blob: b3e3498a7e6f921ee3dc6f642c2e75c90ab4f815 [file] [log] [blame]
Maxime Ripard3558fe92014-02-05 14:05:05 +01001/*
2 * Copyright (C) 2012 - 2014 Allwinner Tech
3 * Pan Nan <pannan@allwinnertech.com>
4 *
5 * Copyright (C) 2014 Maxime Ripard
6 * Maxime Ripard <maxime.ripard@free-electrons.com>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License as
10 * published by the Free Software Foundation; either version 2 of
11 * the License, or (at your option) any later version.
12 */
13
14#include <linux/clk.h>
15#include <linux/delay.h>
16#include <linux/device.h>
17#include <linux/interrupt.h>
18#include <linux/io.h>
19#include <linux/module.h>
20#include <linux/platform_device.h>
21#include <linux/pm_runtime.h>
22#include <linux/reset.h>
23#include <linux/workqueue.h>
24
25#include <linux/spi/spi.h>
26
27#define SUN6I_FIFO_DEPTH 128
28
29#define SUN6I_GBL_CTL_REG 0x04
30#define SUN6I_GBL_CTL_BUS_ENABLE BIT(0)
31#define SUN6I_GBL_CTL_MASTER BIT(1)
32#define SUN6I_GBL_CTL_TP BIT(7)
33#define SUN6I_GBL_CTL_RST BIT(31)
34
35#define SUN6I_TFR_CTL_REG 0x08
36#define SUN6I_TFR_CTL_CPHA BIT(0)
37#define SUN6I_TFR_CTL_CPOL BIT(1)
38#define SUN6I_TFR_CTL_SPOL BIT(2)
Axel Lind31ad462014-02-13 10:18:15 +080039#define SUN6I_TFR_CTL_CS_MASK 0x30
40#define SUN6I_TFR_CTL_CS(cs) (((cs) << 4) & SUN6I_TFR_CTL_CS_MASK)
Maxime Ripard3558fe92014-02-05 14:05:05 +010041#define SUN6I_TFR_CTL_CS_MANUAL BIT(6)
42#define SUN6I_TFR_CTL_CS_LEVEL BIT(7)
43#define SUN6I_TFR_CTL_DHB BIT(8)
44#define SUN6I_TFR_CTL_FBS BIT(12)
45#define SUN6I_TFR_CTL_XCH BIT(31)
46
47#define SUN6I_INT_CTL_REG 0x10
48#define SUN6I_INT_CTL_RF_OVF BIT(8)
49#define SUN6I_INT_CTL_TC BIT(12)
50
51#define SUN6I_INT_STA_REG 0x14
52
53#define SUN6I_FIFO_CTL_REG 0x18
54#define SUN6I_FIFO_CTL_RF_RST BIT(15)
55#define SUN6I_FIFO_CTL_TF_RST BIT(31)
56
57#define SUN6I_FIFO_STA_REG 0x1c
58#define SUN6I_FIFO_STA_RF_CNT_MASK 0x7f
59#define SUN6I_FIFO_STA_RF_CNT_BITS 0
60#define SUN6I_FIFO_STA_TF_CNT_MASK 0x7f
61#define SUN6I_FIFO_STA_TF_CNT_BITS 16
62
63#define SUN6I_CLK_CTL_REG 0x24
64#define SUN6I_CLK_CTL_CDR2_MASK 0xff
65#define SUN6I_CLK_CTL_CDR2(div) (((div) & SUN6I_CLK_CTL_CDR2_MASK) << 0)
66#define SUN6I_CLK_CTL_CDR1_MASK 0xf
67#define SUN6I_CLK_CTL_CDR1(div) (((div) & SUN6I_CLK_CTL_CDR1_MASK) << 8)
68#define SUN6I_CLK_CTL_DRS BIT(12)
69
70#define SUN6I_BURST_CNT_REG 0x30
71#define SUN6I_BURST_CNT(cnt) ((cnt) & 0xffffff)
72
73#define SUN6I_XMIT_CNT_REG 0x34
74#define SUN6I_XMIT_CNT(cnt) ((cnt) & 0xffffff)
75
76#define SUN6I_BURST_CTL_CNT_REG 0x38
77#define SUN6I_BURST_CTL_CNT_STC(cnt) ((cnt) & 0xffffff)
78
79#define SUN6I_TXDATA_REG 0x200
80#define SUN6I_RXDATA_REG 0x300
81
82struct sun6i_spi {
83 struct spi_master *master;
84 void __iomem *base_addr;
85 struct clk *hclk;
86 struct clk *mclk;
87 struct reset_control *rstc;
88
89 struct completion done;
90
91 const u8 *tx_buf;
92 u8 *rx_buf;
93 int len;
94};
95
96static inline u32 sun6i_spi_read(struct sun6i_spi *sspi, u32 reg)
97{
98 return readl(sspi->base_addr + reg);
99}
100
101static inline void sun6i_spi_write(struct sun6i_spi *sspi, u32 reg, u32 value)
102{
103 writel(value, sspi->base_addr + reg);
104}
105
106static inline void sun6i_spi_drain_fifo(struct sun6i_spi *sspi, int len)
107{
108 u32 reg, cnt;
109 u8 byte;
110
111 /* See how much data is available */
112 reg = sun6i_spi_read(sspi, SUN6I_FIFO_STA_REG);
113 reg &= SUN6I_FIFO_STA_RF_CNT_MASK;
114 cnt = reg >> SUN6I_FIFO_STA_RF_CNT_BITS;
115
116 if (len > cnt)
117 len = cnt;
118
119 while (len--) {
120 byte = readb(sspi->base_addr + SUN6I_RXDATA_REG);
121 if (sspi->rx_buf)
122 *sspi->rx_buf++ = byte;
123 }
124}
125
126static inline void sun6i_spi_fill_fifo(struct sun6i_spi *sspi, int len)
127{
128 u8 byte;
129
130 if (len > sspi->len)
131 len = sspi->len;
132
133 while (len--) {
134 byte = sspi->tx_buf ? *sspi->tx_buf++ : 0;
135 writeb(byte, sspi->base_addr + SUN6I_TXDATA_REG);
136 sspi->len--;
137 }
138}
139
140static void sun6i_spi_set_cs(struct spi_device *spi, bool enable)
141{
142 struct sun6i_spi *sspi = spi_master_get_devdata(spi->master);
143 u32 reg;
144
145 reg = sun6i_spi_read(sspi, SUN6I_TFR_CTL_REG);
146 reg &= ~SUN6I_TFR_CTL_CS_MASK;
147 reg |= SUN6I_TFR_CTL_CS(spi->chip_select);
148
149 if (enable)
150 reg |= SUN6I_TFR_CTL_CS_LEVEL;
151 else
152 reg &= ~SUN6I_TFR_CTL_CS_LEVEL;
153
154 sun6i_spi_write(sspi, SUN6I_TFR_CTL_REG, reg);
155}
156
157
158static int sun6i_spi_transfer_one(struct spi_master *master,
159 struct spi_device *spi,
160 struct spi_transfer *tfr)
161{
162 struct sun6i_spi *sspi = spi_master_get_devdata(master);
163 unsigned int mclk_rate, div, timeout;
164 unsigned int tx_len = 0;
165 int ret = 0;
166 u32 reg;
167
168 /* We don't support transfer larger than the FIFO */
169 if (tfr->len > SUN6I_FIFO_DEPTH)
170 return -EINVAL;
171
172 reinit_completion(&sspi->done);
173 sspi->tx_buf = tfr->tx_buf;
174 sspi->rx_buf = tfr->rx_buf;
175 sspi->len = tfr->len;
176
177 /* Clear pending interrupts */
178 sun6i_spi_write(sspi, SUN6I_INT_STA_REG, ~0);
179
180 /* Reset FIFO */
181 sun6i_spi_write(sspi, SUN6I_FIFO_CTL_REG,
182 SUN6I_FIFO_CTL_RF_RST | SUN6I_FIFO_CTL_TF_RST);
183
184 /*
185 * Setup the transfer control register: Chip Select,
186 * polarities, etc.
187 */
188 reg = sun6i_spi_read(sspi, SUN6I_TFR_CTL_REG);
189
190 if (spi->mode & SPI_CPOL)
191 reg |= SUN6I_TFR_CTL_CPOL;
192 else
193 reg &= ~SUN6I_TFR_CTL_CPOL;
194
195 if (spi->mode & SPI_CPHA)
196 reg |= SUN6I_TFR_CTL_CPHA;
197 else
198 reg &= ~SUN6I_TFR_CTL_CPHA;
199
200 if (spi->mode & SPI_LSB_FIRST)
201 reg |= SUN6I_TFR_CTL_FBS;
202 else
203 reg &= ~SUN6I_TFR_CTL_FBS;
204
205 /*
206 * If it's a TX only transfer, we don't want to fill the RX
207 * FIFO with bogus data
208 */
209 if (sspi->rx_buf)
210 reg &= ~SUN6I_TFR_CTL_DHB;
211 else
212 reg |= SUN6I_TFR_CTL_DHB;
213
214 /* We want to control the chip select manually */
215 reg |= SUN6I_TFR_CTL_CS_MANUAL;
216
217 sun6i_spi_write(sspi, SUN6I_TFR_CTL_REG, reg);
218
219 /* Ensure that we have a parent clock fast enough */
220 mclk_rate = clk_get_rate(sspi->mclk);
221 if (mclk_rate < (2 * spi->max_speed_hz)) {
222 clk_set_rate(sspi->mclk, 2 * spi->max_speed_hz);
223 mclk_rate = clk_get_rate(sspi->mclk);
224 }
225
226 /*
227 * Setup clock divider.
228 *
229 * We have two choices there. Either we can use the clock
230 * divide rate 1, which is calculated thanks to this formula:
231 * SPI_CLK = MOD_CLK / (2 ^ cdr)
232 * Or we can use CDR2, which is calculated with the formula:
233 * SPI_CLK = MOD_CLK / (2 * (cdr + 1))
234 * Wether we use the former or the latter is set through the
235 * DRS bit.
236 *
237 * First try CDR2, and if we can't reach the expected
238 * frequency, fall back to CDR1.
239 */
240 div = mclk_rate / (2 * spi->max_speed_hz);
241 if (div <= (SUN6I_CLK_CTL_CDR2_MASK + 1)) {
242 if (div > 0)
243 div--;
244
245 reg = SUN6I_CLK_CTL_CDR2(div) | SUN6I_CLK_CTL_DRS;
246 } else {
247 div = ilog2(mclk_rate) - ilog2(spi->max_speed_hz);
248 reg = SUN6I_CLK_CTL_CDR1(div);
249 }
250
251 sun6i_spi_write(sspi, SUN6I_CLK_CTL_REG, reg);
252
253 /* Setup the transfer now... */
254 if (sspi->tx_buf)
255 tx_len = tfr->len;
256
257 /* Setup the counters */
258 sun6i_spi_write(sspi, SUN6I_BURST_CNT_REG, SUN6I_BURST_CNT(tfr->len));
259 sun6i_spi_write(sspi, SUN6I_XMIT_CNT_REG, SUN6I_XMIT_CNT(tx_len));
260 sun6i_spi_write(sspi, SUN6I_BURST_CTL_CNT_REG,
261 SUN6I_BURST_CTL_CNT_STC(tx_len));
262
263 /* Fill the TX FIFO */
264 sun6i_spi_fill_fifo(sspi, SUN6I_FIFO_DEPTH);
265
266 /* Enable the interrupts */
267 sun6i_spi_write(sspi, SUN6I_INT_CTL_REG, SUN6I_INT_CTL_TC);
268
269 /* Start the transfer */
270 reg = sun6i_spi_read(sspi, SUN6I_TFR_CTL_REG);
271 sun6i_spi_write(sspi, SUN6I_TFR_CTL_REG, reg | SUN6I_TFR_CTL_XCH);
272
273 timeout = wait_for_completion_timeout(&sspi->done,
274 msecs_to_jiffies(1000));
275 if (!timeout) {
276 ret = -ETIMEDOUT;
277 goto out;
278 }
279
280 sun6i_spi_drain_fifo(sspi, SUN6I_FIFO_DEPTH);
281
282out:
283 sun6i_spi_write(sspi, SUN6I_INT_CTL_REG, 0);
284
285 return ret;
286}
287
288static irqreturn_t sun6i_spi_handler(int irq, void *dev_id)
289{
290 struct sun6i_spi *sspi = dev_id;
291 u32 status = sun6i_spi_read(sspi, SUN6I_INT_STA_REG);
292
293 /* Transfer complete */
294 if (status & SUN6I_INT_CTL_TC) {
295 sun6i_spi_write(sspi, SUN6I_INT_STA_REG, SUN6I_INT_CTL_TC);
296 complete(&sspi->done);
297 return IRQ_HANDLED;
298 }
299
300 return IRQ_NONE;
301}
302
303static int sun6i_spi_runtime_resume(struct device *dev)
304{
305 struct spi_master *master = dev_get_drvdata(dev);
306 struct sun6i_spi *sspi = spi_master_get_devdata(master);
307 int ret;
308
309 ret = clk_prepare_enable(sspi->hclk);
310 if (ret) {
311 dev_err(dev, "Couldn't enable AHB clock\n");
312 goto out;
313 }
314
315 ret = clk_prepare_enable(sspi->mclk);
316 if (ret) {
317 dev_err(dev, "Couldn't enable module clock\n");
318 goto err;
319 }
320
321 ret = reset_control_deassert(sspi->rstc);
322 if (ret) {
323 dev_err(dev, "Couldn't deassert the device from reset\n");
324 goto err2;
325 }
326
327 sun6i_spi_write(sspi, SUN6I_GBL_CTL_REG,
328 SUN6I_GBL_CTL_BUS_ENABLE | SUN6I_GBL_CTL_MASTER | SUN6I_GBL_CTL_TP);
329
330 return 0;
331
332err2:
333 clk_disable_unprepare(sspi->mclk);
334err:
335 clk_disable_unprepare(sspi->hclk);
336out:
337 return ret;
338}
339
340static int sun6i_spi_runtime_suspend(struct device *dev)
341{
342 struct spi_master *master = dev_get_drvdata(dev);
343 struct sun6i_spi *sspi = spi_master_get_devdata(master);
344
345 reset_control_assert(sspi->rstc);
346 clk_disable_unprepare(sspi->mclk);
347 clk_disable_unprepare(sspi->hclk);
348
349 return 0;
350}
351
352static int sun6i_spi_probe(struct platform_device *pdev)
353{
354 struct spi_master *master;
355 struct sun6i_spi *sspi;
356 struct resource *res;
357 int ret = 0, irq;
358
359 master = spi_alloc_master(&pdev->dev, sizeof(struct sun6i_spi));
360 if (!master) {
361 dev_err(&pdev->dev, "Unable to allocate SPI Master\n");
362 return -ENOMEM;
363 }
364
365 platform_set_drvdata(pdev, master);
366 sspi = spi_master_get_devdata(master);
367
368 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
369 sspi->base_addr = devm_ioremap_resource(&pdev->dev, res);
370 if (IS_ERR(sspi->base_addr)) {
371 ret = PTR_ERR(sspi->base_addr);
372 goto err_free_master;
373 }
374
375 irq = platform_get_irq(pdev, 0);
376 if (irq < 0) {
377 dev_err(&pdev->dev, "No spi IRQ specified\n");
378 ret = -ENXIO;
379 goto err_free_master;
380 }
381
382 ret = devm_request_irq(&pdev->dev, irq, sun6i_spi_handler,
383 0, "sun6i-spi", sspi);
384 if (ret) {
385 dev_err(&pdev->dev, "Cannot request IRQ\n");
386 goto err_free_master;
387 }
388
389 sspi->master = master;
390 master->set_cs = sun6i_spi_set_cs;
391 master->transfer_one = sun6i_spi_transfer_one;
392 master->num_chipselect = 4;
393 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LSB_FIRST;
Axel Lin743a46b2014-03-02 22:25:58 +0800394 master->bits_per_word_mask = SPI_BPW_MASK(8);
Maxime Ripard3558fe92014-02-05 14:05:05 +0100395 master->dev.of_node = pdev->dev.of_node;
396 master->auto_runtime_pm = true;
397
398 sspi->hclk = devm_clk_get(&pdev->dev, "ahb");
399 if (IS_ERR(sspi->hclk)) {
400 dev_err(&pdev->dev, "Unable to acquire AHB clock\n");
401 ret = PTR_ERR(sspi->hclk);
402 goto err_free_master;
403 }
404
405 sspi->mclk = devm_clk_get(&pdev->dev, "mod");
406 if (IS_ERR(sspi->mclk)) {
407 dev_err(&pdev->dev, "Unable to acquire module clock\n");
408 ret = PTR_ERR(sspi->mclk);
409 goto err_free_master;
410 }
411
412 init_completion(&sspi->done);
413
414 sspi->rstc = devm_reset_control_get(&pdev->dev, NULL);
415 if (IS_ERR(sspi->rstc)) {
416 dev_err(&pdev->dev, "Couldn't get reset controller\n");
417 ret = PTR_ERR(sspi->rstc);
418 goto err_free_master;
419 }
420
421 /*
422 * This wake-up/shutdown pattern is to be able to have the
423 * device woken up, even if runtime_pm is disabled
424 */
425 ret = sun6i_spi_runtime_resume(&pdev->dev);
426 if (ret) {
427 dev_err(&pdev->dev, "Couldn't resume the device\n");
428 goto err_free_master;
429 }
430
431 pm_runtime_set_active(&pdev->dev);
432 pm_runtime_enable(&pdev->dev);
433 pm_runtime_idle(&pdev->dev);
434
435 ret = devm_spi_register_master(&pdev->dev, master);
436 if (ret) {
437 dev_err(&pdev->dev, "cannot register SPI master\n");
438 goto err_pm_disable;
439 }
440
441 return 0;
442
443err_pm_disable:
444 pm_runtime_disable(&pdev->dev);
445 sun6i_spi_runtime_suspend(&pdev->dev);
446err_free_master:
447 spi_master_put(master);
448 return ret;
449}
450
451static int sun6i_spi_remove(struct platform_device *pdev)
452{
453 pm_runtime_disable(&pdev->dev);
454
455 return 0;
456}
457
458static const struct of_device_id sun6i_spi_match[] = {
459 { .compatible = "allwinner,sun6i-a31-spi", },
460 {}
461};
462MODULE_DEVICE_TABLE(of, sun6i_spi_match);
463
464static const struct dev_pm_ops sun6i_spi_pm_ops = {
465 .runtime_resume = sun6i_spi_runtime_resume,
466 .runtime_suspend = sun6i_spi_runtime_suspend,
467};
468
469static struct platform_driver sun6i_spi_driver = {
470 .probe = sun6i_spi_probe,
471 .remove = sun6i_spi_remove,
472 .driver = {
473 .name = "sun6i-spi",
474 .owner = THIS_MODULE,
475 .of_match_table = sun6i_spi_match,
476 .pm = &sun6i_spi_pm_ops,
477 },
478};
479module_platform_driver(sun6i_spi_driver);
480
481MODULE_AUTHOR("Pan Nan <pannan@allwinnertech.com>");
482MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com>");
483MODULE_DESCRIPTION("Allwinner A31 SPI controller driver");
484MODULE_LICENSE("GPL");