bits(sctx, attrtype, value); \
509 if (ret < 0) \
510 goto tlv_put_failure; \
511 } while (0)
512
513#define TLV_PUT_U8(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 8, data)
514#define TLV_PUT_U16(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 16, data)
515#define TLV_PUT_U32(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 32, data)
516#define TLV_PUT_U64(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 64, data)
517#define TLV_PUT_STRING(sctx, attrtype, str, len) \
518 do { \
519 ret = tlv_put_string(sctx, attrtype, str, len); \
520 if (ret < 0) \
521 goto tlv_put_failure; \
522 } while (0)
523#define TLV_PUT_PATH(sctx, attrtype, p) \
524 do { \
525 ret = tlv_put_string(sctx, attrtype, p->start, \
526 p->end - p->start); \
527 if (ret < 0) \
528 goto tlv_put_failure; \
529 } while(0)
530#define TLV_PUT_UUID(sctx, attrtype, uuid) \
531 do { \
532 ret = tlv_put_uuid(sctx, attrtype, uuid); \
533 if (ret < 0) \
534 goto tlv_put_failure; \
535 } while (0)
536#define TLV_PUT_TIMESPEC(sctx, attrtype, ts) \
537 do { \
538 ret = tlv_put_timespec(sctx, attrtype, ts); \
539 if (ret < 0) \
540 goto tlv_put_failure; \
541 } while (0)
542#define TLV_PUT_BTRFS_TIMESPEC(sctx, attrtype, eb, ts) \
543 do { \
544 ret = tlv_put_btrfs_timespec(sctx, attrtype, eb, ts); \
545 if (ret < 0) \
546 goto tlv_put_failure; \
547 } while (0)
548
549static int send_header(struct send_ctx *sctx)
550{
551 struct btrfs_stream_header hdr;
552
553 strcpy(hdr.magic, BTRFS_SEND_STREAM_MAGIC);
554 hdr.version = cpu_to_le32(BTRFS_SEND_STREAM_VERSION);
555
556 return write_buf(sctx, &hdr, sizeof(hdr));
557}
558
559/*
560 * For each command/item we want to send to userspace, we call this function.
561 */
562static int begin_cmd(struct send_ctx *sctx, int cmd)
563{
564 struct btrfs_cmd_header *hdr;
565
566 if (!sctx->send_buf) {
567 WARN_ON(1);
568 return -EINVAL;
569 }
570
571 BUG_ON(sctx->send_size);
572
573 sctx->send_size += sizeof(*hdr);
574 hdr = (struct btrfs_cmd_header *)sctx->send_buf;
575 hdr->cmd = cpu_to_le16(cmd);
576
577 return 0;
578}
579
580static int send_cmd(struct send_ctx *sctx)
581{
582 int ret;
583 struct btrfs_cmd_header *hdr;
584 u32 crc;
585
586 hdr = (struct btrfs_cmd_header *)sctx->send_buf;
587 hdr->len = cpu_to_le32(sctx->send_size - sizeof(*hdr));
588 hdr->crc = 0;
589
590 crc = crc32c(0, (unsigned char *)sctx->send_buf, sctx->send_size);
591 hdr->crc = cpu_to_le32(crc);
592
593 ret = write_buf(sctx, sctx->send_buf, sctx->send_size);
594
595 sctx->total_send_size += sctx->send_size;
596 sctx->cmd_send_size[le16_to_cpu(hdr->cmd)] += sctx->send_size;
597 sctx->send_size = 0;
598
599 return ret;
600}
601
602/*
603 * Sends a move instruction to user space
604 */
605static int send_rename(struct send_ctx *sctx,
606 struct fs_path *from, struct fs_path *to)
607{
608 int ret;
609
610verbose_printk("btrfs: send_rename %s -> %s\n", from->start, to->start);
611
612 ret = begin_cmd(sctx, BTRFS_SEND_C_RENAME);
613 if (ret < 0)
614 goto out;
615
616 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, from);
617 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_TO, to);
618
619 ret = send_cmd(sctx);
620
621tlv_put_failure:
622out:
623 return ret;
624}
625
626/*
627 * Sends a link instruction to user space
628 */
629static int send_link(struct send_ctx *sctx,
630 struct fs_path *path, struct fs_path *lnk)
631{
632 int ret;
633
634verbose_printk("btrfs: send_link %s -> %s\n", path->start, lnk->start);
635
636 ret = begin_cmd(sctx, BTRFS_SEND_C_LINK);
637 if (ret < 0)
638 goto out;
639
640 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
641 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, lnk);
642
643 ret = send_cmd(sctx);
644
645tlv_put_failure:
646out:
647 return ret;
648}
649
650/*
651 * Sends an unlink instruction to user space
652 */
653static int send_unlink(struct send_ctx *sctx, struct fs_path *path)
654{
655 int ret;
656
657verbose_printk("btrfs: send_unlink %s\n", path->start);
658
659 ret = begin_cmd(sctx, BTRFS_SEND_C_UNLINK);
660 if (ret < 0)
661 goto out;
662
663 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
664
665 ret = send_cmd(sctx);
666
667tlv_put_failure:
668out:
669 return ret;
670}
671
672/*
673 * Sends a rmdir instruction to user space
674 */
675static int send_rmdir(struct send_ctx *sctx, struct fs_path *path)
676{
677 int ret;
678
679verbose_printk("btrfs: send_rmdir %s\n", path->start);
680
681 ret = begin_cmd(sctx, BTRFS_SEND_C_RMDIR);
682 if (ret < 0)
683 goto out;
684
685 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
686
687 ret = send_cmd(sctx);
688
689tlv_put_failure:
690out:
691 return ret;
692}
693
694/*
695 * Helper function to retrieve some fields from an inode item.
696 */
697static int get_inode_info(struct btrfs_root *root,
698 u64 ino, u64 *size, u64 *gen,
Alexander Block85a7b332012-07-26 23:39:10 +0200699 u64 *mode, u64 *uid, u64 *gid,
700 u64 *rdev)
Alexander Block31db9f72012-07-25 23:19:24 +0200701{
702 int ret;
703 struct btrfs_inode_item *ii;
704 struct btrfs_key key;
705 struct btrfs_path *path;
706
707 path = alloc_path_for_send();
708 if (!path)
709 return -ENOMEM;
710
711 key.objectid = ino;
712 key.type = BTRFS_INODE_ITEM_KEY;
713 key.offset = 0;
714 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
715 if (ret < 0)
716 goto out;
717 if (ret) {
718 ret = -ENOENT;
719 goto out;
720 }
721
722 ii = btrfs_item_ptr(path->nodes[0], path->slots[0],
723 struct btrfs_inode_item);
724 if (size)
725 *size = btrfs_inode_size(path->nodes[0], ii);
726 if (gen)
727 *gen = btrfs_inode_generation(path->nodes[0], ii);
728 if (mode)
729 *mode = btrfs_inode_mode(path->nodes[0], ii);
730 if (uid)
731 *uid = btrfs_inode_uid(path->nodes[0], ii);
732 if (gid)
733 *gid = btrfs_inode_gid(path->nodes[0], ii);
Alexander Block85a7b332012-07-26 23:39:10 +0200734 if (rdev)
735 *rdev = btrfs_inode_rdev(path->nodes[0], ii);
Alexander Block31db9f72012-07-25 23:19:24 +0200736
737out:
738 btrfs_free_path(path);
739 return ret;
740}
741
742typedef int (*iterate_inode_ref_t)(int num, u64 dir, int index,
743 struct fs_path *p,
744 void *ctx);
745
746/*
747 * Helper function to iterate the entries in ONE btrfs_inode_ref.
748 * The iterate callback may return a non zero value to stop iteration. This can
749 * be a negative value for error codes or 1 to simply stop it.
750 *
751 * path must point to the INODE_REF when called.
752 */
753static int iterate_inode_ref(struct send_ctx *sctx,
754 struct btrfs_root *root, struct btrfs_path *path,
755 struct btrfs_key *found_key, int resolve,
756 iterate_inode_ref_t iterate, void *ctx)
757{
758 struct extent_buffer *eb;
759 struct btrfs_item *item;
760 struct btrfs_inode_ref *iref;
761 struct btrfs_path *tmp_path;
762 struct fs_path *p;
763 u32 cur;
764 u32 len;
765 u32 total;
766 int slot;
767 u32 name_len;
768 char *start;
769 int ret = 0;
770 int num;
771 int index;
772
773 p = fs_path_alloc_reversed(sctx);
774 if (!p)
775 return -ENOMEM;
776
777 tmp_path = alloc_path_for_send();
778 if (!tmp_path) {
779 fs_path_free(sctx, p);
780 return -ENOMEM;
781 }
782
783 eb = path->nodes[0];
784 slot = path->slots[0];
785 item = btrfs_item_nr(eb, slot);
786 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
787 cur = 0;
788 len = 0;
789 total = btrfs_item_size(eb, item);
790
791 num = 0;
792 while (cur < total) {
793 fs_path_reset(p);
794
795 name_len = btrfs_inode_ref_name_len(eb, iref);
796 index = btrfs_inode_ref_index(eb, iref);
797 if (resolve) {
798 start = btrfs_iref_to_path(root, tmp_path, iref, eb,
799 found_key->offset, p->buf,
800 p->buf_len);
801 if (IS_ERR(start)) {
802 ret = PTR_ERR(start);
803 goto out;
804 }
805 if (start < p->buf) {
806 /* overflow , try again with larger buffer */
807 ret = fs_path_ensure_buf(p,
808 p->buf_len + p->buf - start);
809 if (ret < 0)
810 goto out;
811 start = btrfs_iref_to_path(root, tmp_path, iref,
812 eb, found_key->offset, p->buf,
813 p->buf_len);
814 if (IS_ERR(start)) {
815 ret = PTR_ERR(start);
816 goto out;
817 }
818 BUG_ON(start < p->buf);
819 }
820 p->start = start;
821 } else {
822 ret = fs_path_add_from_extent_buffer(p, eb,
823 (unsigned long)(iref + 1), name_len);
824 if (ret < 0)
825 goto out;
826 }
827
828
829 len = sizeof(*iref) + name_len;
830 iref = (struct btrfs_inode_ref *)((char *)iref + len);
831 cur += len;
832
833 ret = iterate(num, found_key->offset, index, p, ctx);
834 if (ret)
835 goto out;
836
837 num++;
838 }
839
840out:
841 btrfs_free_path(tmp_path);
842 fs_path_free(sctx, p);
843 return ret;
844}
845
846typedef int (*iterate_dir_item_t)(int num, struct btrfs_key *di_key,
847 const char *name, int name_len,
848 const char *data, int data_len,
849 u8 type, void *ctx);
850
851/*
852 * Helper function to iterate the entries in ONE btrfs_dir_item.
853 * The iterate callback may return a non zero value to stop iteration. This can
854 * be a negative value for error codes or 1 to simply stop it.
855 *
856 * path must point to the dir item when called.
857 */
858static int iterate_dir_item(struct send_ctx *sctx,
859 struct btrfs_root *root, struct btrfs_path *path,
860 struct btrfs_key *found_key,
861 iterate_dir_item_t iterate, void *ctx)
862{
863 int ret = 0;
864 struct extent_buffer *eb;
865 struct btrfs_item *item;
866 struct btrfs_dir_item *di;
867 struct btrfs_path *tmp_path = NULL;
868 struct btrfs_key di_key;
869 char *buf = NULL;
870 char *buf2 = NULL;
871 int buf_len;
872 int buf_virtual = 0;
873 u32 name_len;
874 u32 data_len;
875 u32 cur;
876 u32 len;
877 u32 total;
878 int slot;
879 int num;
880 u8 type;
881
882 buf_len = PAGE_SIZE;
883 buf = kmalloc(buf_len, GFP_NOFS);
884 if (!buf) {
885 ret = -ENOMEM;
886 goto out;
887 }
888
889 tmp_path = alloc_path_for_send();
890 if (!tmp_path) {
891 ret = -ENOMEM;
892 goto out;
893 }
894
895 eb = path->nodes[0];
896 slot = path->slots[0];
897 item = btrfs_item_nr(eb, slot);
898 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
899 cur = 0;
900 len = 0;
901 total = btrfs_item_size(eb, item);
902
903 num = 0;
904 while (cur < total) {
905 name_len = btrfs_dir_name_len(eb, di);
906 data_len = btrfs_dir_data_len(eb, di);
907 type = btrfs_dir_type(eb, di);
908 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
909
910 if (name_len + data_len > buf_len) {
911 buf_len = PAGE_ALIGN(name_len + data_len);
912 if (buf_virtual) {
913 buf2 = vmalloc(buf_len);
914 if (!buf2) {
915 ret = -ENOMEM;
916 goto out;
917 }
918 vfree(buf);
919 } else {
920 buf2 = krealloc(buf, buf_len, GFP_NOFS);
921 if (!buf2) {
922 buf2 = vmalloc(buf_len);
923 if (!buf2) {
924 ret = -ENOMEM;
925 goto out;
926 }
927 kfree(buf);
928 buf_virtual = 1;
929 }
930 }
931
932 buf = buf2;
933 buf2 = NULL;
934 }
935
936 read_extent_buffer(eb, buf, (unsigned long)(di + 1),
937 name_len + data_len);
938
939 len = sizeof(*di) + name_len + data_len;
940 di = (struct btrfs_dir_item *)((char *)di + len);
941 cur += len;
942
943 ret = iterate(num, &di_key, buf, name_len, buf + name_len,
944 data_len, type, ctx);
945 if (ret < 0)
946 goto out;
947 if (ret) {
948 ret = 0;
949 goto out;
950 }
951
952 num++;
953 }
954
955out:
956 btrfs_free_path(tmp_path);
957 if (buf_virtual)
958 vfree(buf);
959 else
960 kfree(buf);
961 return ret;
962}
963
964static int __copy_first_ref(int num, u64 dir, int index,
965 struct fs_path *p, void *ctx)
966{
967 int ret;
968 struct fs_path *pt = ctx;
969
970 ret = fs_path_copy(pt, p);
971 if (ret < 0)
972 return ret;
973
974 /* we want the first only */
975 return 1;
976}
977
978/*
979 * Retrieve the first path of an inode. If an inode has more then one
980 * ref/hardlink, this is ignored.
981 */
982static int get_inode_path(struct send_ctx *sctx, struct btrfs_root *root,
983 u64 ino, struct fs_path *path)
984{
985 int ret;
986 struct btrfs_key key, found_key;
987 struct btrfs_path *p;
988
989 p = alloc_path_for_send();
990 if (!p)
991 return -ENOMEM;
992
993 fs_path_reset(path);
994
995 key.objectid = ino;
996 key.type = BTRFS_INODE_REF_KEY;
997 key.offset = 0;
998
999 ret = btrfs_search_slot_for_read(root, &key, p, 1, 0);
1000 if (ret < 0)
1001 goto out;
1002 if (ret) {
1003 ret = 1;
1004 goto out;
1005 }
1006 btrfs_item_key_to_cpu(p->nodes[0], &found_key, p->slots[0]);
1007 if (found_key.objectid != ino ||
1008 found_key.type != BTRFS_INODE_REF_KEY) {
1009 ret = -ENOENT;
1010 goto out;
1011 }
1012
1013 ret = iterate_inode_ref(sctx, root, p, &found_key, 1,
1014 __copy_first_ref, path);
1015 if (ret < 0)
1016 goto out;
1017 ret = 0;
1018
1019out:
1020 btrfs_free_path(p);
1021 return ret;
1022}
1023
1024struct backref_ctx {
1025 struct send_ctx *sctx;
1026
1027 /* number of total found references */
1028 u64 found;
1029
1030 /*
1031 * used for clones found in send_root. clones found behind cur_objectid
1032 * and cur_offset are not considered as allowed clones.
1033 */
1034 u64 cur_objectid;
1035 u64 cur_offset;
1036
1037 /* may be truncated in case it's the last extent in a file */
1038 u64 extent_len;
1039
1040 /* Just to check for bugs in backref resolving */
Alexander Blockee849c02012-07-28 12:42:05 +02001041 int found_itself;
Alexander Block31db9f72012-07-25 23:19:24 +02001042};
1043
1044static int __clone_root_cmp_bsearch(const void *key, const void *elt)
1045{
1046 u64 root = (u64)key;
1047 struct clone_root *cr = (struct clone_root *)elt;
1048
1049 if (root < cr->root->objectid)
1050 return -1;
1051 if (root > cr->root->objectid)
1052 return 1;
1053 return 0;
1054}
1055
1056static int __clone_root_cmp_sort(const void *e1, const void *e2)
1057{
1058 struct clone_root *cr1 = (struct clone_root *)e1;
1059 struct clone_root *cr2 = (struct clone_root *)e2;
1060
1061 if (cr1->root->objectid < cr2->root->objectid)
1062 return -1;
1063 if (cr1->root->objectid > cr2->root->objectid)
1064 return 1;
1065 return 0;
1066}
1067
1068/*
1069 * Called for every backref that is found for the current extent.
Alexander Block766702e2012-07-28 14:11:31 +02001070 * Results are collected in sctx->clone_roots->ino/offset/found_refs
Alexander Block31db9f72012-07-25 23:19:24 +02001071 */
1072static int __iterate_backrefs(u64 ino, u64 offset, u64 root, void *ctx_)
1073{
1074 struct backref_ctx *bctx = ctx_;
1075 struct clone_root *found;
1076 int ret;
1077 u64 i_size;
1078
1079 /* First check if the root is in the list of accepted clone sources */
1080 found = bsearch((void *)root, bctx->sctx->clone_roots,
1081 bctx->sctx->clone_roots_cnt,
1082 sizeof(struct clone_root),
1083 __clone_root_cmp_bsearch);
1084 if (!found)
1085 return 0;
1086
1087 if (found->root == bctx->sctx->send_root &&
1088 ino == bctx->cur_objectid &&
1089 offset == bctx->cur_offset) {
Alexander Blockee849c02012-07-28 12:42:05 +02001090 bctx->found_itself = 1;
Alexander Block31db9f72012-07-25 23:19:24 +02001091 }
1092
1093 /*
Alexander Block766702e2012-07-28 14:11:31 +02001094 * There are inodes that have extents that lie behind its i_size. Don't
Alexander Block31db9f72012-07-25 23:19:24 +02001095 * accept clones from these extents.
1096 */
Alexander Block85a7b332012-07-26 23:39:10 +02001097 ret = get_inode_info(found->root, ino, &i_size, NULL, NULL, NULL, NULL,
1098 NULL);
Alexander Block31db9f72012-07-25 23:19:24 +02001099 if (ret < 0)
1100 return ret;
1101
1102 if (offset + bctx->extent_len > i_size)
1103 return 0;
1104
1105 /*
1106 * Make sure we don't consider clones from send_root that are
1107 * behind the current inode/offset.
1108 */
1109 if (found->root == bctx->sctx->send_root) {
1110 /*
1111 * TODO for the moment we don't accept clones from the inode
1112 * that is currently send. We may change this when
1113 * BTRFS_IOC_CLONE_RANGE supports cloning from and to the same
1114 * file.
1115 */
1116 if (ino >= bctx->cur_objectid)
1117 return 0;
1118 /*if (ino > ctx->cur_objectid)
1119 return 0;
1120 if (offset + ctx->extent_len > ctx->cur_offset)
1121 return 0;*/
Alexander Block31db9f72012-07-25 23:19:24 +02001122 }
1123
1124 bctx->found++;
1125 found->found_refs++;
1126 if (ino < found->ino) {
1127 found->ino = ino;
1128 found->offset = offset;
1129 } else if (found->ino == ino) {
1130 /*
1131 * same extent found more then once in the same file.
1132 */
1133 if (found->offset > offset + bctx->extent_len)
1134 found->offset = offset;
1135 }
1136
1137 return 0;
1138}
1139
1140/*
Alexander Block766702e2012-07-28 14:11:31 +02001141 * Given an inode, offset and extent item, it finds a good clone for a clone
1142 * instruction. Returns -ENOENT when none could be found. The function makes
1143 * sure that the returned clone is usable at the point where sending is at the
1144 * moment. This means, that no clones are accepted which lie behind the current
1145 * inode+offset.
1146 *
Alexander Block31db9f72012-07-25 23:19:24 +02001147 * path must point to the extent item when called.
1148 */
1149static int find_extent_clone(struct send_ctx *sctx,
1150 struct btrfs_path *path,
1151 u64 ino, u64 data_offset,
1152 u64 ino_size,
1153 struct clone_root **found)
1154{
1155 int ret;
1156 int extent_type;
1157 u64 logical;
1158 u64 num_bytes;
1159 u64 extent_item_pos;
1160 struct btrfs_file_extent_item *fi;
1161 struct extent_buffer *eb = path->nodes[0];
Alexander Block35075bb2012-07-28 12:44:34 +02001162 struct backref_ctx *backref_ctx = NULL;
Alexander Block31db9f72012-07-25 23:19:24 +02001163 struct clone_root *cur_clone_root;
1164 struct btrfs_key found_key;
1165 struct btrfs_path *tmp_path;
1166 u32 i;
1167
1168 tmp_path = alloc_path_for_send();
1169 if (!tmp_path)
1170 return -ENOMEM;
1171
Alexander Block35075bb2012-07-28 12:44:34 +02001172 backref_ctx = kmalloc(sizeof(*backref_ctx), GFP_NOFS);
1173 if (!backref_ctx) {
1174 ret = -ENOMEM;
1175 goto out;
1176 }
1177
Alexander Block31db9f72012-07-25 23:19:24 +02001178 if (data_offset >= ino_size) {
1179 /*
1180 * There may be extents that lie behind the file's size.
1181 * I at least had this in combination with snapshotting while
1182 * writing large files.
1183 */
1184 ret = 0;
1185 goto out;
1186 }
1187
1188 fi = btrfs_item_ptr(eb, path->slots[0],
1189 struct btrfs_file_extent_item);
1190 extent_type = btrfs_file_extent_type(eb, fi);
1191 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1192 ret = -ENOENT;
1193 goto out;
1194 }
1195
1196 num_bytes = btrfs_file_extent_num_bytes(eb, fi);
1197 logical = btrfs_file_extent_disk_bytenr(eb, fi);
1198 if (logical == 0) {
1199 ret = -ENOENT;
1200 goto out;
1201 }
1202 logical += btrfs_file_extent_offset(eb, fi);
1203
1204 ret = extent_from_logical(sctx->send_root->fs_info,
1205 logical, tmp_path, &found_key);
1206 btrfs_release_path(tmp_path);
1207
1208 if (ret < 0)
1209 goto out;
1210 if (ret & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1211 ret = -EIO;
1212 goto out;
1213 }
1214
1215 /*
1216 * Setup the clone roots.
1217 */
1218 for (i = 0; i < sctx->clone_roots_cnt; i++) {
1219 cur_clone_root = sctx->clone_roots + i;
1220 cur_clone_root->ino = (u64)-1;
1221 cur_clone_root->offset = 0;
1222 cur_clone_root->found_refs = 0;
1223 }
1224
Alexander Block35075bb2012-07-28 12:44:34 +02001225 backref_ctx->sctx = sctx;
1226 backref_ctx->found = 0;
1227 backref_ctx->cur_objectid = ino;
1228 backref_ctx->cur_offset = data_offset;
1229 backref_ctx->found_itself = 0;
1230 backref_ctx->extent_len = num_bytes;
Alexander Block31db9f72012-07-25 23:19:24 +02001231
1232 /*
1233 * The last extent of a file may be too large due to page alignment.
1234 * We need to adjust extent_len in this case so that the checks in
1235 * __iterate_backrefs work.
1236 */
1237 if (data_offset + num_bytes >= ino_size)
Alexander Block35075bb2012-07-28 12:44:34 +02001238 backref_ctx->extent_len = ino_size - data_offset;
Alexander Block31db9f72012-07-25 23:19:24 +02001239
1240 /*
1241 * Now collect all backrefs.
1242 */
1243 extent_item_pos = logical - found_key.objectid;
1244 ret = iterate_extent_inodes(sctx->send_root->fs_info,
1245 found_key.objectid, extent_item_pos, 1,
Alexander Block35075bb2012-07-28 12:44:34 +02001246 __iterate_backrefs, backref_ctx);
Alexander Block31db9f72012-07-25 23:19:24 +02001247 if (ret < 0)
1248 goto out;
1249
Alexander Block35075bb2012-07-28 12:44:34 +02001250 if (!backref_ctx->found_itself) {
Alexander Block31db9f72012-07-25 23:19:24 +02001251 /* found a bug in backref code? */
1252 ret = -EIO;
1253 printk(KERN_ERR "btrfs: ERROR did not find backref in "
1254 "send_root. inode=%llu, offset=%llu, "
1255 "logical=%llu\n",
1256 ino, data_offset, logical);
1257 goto out;
1258 }
1259
1260verbose_printk(KERN_DEBUG "btrfs: find_extent_clone: data_offset=%llu, "
1261 "ino=%llu, "
1262 "num_bytes=%llu, logical=%llu\n",
1263 data_offset, ino, num_bytes, logical);
1264
Alexander Block35075bb2012-07-28 12:44:34 +02001265 if (!backref_ctx->found)
Alexander Block31db9f72012-07-25 23:19:24 +02001266 verbose_printk("btrfs: no clones found\n");
1267
1268 cur_clone_root = NULL;
1269 for (i = 0; i < sctx->clone_roots_cnt; i++) {
1270 if (sctx->clone_roots[i].found_refs) {
1271 if (!cur_clone_root)
1272 cur_clone_root = sctx->clone_roots + i;
1273 else if (sctx->clone_roots[i].root == sctx->send_root)
1274 /* prefer clones from send_root over others */
1275 cur_clone_root = sctx->clone_roots + i;
Alexander Block31db9f72012-07-25 23:19:24 +02001276 }
1277
1278 }
1279
1280 if (cur_clone_root) {
1281 *found = cur_clone_root;
1282 ret = 0;
1283 } else {
1284 ret = -ENOENT;
1285 }
1286
1287out:
1288 btrfs_free_path(tmp_path);
Alexander Block35075bb2012-07-28 12:44:34 +02001289 kfree(backref_ctx);
Alexander Block31db9f72012-07-25 23:19:24 +02001290 return ret;
1291}
1292
1293static int read_symlink(struct send_ctx *sctx,
1294 struct btrfs_root *root,
1295 u64 ino,
1296 struct fs_path *dest)
1297{
1298 int ret;
1299 struct btrfs_path *path;
1300 struct btrfs_key key;
1301 struct btrfs_file_extent_item *ei;
1302 u8 type;
1303 u8 compression;
1304 unsigned long off;
1305 int len;
1306
1307 path = alloc_path_for_send();
1308 if (!path)
1309 return -ENOMEM;
1310
1311 key.objectid = ino;
1312 key.type = BTRFS_EXTENT_DATA_KEY;
1313 key.offset = 0;
1314 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1315 if (ret < 0)
1316 goto out;
1317 BUG_ON(ret);
1318
1319 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
1320 struct btrfs_file_extent_item);
1321 type = btrfs_file_extent_type(path->nodes[0], ei);
1322 compression = btrfs_file_extent_compression(path->nodes[0], ei);
1323 BUG_ON(type != BTRFS_FILE_EXTENT_INLINE);
1324 BUG_ON(compression);
1325
1326 off = btrfs_file_extent_inline_start(ei);
1327 len = btrfs_file_extent_inline_len(path->nodes[0], ei);
1328
1329 ret = fs_path_add_from_extent_buffer(dest, path->nodes[0], off, len);
1330 if (ret < 0)
1331 goto out;
1332
1333out:
1334 btrfs_free_path(path);
1335 return ret;
1336}
1337
1338/*
1339 * Helper function to generate a file name that is unique in the root of
1340 * send_root and parent_root. This is used to generate names for orphan inodes.
1341 */
1342static int gen_unique_name(struct send_ctx *sctx,
1343 u64 ino, u64 gen,
1344 struct fs_path *dest)
1345{
1346 int ret = 0;
1347 struct btrfs_path *path;
1348 struct btrfs_dir_item *di;
1349 char tmp[64];
1350 int len;
1351 u64 idx = 0;
1352
1353 path = alloc_path_for_send();
1354 if (!path)
1355 return -ENOMEM;
1356
1357 while (1) {
1358 len = snprintf(tmp, sizeof(tmp) - 1, "o%llu-%llu-%llu",
1359 ino, gen, idx);
1360 if (len >= sizeof(tmp)) {
1361 /* should really not happen */
1362 ret = -EOVERFLOW;
1363 goto out;
1364 }
1365
1366 di = btrfs_lookup_dir_item(NULL, sctx->send_root,
1367 path, BTRFS_FIRST_FREE_OBJECTID,
1368 tmp, strlen(tmp), 0);
1369 btrfs_release_path(path);
1370 if (IS_ERR(di)) {
1371 ret = PTR_ERR(di);
1372 goto out;
1373 }
1374 if (di) {
1375 /* not unique, try again */
1376 idx++;
1377 continue;
1378 }
1379
1380 if (!sctx->parent_root) {
1381 /* unique */
1382 ret = 0;
1383 break;
1384 }
1385
1386 di = btrfs_lookup_dir_item(NULL, sctx->parent_root,
1387 path, BTRFS_FIRST_FREE_OBJECTID,
1388 tmp, strlen(tmp), 0);
1389 btrfs_release_path(path);
1390 if (IS_ERR(di)) {
1391 ret = PTR_ERR(di);
1392 goto out;
1393 }
1394 if (di) {
1395 /* not unique, try again */
1396 idx++;
1397 continue;
1398 }
1399 /* unique */
1400 break;
1401 }
1402
1403 ret = fs_path_add(dest, tmp, strlen(tmp));
1404
1405out:
1406 btrfs_free_path(path);
1407 return ret;
1408}
1409
1410enum inode_state {
1411 inode_state_no_change,
1412 inode_state_will_create,
1413 inode_state_did_create,
1414 inode_state_will_delete,
1415 inode_state_did_delete,
1416};
1417
1418static int get_cur_inode_state(struct send_ctx *sctx, u64 ino, u64 gen)
1419{
1420 int ret;
1421 int left_ret;
1422 int right_ret;
1423 u64 left_gen;
1424 u64 right_gen;
1425
1426 ret = get_inode_info(sctx->send_root, ino, NULL, &left_gen, NULL, NULL,
Alexander Block85a7b332012-07-26 23:39:10 +02001427 NULL, NULL);
Alexander Block31db9f72012-07-25 23:19:24 +02001428 if (ret < 0 && ret != -ENOENT)
1429 goto out;
1430 left_ret = ret;
1431
1432 if (!sctx->parent_root) {
1433 right_ret = -ENOENT;
1434 } else {
1435 ret = get_inode_info(sctx->parent_root, ino, NULL, &right_gen,
Alexander Block85a7b332012-07-26 23:39:10 +02001436 NULL, NULL, NULL, NULL);
Alexander Block31db9f72012-07-25 23:19:24 +02001437 if (ret < 0 && ret != -ENOENT)
1438 goto out;
1439 right_ret = ret;
1440 }
1441
1442 if (!left_ret && !right_ret) {
1443 if (left_gen == gen && right_gen == gen)
1444 ret = inode_state_no_change;
1445 else if (left_gen == gen) {
1446 if (ino < sctx->send_progress)
1447 ret = inode_state_did_create;
1448 else
1449 ret = inode_state_will_create;
1450 } else if (right_gen == gen) {
1451 if (ino < sctx->send_progress)
1452 ret = inode_state_did_delete;
1453 else
1454 ret = inode_state_will_delete;
1455 } else {
1456 ret = -ENOENT;
1457 }
1458 } else if (!left_ret) {
1459 if (left_gen == gen) {
1460 if (ino < sctx->send_progress)
1461 ret = inode_state_did_create;
1462 else
1463 ret = inode_state_will_create;
1464 } else {
1465 ret = -ENOENT;
1466 }
1467 } else if (!right_ret) {
1468 if (right_gen == gen) {
1469 if (ino < sctx->send_progress)
1470 ret = inode_state_did_delete;
1471 else
1472 ret = inode_state_will_delete;
1473 } else {
1474 ret = -ENOENT;
1475 }
1476 } else {
1477 ret = -ENOENT;
1478 }
1479
1480out:
1481 return ret;
1482}
1483
1484static int is_inode_existent(struct send_ctx *sctx, u64 ino, u64 gen)
1485{
1486 int ret;
1487
1488 ret = get_cur_inode_state(sctx, ino, gen);
1489 if (ret < 0)
1490 goto out;
1491
1492 if (ret == inode_state_no_change ||
1493 ret == inode_state_did_create ||
1494 ret == inode_state_will_delete)
1495 ret = 1;
1496 else
1497 ret = 0;
1498
1499out:
1500 return ret;
1501}
1502
1503/*
1504 * Helper function to lookup a dir item in a dir.
1505 */
1506static int lookup_dir_item_inode(struct btrfs_root *root,
1507 u64 dir, const char *name, int name_len,
1508 u64 *found_inode,
1509 u8 *found_type)
1510{
1511 int ret = 0;
1512 struct btrfs_dir_item *di;
1513 struct btrfs_key key;
1514 struct btrfs_path *path;
1515
1516 path = alloc_path_for_send();
1517 if (!path)
1518 return -ENOMEM;
1519
1520 di = btrfs_lookup_dir_item(NULL, root, path,
1521 dir, name, name_len, 0);
1522 if (!di) {
1523 ret = -ENOENT;
1524 goto out;
1525 }
1526 if (IS_ERR(di)) {
1527 ret = PTR_ERR(di);
1528 goto out;
1529 }
1530 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
1531 *found_inode = key.objectid;
1532 *found_type = btrfs_dir_type(path->nodes[0], di);
1533
1534out:
1535 btrfs_free_path(path);
1536 return ret;
1537}
1538
Alexander Block766702e2012-07-28 14:11:31 +02001539/*
1540 * Looks up the first btrfs_inode_ref of a given ino. It returns the parent dir,
1541 * generation of the parent dir and the name of the dir entry.
1542 */
Alexander Block31db9f72012-07-25 23:19:24 +02001543static int get_first_ref(struct send_ctx *sctx,
1544 struct btrfs_root *root, u64 ino,
1545 u64 *dir, u64 *dir_gen, struct fs_path *name)
1546{
1547 int ret;
1548 struct btrfs_key key;
1549 struct btrfs_key found_key;
1550 struct btrfs_path *path;
1551 struct btrfs_inode_ref *iref;
1552 int len;
1553
1554 path = alloc_path_for_send();
1555 if (!path)
1556 return -ENOMEM;
1557
1558 key.objectid = ino;
1559 key.type = BTRFS_INODE_REF_KEY;
1560 key.offset = 0;
1561
1562 ret = btrfs_search_slot_for_read(root, &key, path, 1, 0);
1563 if (ret < 0)
1564 goto out;
1565 if (!ret)
1566 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1567 path->slots[0]);
1568 if (ret || found_key.objectid != key.objectid ||
1569 found_key.type != key.type) {
1570 ret = -ENOENT;
1571 goto out;
1572 }
1573
1574 iref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1575 struct btrfs_inode_ref);
1576 len = btrfs_inode_ref_name_len(path->nodes[0], iref);
1577 ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1578 (unsigned long)(iref + 1), len);
1579 if (ret < 0)
1580 goto out;
1581 btrfs_release_path(path);
1582
1583 ret = get_inode_info(root, found_key.offset, NULL, dir_gen, NULL, NULL,
Alexander Block85a7b332012-07-26 23:39:10 +02001584 NULL, NULL);
Alexander Block31db9f72012-07-25 23:19:24 +02001585 if (ret < 0)
1586 goto out;
1587
1588 *dir = found_key.offset;
1589
1590out:
1591 btrfs_free_path(path);
1592 return ret;
1593}
1594
1595static int is_first_ref(struct send_ctx *sctx,
1596 struct btrfs_root *root,
1597 u64 ino, u64 dir,
1598 const char *name, int name_len)
1599{
1600 int ret;
1601 struct fs_path *tmp_name;
1602 u64 tmp_dir;
1603 u64 tmp_dir_gen;
1604
1605 tmp_name = fs_path_alloc(sctx);
1606 if (!tmp_name)
1607 return -ENOMEM;
1608
1609 ret = get_first_ref(sctx, root, ino, &tmp_dir, &tmp_dir_gen, tmp_name);
1610 if (ret < 0)
1611 goto out;
1612
Alexander Blockb9291af2012-07-28 11:07:18 +02001613 if (dir != tmp_dir || name_len != fs_path_len(tmp_name)) {
Alexander Block31db9f72012-07-25 23:19:24 +02001614 ret = 0;
1615 goto out;
1616 }
1617
1618 ret = memcmp(tmp_name->start, name, name_len);
1619 if (ret)
1620 ret = 0;
1621 else
1622 ret = 1;
1623
1624out:
1625 fs_path_free(sctx, tmp_name);
1626 return ret;
1627}
1628
Alexander Block766702e2012-07-28 14:11:31 +02001629/*
1630 * Used by process_recorded_refs to determine if a new ref would overwrite an
1631 * already existing ref. In case it detects an overwrite, it returns the
1632 * inode/gen in who_ino/who_gen.
1633 * When an overwrite is detected, process_recorded_refs does proper orphanizing
1634 * to make sure later references to the overwritten inode are possible.
1635 * Orphanizing is however only required for the first ref of an inode.
1636 * process_recorded_refs does an additional is_first_ref check to see if
1637 * orphanizing is really required.
1638 */
Alexander Block31db9f72012-07-25 23:19:24 +02001639static int will_overwrite_ref(struct send_ctx *sctx, u64 dir, u64 dir_gen,
1640 const char *name, int name_len,
1641 u64 *who_ino, u64 *who_gen)
1642{
1643 int ret = 0;
1644 u64 other_inode = 0;
1645 u8 other_type = 0;
1646
1647 if (!sctx->parent_root)
1648 goto out;
1649
1650 ret = is_inode_existent(sctx, dir, dir_gen);
1651 if (ret <= 0)
1652 goto out;
1653
1654 ret = lookup_dir_item_inode(sctx->parent_root, dir, name, name_len,
1655 &other_inode, &other_type);
1656 if (ret < 0 && ret != -ENOENT)
1657 goto out;
1658 if (ret) {
1659 ret = 0;
1660 goto out;
1661 }
1662
Alexander Block766702e2012-07-28 14:11:31 +02001663 /*
1664 * Check if the overwritten ref was already processed. If yes, the ref
1665 * was already unlinked/moved, so we can safely assume that we will not
1666 * overwrite anything at this point in time.
1667 */
Alexander Block31db9f72012-07-25 23:19:24 +02001668 if (other_inode > sctx->send_progress) {
1669 ret = get_inode_info(sctx->parent_root, other_inode, NULL,
Alexander Block85a7b332012-07-26 23:39:10 +02001670 who_gen, NULL, NULL, NULL, NULL);
Alexander Block31db9f72012-07-25 23:19:24 +02001671 if (ret < 0)
1672 goto out;
1673
1674 ret = 1;
1675 *who_ino = other_inode;
1676 } else {
1677 ret = 0;
1678 }
1679
1680out:
1681 return ret;
1682}
1683
Alexander Block766702e2012-07-28 14:11:31 +02001684/*
1685 * Checks if the ref was overwritten by an already processed inode. This is
1686 * used by __get_cur_name_and_parent to find out if the ref was orphanized and
1687 * thus the orphan name needs be used.
1688 * process_recorded_refs also uses it to avoid unlinking of refs that were
1689 * overwritten.
1690 */
Alexander Block31db9f72012-07-25 23:19:24 +02001691static int did_overwrite_ref(struct send_ctx *sctx,
1692 u64 dir, u64 dir_gen,
1693 u64 ino, u64 ino_gen,
1694 const char *name, int name_len)
1695{
1696 int ret = 0;
1697 u64 gen;
1698 u64 ow_inode;
1699 u8 other_type;
1700
1701 if (!sctx->parent_root)
1702 goto out;
1703
1704 ret = is_inode_existent(sctx, dir, dir_gen);
1705 if (ret <= 0)
1706 goto out;
1707
1708 /* check if the ref was overwritten by another ref */
1709 ret = lookup_dir_item_inode(sctx->send_root, dir, name, name_len,
1710 &ow_inode, &other_type);
1711 if (ret < 0 && ret != -ENOENT)
1712 goto out;
1713 if (ret) {
1714 /* was never and will never be overwritten */
1715 ret = 0;
1716 goto out;
1717 }
1718
1719 ret = get_inode_info(sctx->send_root, ow_inode, NULL, &gen, NULL, NULL,
Alexander Block85a7b332012-07-26 23:39:10 +02001720 NULL, NULL);
Alexander Block31db9f72012-07-25 23:19:24 +02001721 if (ret < 0)
1722 goto out;
1723
1724 if (ow_inode == ino && gen == ino_gen) {
1725 ret = 0;
1726 goto out;
1727 }
1728
1729 /* we know that it is or will be overwritten. check this now */
1730 if (ow_inode < sctx->send_progress)
1731 ret = 1;
1732 else
1733 ret = 0;
1734
1735out:
1736 return ret;
1737}
1738
Alexander Block766702e2012-07-28 14:11:31 +02001739/*
1740 * Same as did_overwrite_ref, but also checks if it is the first ref of an inode
1741 * that got overwritten. This is used by process_recorded_refs to determine
1742 * if it has to use the path as returned by get_cur_path or the orphan name.
1743 */
Alexander Block31db9f72012-07-25 23:19:24 +02001744static int did_overwrite_first_ref(struct send_ctx *sctx, u64 ino, u64 gen)
1745{
1746 int ret = 0;
1747 struct fs_path *name = NULL;
1748 u64 dir;
1749 u64 dir_gen;
1750
1751 if (!sctx->parent_root)
1752 goto out;
1753
1754 name = fs_path_alloc(sctx);
1755 if (!name)
1756 return -ENOMEM;
1757
1758 ret = get_first_ref(sctx, sctx->parent_root, ino, &dir, &dir_gen, name);
1759 if (ret < 0)
1760 goto out;
1761
1762 ret = did_overwrite_ref(sctx, dir, dir_gen, ino, gen,
1763 name->start, fs_path_len(name));
1764 if (ret < 0)
1765 goto out;
1766
1767out:
1768 fs_path_free(sctx, name);
1769 return ret;
1770}
1771
Alexander Block766702e2012-07-28 14:11:31 +02001772/*
1773 * Insert a name cache entry. On 32bit kernels the radix tree index is 32bit,
1774 * so we need to do some special handling in case we have clashes. This function
1775 * takes care of this with the help of name_cache_entry::radix_list.
1776 */
Alexander Block31db9f72012-07-25 23:19:24 +02001777static int name_cache_insert(struct send_ctx *sctx,
1778 struct name_cache_entry *nce)
1779{
1780 int ret = 0;
Alexander Block7e0926f2012-07-28 14:20:58 +02001781 struct list_head *nce_head;
Alexander Block31db9f72012-07-25 23:19:24 +02001782
Alexander Block7e0926f2012-07-28 14:20:58 +02001783 nce_head = radix_tree_lookup(&sctx->name_cache,
1784 (unsigned long)nce->ino);
1785 if (!nce_head) {
1786 nce_head = kmalloc(sizeof(*nce_head), GFP_NOFS);
1787 if (!nce_head)
Alexander Block31db9f72012-07-25 23:19:24 +02001788 return -ENOMEM;
Alexander Block7e0926f2012-07-28 14:20:58 +02001789 INIT_LIST_HEAD(nce_head);
Alexander Block31db9f72012-07-25 23:19:24 +02001790
Alexander Block7e0926f2012-07-28 14:20:58 +02001791 ret = radix_tree_insert(&sctx->name_cache, nce->ino, nce_head);
Alexander Block31db9f72012-07-25 23:19:24 +02001792 if (ret < 0)
1793 return ret;
1794 }
Alexander Block7e0926f2012-07-28 14:20:58 +02001795 list_add_tail(&nce->radix_list, nce_head);
Alexander Block31db9f72012-07-25 23:19:24 +02001796 list_add_tail(&nce->list, &sctx->name_cache_list);
1797 sctx->name_cache_size++;
1798
1799 return ret;
1800}
1801
1802static void name_cache_delete(struct send_ctx *sctx,
1803 struct name_cache_entry *nce)
1804{
Alexander Block7e0926f2012-07-28 14:20:58 +02001805 struct list_head *nce_head;
Alexander Block31db9f72012-07-25 23:19:24 +02001806
Alexander Block7e0926f2012-07-28 14:20:58 +02001807 nce_head = radix_tree_lookup(&sctx->name_cache,
1808 (unsigned long)nce->ino);
1809 BUG_ON(!nce_head);
Alexander Block31db9f72012-07-25 23:19:24 +02001810
Alexander Block7e0926f2012-07-28 14:20:58 +02001811 list_del(&nce->radix_list);
Alexander Block31db9f72012-07-25 23:19:24 +02001812 list_del(&nce->list);
Alexander Block31db9f72012-07-25 23:19:24 +02001813 sctx->name_cache_size--;
Alexander Block7e0926f2012-07-28 14:20:58 +02001814
1815 if (list_empty(nce_head)) {
1816 radix_tree_delete(&sctx->name_cache, (unsigned long)nce->ino);
1817 kfree(nce_head);
1818 }
Alexander Block31db9f72012-07-25 23:19:24 +02001819}
1820
1821static struct name_cache_entry *name_cache_search(struct send_ctx *sctx,
1822 u64 ino, u64 gen)
1823{
Alexander Block7e0926f2012-07-28 14:20:58 +02001824 struct list_head *nce_head;
1825 struct name_cache_entry *cur;
Alexander Block31db9f72012-07-25 23:19:24 +02001826
Alexander Block7e0926f2012-07-28 14:20:58 +02001827 nce_head = radix_tree_lookup(&sctx->name_cache, (unsigned long)ino);
1828 if (!nce_head)
Alexander Block31db9f72012-07-25 23:19:24 +02001829 return NULL;
1830
Alexander Block7e0926f2012-07-28 14:20:58 +02001831 list_for_each_entry(cur, nce_head, radix_list) {
1832 if (cur->ino == ino && cur->gen == gen)
1833 return cur;
1834 }
Alexander Block31db9f72012-07-25 23:19:24 +02001835 return NULL;
1836}
1837
Alexander Block766702e2012-07-28 14:11:31 +02001838/*
1839 * Removes the entry from the list and adds it back to the end. This marks the
1840 * entry as recently used so that name_cache_clean_unused does not remove it.
1841 */
Alexander Block31db9f72012-07-25 23:19:24 +02001842static void name_cache_used(struct send_ctx *sctx, struct name_cache_entry *nce)
1843{
1844 list_del(&nce->list);
1845 list_add_tail(&nce->list, &sctx->name_cache_list);
1846}
1847
Alexander Block766702e2012-07-28 14:11:31 +02001848/*
1849 * Remove some entries from the beginning of name_cache_list.
1850 */
Alexander Block31db9f72012-07-25 23:19:24 +02001851static void name_cache_clean_unused(struct send_ctx *sctx)
1852{
1853 struct name_cache_entry *nce;
1854
1855 if (sctx->name_cache_size < SEND_CTX_NAME_CACHE_CLEAN_SIZE)
1856 return;
1857
1858 while (sctx->name_cache_size > SEND_CTX_MAX_NAME_CACHE_SIZE) {
1859 nce = list_entry(sctx->name_cache_list.next,
1860 struct name_cache_entry, list);
1861 name_cache_delete(sctx, nce);
1862 kfree(nce);
1863 }
1864}
1865
1866static void name_cache_free(struct send_ctx *sctx)
1867{
1868 struct name_cache_entry *nce;
1869 struct name_cache_entry *tmp;
1870
1871 list_for_each_entry_safe(nce, tmp, &sctx->name_cache_list, list) {
1872 name_cache_delete(sctx, nce);
Alexander Block17589bd2012-07-28 14:13:35 +02001873 kfree(nce);
Alexander Block31db9f72012-07-25 23:19:24 +02001874 }
1875}
1876
Alexander Block766702e2012-07-28 14:11:31 +02001877/*
1878 * Used by get_cur_path for each ref up to the root.
1879 * Returns 0 if it succeeded.
1880 * Returns 1 if the inode is not existent or got overwritten. In that case, the
1881 * name is an orphan name. This instructs get_cur_path to stop iterating. If 1
1882 * is returned, parent_ino/parent_gen are not guaranteed to be valid.
1883 * Returns <0 in case of error.
1884 */
Alexander Block31db9f72012-07-25 23:19:24 +02001885static int __get_cur_name_and_parent(struct send_ctx *sctx,
1886 u64 ino, u64 gen,
1887 u64 *parent_ino,
1888 u64 *parent_gen,
1889 struct fs_path *dest)
1890{
1891 int ret;
1892 int nce_ret;
1893 struct btrfs_path *path = NULL;
1894 struct name_cache_entry *nce = NULL;
1895
Alexander Block766702e2012-07-28 14:11:31 +02001896 /*
1897 * First check if we already did a call to this function with the same
1898 * ino/gen. If yes, check if the cache entry is still up-to-date. If yes
1899 * return the cached result.
1900 */
Alexander Block31db9f72012-07-25 23:19:24 +02001901 nce = name_cache_search(sctx, ino, gen);
1902 if (nce) {
1903 if (ino < sctx->send_progress && nce->need_later_update) {
1904 name_cache_delete(sctx, nce);
1905 kfree(nce);
1906 nce = NULL;
1907 } else {
1908 name_cache_used(sctx, nce);
1909 *parent_ino = nce->parent_ino;
1910 *parent_gen = nce->parent_gen;
1911 ret = fs_path_add(dest, nce->name, nce->name_len);
1912 if (ret < 0)
1913 goto out;
1914 ret = nce->ret;
1915 goto out;
1916 }
1917 }
1918
1919 path = alloc_path_for_send();
1920 if (!path)
1921 return -ENOMEM;
1922
Alexander Block766702e2012-07-28 14:11:31 +02001923 /*
1924 * If the inode is not existent yet, add the orphan name and return 1.
1925 * This should only happen for the parent dir that we determine in
1926 * __record_new_ref
1927 */
Alexander Block31db9f72012-07-25 23:19:24 +02001928 ret = is_inode_existent(sctx, ino, gen);
1929 if (ret < 0)
1930 goto out;
1931
1932 if (!ret) {
1933 ret = gen_unique_name(sctx, ino, gen, dest);
1934 if (ret < 0)
1935 goto out;
1936 ret = 1;
1937 goto out_cache;
1938 }
1939
Alexander Block766702e2012-07-28 14:11:31 +02001940 /*
1941 * Depending on whether the inode was already processed or not, use
1942 * send_root or parent_root for ref lookup.
1943 */
Alexander Block31db9f72012-07-25 23:19:24 +02001944 if (ino < sctx->send_progress)
1945 ret = get_first_ref(sctx, sctx->send_root, ino,
1946 parent_ino, parent_gen, dest);
1947 else
1948 ret = get_first_ref(sctx, sctx->parent_root, ino,
1949 parent_ino, parent_gen, dest);
1950 if (ret < 0)
1951 goto out;
1952
Alexander Block766702e2012-07-28 14:11:31 +02001953 /*
1954 * Check if the ref was overwritten by an inode's ref that was processed
1955 * earlier. If yes, treat as orphan and return 1.
1956 */
Alexander Block31db9f72012-07-25 23:19:24 +02001957 ret = did_overwrite_ref(sctx, *parent_ino, *parent_gen, ino, gen,
1958 dest->start, dest->end - dest->start);
1959 if (ret < 0)
1960 goto out;
1961 if (ret) {
1962 fs_path_reset(dest);
1963 ret = gen_unique_name(sctx, ino, gen, dest);
1964 if (ret < 0)
1965 goto out;
1966 ret = 1;
1967 }
1968
1969out_cache:
Alexander Block766702e2012-07-28 14:11:31 +02001970 /*
1971 * Store the result of the lookup in the name cache.
1972 */
Alexander Block31db9f72012-07-25 23:19:24 +02001973 nce = kmalloc(sizeof(*nce) + fs_path_len(dest) + 1, GFP_NOFS);
1974 if (!nce) {
1975 ret = -ENOMEM;
1976 goto out;
1977 }
1978
1979 nce->ino = ino;
1980 nce->gen = gen;
1981 nce->parent_ino = *parent_ino;
1982 nce->parent_gen = *parent_gen;
1983 nce->name_len = fs_path_len(dest);
1984 nce->ret = ret;
1985 strcpy(nce->name, dest->start);
Alexander Block31db9f72012-07-25 23:19:24 +02001986
1987 if (ino < sctx->send_progress)
1988 nce->need_later_update = 0;
1989 else
1990 nce->need_later_update = 1;
1991
1992 nce_ret = name_cache_insert(sctx, nce);
1993 if (nce_ret < 0)
1994 ret = nce_ret;
1995 name_cache_clean_unused(sctx);
1996
1997out:
1998 btrfs_free_path(path);
1999 return ret;
2000}
2001
2002/*
2003 * Magic happens here. This function returns the first ref to an inode as it
2004 * would look like while receiving the stream at this point in time.
2005 * We walk the path up to the root. For every inode in between, we check if it
2006 * was already processed/sent. If yes, we continue with the parent as found
2007 * in send_root. If not, we continue with the parent as found in parent_root.
2008 * If we encounter an inode that was deleted at this point in time, we use the
2009 * inodes "orphan" name instead of the real name and stop. Same with new inodes
2010 * that were not created yet and overwritten inodes/refs.
2011 *
2012 * When do we have have orphan inodes:
2013 * 1. When an inode is freshly created and thus no valid refs are available yet
2014 * 2. When a directory lost all it's refs (deleted) but still has dir items
2015 * inside which were not processed yet (pending for move/delete). If anyone
2016 * tried to get the path to the dir items, it would get a path inside that
2017 * orphan directory.
2018 * 3. When an inode is moved around or gets new links, it may overwrite the ref
2019 * of an unprocessed inode. If in that case the first ref would be
2020 * overwritten, the overwritten inode gets "orphanized". Later when we
2021 * process this overwritten inode, it is restored at a new place by moving
2022 * the orphan inode.
2023 *
2024 * sctx->send_progress tells this function at which point in time receiving
2025 * would be.
2026 */
2027static int get_cur_path(struct send_ctx *sctx, u64 ino, u64 gen,
2028 struct fs_path *dest)
2029{
2030 int ret = 0;
2031 struct fs_path *name = NULL;
2032 u64 parent_inode = 0;
2033 u64 parent_gen = 0;
2034 int stop = 0;
2035
2036 name = fs_path_alloc(sctx);
2037 if (!name) {
2038 ret = -ENOMEM;
2039 goto out;
2040 }
2041
2042 dest->reversed = 1;
2043 fs_path_reset(dest);
2044
2045 while (!stop && ino != BTRFS_FIRST_FREE_OBJECTID) {
2046 fs_path_reset(name);
2047
2048 ret = __get_cur_name_and_parent(sctx, ino, gen,
2049 &parent_inode, &parent_gen, name);
2050 if (ret < 0)
2051 goto out;
2052 if (ret)
2053 stop = 1;
2054
2055 ret = fs_path_add_path(dest, name);
2056 if (ret < 0)
2057 goto out;
2058
2059 ino = parent_inode;
2060 gen = parent_gen;
2061 }
2062
2063out:
2064 fs_path_free(sctx, name);
2065 if (!ret)
2066 fs_path_unreverse(dest);
2067 return ret;
2068}
2069
2070/*
2071 * Called for regular files when sending extents data. Opens a struct file
2072 * to read from the file.
2073 */
2074static int open_cur_inode_file(struct send_ctx *sctx)
2075{
2076 int ret = 0;
2077 struct btrfs_key key;
Linus Torvaldse2aed8d2012-07-26 14:48:55 -07002078 struct path path;
Alexander Block31db9f72012-07-25 23:19:24 +02002079 struct inode *inode;
2080 struct dentry *dentry;
2081 struct file *filp;
2082 int new = 0;
2083
2084 if (sctx->cur_inode_filp)
2085 goto out;
2086
2087 key.objectid = sctx->cur_ino;
2088 key.type = BTRFS_INODE_ITEM_KEY;
2089 key.offset = 0;
2090
2091 inode = btrfs_iget(sctx->send_root->fs_info->sb, &key, sctx->send_root,
2092 &new);
2093 if (IS_ERR(inode)) {
2094 ret = PTR_ERR(inode);
2095 goto out;
2096 }
2097
2098 dentry = d_obtain_alias(inode);
2099 inode = NULL;
2100 if (IS_ERR(dentry)) {
2101 ret = PTR_ERR(dentry);
2102 goto out;
2103 }
2104
Linus Torvaldse2aed8d2012-07-26 14:48:55 -07002105 path.mnt = sctx->mnt;
2106 path.dentry = dentry;
2107 filp = dentry_open(&path, O_RDONLY | O_LARGEFILE, current_cred());
2108 dput(dentry);
Alexander Block31db9f72012-07-25 23:19:24 +02002109 dentry = NULL;
Alexander Block31db9f72012-07-25 23:19:24 +02002110 if (IS_ERR(filp)) {
2111 ret = PTR_ERR(filp);
2112 goto out;
2113 }
2114 sctx->cur_inode_filp = filp;
2115
2116out:
2117 /*
2118 * no xxxput required here as every vfs op
2119 * does it by itself on failure
2120 */
2121 return ret;
2122}
2123
2124/*
2125 * Closes the struct file that was created in open_cur_inode_file
2126 */
2127static int close_cur_inode_file(struct send_ctx *sctx)
2128{
2129 int ret = 0;
2130
2131 if (!sctx->cur_inode_filp)
2132 goto out;
2133
2134 ret = filp_close(sctx->cur_inode_filp, NULL);
2135 sctx->cur_inode_filp = NULL;
2136
2137out:
2138 return ret;
2139}
2140
2141/*
2142 * Sends a BTRFS_SEND_C_SUBVOL command/item to userspace
2143 */
2144static int send_subvol_begin(struct send_ctx *sctx)
2145{
2146 int ret;
2147 struct btrfs_root *send_root = sctx->send_root;
2148 struct btrfs_root *parent_root = sctx->parent_root;
2149 struct btrfs_path *path;
2150 struct btrfs_key key;
2151 struct btrfs_root_ref *ref;
2152 struct extent_buffer *leaf;
2153 char *name = NULL;
2154 int namelen;
2155
2156 path = alloc_path_for_send();
2157 if (!path)
2158 return -ENOMEM;
2159
2160 name = kmalloc(BTRFS_PATH_NAME_MAX, GFP_NOFS);
2161 if (!name) {
2162 btrfs_free_path(path);
2163 return -ENOMEM;
2164 }
2165
2166 key.objectid = send_root->objectid;
2167 key.type = BTRFS_ROOT_BACKREF_KEY;
2168 key.offset = 0;
2169
2170 ret = btrfs_search_slot_for_read(send_root->fs_info->tree_root,
2171 &key, path, 1, 0);
2172 if (ret < 0)
2173 goto out;
2174 if (ret) {
2175 ret = -ENOENT;
2176 goto out;
2177 }
2178
2179 leaf = path->nodes[0];
2180 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2181 if (key.type != BTRFS_ROOT_BACKREF_KEY ||
2182 key.objectid != send_root->objectid) {
2183 ret = -ENOENT;
2184 goto out;
2185 }
2186 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
2187 namelen = btrfs_root_ref_name_len(leaf, ref);
2188 read_extent_buffer(leaf, name, (unsigned long)(ref + 1), namelen);
2189 btrfs_release_path(path);
2190
2191 if (ret < 0)
2192 goto out;
2193
2194 if (parent_root) {
2195 ret = begin_cmd(sctx, BTRFS_SEND_C_SNAPSHOT);
2196 if (ret < 0)
2197 goto out;
2198 } else {
2199 ret = begin_cmd(sctx, BTRFS_SEND_C_SUBVOL);
2200 if (ret < 0)
2201 goto out;
2202 }
2203
2204 TLV_PUT_STRING(sctx, BTRFS_SEND_A_PATH, name, namelen);
2205 TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2206 sctx->send_root->root_item.uuid);
2207 TLV_PUT_U64(sctx, BTRFS_SEND_A_CTRANSID,
2208 sctx->send_root->root_item.ctransid);
2209 if (parent_root) {
2210 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2211 sctx->parent_root->root_item.uuid);
2212 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
2213 sctx->parent_root->root_item.ctransid);
2214 }
2215
2216 ret = send_cmd(sctx);
2217
2218tlv_put_failure:
2219out:
2220 btrfs_free_path(path);
2221 kfree(name);
2222 return ret;
2223}
2224
2225static int send_truncate(struct send_ctx *sctx, u64 ino, u64 gen, u64 size)
2226{
2227 int ret = 0;
2228 struct fs_path *p;
2229
2230verbose_printk("btrfs: send_truncate %llu size=%llu\n", ino, size);
2231
2232 p = fs_path_alloc(sctx);
2233 if (!p)
2234 return -ENOMEM;
2235
2236 ret = begin_cmd(sctx, BTRFS_SEND_C_TRUNCATE);
2237 if (ret < 0)
2238 goto out;
2239
2240 ret = get_cur_path(sctx, ino, gen, p);
2241 if (ret < 0)
2242 goto out;
2243 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2244 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, size);
2245
2246 ret = send_cmd(sctx);
2247
2248tlv_put_failure:
2249out:
2250 fs_path_free(sctx, p);
2251 return ret;
2252}
2253
2254static int send_chmod(struct send_ctx *sctx, u64 ino, u64 gen, u64 mode)
2255{
2256 int ret = 0;
2257 struct fs_path *p;
2258
2259verbose_printk("btrfs: send_chmod %llu mode=%llu\n", ino, mode);
2260
2261 p = fs_path_alloc(sctx);
2262 if (!p)
2263 return -ENOMEM;
2264
2265 ret = begin_cmd(sctx, BTRFS_SEND_C_CHMOD);
2266 if (ret < 0)
2267 goto out;
2268
2269 ret = get_cur_path(sctx, ino, gen, p);
2270 if (ret < 0)
2271 goto out;
2272 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2273 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode & 07777);
2274
2275 ret = send_cmd(sctx);
2276
2277tlv_put_failure:
2278out:
2279 fs_path_free(sctx, p);
2280 return ret;
2281}
2282
2283static int send_chown(struct send_ctx *sctx, u64 ino, u64 gen, u64 uid, u64 gid)
2284{
2285 int ret = 0;
2286 struct fs_path *p;
2287
2288verbose_printk("btrfs: send_chown %llu uid=%llu, gid=%llu\n", ino, uid, gid);
2289
2290 p = fs_path_alloc(sctx);
2291 if (!p)
2292 return -ENOMEM;
2293
2294 ret = begin_cmd(sctx, BTRFS_SEND_C_CHOWN);
2295 if (ret < 0)
2296 goto out;
2297
2298 ret = get_cur_path(sctx, ino, gen, p);
2299 if (ret < 0)
2300 goto out;
2301 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2302 TLV_PUT_U64(sctx, BTRFS_SEND_A_UID, uid);
2303 TLV_PUT_U64(sctx, BTRFS_SEND_A_GID, gid);
2304
2305 ret = send_cmd(sctx);
2306
2307tlv_put_failure:
2308out:
2309 fs_path_free(sctx, p);
2310 return ret;
2311}
2312
2313static int send_utimes(struct send_ctx *sctx, u64 ino, u64 gen)
2314{
2315 int ret = 0;
2316 struct fs_path *p = NULL;
2317 struct btrfs_inode_item *ii;
2318 struct btrfs_path *path = NULL;
2319 struct extent_buffer *eb;
2320 struct btrfs_key key;
2321 int slot;
2322
2323verbose_printk("btrfs: send_utimes %llu\n", ino);
2324
2325 p = fs_path_alloc(sctx);
2326 if (!p)
2327 return -ENOMEM;
2328
2329 path = alloc_path_for_send();
2330 if (!path) {
2331 ret = -ENOMEM;
2332 goto out;
2333 }
2334
2335 key.objectid = ino;
2336 key.type = BTRFS_INODE_ITEM_KEY;
2337 key.offset = 0;
2338 ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2339 if (ret < 0)
2340 goto out;
2341
2342 eb = path->nodes[0];
2343 slot = path->slots[0];
2344 ii = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
2345
2346 ret = begin_cmd(sctx, BTRFS_SEND_C_UTIMES);
2347 if (ret < 0)
2348 goto out;
2349
2350 ret = get_cur_path(sctx, ino, gen, p);
2351 if (ret < 0)
2352 goto out;
2353 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2354 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_ATIME, eb,
2355 btrfs_inode_atime(ii));
2356 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_MTIME, eb,
2357 btrfs_inode_mtime(ii));
2358 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_CTIME, eb,
2359 btrfs_inode_ctime(ii));
Alexander Block766702e2012-07-28 14:11:31 +02002360 /* TODO Add otime support when the otime patches get into upstream */
Alexander Block31db9f72012-07-25 23:19:24 +02002361
2362 ret = send_cmd(sctx);
2363
2364tlv_put_failure:
2365out:
2366 fs_path_free(sctx, p);
2367 btrfs_free_path(path);
2368 return ret;
2369}
2370
2371/*
2372 * Sends a BTRFS_SEND_C_MKXXX or SYMLINK command to user space. We don't have
2373 * a valid path yet because we did not process the refs yet. So, the inode
2374 * is created as orphan.
2375 */
Alexander Block1f4692d2012-07-28 10:42:24 +02002376static int send_create_inode(struct send_ctx *sctx, u64 ino)
Alexander Block31db9f72012-07-25 23:19:24 +02002377{
2378 int ret = 0;
Alexander Block31db9f72012-07-25 23:19:24 +02002379 struct fs_path *p;
Alexander Block31db9f72012-07-25 23:19:24 +02002380 int cmd;
Alexander Block1f4692d2012-07-28 10:42:24 +02002381 u64 gen;
Alexander Block31db9f72012-07-25 23:19:24 +02002382 u64 mode;
Alexander Block1f4692d2012-07-28 10:42:24 +02002383 u64 rdev;
Alexander Block31db9f72012-07-25 23:19:24 +02002384
Alexander Block1f4692d2012-07-28 10:42:24 +02002385verbose_printk("btrfs: send_create_inode %llu\n", ino);
Alexander Block31db9f72012-07-25 23:19:24 +02002386
2387 p = fs_path_alloc(sctx);
2388 if (!p)
2389 return -ENOMEM;
2390
Alexander Block1f4692d2012-07-28 10:42:24 +02002391 ret = get_inode_info(sctx->send_root, ino, NULL, &gen, &mode, NULL,
2392 NULL, &rdev);
2393 if (ret < 0)
2394 goto out;
Alexander Block31db9f72012-07-25 23:19:24 +02002395
2396 if (S_ISREG(mode))
2397 cmd = BTRFS_SEND_C_MKFILE;
2398 else if (S_ISDIR(mode))
2399 cmd = BTRFS_SEND_C_MKDIR;
2400 else if (S_ISLNK(mode))
2401 cmd = BTRFS_SEND_C_SYMLINK;
2402 else if (S_ISCHR(mode) || S_ISBLK(mode))
2403 cmd = BTRFS_SEND_C_MKNOD;
2404 else if (S_ISFIFO(mode))
2405 cmd = BTRFS_SEND_C_MKFIFO;
2406 else if (S_ISSOCK(mode))
2407 cmd = BTRFS_SEND_C_MKSOCK;
2408 else {
2409 printk(KERN_WARNING "btrfs: unexpected inode type %o",
2410 (int)(mode & S_IFMT));
2411 ret = -ENOTSUPP;
2412 goto out;
2413 }
2414
2415 ret = begin_cmd(sctx, cmd);
2416 if (ret < 0)
2417 goto out;
2418
Alexander Block1f4692d2012-07-28 10:42:24 +02002419 ret = gen_unique_name(sctx, ino, gen, p);
Alexander Block31db9f72012-07-25 23:19:24 +02002420 if (ret < 0)
2421 goto out;
2422
2423 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
Alexander Block1f4692d2012-07-28 10:42:24 +02002424 TLV_PUT_U64(sctx, BTRFS_SEND_A_INO, ino);
Alexander Block31db9f72012-07-25 23:19:24 +02002425
2426 if (S_ISLNK(mode)) {
2427 fs_path_reset(p);
Alexander Block1f4692d2012-07-28 10:42:24 +02002428 ret = read_symlink(sctx, sctx->send_root, ino, p);
Alexander Block31db9f72012-07-25 23:19:24 +02002429 if (ret < 0)
2430 goto out;
2431 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, p);
2432 } else if (S_ISCHR(mode) || S_ISBLK(mode) ||
2433 S_ISFIFO(mode) || S_ISSOCK(mode)) {
Alexander Block1f4692d2012-07-28 10:42:24 +02002434 TLV_PUT_U64(sctx, BTRFS_SEND_A_RDEV, rdev);
Alexander Block31db9f72012-07-25 23:19:24 +02002435 }
2436
2437 ret = send_cmd(sctx);
2438 if (ret < 0)
2439 goto out;
2440
2441
2442tlv_put_failure:
2443out:
2444 fs_path_free(sctx, p);
2445 return ret;
2446}
2447
Alexander Block1f4692d2012-07-28 10:42:24 +02002448/*
2449 * We need some special handling for inodes that get processed before the parent
2450 * directory got created. See process_recorded_refs for details.
2451 * This function does the check if we already created the dir out of order.
2452 */
2453static int did_create_dir(struct send_ctx *sctx, u64 dir)
2454{
2455 int ret = 0;
2456 struct btrfs_path *path = NULL;
2457 struct btrfs_key key;
2458 struct btrfs_key found_key;
2459 struct btrfs_key di_key;
2460 struct extent_buffer *eb;
2461 struct btrfs_dir_item *di;
2462 int slot;
2463
2464 path = alloc_path_for_send();
2465 if (!path) {
2466 ret = -ENOMEM;
2467 goto out;
2468 }
2469
2470 key.objectid = dir;
2471 key.type = BTRFS_DIR_INDEX_KEY;
2472 key.offset = 0;
2473 while (1) {
2474 ret = btrfs_search_slot_for_read(sctx->send_root, &key, path,
2475 1, 0);
2476 if (ret < 0)
2477 goto out;
2478 if (!ret) {
2479 eb = path->nodes[0];
2480 slot = path->slots[0];
2481 btrfs_item_key_to_cpu(eb, &found_key, slot);
2482 }
2483 if (ret || found_key.objectid != key.objectid ||
2484 found_key.type != key.type) {
2485 ret = 0;
2486 goto out;
2487 }
2488
2489 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
2490 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2491
2492 if (di_key.objectid < sctx->send_progress) {
2493 ret = 1;
2494 goto out;
2495 }
2496
2497 key.offset = found_key.offset + 1;
2498 btrfs_release_path(path);
2499 }
2500
2501out:
2502 btrfs_free_path(path);
2503 return ret;
2504}
2505
2506/*
2507 * Only creates the inode if it is:
2508 * 1. Not a directory
2509 * 2. Or a directory which was not created already due to out of order
2510 * directories. See did_create_dir and process_recorded_refs for details.
2511 */
2512static int send_create_inode_if_needed(struct send_ctx *sctx)
2513{
2514 int ret;
2515
2516 if (S_ISDIR(sctx->cur_inode_mode)) {
2517 ret = did_create_dir(sctx, sctx->cur_ino);
2518 if (ret < 0)
2519 goto out;
2520 if (ret) {
2521 ret = 0;
2522 goto out;
2523 }
2524 }
2525
2526 ret = send_create_inode(sctx, sctx->cur_ino);
2527 if (ret < 0)
2528 goto out;
2529
2530out:
2531 return ret;
2532}
2533
Alexander Block31db9f72012-07-25 23:19:24 +02002534struct recorded_ref {
2535 struct list_head list;
2536 char *dir_path;
2537 char *name;
2538 struct fs_path *full_path;
2539 u64 dir;
2540 u64 dir_gen;
2541 int dir_path_len;
2542 int name_len;
2543};
2544
2545/*
2546 * We need to process new refs before deleted refs, but compare_tree gives us
2547 * everything mixed. So we first record all refs and later process them.
2548 * This function is a helper to record one ref.
2549 */
2550static int record_ref(struct list_head *head, u64 dir,
2551 u64 dir_gen, struct fs_path *path)
2552{
2553 struct recorded_ref *ref;
2554 char *tmp;
2555
2556 ref = kmalloc(sizeof(*ref), GFP_NOFS);
2557 if (!ref)
2558 return -ENOMEM;
2559
2560 ref->dir = dir;
2561 ref->dir_gen = dir_gen;
2562 ref->full_path = path;
2563
2564 tmp = strrchr(ref->full_path->start, '/');
2565 if (!tmp) {
2566 ref->name_len = ref->full_path->end - ref->full_path->start;
2567 ref->name = ref->full_path->start;
2568 ref->dir_path_len = 0;
2569 ref->dir_path = ref->full_path->start;
2570 } else {
2571 tmp++;
2572 ref->name_len = ref->full_path->end - tmp;
2573 ref->name = tmp;
2574 ref->dir_path = ref->full_path->start;
2575 ref->dir_path_len = ref->full_path->end -
2576 ref->full_path->start - 1 - ref->name_len;
2577 }
2578
2579 list_add_tail(&ref->list, head);
2580 return 0;
2581}
2582
2583static void __free_recorded_refs(struct send_ctx *sctx, struct list_head *head)
2584{
2585 struct recorded_ref *cur;
2586 struct recorded_ref *tmp;
2587
2588 list_for_each_entry_safe(cur, tmp, head, list) {
2589 fs_path_free(sctx, cur->full_path);
2590 kfree(cur);
2591 }
2592 INIT_LIST_HEAD(head);
2593}
2594
2595static void free_recorded_refs(struct send_ctx *sctx)
2596{
2597 __free_recorded_refs(sctx, &sctx->new_refs);
2598 __free_recorded_refs(sctx, &sctx->deleted_refs);
2599}
2600
2601/*
Alexander Block766702e2012-07-28 14:11:31 +02002602 * Renames/moves a file/dir to its orphan name. Used when the first
Alexander Block31db9f72012-07-25 23:19:24 +02002603 * ref of an unprocessed inode gets overwritten and for all non empty
2604 * directories.
2605 */
2606static int orphanize_inode(struct send_ctx *sctx, u64 ino, u64 gen,
2607 struct fs_path *path)
2608{
2609 int ret;
2610 struct fs_path *orphan;
2611
2612 orphan = fs_path_alloc(sctx);
2613 if (!orphan)
2614 return -ENOMEM;
2615
2616 ret = gen_unique_name(sctx, ino, gen, orphan);
2617 if (ret < 0)
2618 goto out;
2619
2620 ret = send_rename(sctx, path, orphan);
2621
2622out:
2623 fs_path_free(sctx, orphan);
2624 return ret;
2625}
2626
2627/*
2628 * Returns 1 if a directory can be removed at this point in time.
2629 * We check this by iterating all dir items and checking if the inode behind
2630 * the dir item was already processed.
2631 */
2632static int can_rmdir(struct send_ctx *sctx, u64 dir, u64 send_progress)
2633{
2634 int ret = 0;
2635 struct btrfs_root *root = sctx->parent_root;
2636 struct btrfs_path *path;
2637 struct btrfs_key key;
2638 struct btrfs_key found_key;
2639 struct btrfs_key loc;
2640 struct btrfs_dir_item *di;
2641
2642 path = alloc_path_for_send();
2643 if (!path)
2644 return -ENOMEM;
2645
2646 key.objectid = dir;
2647 key.type = BTRFS_DIR_INDEX_KEY;
2648 key.offset = 0;
2649
2650 while (1) {
2651 ret = btrfs_search_slot_for_read(root, &key, path, 1, 0);
2652 if (ret < 0)
2653 goto out;
2654 if (!ret) {
2655 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2656 path->slots[0]);
2657 }
2658 if (ret || found_key.objectid != key.objectid ||
2659 found_key.type != key.type) {
2660 break;
2661 }
2662
2663 di = btrfs_item_ptr(path->nodes[0], path->slots[0],
2664 struct btrfs_dir_item);
2665 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc);
2666
2667 if (loc.objectid > send_progress) {
2668 ret = 0;
2669 goto out;
2670 }
2671
2672 btrfs_release_path(path);
2673 key.offset = found_key.offset + 1;
2674 }
2675
2676 ret = 1;
2677
2678out:
2679 btrfs_free_path(path);
2680 return ret;
2681}
2682
Alexander Block31db9f72012-07-25 23:19:24 +02002683/*
2684 * This does all the move/link/unlink/rmdir magic.
2685 */
2686static int process_recorded_refs(struct send_ctx *sctx)
2687{
2688 int ret = 0;
2689 struct recorded_ref *cur;
Alexander Block1f4692d2012-07-28 10:42:24 +02002690 struct recorded_ref *cur2;
Alexander Block31db9f72012-07-25 23:19:24 +02002691 struct ulist *check_dirs = NULL;
2692 struct ulist_iterator uit;
2693 struct ulist_node *un;
2694 struct fs_path *valid_path = NULL;
Chris Masonb24baf62012-07-25 19:21:10 -04002695 u64 ow_inode = 0;
Alexander Block31db9f72012-07-25 23:19:24 +02002696 u64 ow_gen;
2697 int did_overwrite = 0;
2698 int is_orphan = 0;
2699
2700verbose_printk("btrfs: process_recorded_refs %llu\n", sctx->cur_ino);
2701
2702 valid_path = fs_path_alloc(sctx);
2703 if (!valid_path) {
2704 ret = -ENOMEM;
2705 goto out;
2706 }
2707
2708 check_dirs = ulist_alloc(GFP_NOFS);
2709 if (!check_dirs) {
2710 ret = -ENOMEM;
2711 goto out;
2712 }
2713
2714 /*
2715 * First, check if the first ref of the current inode was overwritten
2716 * before. If yes, we know that the current inode was already orphanized
2717 * and thus use the orphan name. If not, we can use get_cur_path to
2718 * get the path of the first ref as it would like while receiving at
2719 * this point in time.
2720 * New inodes are always orphan at the beginning, so force to use the
2721 * orphan name in this case.
2722 * The first ref is stored in valid_path and will be updated if it
2723 * gets moved around.
2724 */
2725 if (!sctx->cur_inode_new) {
2726 ret = did_overwrite_first_ref(sctx, sctx->cur_ino,
2727 sctx->cur_inode_gen);
2728 if (ret < 0)
2729 goto out;
2730 if (ret)
2731 did_overwrite = 1;
2732 }
2733 if (sctx->cur_inode_new || did_overwrite) {
2734 ret = gen_unique_name(sctx, sctx->cur_ino,
2735 sctx->cur_inode_gen, valid_path);
2736 if (ret < 0)
2737 goto out;
2738 is_orphan = 1;
2739 } else {
2740 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen,
2741 valid_path);
2742 if (ret < 0)
2743 goto out;
2744 }
2745
2746 list_for_each_entry(cur, &sctx->new_refs, list) {
2747 /*
Alexander Block1f4692d2012-07-28 10:42:24 +02002748 * We may have refs where the parent directory does not exist
2749 * yet. This happens if the parent directories inum is higher
2750 * the the current inum. To handle this case, we create the
2751 * parent directory out of order. But we need to check if this
2752 * did already happen before due to other refs in the same dir.
2753 */
2754 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
2755 if (ret < 0)
2756 goto out;
2757 if (ret == inode_state_will_create) {
2758 ret = 0;
2759 /*
2760 * First check if any of the current inodes refs did
2761 * already create the dir.
2762 */
2763 list_for_each_entry(cur2, &sctx->new_refs, list) {
2764 if (cur == cur2)
2765 break;
2766 if (cur2->dir == cur->dir) {
2767 ret = 1;
2768 break;
2769 }
2770 }
2771
2772 /*
2773 * If that did not happen, check if a previous inode
2774 * did already create the dir.
2775 */
2776 if (!ret)
2777 ret = did_create_dir(sctx, cur->dir);
2778 if (ret < 0)
2779 goto out;
2780 if (!ret) {
2781 ret = send_create_inode(sctx, cur->dir);
2782 if (ret < 0)
2783 goto out;
2784 }
2785 }
2786
2787 /*
Alexander Block31db9f72012-07-25 23:19:24 +02002788 * Check if this new ref would overwrite the first ref of
2789 * another unprocessed inode. If yes, orphanize the
2790 * overwritten inode. If we find an overwritten ref that is
2791 * not the first ref, simply unlink it.
2792 */
2793 ret = will_overwrite_ref(sctx, cur->dir, cur->dir_gen,
2794 cur->name, cur->name_len,
2795 &ow_inode, &ow_gen);
2796 if (ret < 0)
2797 goto out;
2798 if (ret) {
2799 ret = is_first_ref(sctx, sctx->parent_root,
2800 ow_inode, cur->dir, cur->name,
2801 cur->name_len);
2802 if (ret < 0)
2803 goto out;
2804 if (ret) {
2805 ret = orphanize_inode(sctx, ow_inode, ow_gen,
2806 cur->full_path);
2807 if (ret < 0)
2808 goto out;
2809 } else {
2810 ret = send_unlink(sctx, cur->full_path);
2811 if (ret < 0)
2812 goto out;
2813 }
2814 }
2815
2816 /*
2817 * link/move the ref to the new place. If we have an orphan
2818 * inode, move it and update valid_path. If not, link or move
2819 * it depending on the inode mode.
2820 */
Alexander Block1f4692d2012-07-28 10:42:24 +02002821 if (is_orphan) {
Alexander Block31db9f72012-07-25 23:19:24 +02002822 ret = send_rename(sctx, valid_path, cur->full_path);
2823 if (ret < 0)
2824 goto out;
2825 is_orphan = 0;
2826 ret = fs_path_copy(valid_path, cur->full_path);
2827 if (ret < 0)
2828 goto out;
2829 } else {
2830 if (S_ISDIR(sctx->cur_inode_mode)) {
2831 /*
2832 * Dirs can't be linked, so move it. For moved
2833 * dirs, we always have one new and one deleted
2834 * ref. The deleted ref is ignored later.
2835 */
2836 ret = send_rename(sctx, valid_path,
2837 cur->full_path);
2838 if (ret < 0)
2839 goto out;
2840 ret = fs_path_copy(valid_path, cur->full_path);
2841 if (ret < 0)
2842 goto out;
2843 } else {
2844 ret = send_link(sctx, cur->full_path,
2845 valid_path);
2846 if (ret < 0)
2847 goto out;
2848 }
2849 }
2850 ret = ulist_add(check_dirs, cur->dir, cur->dir_gen,
2851 GFP_NOFS);
2852 if (ret < 0)
2853 goto out;
2854 }
2855
2856 if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_deleted) {
2857 /*
2858 * Check if we can already rmdir the directory. If not,
2859 * orphanize it. For every dir item inside that gets deleted
2860 * later, we do this check again and rmdir it then if possible.
2861 * See the use of check_dirs for more details.
2862 */
2863 ret = can_rmdir(sctx, sctx->cur_ino, sctx->cur_ino);
2864 if (ret < 0)
2865 goto out;
2866 if (ret) {
2867 ret = send_rmdir(sctx, valid_path);
2868 if (ret < 0)
2869 goto out;
2870 } else if (!is_orphan) {
2871 ret = orphanize_inode(sctx, sctx->cur_ino,
2872 sctx->cur_inode_gen, valid_path);
2873 if (ret < 0)
2874 goto out;
2875 is_orphan = 1;
2876 }
2877
2878 list_for_each_entry(cur, &sctx->deleted_refs, list) {
2879 ret = ulist_add(check_dirs, cur->dir, cur->dir_gen,
2880 GFP_NOFS);
2881 if (ret < 0)
2882 goto out;
2883 }
Alexander Blockccf16262012-07-28 11:46:29 +02002884 } else if (S_ISDIR(sctx->cur_inode_mode) &&
2885 !list_empty(&sctx->deleted_refs)) {
2886 /*
2887 * We have a moved dir. Add the old parent to check_dirs
2888 */
2889 cur = list_entry(sctx->deleted_refs.next, struct recorded_ref,
2890 list);
2891 ret = ulist_add(check_dirs, cur->dir, cur->dir_gen,
2892 GFP_NOFS);
2893 if (ret < 0)
2894 goto out;
Alexander Block31db9f72012-07-25 23:19:24 +02002895 } else if (!S_ISDIR(sctx->cur_inode_mode)) {
2896 /*
2897 * We have a non dir inode. Go through all deleted refs and
2898 * unlink them if they were not already overwritten by other
2899 * inodes.
2900 */
2901 list_for_each_entry(cur, &sctx->deleted_refs, list) {
2902 ret = did_overwrite_ref(sctx, cur->dir, cur->dir_gen,
2903 sctx->cur_ino, sctx->cur_inode_gen,
2904 cur->name, cur->name_len);
2905 if (ret < 0)
2906 goto out;
2907 if (!ret) {
Alexander Block1f4692d2012-07-28 10:42:24 +02002908 ret = send_unlink(sctx, cur->full_path);
2909 if (ret < 0)
2910 goto out;
Alexander Block31db9f72012-07-25 23:19:24 +02002911 }
2912 ret = ulist_add(check_dirs, cur->dir, cur->dir_gen,
2913 GFP_NOFS);
2914 if (ret < 0)
2915 goto out;
2916 }
2917
2918 /*
2919 * If the inode is still orphan, unlink the orphan. This may
2920 * happen when a previous inode did overwrite the first ref
2921 * of this inode and no new refs were added for the current
Alexander Block766702e2012-07-28 14:11:31 +02002922 * inode. Unlinking does not mean that the inode is deleted in
2923 * all cases. There may still be links to this inode in other
2924 * places.
Alexander Block31db9f72012-07-25 23:19:24 +02002925 */
Alexander Block1f4692d2012-07-28 10:42:24 +02002926 if (is_orphan) {
Alexander Block31db9f72012-07-25 23:19:24 +02002927 ret = send_unlink(sctx, valid_path);
2928 if (ret < 0)
2929 goto out;
2930 }
2931 }
2932
2933 /*
2934 * We did collect all parent dirs where cur_inode was once located. We
2935 * now go through all these dirs and check if they are pending for
2936 * deletion and if it's finally possible to perform the rmdir now.
2937 * We also update the inode stats of the parent dirs here.
2938 */
2939 ULIST_ITER_INIT(&uit);
2940 while ((un = ulist_next(check_dirs, &uit))) {
Alexander Block766702e2012-07-28 14:11:31 +02002941 /*
2942 * In case we had refs into dirs that were not processed yet,
2943 * we don't need to do the utime and rmdir logic for these dirs.
2944 * The dir will be processed later.
2945 */
Alexander Block31db9f72012-07-25 23:19:24 +02002946 if (un->val > sctx->cur_ino)
2947 continue;
2948
2949 ret = get_cur_inode_state(sctx, un->val, un->aux);
2950 if (ret < 0)
2951 goto out;
2952
2953 if (ret == inode_state_did_create ||
2954 ret == inode_state_no_change) {
2955 /* TODO delayed utimes */
2956 ret = send_utimes(sctx, un->val, un->aux);
2957 if (ret < 0)
2958 goto out;
2959 } else if (ret == inode_state_did_delete) {
2960 ret = can_rmdir(sctx, un->val, sctx->cur_ino);
2961 if (ret < 0)
2962 goto out;
2963 if (ret) {
2964 ret = get_cur_path(sctx, un->val, un->aux,
2965 valid_path);
2966 if (ret < 0)
2967 goto out;
2968 ret = send_rmdir(sctx, valid_path);
2969 if (ret < 0)
2970 goto out;
2971 }
2972 }
2973 }
2974
Alexander Block31db9f72012-07-25 23:19:24 +02002975 ret = 0;
2976
2977out:
2978 free_recorded_refs(sctx);
2979 ulist_free(check_dirs);
2980 fs_path_free(sctx, valid_path);
2981 return ret;
2982}
2983
2984static int __record_new_ref(int num, u64 dir, int index,
2985 struct fs_path *name,
2986 void *ctx)
2987{
2988 int ret = 0;
2989 struct send_ctx *sctx = ctx;
2990 struct fs_path *p;
2991 u64 gen;
2992
2993 p = fs_path_alloc(sctx);
2994 if (!p)
2995 return -ENOMEM;
2996
2997 ret = get_inode_info(sctx->send_root, dir, NULL, &gen, NULL, NULL,
Alexander Block85a7b332012-07-26 23:39:10 +02002998 NULL, NULL);
Alexander Block31db9f72012-07-25 23:19:24 +02002999 if (ret < 0)
3000 goto out;
3001
Alexander Block31db9f72012-07-25 23:19:24 +02003002 ret = get_cur_path(sctx, dir, gen, p);
3003 if (ret < 0)
3004 goto out;
3005 ret = fs_path_add_path(p, name);
3006 if (ret < 0)
3007 goto out;
3008
3009 ret = record_ref(&sctx->new_refs, dir, gen, p);
3010
3011out:
3012 if (ret)
3013 fs_path_free(sctx, p);
3014 return ret;
3015}
3016
3017static int __record_deleted_ref(int num, u64 dir, int index,
3018 struct fs_path *name,
3019 void *ctx)
3020{
3021 int ret = 0;
3022 struct send_ctx *sctx = ctx;
3023 struct fs_path *p;
3024 u64 gen;
3025
3026 p = fs_path_alloc(sctx);
3027 if (!p)
3028 return -ENOMEM;
3029
3030 ret = get_inode_info(sctx->parent_root, dir, NULL, &gen, NULL, NULL,
Alexander Block85a7b332012-07-26 23:39:10 +02003031 NULL, NULL);
Alexander Block31db9f72012-07-25 23:19:24 +02003032 if (ret < 0)
3033 goto out;
3034
3035 ret = get_cur_path(sctx, dir, gen, p);
3036 if (ret < 0)
3037 goto out;
3038 ret = fs_path_add_path(p, name);
3039 if (ret < 0)
3040 goto out;
3041
3042 ret = record_ref(&sctx->deleted_refs, dir, gen, p);
3043
3044out:
3045 if (ret)
3046 fs_path_free(sctx, p);
3047 return ret;
3048}
3049
3050static int record_new_ref(struct send_ctx *sctx)
3051{
3052 int ret;
3053
3054 ret = iterate_inode_ref(sctx, sctx->send_root, sctx->left_path,
3055 sctx->cmp_key, 0, __record_new_ref, sctx);
3056 if (ret < 0)
3057 goto out;
3058 ret = 0;
3059
3060out:
3061 return ret;
3062}
3063
3064static int record_deleted_ref(struct send_ctx *sctx)
3065{
3066 int ret;
3067
3068 ret = iterate_inode_ref(sctx, sctx->parent_root, sctx->right_path,
3069 sctx->cmp_key, 0, __record_deleted_ref, sctx);
3070 if (ret < 0)
3071 goto out;
3072 ret = 0;
3073
3074out:
3075 return ret;
3076}
3077
3078struct find_ref_ctx {
3079 u64 dir;
3080 struct fs_path *name;
3081 int found_idx;
3082};
3083
3084static int __find_iref(int num, u64 dir, int index,
3085 struct fs_path *name,
3086 void *ctx_)
3087{
3088 struct find_ref_ctx *ctx = ctx_;
3089
3090 if (dir == ctx->dir && fs_path_len(name) == fs_path_len(ctx->name) &&
3091 strncmp(name->start, ctx->name->start, fs_path_len(name)) == 0) {
3092 ctx->found_idx = num;
3093 return 1;
3094 }
3095 return 0;
3096}
3097
3098static int find_iref(struct send_ctx *sctx,
3099 struct btrfs_root *root,
3100 struct btrfs_path *path,
3101 struct btrfs_key *key,
3102 u64 dir, struct fs_path *name)
3103{
3104 int ret;
3105 struct find_ref_ctx ctx;
3106
3107 ctx.dir = dir;
3108 ctx.name = name;
3109 ctx.found_idx = -1;
3110
3111 ret = iterate_inode_ref(sctx, root, path, key, 0, __find_iref, &ctx);
3112 if (ret < 0)
3113 return ret;
3114
3115 if (ctx.found_idx == -1)
3116 return -ENOENT;
3117
3118 return ctx.found_idx;
3119}
3120
3121static int __record_changed_new_ref(int num, u64 dir, int index,
3122 struct fs_path *name,
3123 void *ctx)
3124{
3125 int ret;
3126 struct send_ctx *sctx = ctx;
3127
3128 ret = find_iref(sctx, sctx->parent_root, sctx->right_path,
3129 sctx->cmp_key, dir, name);
3130 if (ret == -ENOENT)
3131 ret = __record_new_ref(num, dir, index, name, sctx);
3132 else if (ret > 0)
3133 ret = 0;
3134
3135 return ret;
3136}
3137
3138static int __record_changed_deleted_ref(int num, u64 dir, int index,
3139 struct fs_path *name,
3140 void *ctx)
3141{
3142 int ret;
3143 struct send_ctx *sctx = ctx;
3144
3145 ret = find_iref(sctx, sctx->send_root, sctx->left_path, sctx->cmp_key,
3146 dir, name);
3147 if (ret == -ENOENT)
3148 ret = __record_deleted_ref(num, dir, index, name, sctx);
3149 else if (ret > 0)
3150 ret = 0;
3151
3152 return ret;
3153}
3154
3155static int record_changed_ref(struct send_ctx *sctx)
3156{
3157 int ret = 0;
3158
3159 ret = iterate_inode_ref(sctx, sctx->send_root, sctx->left_path,
3160 sctx->cmp_key, 0, __record_changed_new_ref, sctx);
3161 if (ret < 0)
3162 goto out;
3163 ret = iterate_inode_ref(sctx, sctx->parent_root, sctx->right_path,
3164 sctx->cmp_key, 0, __record_changed_deleted_ref, sctx);
3165 if (ret < 0)
3166 goto out;
3167 ret = 0;
3168
3169out:
3170 return ret;
3171}
3172
3173/*
3174 * Record and process all refs at once. Needed when an inode changes the
3175 * generation number, which means that it was deleted and recreated.
3176 */
3177static int process_all_refs(struct send_ctx *sctx,
3178 enum btrfs_compare_tree_result cmd)
3179{
3180 int ret;
3181 struct btrfs_root *root;
3182 struct btrfs_path *path;
3183 struct btrfs_key key;
3184 struct btrfs_key found_key;
3185 struct extent_buffer *eb;
3186 int slot;
3187 iterate_inode_ref_t cb;
3188
3189 path = alloc_path_for_send();
3190 if (!path)
3191 return -ENOMEM;
3192
3193 if (cmd == BTRFS_COMPARE_TREE_NEW) {
3194 root = sctx->send_root;
3195 cb = __record_new_ref;
3196 } else if (cmd == BTRFS_COMPARE_TREE_DELETED) {
3197 root = sctx->parent_root;
3198 cb = __record_deleted_ref;
3199 } else {
3200 BUG();
3201 }
3202
3203 key.objectid = sctx->cmp_key->objectid;
3204 key.type = BTRFS_INODE_REF_KEY;
3205 key.offset = 0;
3206 while (1) {
3207 ret = btrfs_search_slot_for_read(root, &key, path, 1, 0);
3208 if (ret < 0) {
3209 btrfs_release_path(path);
3210 goto out;
3211 }
3212 if (ret) {
3213 btrfs_release_path(path);
3214 break;
3215 }
3216
3217 eb = path->nodes[0];
3218 slot = path->slots[0];
3219 btrfs_item_key_to_cpu(eb, &found_key, slot);
3220
3221 if (found_key.objectid != key.objectid ||
3222 found_key.type != key.type) {
3223 btrfs_release_path(path);
3224 break;
3225 }
3226
3227 ret = iterate_inode_ref(sctx, sctx->parent_root, path,
3228 &found_key, 0, cb, sctx);
3229 btrfs_release_path(path);
3230 if (ret < 0)
3231 goto out;
3232
3233 key.offset = found_key.offset + 1;
3234 }
3235
3236 ret = process_recorded_refs(sctx);
3237
3238out:
3239 btrfs_free_path(path);
3240 return ret;
3241}
3242
3243static int send_set_xattr(struct send_ctx *sctx,
3244 struct fs_path *path,
3245 const char *name, int name_len,
3246 const char *data, int data_len)
3247{
3248 int ret = 0;
3249
3250 ret = begin_cmd(sctx, BTRFS_SEND_C_SET_XATTR);
3251 if (ret < 0)
3252 goto out;
3253
3254 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
3255 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
3256 TLV_PUT(sctx, BTRFS_SEND_A_XATTR_DATA, data, data_len);
3257
3258 ret = send_cmd(sctx);
3259
3260tlv_put_failure:
3261out:
3262 return ret;
3263}
3264
3265static int send_remove_xattr(struct send_ctx *sctx,
3266 struct fs_path *path,
3267 const char *name, int name_len)
3268{
3269 int ret = 0;
3270
3271 ret = begin_cmd(sctx, BTRFS_SEND_C_REMOVE_XATTR);
3272 if (ret < 0)
3273 goto out;
3274
3275 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
3276 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
3277
3278 ret = send_cmd(sctx);
3279
3280tlv_put_failure:
3281out:
3282 return ret;
3283}
3284
3285static int __process_new_xattr(int num, struct btrfs_key *di_key,
3286 const char *name, int name_len,
3287 const char *data, int data_len,
3288 u8 type, void *ctx)
3289{
3290 int ret;
3291 struct send_ctx *sctx = ctx;
3292 struct fs_path *p;
3293 posix_acl_xattr_header dummy_acl;
3294
3295 p = fs_path_alloc(sctx);
3296 if (!p)
3297 return -ENOMEM;
3298
3299 /*
3300 * This hack is needed because empty acl's are stored as zero byte
3301 * data in xattrs. Problem with that is, that receiving these zero byte
3302 * acl's will fail later. To fix this, we send a dummy acl list that
3303 * only contains the version number and no entries.
3304 */
3305 if (!strncmp(name, XATTR_NAME_POSIX_ACL_ACCESS, name_len) ||
3306 !strncmp(name, XATTR_NAME_POSIX_ACL_DEFAULT, name_len)) {
3307 if (data_len == 0) {
3308 dummy_acl.a_version =
3309 cpu_to_le32(POSIX_ACL_XATTR_VERSION);
3310 data = (char *)&dummy_acl;
3311 data_len = sizeof(dummy_acl);
3312 }
3313 }
3314
3315 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
3316 if (ret < 0)
3317 goto out;
3318
3319 ret = send_set_xattr(sctx, p, name, name_len, data, data_len);
3320
3321out:
3322 fs_path_free(sctx, p);
3323 return ret;
3324}
3325
3326static int __process_deleted_xattr(int num, struct btrfs_key *di_key,
3327 const char *name, int name_len,
3328 const char *data, int data_len,
3329 u8 type, void *ctx)
3330{
3331 int ret;
3332 struct send_ctx *sctx = ctx;
3333 struct fs_path *p;
3334
3335 p = fs_path_alloc(sctx);
3336 if (!p)
3337 return -ENOMEM;
3338
3339 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
3340 if (ret < 0)
3341 goto out;
3342
3343 ret = send_remove_xattr(sctx, p, name, name_len);
3344
3345out:
3346 fs_path_free(sctx, p);
3347 return ret;
3348}
3349
3350static int process_new_xattr(struct send_ctx *sctx)
3351{
3352 int ret = 0;
3353
3354 ret = iterate_dir_item(sctx, sctx->send_root, sctx->left_path,
3355 sctx->cmp_key, __process_new_xattr, sctx);
3356
3357 return ret;
3358}
3359
3360static int process_deleted_xattr(struct send_ctx *sctx)
3361{
3362 int ret;
3363
3364 ret = iterate_dir_item(sctx, sctx->parent_root, sctx->right_path,
3365 sctx->cmp_key, __process_deleted_xattr, sctx);
3366
3367 return ret;
3368}
3369
3370struct find_xattr_ctx {
3371 const char *name;
3372 int name_len;
3373 int found_idx;
3374 char *found_data;
3375 int found_data_len;
3376};
3377
3378static int __find_xattr(int num, struct btrfs_key *di_key,
3379 const char *name, int name_len,
3380 const char *data, int data_len,
3381 u8 type, void *vctx)
3382{
3383 struct find_xattr_ctx *ctx = vctx;
3384
3385 if (name_len == ctx->name_len &&
3386 strncmp(name, ctx->name, name_len) == 0) {
3387 ctx->found_idx = num;
3388 ctx->found_data_len = data_len;
3389 ctx->found_data = kmalloc(data_len, GFP_NOFS);
3390 if (!ctx->found_data)
3391 return -ENOMEM;
3392 memcpy(ctx->found_data, data, data_len);
3393 return 1;
3394 }
3395 return 0;
3396}
3397
3398static int find_xattr(struct send_ctx *sctx,
3399 struct btrfs_root *root,
3400 struct btrfs_path *path,
3401 struct btrfs_key *key,
3402 const char *name, int name_len,
3403 char **data, int *data_len)
3404{
3405 int ret;
3406 struct find_xattr_ctx ctx;
3407
3408 ctx.name = name;
3409 ctx.name_len = name_len;
3410 ctx.found_idx = -1;
3411 ctx.found_data = NULL;
3412 ctx.found_data_len = 0;
3413
3414 ret = iterate_dir_item(sctx, root, path, key, __find_xattr, &ctx);
3415 if (ret < 0)
3416 return ret;
3417
3418 if (ctx.found_idx == -1)
3419 return -ENOENT;
3420 if (data) {
3421 *data = ctx.found_data;
3422 *data_len = ctx.found_data_len;
3423 } else {
3424 kfree(ctx.found_data);
3425 }
3426 return ctx.found_idx;
3427}
3428
3429
3430static int __process_changed_new_xattr(int num, struct btrfs_key *di_key,
3431 const char *name, int name_len,
3432 const char *data, int data_len,
3433 u8 type, void *ctx)
3434{
3435 int ret;
3436 struct send_ctx *sctx = ctx;
3437 char *found_data = NULL;
3438 int found_data_len = 0;
3439 struct fs_path *p = NULL;
3440
3441 ret = find_xattr(sctx, sctx->parent_root, sctx->right_path,
3442 sctx->cmp_key, name, name_len, &found_data,
3443 &found_data_len);
3444 if (ret == -ENOENT) {
3445 ret = __process_new_xattr(num, di_key, name, name_len, data,
3446 data_len, type, ctx);
3447 } else if (ret >= 0) {
3448 if (data_len != found_data_len ||
3449 memcmp(data, found_data, data_len)) {
3450 ret = __process_new_xattr(num, di_key, name, name_len,
3451 data, data_len, type, ctx);
3452 } else {
3453 ret = 0;
3454 }
3455 }
3456
3457 kfree(found_data);
3458 fs_path_free(sctx, p);
3459 return ret;
3460}
3461
3462static int __process_changed_deleted_xattr(int num, struct btrfs_key *di_key,
3463 const char *name, int name_len,
3464 const char *data, int data_len,
3465 u8 type, void *ctx)
3466{
3467 int ret;
3468 struct send_ctx *sctx = ctx;
3469
3470 ret = find_xattr(sctx, sctx->send_root, sctx->left_path, sctx->cmp_key,
3471 name, name_len, NULL, NULL);
3472 if (ret == -ENOENT)
3473 ret = __process_deleted_xattr(num, di_key, name, name_len, data,
3474 data_len, type, ctx);
3475 else if (ret >= 0)
3476 ret = 0;
3477
3478 return ret;
3479}
3480
3481static int process_changed_xattr(struct send_ctx *sctx)
3482{
3483 int ret = 0;
3484
3485 ret = iterate_dir_item(sctx, sctx->send_root, sctx->left_path,
3486 sctx->cmp_key, __process_changed_new_xattr, sctx);
3487 if (ret < 0)
3488 goto out;
3489 ret = iterate_dir_item(sctx, sctx->parent_root, sctx->right_path,
3490 sctx->cmp_key, __process_changed_deleted_xattr, sctx);
3491
3492out:
3493 return ret;
3494}
3495
3496static int process_all_new_xattrs(struct send_ctx *sctx)
3497{
3498 int ret;
3499 struct btrfs_root *root;
3500 struct btrfs_path *path;
3501 struct btrfs_key key;
3502 struct btrfs_key found_key;
3503 struct extent_buffer *eb;
3504 int slot;
3505
3506 path = alloc_path_for_send();
3507 if (!path)
3508 return -ENOMEM;
3509
3510 root = sctx->send_root;
3511
3512 key.objectid = sctx->cmp_key->objectid;
3513 key.type = BTRFS_XATTR_ITEM_KEY;
3514 key.offset = 0;
3515 while (1) {
3516 ret = btrfs_search_slot_for_read(root, &key, path, 1, 0);
3517 if (ret < 0)
3518 goto out;
3519 if (ret) {
3520 ret = 0;
3521 goto out;
3522 }
3523
3524 eb = path->nodes[0];
3525 slot = path->slots[0];
3526 btrfs_item_key_to_cpu(eb, &found_key, slot);
3527
3528 if (found_key.objectid != key.objectid ||
3529 found_key.type != key.type) {
3530 ret = 0;
3531 goto out;
3532 }
3533
3534 ret = iterate_dir_item(sctx, root, path, &found_key,
3535 __process_new_xattr, sctx);
3536 if (ret < 0)
3537 goto out;
3538
3539 btrfs_release_path(path);
3540 key.offset = found_key.offset + 1;
3541 }
3542
3543out:
3544 btrfs_free_path(path);
3545 return ret;
3546}
3547
3548/*
3549 * Read some bytes from the current inode/file and send a write command to
3550 * user space.
3551 */
3552static int send_write(struct send_ctx *sctx, u64 offset, u32 len)
3553{
3554 int ret = 0;
3555 struct fs_path *p;
3556 loff_t pos = offset;
Chris Masonb24baf62012-07-25 19:21:10 -04003557 int readed = 0;
Alexander Block31db9f72012-07-25 23:19:24 +02003558 mm_segment_t old_fs;
3559
3560 p = fs_path_alloc(sctx);
3561 if (!p)
3562 return -ENOMEM;
3563
3564 /*
3565 * vfs normally only accepts user space buffers for security reasons.
3566 * we only read from the file and also only provide the read_buf buffer
3567 * to vfs. As this buffer does not come from a user space call, it's
3568 * ok to temporary allow kernel space buffers.
3569 */
3570 old_fs = get_fs();
3571 set_fs(KERNEL_DS);
3572
3573verbose_printk("btrfs: send_write offset=%llu, len=%d\n", offset, len);
3574
3575 ret = open_cur_inode_file(sctx);
3576 if (ret < 0)
3577 goto out;
3578
3579 ret = vfs_read(sctx->cur_inode_filp, sctx->read_buf, len, &pos);
3580 if (ret < 0)
3581 goto out;
3582 readed = ret;
3583 if (!readed)
3584 goto out;
3585
3586 ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
3587 if (ret < 0)
3588 goto out;
3589
3590 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
3591 if (ret < 0)
3592 goto out;
3593
3594 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
3595 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
3596 TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, readed);
3597
3598 ret = send_cmd(sctx);
3599
3600tlv_put_failure:
3601out:
3602 fs_path_free(sctx, p);
3603 set_fs(old_fs);
3604 if (ret < 0)
3605 return ret;
3606 return readed;
3607}
3608
3609/*
3610 * Send a clone command to user space.
3611 */
3612static int send_clone(struct send_ctx *sctx,
3613 u64 offset, u32 len,
3614 struct clone_root *clone_root)
3615{
3616 int ret = 0;
3617 struct btrfs_root *clone_root2 = clone_root->root;
3618 struct fs_path *p;
3619 u64 gen;
3620
3621verbose_printk("btrfs: send_clone offset=%llu, len=%d, clone_root=%llu, "
3622 "clone_inode=%llu, clone_offset=%llu\n", offset, len,
3623 clone_root->root->objectid, clone_root->ino,
3624 clone_root->offset);
3625
3626 p = fs_path_alloc(sctx);
3627 if (!p)
3628 return -ENOMEM;
3629
3630 ret = begin_cmd(sctx, BTRFS_SEND_C_CLONE);
3631 if (ret < 0)
3632 goto out;
3633
3634 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
3635 if (ret < 0)
3636 goto out;
3637
3638 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
3639 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_LEN, len);
3640 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
3641
3642 if (clone_root2 == sctx->send_root) {
3643 ret = get_inode_info(sctx->send_root, clone_root->ino, NULL,
Alexander Block85a7b332012-07-26 23:39:10 +02003644 &gen, NULL, NULL, NULL, NULL);
Alexander Block31db9f72012-07-25 23:19:24 +02003645 if (ret < 0)
3646 goto out;
3647 ret = get_cur_path(sctx, clone_root->ino, gen, p);
3648 } else {
3649 ret = get_inode_path(sctx, clone_root2, clone_root->ino, p);
3650 }
3651 if (ret < 0)
3652 goto out;
3653
3654 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
3655 clone_root2->root_item.uuid);
3656 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
3657 clone_root2->root_item.ctransid);
3658 TLV_PUT_PATH(sctx, BTRFS_SEND_A_CLONE_PATH, p);
3659 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_OFFSET,
3660 clone_root->offset);
3661
3662 ret = send_cmd(sctx);
3663
3664tlv_put_failure:
3665out:
3666 fs_path_free(sctx, p);
3667 return ret;
3668}
3669
3670static int send_write_or_clone(struct send_ctx *sctx,
3671 struct btrfs_path *path,
3672 struct btrfs_key *key,
3673 struct clone_root *clone_root)
3674{
3675 int ret = 0;
3676 struct btrfs_file_extent_item *ei;
3677 u64 offset = key->offset;
3678 u64 pos = 0;
3679 u64 len;
3680 u32 l;
3681 u8 type;
3682
3683 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
3684 struct btrfs_file_extent_item);
3685 type = btrfs_file_extent_type(path->nodes[0], ei);
3686 if (type == BTRFS_FILE_EXTENT_INLINE)
3687 len = btrfs_file_extent_inline_len(path->nodes[0], ei);
3688 else
3689 len = btrfs_file_extent_num_bytes(path->nodes[0], ei);
3690
3691 if (offset + len > sctx->cur_inode_size)
3692 len = sctx->cur_inode_size - offset;
3693 if (len == 0) {
3694 ret = 0;
3695 goto out;
3696 }
3697
3698 if (!clone_root) {
3699 while (pos < len) {
3700 l = len - pos;
3701 if (l > BTRFS_SEND_READ_SIZE)
3702 l = BTRFS_SEND_READ_SIZE;
3703 ret = send_write(sctx, pos + offset, l);
3704 if (ret < 0)
3705 goto out;
3706 if (!ret)
3707 break;
3708 pos += ret;
3709 }
3710 ret = 0;
3711 } else {
3712 ret = send_clone(sctx, offset, len, clone_root);
3713 }
3714
3715out:
3716 return ret;
3717}
3718
3719static int is_extent_unchanged(struct send_ctx *sctx,
3720 struct btrfs_path *left_path,
3721 struct btrfs_key *ekey)
3722{
3723 int ret = 0;
3724 struct btrfs_key key;
3725 struct btrfs_path *path = NULL;
3726 struct extent_buffer *eb;
3727 int slot;
3728 struct btrfs_key found_key;
3729 struct btrfs_file_extent_item *ei;
3730 u64 left_disknr;
3731 u64 right_disknr;
3732 u64 left_offset;
3733 u64 right_offset;
3734 u64 left_offset_fixed;
3735 u64 left_len;
3736 u64 right_len;
3737 u8 left_type;
3738 u8 right_type;
3739
3740 path = alloc_path_for_send();
3741 if (!path)
3742 return -ENOMEM;
3743
3744 eb = left_path->nodes[0];
3745 slot = left_path->slots[0];
3746
3747 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
3748 left_type = btrfs_file_extent_type(eb, ei);
3749 left_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
3750 left_len = btrfs_file_extent_num_bytes(eb, ei);
3751 left_offset = btrfs_file_extent_offset(eb, ei);
3752
3753 if (left_type != BTRFS_FILE_EXTENT_REG) {
3754 ret = 0;
3755 goto out;
3756 }
3757
3758 /*
3759 * Following comments will refer to these graphics. L is the left
3760 * extents which we are checking at the moment. 1-8 are the right
3761 * extents that we iterate.
3762 *
3763 * |-----L-----|
3764 * |-1-|-2a-|-3-|-4-|-5-|-6-|
3765 *
3766 * |-----L-----|
3767 * |--1--|-2b-|...(same as above)
3768 *
3769 * Alternative situation. Happens on files where extents got split.
3770 * |-----L-----|
3771 * |-----------7-----------|-6-|
3772 *
3773 * Alternative situation. Happens on files which got larger.
3774 * |-----L-----|
3775 * |-8-|
3776 * Nothing follows after 8.
3777 */
3778
3779 key.objectid = ekey->objectid;
3780 key.type = BTRFS_EXTENT_DATA_KEY;
3781 key.offset = ekey->offset;
3782 ret = btrfs_search_slot_for_read(sctx->parent_root, &key, path, 0, 0);
3783 if (ret < 0)
3784 goto out;
3785 if (ret) {
3786 ret = 0;
3787 goto out;
3788 }
3789
3790 /*
3791 * Handle special case where the right side has no extents at all.
3792 */
3793 eb = path->nodes[0];
3794 slot = path->slots[0];
3795 btrfs_item_key_to_cpu(eb, &found_key, slot);
3796 if (found_key.objectid != key.objectid ||
3797 found_key.type != key.type) {
3798 ret = 0;
3799 goto out;
3800 }
3801
3802 /*
3803 * We're now on 2a, 2b or 7.
3804 */
3805 key = found_key;
3806 while (key.offset < ekey->offset + left_len) {
3807 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
3808 right_type = btrfs_file_extent_type(eb, ei);
3809 right_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
3810 right_len = btrfs_file_extent_num_bytes(eb, ei);
3811 right_offset = btrfs_file_extent_offset(eb, ei);
3812
3813 if (right_type != BTRFS_FILE_EXTENT_REG) {
3814 ret = 0;
3815 goto out;
3816 }
3817
3818 /*
3819 * Are we at extent 8? If yes, we know the extent is changed.
3820 * This may only happen on the first iteration.
3821 */
3822 if (found_key.offset + right_len < ekey->offset) {
3823 ret = 0;
3824 goto out;
3825 }
3826
3827 left_offset_fixed = left_offset;
3828 if (key.offset < ekey->offset) {
3829 /* Fix the right offset for 2a and 7. */
3830 right_offset += ekey->offset - key.offset;
3831 } else {
3832 /* Fix the left offset for all behind 2a and 2b */
3833 left_offset_fixed += key.offset - ekey->offset;
3834 }
3835
3836 /*
3837 * Check if we have the same extent.
3838 */
3839 if (left_disknr + left_offset_fixed !=
3840 right_disknr + right_offset) {
3841 ret = 0;
3842 goto out;
3843 }
3844
3845 /*
3846 * Go to the next extent.
3847 */
3848 ret = btrfs_next_item(sctx->parent_root, path);
3849 if (ret < 0)
3850 goto out;
3851 if (!ret) {
3852 eb = path->nodes[0];
3853 slot = path->slots[0];
3854 btrfs_item_key_to_cpu(eb, &found_key, slot);
3855 }
3856 if (ret || found_key.objectid != key.objectid ||
3857 found_key.type != key.type) {
3858 key.offset += right_len;
3859 break;
3860 } else {
3861 if (found_key.offset != key.offset + right_len) {
3862 /* Should really not happen */
3863 ret = -EIO;
3864 goto out;
3865 }
3866 }
3867 key = found_key;
3868 }
3869
3870 /*
3871 * We're now behind the left extent (treat as unchanged) or at the end
3872 * of the right side (treat as changed).
3873 */
3874 if (key.offset >= ekey->offset + left_len)
3875 ret = 1;
3876 else
3877 ret = 0;
3878
3879
3880out:
3881 btrfs_free_path(path);
3882 return ret;
3883}
3884
3885static int process_extent(struct send_ctx *sctx,
3886 struct btrfs_path *path,
3887 struct btrfs_key *key)
3888{
3889 int ret = 0;
3890 struct clone_root *found_clone = NULL;
3891
3892 if (S_ISLNK(sctx->cur_inode_mode))
3893 return 0;
3894
3895 if (sctx->parent_root && !sctx->cur_inode_new) {
3896 ret = is_extent_unchanged(sctx, path, key);
3897 if (ret < 0)
3898 goto out;
3899 if (ret) {
3900 ret = 0;
3901 goto out;
3902 }
3903 }
3904
3905 ret = find_extent_clone(sctx, path, key->objectid, key->offset,
3906 sctx->cur_inode_size, &found_clone);
3907 if (ret != -ENOENT && ret < 0)
3908 goto out;
3909
3910 ret = send_write_or_clone(sctx, path, key, found_clone);
3911
3912out:
3913 return ret;
3914}
3915
3916static int process_all_extents(struct send_ctx *sctx)
3917{
3918 int ret;
3919 struct btrfs_root *root;
3920 struct btrfs_path *path;
3921 struct btrfs_key key;
3922 struct btrfs_key found_key;
3923 struct extent_buffer *eb;
3924 int slot;
3925
3926 root = sctx->send_root;
3927 path = alloc_path_for_send();
3928 if (!path)
3929 return -ENOMEM;
3930
3931 key.objectid = sctx->cmp_key->objectid;
3932 key.type = BTRFS_EXTENT_DATA_KEY;
3933 key.offset = 0;
3934 while (1) {
3935 ret = btrfs_search_slot_for_read(root, &key, path, 1, 0);
3936 if (ret < 0)
3937 goto out;
3938 if (ret) {
3939 ret = 0;
3940 goto out;
3941 }
3942
3943 eb = path->nodes[0];
3944 slot = path->slots[0];
3945 btrfs_item_key_to_cpu(eb, &found_key, slot);
3946
3947 if (found_key.objectid != key.objectid ||
3948 found_key.type != key.type) {
3949 ret = 0;
3950 goto out;
3951 }
3952
3953 ret = process_extent(sctx, path, &found_key);
3954 if (ret < 0)
3955 goto out;
3956
3957 btrfs_release_path(path);
3958 key.offset = found_key.offset + 1;
3959 }
3960
3961out:
3962 btrfs_free_path(path);
3963 return ret;
3964}
3965
3966static int process_recorded_refs_if_needed(struct send_ctx *sctx, int at_end)
3967{
3968 int ret = 0;
3969
3970 if (sctx->cur_ino == 0)
3971 goto out;
3972 if (!at_end && sctx->cur_ino == sctx->cmp_key->objectid &&
3973 sctx->cmp_key->type <= BTRFS_INODE_REF_KEY)
3974 goto out;
3975 if (list_empty(&sctx->new_refs) && list_empty(&sctx->deleted_refs))
3976 goto out;
3977
3978 ret = process_recorded_refs(sctx);
Alexander Blocke479d9b2012-07-28 16:09:35 +02003979 if (ret < 0)
3980 goto out;
3981
3982 /*
3983 * We have processed the refs and thus need to advance send_progress.
3984 * Now, calls to get_cur_xxx will take the updated refs of the current
3985 * inode into account.
3986 */
3987 sctx->send_progress = sctx->cur_ino + 1;
Alexander Block31db9f72012-07-25 23:19:24 +02003988
3989out:
3990 return ret;
3991}
3992
3993static int finish_inode_if_needed(struct send_ctx *sctx, int at_end)
3994{
3995 int ret = 0;
3996 u64 left_mode;
3997 u64 left_uid;
3998 u64 left_gid;
3999 u64 right_mode;
4000 u64 right_uid;
4001 u64 right_gid;
4002 int need_chmod = 0;
4003 int need_chown = 0;
4004
4005 ret = process_recorded_refs_if_needed(sctx, at_end);
4006 if (ret < 0)
4007 goto out;
4008
4009 if (sctx->cur_ino == 0 || sctx->cur_inode_deleted)
4010 goto out;
4011 if (!at_end && sctx->cmp_key->objectid == sctx->cur_ino)
4012 goto out;
4013
4014 ret = get_inode_info(sctx->send_root, sctx->cur_ino, NULL, NULL,
Alexander Block85a7b332012-07-26 23:39:10 +02004015 &left_mode, &left_uid, &left_gid, NULL);
Alexander Block31db9f72012-07-25 23:19:24 +02004016 if (ret < 0)
4017 goto out;
4018
4019 if (!S_ISLNK(sctx->cur_inode_mode)) {
4020 if (!sctx->parent_root || sctx->cur_inode_new) {
4021 need_chmod = 1;
4022 need_chown = 1;
4023 } else {
4024 ret = get_inode_info(sctx->parent_root, sctx->cur_ino,
4025 NULL, NULL, &right_mode, &right_uid,
Alexander Block85a7b332012-07-26 23:39:10 +02004026 &right_gid, NULL);
Alexander Block31db9f72012-07-25 23:19:24 +02004027 if (ret < 0)
4028 goto out;
4029
4030 if (left_uid != right_uid || left_gid != right_gid)
4031 need_chown = 1;
4032 if (left_mode != right_mode)
4033 need_chmod = 1;
4034 }
4035 }
4036
4037 if (S_ISREG(sctx->cur_inode_mode)) {
4038 ret = send_truncate(sctx, sctx->cur_ino, sctx->cur_inode_gen,
4039 sctx->cur_inode_size);
4040 if (ret < 0)
4041 goto out;
4042 }
4043
4044 if (need_chown) {
4045 ret = send_chown(sctx, sctx->cur_ino, sctx->cur_inode_gen,
4046 left_uid, left_gid);
4047 if (ret < 0)
4048 goto out;
4049 }
4050 if (need_chmod) {
4051 ret = send_chmod(sctx, sctx->cur_ino, sctx->cur_inode_gen,
4052 left_mode);
4053 if (ret < 0)
4054 goto out;
4055 }
4056
4057 /*
4058 * Need to send that every time, no matter if it actually changed
4059 * between the two trees as we have done changes to the inode before.
4060 */
4061 ret = send_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen);
4062 if (ret < 0)
4063 goto out;
4064
4065out:
4066 return ret;
4067}
4068
4069static int changed_inode(struct send_ctx *sctx,
4070 enum btrfs_compare_tree_result result)
4071{
4072 int ret = 0;
4073 struct btrfs_key *key = sctx->cmp_key;
4074 struct btrfs_inode_item *left_ii = NULL;
4075 struct btrfs_inode_item *right_ii = NULL;
4076 u64 left_gen = 0;
4077 u64 right_gen = 0;
4078
4079 ret = close_cur_inode_file(sctx);
4080 if (ret < 0)
4081 goto out;
4082
4083 sctx->cur_ino = key->objectid;
4084 sctx->cur_inode_new_gen = 0;
Alexander Blocke479d9b2012-07-28 16:09:35 +02004085
4086 /*
4087 * Set send_progress to current inode. This will tell all get_cur_xxx
4088 * functions that the current inode's refs are not updated yet. Later,
4089 * when process_recorded_refs is finished, it is set to cur_ino + 1.
4090 */
Alexander Block31db9f72012-07-25 23:19:24 +02004091 sctx->send_progress = sctx->cur_ino;
4092
4093 if (result == BTRFS_COMPARE_TREE_NEW ||
4094 result == BTRFS_COMPARE_TREE_CHANGED) {
4095 left_ii = btrfs_item_ptr(sctx->left_path->nodes[0],
4096 sctx->left_path->slots[0],
4097 struct btrfs_inode_item);
4098 left_gen = btrfs_inode_generation(sctx->left_path->nodes[0],
4099 left_ii);
4100 } else {
4101 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
4102 sctx->right_path->slots[0],
4103 struct btrfs_inode_item);
4104 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
4105 right_ii);
4106 }
4107 if (result == BTRFS_COMPARE_TREE_CHANGED) {
4108 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
4109 sctx->right_path->slots[0],
4110 struct btrfs_inode_item);
4111
4112 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
4113 right_ii);
4114 if (left_gen != right_gen)
4115 sctx->cur_inode_new_gen = 1;
4116 }
4117
4118 if (result == BTRFS_COMPARE_TREE_NEW) {
4119 sctx->cur_inode_gen = left_gen;
4120 sctx->cur_inode_new = 1;
4121 sctx->cur_inode_deleted = 0;
4122 sctx->cur_inode_size = btrfs_inode_size(
4123 sctx->left_path->nodes[0], left_ii);
4124 sctx->cur_inode_mode = btrfs_inode_mode(
4125 sctx->left_path->nodes[0], left_ii);
4126 if (sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
Alexander Block1f4692d2012-07-28 10:42:24 +02004127 ret = send_create_inode_if_needed(sctx);
Alexander Block31db9f72012-07-25 23:19:24 +02004128 } else if (result == BTRFS_COMPARE_TREE_DELETED) {
4129 sctx->cur_inode_gen = right_gen;
4130 sctx->cur_inode_new = 0;
4131 sctx->cur_inode_deleted = 1;
4132 sctx->cur_inode_size = btrfs_inode_size(
4133 sctx->right_path->nodes[0], right_ii);
4134 sctx->cur_inode_mode = btrfs_inode_mode(
4135 sctx->right_path->nodes[0], right_ii);
4136 } else if (result == BTRFS_COMPARE_TREE_CHANGED) {
Alexander Block766702e2012-07-28 14:11:31 +02004137 /*
4138 * We need to do some special handling in case the inode was
4139 * reported as changed with a changed generation number. This
4140 * means that the original inode was deleted and new inode
4141 * reused the same inum. So we have to treat the old inode as
4142 * deleted and the new one as new.
4143 */
Alexander Block31db9f72012-07-25 23:19:24 +02004144 if (sctx->cur_inode_new_gen) {
Alexander Block766702e2012-07-28 14:11:31 +02004145 /*
4146 * First, process the inode as if it was deleted.
4147 */
Alexander Block31db9f72012-07-25 23:19:24 +02004148 sctx->cur_inode_gen = right_gen;
4149 sctx->cur_inode_new = 0;
4150 sctx->cur_inode_deleted = 1;
4151 sctx->cur_inode_size = btrfs_inode_size(
4152 sctx->right_path->nodes[0], right_ii);
4153 sctx->cur_inode_mode = btrfs_inode_mode(
4154 sctx->right_path->nodes[0], right_ii);
4155 ret = process_all_refs(sctx,
4156 BTRFS_COMPARE_TREE_DELETED);
4157 if (ret < 0)
4158 goto out;
4159
Alexander Block766702e2012-07-28 14:11:31 +02004160 /*
4161 * Now process the inode as if it was new.
4162 */
Alexander Block31db9f72012-07-25 23:19:24 +02004163 sctx->cur_inode_gen = left_gen;
4164 sctx->cur_inode_new = 1;
4165 sctx->cur_inode_deleted = 0;
4166 sctx->cur_inode_size = btrfs_inode_size(
4167 sctx->left_path->nodes[0], left_ii);
4168 sctx->cur_inode_mode = btrfs_inode_mode(
4169 sctx->left_path->nodes[0], left_ii);
Alexander Block1f4692d2012-07-28 10:42:24 +02004170 ret = send_create_inode_if_needed(sctx);
Alexander Block31db9f72012-07-25 23:19:24 +02004171 if (ret < 0)
4172 goto out;
4173
4174 ret = process_all_refs(sctx, BTRFS_COMPARE_TREE_NEW);
4175 if (ret < 0)
4176 goto out;
Alexander Blocke479d9b2012-07-28 16:09:35 +02004177 /*
4178 * Advance send_progress now as we did not get into
4179 * process_recorded_refs_if_needed in the new_gen case.
4180 */
4181 sctx->send_progress = sctx->cur_ino + 1;
Alexander Block766702e2012-07-28 14:11:31 +02004182
4183 /*
4184 * Now process all extents and xattrs of the inode as if
4185 * they were all new.
4186 */
Alexander Block31db9f72012-07-25 23:19:24 +02004187 ret = process_all_extents(sctx);
4188 if (ret < 0)
4189 goto out;
4190 ret = process_all_new_xattrs(sctx);
4191 if (ret < 0)
4192 goto out;
4193 } else {
4194 sctx->cur_inode_gen = left_gen;
4195 sctx->cur_inode_new = 0;
4196 sctx->cur_inode_new_gen = 0;
4197 sctx->cur_inode_deleted = 0;
4198 sctx->cur_inode_size = btrfs_inode_size(
4199 sctx->left_path->nodes[0], left_ii);
4200 sctx->cur_inode_mode = btrfs_inode_mode(
4201 sctx->left_path->nodes[0], left_ii);
4202 }
4203 }
4204
4205out:
4206 return ret;
4207}
4208
Alexander Block766702e2012-07-28 14:11:31 +02004209/*
4210 * We have to process new refs before deleted refs, but compare_trees gives us
4211 * the new and deleted refs mixed. To fix this, we record the new/deleted refs
4212 * first and later process them in process_recorded_refs.
4213 * For the cur_inode_new_gen case, we skip recording completely because
4214 * changed_inode did already initiate processing of refs. The reason for this is
4215 * that in this case, compare_tree actually compares the refs of 2 different
4216 * inodes. To fix this, process_all_refs is used in changed_inode to handle all
4217 * refs of the right tree as deleted and all refs of the left tree as new.
4218 */
Alexander Block31db9f72012-07-25 23:19:24 +02004219static int changed_ref(struct send_ctx *sctx,
4220 enum btrfs_compare_tree_result result)
4221{
4222 int ret = 0;
4223
4224 BUG_ON(sctx->cur_ino != sctx->cmp_key->objectid);
4225
4226 if (!sctx->cur_inode_new_gen &&
4227 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) {
4228 if (result == BTRFS_COMPARE_TREE_NEW)
4229 ret = record_new_ref(sctx);
4230 else if (result == BTRFS_COMPARE_TREE_DELETED)
4231 ret = record_deleted_ref(sctx);
4232 else if (result == BTRFS_COMPARE_TREE_CHANGED)
4233 ret = record_changed_ref(sctx);
4234 }
4235
4236 return ret;
4237}
4238
Alexander Block766702e2012-07-28 14:11:31 +02004239/*
4240 * Process new/deleted/changed xattrs. We skip processing in the
4241 * cur_inode_new_gen case because changed_inode did already initiate processing
4242 * of xattrs. The reason is the same as in changed_ref
4243 */
Alexander Block31db9f72012-07-25 23:19:24 +02004244static int changed_xattr(struct send_ctx *sctx,
4245 enum btrfs_compare_tree_result result)
4246{
4247 int ret = 0;
4248
4249 BUG_ON(sctx->cur_ino != sctx->cmp_key->objectid);
4250
4251 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
4252 if (result == BTRFS_COMPARE_TREE_NEW)
4253 ret = process_new_xattr(sctx);
4254 else if (result == BTRFS_COMPARE_TREE_DELETED)
4255 ret = process_deleted_xattr(sctx);
4256 else if (result == BTRFS_COMPARE_TREE_CHANGED)
4257 ret = process_changed_xattr(sctx);
4258 }
4259
4260 return ret;
4261}
4262
Alexander Block766702e2012-07-28 14:11:31 +02004263/*
4264 * Process new/deleted/changed extents. We skip processing in the
4265 * cur_inode_new_gen case because changed_inode did already initiate processing
4266 * of extents. The reason is the same as in changed_ref
4267 */
Alexander Block31db9f72012-07-25 23:19:24 +02004268static int changed_extent(struct send_ctx *sctx,
4269 enum btrfs_compare_tree_result result)
4270{
4271 int ret = 0;
4272
4273 BUG_ON(sctx->cur_ino != sctx->cmp_key->objectid);
4274
4275 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
4276 if (result != BTRFS_COMPARE_TREE_DELETED)
4277 ret = process_extent(sctx, sctx->left_path,
4278 sctx->cmp_key);
4279 }
4280
4281 return ret;
4282}
4283
Alexander Block766702e2012-07-28 14:11:31 +02004284/*
4285 * Updates compare related fields in sctx and simply forwards to the actual
4286 * changed_xxx functions.
4287 */
Alexander Block31db9f72012-07-25 23:19:24 +02004288static int changed_cb(struct btrfs_root *left_root,
4289 struct btrfs_root *right_root,
4290 struct btrfs_path *left_path,
4291 struct btrfs_path *right_path,
4292 struct btrfs_key *key,
4293 enum btrfs_compare_tree_result result,
4294 void *ctx)
4295{
4296 int ret = 0;
4297 struct send_ctx *sctx = ctx;
4298
4299 sctx->left_path = left_path;
4300 sctx->right_path = right_path;
4301 sctx->cmp_key = key;
4302
4303 ret = finish_inode_if_needed(sctx, 0);
4304 if (ret < 0)
4305 goto out;
4306
4307 if (key->type == BTRFS_INODE_ITEM_KEY)
4308 ret = changed_inode(sctx, result);
4309 else if (key->type == BTRFS_INODE_REF_KEY)
4310 ret = changed_ref(sctx, result);
4311 else if (key->type == BTRFS_XATTR_ITEM_KEY)
4312 ret = changed_xattr(sctx, result);
4313 else if (key->type == BTRFS_EXTENT_DATA_KEY)
4314 ret = changed_extent(sctx, result);
4315
4316out:
4317 return ret;
4318}
4319
4320static int full_send_tree(struct send_ctx *sctx)
4321{
4322 int ret;
4323 struct btrfs_trans_handle *trans = NULL;
4324 struct btrfs_root *send_root = sctx->send_root;
4325 struct btrfs_key key;
4326 struct btrfs_key found_key;
4327 struct btrfs_path *path;
4328 struct extent_buffer *eb;
4329 int slot;
4330 u64 start_ctransid;
4331 u64 ctransid;
4332
4333 path = alloc_path_for_send();
4334 if (!path)
4335 return -ENOMEM;
4336
4337 spin_lock(&send_root->root_times_lock);
4338 start_ctransid = btrfs_root_ctransid(&send_root->root_item);
4339 spin_unlock(&send_root->root_times_lock);
4340
4341 key.objectid = BTRFS_FIRST_FREE_OBJECTID;
4342 key.type = BTRFS_INODE_ITEM_KEY;
4343 key.offset = 0;
4344
4345join_trans:
4346 /*
4347 * We need to make sure the transaction does not get committed
4348 * while we do anything on commit roots. Join a transaction to prevent
4349 * this.
4350 */
4351 trans = btrfs_join_transaction(send_root);
4352 if (IS_ERR(trans)) {
4353 ret = PTR_ERR(trans);
4354 trans = NULL;
4355 goto out;
4356 }
4357
4358 /*
Alexander Block766702e2012-07-28 14:11:31 +02004359 * Make sure the tree has not changed after re-joining. We detect this
4360 * by comparing start_ctransid and ctransid. They should always match.
Alexander Block31db9f72012-07-25 23:19:24 +02004361 */
4362 spin_lock(&send_root->root_times_lock);
4363 ctransid = btrfs_root_ctransid(&send_root->root_item);
4364 spin_unlock(&send_root->root_times_lock);
4365
4366 if (ctransid != start_ctransid) {
4367 WARN(1, KERN_WARNING "btrfs: the root that you're trying to "
4368 "send was modified in between. This is "
4369 "probably a bug.\n");
4370 ret = -EIO;
4371 goto out;
4372 }
4373
4374 ret = btrfs_search_slot_for_read(send_root, &key, path, 1, 0);
4375 if (ret < 0)
4376 goto out;
4377 if (ret)
4378 goto out_finish;
4379
4380 while (1) {
4381 /*
4382 * When someone want to commit while we iterate, end the
4383 * joined transaction and rejoin.
4384 */
4385 if (btrfs_should_end_transaction(trans, send_root)) {
4386 ret = btrfs_end_transaction(trans, send_root);
4387 trans = NULL;
4388 if (ret < 0)
4389 goto out;
4390 btrfs_release_path(path);
4391 goto join_trans;
4392 }
4393
4394 eb = path->nodes[0];
4395 slot = path->slots[0];
4396 btrfs_item_key_to_cpu(eb, &found_key, slot);
4397
4398 ret = changed_cb(send_root, NULL, path, NULL,
4399 &found_key, BTRFS_COMPARE_TREE_NEW, sctx);
4400 if (ret < 0)
4401 goto out;
4402
4403 key.objectid = found_key.objectid;
4404 key.type = found_key.type;
4405 key.offset = found_key.offset + 1;
4406
4407 ret = btrfs_next_item(send_root, path);
4408 if (ret < 0)
4409 goto out;
4410 if (ret) {
4411 ret = 0;
4412 break;
4413 }
4414 }
4415
4416out_finish:
4417 ret = finish_inode_if_needed(sctx, 1);
4418
4419out:
4420 btrfs_free_path(path);
4421 if (trans) {
4422 if (!ret)
4423 ret = btrfs_end_transaction(trans, send_root);
4424 else
4425 btrfs_end_transaction(trans, send_root);
4426 }
4427 return ret;
4428}
4429
4430static int send_subvol(struct send_ctx *sctx)
4431{
4432 int ret;
4433
4434 ret = send_header(sctx);
4435 if (ret < 0)
4436 goto out;
4437
4438 ret = send_subvol_begin(sctx);
4439 if (ret < 0)
4440 goto out;
4441
4442 if (sctx->parent_root) {
4443 ret = btrfs_compare_trees(sctx->send_root, sctx->parent_root,
4444 changed_cb, sctx);
4445 if (ret < 0)
4446 goto out;
4447 ret = finish_inode_if_needed(sctx, 1);
4448 if (ret < 0)
4449 goto out;
4450 } else {
4451 ret = full_send_tree(sctx);
4452 if (ret < 0)
4453 goto out;
4454 }
4455
4456out:
4457 if (!ret)
4458 ret = close_cur_inode_file(sctx);
4459 else
4460 close_cur_inode_file(sctx);
4461
4462 free_recorded_refs(sctx);
4463 return ret;
4464}
4465
4466long btrfs_ioctl_send(struct file *mnt_file, void __user *arg_)
4467{
4468 int ret = 0;
4469 struct btrfs_root *send_root;
4470 struct btrfs_root *clone_root;
4471 struct btrfs_fs_info *fs_info;
4472 struct btrfs_ioctl_send_args *arg = NULL;
4473 struct btrfs_key key;
4474 struct file *filp = NULL;
4475 struct send_ctx *sctx = NULL;
4476 u32 i;
4477 u64 *clone_sources_tmp = NULL;
4478
4479 if (!capable(CAP_SYS_ADMIN))
4480 return -EPERM;
4481
4482 send_root = BTRFS_I(fdentry(mnt_file)->d_inode)->root;
4483 fs_info = send_root->fs_info;
4484
4485 arg = memdup_user(arg_, sizeof(*arg));
4486 if (IS_ERR(arg)) {
4487 ret = PTR_ERR(arg);
4488 arg = NULL;
4489 goto out;
4490 }
4491
4492 if (!access_ok(VERIFY_READ, arg->clone_sources,
4493 sizeof(*arg->clone_sources *
4494 arg->clone_sources_count))) {
4495 ret = -EFAULT;
4496 goto out;
4497 }
4498
4499 sctx = kzalloc(sizeof(struct send_ctx), GFP_NOFS);
4500 if (!sctx) {
4501 ret = -ENOMEM;
4502 goto out;
4503 }
4504
4505 INIT_LIST_HEAD(&sctx->new_refs);
4506 INIT_LIST_HEAD(&sctx->deleted_refs);
4507 INIT_RADIX_TREE(&sctx->name_cache, GFP_NOFS);
4508 INIT_LIST_HEAD(&sctx->name_cache_list);
4509
4510 sctx->send_filp = fget(arg->send_fd);
4511 if (IS_ERR(sctx->send_filp)) {
4512 ret = PTR_ERR(sctx->send_filp);
4513 goto out;
4514 }
4515
4516 sctx->mnt = mnt_file->f_path.mnt;
4517
4518 sctx->send_root = send_root;
4519 sctx->clone_roots_cnt = arg->clone_sources_count;
4520
4521 sctx->send_max_size = BTRFS_SEND_BUF_SIZE;
4522 sctx->send_buf = vmalloc(sctx->send_max_size);
4523 if (!sctx->send_buf) {
4524 ret = -ENOMEM;
4525 goto out;
4526 }
4527
4528 sctx->read_buf = vmalloc(BTRFS_SEND_READ_SIZE);
4529 if (!sctx->read_buf) {
4530 ret = -ENOMEM;
4531 goto out;
4532 }
4533
4534 sctx->clone_roots = vzalloc(sizeof(struct clone_root) *
4535 (arg->clone_sources_count + 1));
4536 if (!sctx->clone_roots) {
4537 ret = -ENOMEM;
4538 goto out;
4539 }
4540
4541 if (arg->clone_sources_count) {
4542 clone_sources_tmp = vmalloc(arg->clone_sources_count *
4543 sizeof(*arg->clone_sources));
4544 if (!clone_sources_tmp) {
4545 ret = -ENOMEM;
4546 goto out;
4547 }
4548
4549 ret = copy_from_user(clone_sources_tmp, arg->clone_sources,
4550 arg->clone_sources_count *
4551 sizeof(*arg->clone_sources));
4552 if (ret) {
4553 ret = -EFAULT;
4554 goto out;
4555 }
4556
4557 for (i = 0; i < arg->clone_sources_count; i++) {
4558 key.objectid = clone_sources_tmp[i];
4559 key.type = BTRFS_ROOT_ITEM_KEY;
4560 key.offset = (u64)-1;
4561 clone_root = btrfs_read_fs_root_no_name(fs_info, &key);
4562 if (!clone_root) {
4563 ret = -EINVAL;
4564 goto out;
4565 }
4566 if (IS_ERR(clone_root)) {
4567 ret = PTR_ERR(clone_root);
4568 goto out;
4569 }
4570 sctx->clone_roots[i].root = clone_root;
4571 }
4572 vfree(clone_sources_tmp);
4573 clone_sources_tmp = NULL;
4574 }
4575
4576 if (arg->parent_root) {
4577 key.objectid = arg->parent_root;
4578 key.type = BTRFS_ROOT_ITEM_KEY;
4579 key.offset = (u64)-1;
4580 sctx->parent_root = btrfs_read_fs_root_no_name(fs_info, &key);
4581 if (!sctx->parent_root) {
4582 ret = -EINVAL;
4583 goto out;
4584 }
4585 }
4586
4587 /*
4588 * Clones from send_root are allowed, but only if the clone source
4589 * is behind the current send position. This is checked while searching
4590 * for possible clone sources.
4591 */
4592 sctx->clone_roots[sctx->clone_roots_cnt++].root = sctx->send_root;
4593
4594 /* We do a bsearch later */
4595 sort(sctx->clone_roots, sctx->clone_roots_cnt,
4596 sizeof(*sctx->clone_roots), __clone_root_cmp_sort,
4597 NULL);
4598
4599 ret = send_subvol(sctx);
4600 if (ret < 0)
4601 goto out;
4602
4603 ret = begin_cmd(sctx, BTRFS_SEND_C_END);
4604 if (ret < 0)
4605 goto out;
4606 ret = send_cmd(sctx);
4607 if (ret < 0)
4608 goto out;
4609
4610out:
4611 if (filp)
4612 fput(filp);
4613 kfree(arg);
4614 vfree(clone_sources_tmp);
4615
4616 if (sctx) {
4617 if (sctx->send_filp)
4618 fput(sctx->send_filp);
4619
4620 vfree(sctx->clone_roots);
4621 vfree(sctx->send_buf);
4622 vfree(sctx->read_buf);
4623
4624 name_cache_free(sctx);
4625
4626 kfree(sctx);
4627 }
4628
4629 return ret;
4630}