Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | #include <linux/kallsyms.h> |
| 2 | #include <linux/kernel.h> |
| 3 | #include <linux/mmzone.h> |
| 4 | #include <linux/nodemask.h> |
| 5 | #include <linux/spinlock.h> |
| 6 | #include <linux/smp.h> |
| 7 | #include <asm/atomic.h> |
| 8 | #include <asm/sn/types.h> |
| 9 | #include <asm/sn/addrs.h> |
| 10 | #include <asm/sn/nmi.h> |
| 11 | #include <asm/sn/arch.h> |
| 12 | #include <asm/sn/sn0/hub.h> |
| 13 | |
| 14 | #if 0 |
| 15 | #define NODE_NUM_CPUS(n) CNODE_NUM_CPUS(n) |
| 16 | #else |
| 17 | #define NODE_NUM_CPUS(n) CPUS_PER_NODE |
| 18 | #endif |
| 19 | |
| 20 | #define CNODEID_NONE (cnodeid_t)-1 |
| 21 | #define enter_panic_mode() spin_lock(&nmi_lock) |
| 22 | |
| 23 | typedef unsigned long machreg_t; |
| 24 | |
| 25 | DEFINE_SPINLOCK(nmi_lock); |
| 26 | |
| 27 | /* |
| 28 | * Lets see what else we need to do here. Set up sp, gp? |
| 29 | */ |
| 30 | void nmi_dump(void) |
| 31 | { |
| 32 | void cont_nmi_dump(void); |
| 33 | |
| 34 | cont_nmi_dump(); |
| 35 | } |
| 36 | |
| 37 | void install_cpu_nmi_handler(int slice) |
| 38 | { |
| 39 | nmi_t *nmi_addr; |
| 40 | |
| 41 | nmi_addr = (nmi_t *)NMI_ADDR(get_nasid(), slice); |
| 42 | if (nmi_addr->call_addr) |
| 43 | return; |
| 44 | nmi_addr->magic = NMI_MAGIC; |
| 45 | nmi_addr->call_addr = (void *)nmi_dump; |
| 46 | nmi_addr->call_addr_c = |
| 47 | (void *)(~((unsigned long)(nmi_addr->call_addr))); |
| 48 | nmi_addr->call_parm = 0; |
| 49 | } |
| 50 | |
| 51 | /* |
| 52 | * Copy the cpu registers which have been saved in the IP27prom format |
| 53 | * into the eframe format for the node under consideration. |
| 54 | */ |
| 55 | |
| 56 | void nmi_cpu_eframe_save(nasid_t nasid, int slice) |
| 57 | { |
| 58 | struct reg_struct *nr; |
| 59 | int i; |
| 60 | |
| 61 | /* Get the pointer to the current cpu's register set. */ |
| 62 | nr = (struct reg_struct *) |
| 63 | (TO_UNCAC(TO_NODE(nasid, IP27_NMI_KREGS_OFFSET)) + |
| 64 | slice * IP27_NMI_KREGS_CPU_SIZE); |
| 65 | |
| 66 | printk("NMI nasid %d: slice %d\n", nasid, slice); |
| 67 | |
| 68 | /* |
| 69 | * Saved main processor registers |
| 70 | */ |
| 71 | for (i = 0; i < 32; ) { |
| 72 | if ((i % 4) == 0) |
| 73 | printk("$%2d :", i); |
| 74 | printk(" %016lx", nr->gpr[i]); |
| 75 | |
| 76 | i++; |
| 77 | if ((i % 4) == 0) |
| 78 | printk("\n"); |
| 79 | } |
| 80 | |
| 81 | printk("Hi : (value lost)\n"); |
| 82 | printk("Lo : (value lost)\n"); |
| 83 | |
| 84 | /* |
| 85 | * Saved cp0 registers |
| 86 | */ |
| 87 | printk("epc : %016lx ", nr->epc); |
| 88 | print_symbol("%s ", nr->epc); |
| 89 | printk("%s\n", print_tainted()); |
| 90 | printk("ErrEPC: %016lx ", nr->error_epc); |
| 91 | print_symbol("%s\n", nr->error_epc); |
| 92 | printk("ra : %016lx ", nr->gpr[31]); |
| 93 | print_symbol("%s\n", nr->gpr[31]); |
| 94 | printk("Status: %08lx ", nr->sr); |
| 95 | |
| 96 | if (nr->sr & ST0_KX) |
| 97 | printk("KX "); |
| 98 | if (nr->sr & ST0_SX) |
| 99 | printk("SX "); |
| 100 | if (nr->sr & ST0_UX) |
| 101 | printk("UX "); |
| 102 | |
| 103 | switch (nr->sr & ST0_KSU) { |
| 104 | case KSU_USER: |
| 105 | printk("USER "); |
| 106 | break; |
| 107 | case KSU_SUPERVISOR: |
| 108 | printk("SUPERVISOR "); |
| 109 | break; |
| 110 | case KSU_KERNEL: |
| 111 | printk("KERNEL "); |
| 112 | break; |
| 113 | default: |
| 114 | printk("BAD_MODE "); |
| 115 | break; |
| 116 | } |
| 117 | |
| 118 | if (nr->sr & ST0_ERL) |
| 119 | printk("ERL "); |
| 120 | if (nr->sr & ST0_EXL) |
| 121 | printk("EXL "); |
| 122 | if (nr->sr & ST0_IE) |
| 123 | printk("IE "); |
| 124 | printk("\n"); |
| 125 | |
| 126 | printk("Cause : %08lx\n", nr->cause); |
| 127 | printk("PrId : %08x\n", read_c0_prid()); |
| 128 | printk("BadVA : %016lx\n", nr->badva); |
| 129 | printk("CErr : %016lx\n", nr->cache_err); |
| 130 | printk("NMI_SR: %016lx\n", nr->nmi_sr); |
| 131 | |
| 132 | printk("\n"); |
| 133 | } |
| 134 | |
| 135 | void nmi_dump_hub_irq(nasid_t nasid, int slice) |
| 136 | { |
| 137 | hubreg_t mask0, mask1, pend0, pend1; |
| 138 | |
| 139 | if (slice == 0) { /* Slice A */ |
| 140 | mask0 = REMOTE_HUB_L(nasid, PI_INT_MASK0_A); |
| 141 | mask1 = REMOTE_HUB_L(nasid, PI_INT_MASK1_A); |
| 142 | } else { /* Slice B */ |
| 143 | mask0 = REMOTE_HUB_L(nasid, PI_INT_MASK0_B); |
| 144 | mask1 = REMOTE_HUB_L(nasid, PI_INT_MASK1_B); |
| 145 | } |
| 146 | |
| 147 | pend0 = REMOTE_HUB_L(nasid, PI_INT_PEND0); |
| 148 | pend1 = REMOTE_HUB_L(nasid, PI_INT_PEND1); |
| 149 | |
| 150 | printk("PI_INT_MASK0: %16lx PI_INT_MASK1: %16lx\n", mask0, mask1); |
| 151 | printk("PI_INT_PEND0: %16lx PI_INT_PEND1: %16lx\n", pend0, pend1); |
| 152 | printk("\n\n"); |
| 153 | } |
| 154 | |
| 155 | /* |
| 156 | * Copy the cpu registers which have been saved in the IP27prom format |
| 157 | * into the eframe format for the node under consideration. |
| 158 | */ |
| 159 | void nmi_node_eframe_save(cnodeid_t cnode) |
| 160 | { |
| 161 | nasid_t nasid; |
| 162 | int slice; |
| 163 | |
| 164 | /* Make sure that we have a valid node */ |
| 165 | if (cnode == CNODEID_NONE) |
| 166 | return; |
| 167 | |
| 168 | nasid = COMPACT_TO_NASID_NODEID(cnode); |
| 169 | if (nasid == INVALID_NASID) |
| 170 | return; |
| 171 | |
| 172 | /* Save the registers into eframe for each cpu */ |
| 173 | for (slice = 0; slice < NODE_NUM_CPUS(slice); slice++) { |
| 174 | nmi_cpu_eframe_save(nasid, slice); |
| 175 | nmi_dump_hub_irq(nasid, slice); |
| 176 | } |
| 177 | } |
| 178 | |
| 179 | /* |
| 180 | * Save the nmi cpu registers for all cpus in the system. |
| 181 | */ |
| 182 | void |
| 183 | nmi_eframes_save(void) |
| 184 | { |
| 185 | cnodeid_t cnode; |
| 186 | |
| 187 | for_each_online_node(cnode) |
| 188 | nmi_node_eframe_save(cnode); |
| 189 | } |
| 190 | |
| 191 | void |
| 192 | cont_nmi_dump(void) |
| 193 | { |
| 194 | #ifndef REAL_NMI_SIGNAL |
| 195 | static atomic_t nmied_cpus = ATOMIC_INIT(0); |
| 196 | |
| 197 | atomic_inc(&nmied_cpus); |
| 198 | #endif |
| 199 | /* |
| 200 | * Use enter_panic_mode to allow only 1 cpu to proceed |
| 201 | */ |
| 202 | enter_panic_mode(); |
| 203 | |
| 204 | #ifdef REAL_NMI_SIGNAL |
| 205 | /* |
| 206 | * Wait up to 15 seconds for the other cpus to respond to the NMI. |
| 207 | * If a cpu has not responded after 10 sec, send it 1 additional NMI. |
| 208 | * This is for 2 reasons: |
| 209 | * - sometimes a MMSC fail to NMI all cpus. |
| 210 | * - on 512p SN0 system, the MMSC will only send NMIs to |
| 211 | * half the cpus. Unfortunately, we don't know which cpus may be |
| 212 | * NMIed - it depends on how the site chooses to configure. |
| 213 | * |
| 214 | * Note: it has been measure that it takes the MMSC up to 2.3 secs to |
| 215 | * send NMIs to all cpus on a 256p system. |
| 216 | */ |
| 217 | for (i=0; i < 1500; i++) { |
| 218 | for_each_online_node(node) |
| 219 | if (NODEPDA(node)->dump_count == 0) |
| 220 | break; |
| 221 | if (node == MAX_NUMNODES) |
| 222 | break; |
| 223 | if (i == 1000) { |
| 224 | for_each_online_node(node) |
| 225 | if (NODEPDA(node)->dump_count == 0) { |
| 226 | cpu = node_to_first_cpu(node); |
| 227 | for (n=0; n < CNODE_NUM_CPUS(node); cpu++, n++) { |
| 228 | CPUMASK_SETB(nmied_cpus, cpu); |
| 229 | /* |
| 230 | * cputonasid, cputoslice |
| 231 | * needs kernel cpuid |
| 232 | */ |
| 233 | SEND_NMI((cputonasid(cpu)), (cputoslice(cpu))); |
| 234 | } |
| 235 | } |
| 236 | |
| 237 | } |
| 238 | udelay(10000); |
| 239 | } |
| 240 | #else |
| 241 | while (atomic_read(&nmied_cpus) != num_online_cpus()); |
| 242 | #endif |
| 243 | |
| 244 | /* |
| 245 | * Save the nmi cpu registers for all cpu in the eframe format. |
| 246 | */ |
| 247 | nmi_eframes_save(); |
| 248 | LOCAL_HUB_S(NI_PORT_RESET, NPR_PORTRESET | NPR_LOCALRESET); |
| 249 | } |