blob: 56842772c80446309e45f4307efc1701b9c1c015 [file] [log] [blame]
Artem Bityutskiy1e517642008-07-14 19:08:37 +03001/*
2 * This file is part of UBIFS.
3 *
4 * Copyright (C) 2006-2008 Nokia Corporation
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 *
19 * Authors: Artem Bityutskiy (Битюцкий Артём)
20 * Adrian Hunter
21 */
22
23/*
24 * This file implements most of the debugging stuff which is compiled in only
25 * when it is enabled. But some debugging check functions are implemented in
26 * corresponding subsystem, just because they are closely related and utilize
27 * various local functions of those subsystems.
28 */
29
30#define UBIFS_DBG_PRESERVE_UBI
31
32#include "ubifs.h"
33#include <linux/module.h>
34#include <linux/moduleparam.h>
Artem Bityutskiy552ff312008-10-23 11:49:28 +030035#include <linux/debugfs.h>
Artem Bityutskiy1e517642008-07-14 19:08:37 +030036
37#ifdef CONFIG_UBIFS_FS_DEBUG
38
39DEFINE_SPINLOCK(dbg_lock);
40
41static char dbg_key_buf0[128];
42static char dbg_key_buf1[128];
43
44unsigned int ubifs_msg_flags = UBIFS_MSG_FLAGS_DEFAULT;
45unsigned int ubifs_chk_flags = UBIFS_CHK_FLAGS_DEFAULT;
46unsigned int ubifs_tst_flags;
47
48module_param_named(debug_msgs, ubifs_msg_flags, uint, S_IRUGO | S_IWUSR);
49module_param_named(debug_chks, ubifs_chk_flags, uint, S_IRUGO | S_IWUSR);
50module_param_named(debug_tsts, ubifs_tst_flags, uint, S_IRUGO | S_IWUSR);
51
52MODULE_PARM_DESC(debug_msgs, "Debug message type flags");
53MODULE_PARM_DESC(debug_chks, "Debug check flags");
54MODULE_PARM_DESC(debug_tsts, "Debug special test flags");
55
56static const char *get_key_fmt(int fmt)
57{
58 switch (fmt) {
59 case UBIFS_SIMPLE_KEY_FMT:
60 return "simple";
61 default:
62 return "unknown/invalid format";
63 }
64}
65
66static const char *get_key_hash(int hash)
67{
68 switch (hash) {
69 case UBIFS_KEY_HASH_R5:
70 return "R5";
71 case UBIFS_KEY_HASH_TEST:
72 return "test";
73 default:
74 return "unknown/invalid name hash";
75 }
76}
77
78static const char *get_key_type(int type)
79{
80 switch (type) {
81 case UBIFS_INO_KEY:
82 return "inode";
83 case UBIFS_DENT_KEY:
84 return "direntry";
85 case UBIFS_XENT_KEY:
86 return "xentry";
87 case UBIFS_DATA_KEY:
88 return "data";
89 case UBIFS_TRUN_KEY:
90 return "truncate";
91 default:
92 return "unknown/invalid key";
93 }
94}
95
96static void sprintf_key(const struct ubifs_info *c, const union ubifs_key *key,
97 char *buffer)
98{
99 char *p = buffer;
100 int type = key_type(c, key);
101
102 if (c->key_fmt == UBIFS_SIMPLE_KEY_FMT) {
103 switch (type) {
104 case UBIFS_INO_KEY:
Artem Bityutskiye84461a2008-10-29 12:08:43 +0200105 sprintf(p, "(%lu, %s)", (unsigned long)key_inum(c, key),
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300106 get_key_type(type));
107 break;
108 case UBIFS_DENT_KEY:
109 case UBIFS_XENT_KEY:
Artem Bityutskiye84461a2008-10-29 12:08:43 +0200110 sprintf(p, "(%lu, %s, %#08x)",
111 (unsigned long)key_inum(c, key),
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300112 get_key_type(type), key_hash(c, key));
113 break;
114 case UBIFS_DATA_KEY:
Artem Bityutskiye84461a2008-10-29 12:08:43 +0200115 sprintf(p, "(%lu, %s, %u)",
116 (unsigned long)key_inum(c, key),
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300117 get_key_type(type), key_block(c, key));
118 break;
119 case UBIFS_TRUN_KEY:
120 sprintf(p, "(%lu, %s)",
Artem Bityutskiye84461a2008-10-29 12:08:43 +0200121 (unsigned long)key_inum(c, key),
122 get_key_type(type));
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300123 break;
124 default:
125 sprintf(p, "(bad key type: %#08x, %#08x)",
126 key->u32[0], key->u32[1]);
127 }
128 } else
129 sprintf(p, "bad key format %d", c->key_fmt);
130}
131
132const char *dbg_key_str0(const struct ubifs_info *c, const union ubifs_key *key)
133{
134 /* dbg_lock must be held */
135 sprintf_key(c, key, dbg_key_buf0);
136 return dbg_key_buf0;
137}
138
139const char *dbg_key_str1(const struct ubifs_info *c, const union ubifs_key *key)
140{
141 /* dbg_lock must be held */
142 sprintf_key(c, key, dbg_key_buf1);
143 return dbg_key_buf1;
144}
145
146const char *dbg_ntype(int type)
147{
148 switch (type) {
149 case UBIFS_PAD_NODE:
150 return "padding node";
151 case UBIFS_SB_NODE:
152 return "superblock node";
153 case UBIFS_MST_NODE:
154 return "master node";
155 case UBIFS_REF_NODE:
156 return "reference node";
157 case UBIFS_INO_NODE:
158 return "inode node";
159 case UBIFS_DENT_NODE:
160 return "direntry node";
161 case UBIFS_XENT_NODE:
162 return "xentry node";
163 case UBIFS_DATA_NODE:
164 return "data node";
165 case UBIFS_TRUN_NODE:
166 return "truncate node";
167 case UBIFS_IDX_NODE:
168 return "indexing node";
169 case UBIFS_CS_NODE:
170 return "commit start node";
171 case UBIFS_ORPH_NODE:
172 return "orphan node";
173 default:
174 return "unknown node";
175 }
176}
177
178static const char *dbg_gtype(int type)
179{
180 switch (type) {
181 case UBIFS_NO_NODE_GROUP:
182 return "no node group";
183 case UBIFS_IN_NODE_GROUP:
184 return "in node group";
185 case UBIFS_LAST_OF_NODE_GROUP:
186 return "last of node group";
187 default:
188 return "unknown";
189 }
190}
191
192const char *dbg_cstate(int cmt_state)
193{
194 switch (cmt_state) {
195 case COMMIT_RESTING:
196 return "commit resting";
197 case COMMIT_BACKGROUND:
198 return "background commit requested";
199 case COMMIT_REQUIRED:
200 return "commit required";
201 case COMMIT_RUNNING_BACKGROUND:
202 return "BACKGROUND commit running";
203 case COMMIT_RUNNING_REQUIRED:
204 return "commit running and required";
205 case COMMIT_BROKEN:
206 return "broken commit";
207 default:
208 return "unknown commit state";
209 }
210}
211
212static void dump_ch(const struct ubifs_ch *ch)
213{
214 printk(KERN_DEBUG "\tmagic %#x\n", le32_to_cpu(ch->magic));
215 printk(KERN_DEBUG "\tcrc %#x\n", le32_to_cpu(ch->crc));
216 printk(KERN_DEBUG "\tnode_type %d (%s)\n", ch->node_type,
217 dbg_ntype(ch->node_type));
218 printk(KERN_DEBUG "\tgroup_type %d (%s)\n", ch->group_type,
219 dbg_gtype(ch->group_type));
220 printk(KERN_DEBUG "\tsqnum %llu\n",
221 (unsigned long long)le64_to_cpu(ch->sqnum));
222 printk(KERN_DEBUG "\tlen %u\n", le32_to_cpu(ch->len));
223}
224
225void dbg_dump_inode(const struct ubifs_info *c, const struct inode *inode)
226{
227 const struct ubifs_inode *ui = ubifs_inode(inode);
228
Artem Bityutskiyb5e426e2008-09-09 11:20:35 +0300229 printk(KERN_DEBUG "Dump in-memory inode:");
230 printk(KERN_DEBUG "\tinode %lu\n", inode->i_ino);
231 printk(KERN_DEBUG "\tsize %llu\n",
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300232 (unsigned long long)i_size_read(inode));
Artem Bityutskiyb5e426e2008-09-09 11:20:35 +0300233 printk(KERN_DEBUG "\tnlink %u\n", inode->i_nlink);
234 printk(KERN_DEBUG "\tuid %u\n", (unsigned int)inode->i_uid);
235 printk(KERN_DEBUG "\tgid %u\n", (unsigned int)inode->i_gid);
236 printk(KERN_DEBUG "\tatime %u.%u\n",
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300237 (unsigned int)inode->i_atime.tv_sec,
238 (unsigned int)inode->i_atime.tv_nsec);
Artem Bityutskiyb5e426e2008-09-09 11:20:35 +0300239 printk(KERN_DEBUG "\tmtime %u.%u\n",
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300240 (unsigned int)inode->i_mtime.tv_sec,
241 (unsigned int)inode->i_mtime.tv_nsec);
Artem Bityutskiyb5e426e2008-09-09 11:20:35 +0300242 printk(KERN_DEBUG "\tctime %u.%u\n",
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300243 (unsigned int)inode->i_ctime.tv_sec,
244 (unsigned int)inode->i_ctime.tv_nsec);
Artem Bityutskiyb5e426e2008-09-09 11:20:35 +0300245 printk(KERN_DEBUG "\tcreat_sqnum %llu\n", ui->creat_sqnum);
246 printk(KERN_DEBUG "\txattr_size %u\n", ui->xattr_size);
247 printk(KERN_DEBUG "\txattr_cnt %u\n", ui->xattr_cnt);
248 printk(KERN_DEBUG "\txattr_names %u\n", ui->xattr_names);
249 printk(KERN_DEBUG "\tdirty %u\n", ui->dirty);
250 printk(KERN_DEBUG "\txattr %u\n", ui->xattr);
251 printk(KERN_DEBUG "\tbulk_read %u\n", ui->xattr);
252 printk(KERN_DEBUG "\tsynced_i_size %llu\n",
253 (unsigned long long)ui->synced_i_size);
254 printk(KERN_DEBUG "\tui_size %llu\n",
255 (unsigned long long)ui->ui_size);
256 printk(KERN_DEBUG "\tflags %d\n", ui->flags);
257 printk(KERN_DEBUG "\tcompr_type %d\n", ui->compr_type);
258 printk(KERN_DEBUG "\tlast_page_read %lu\n", ui->last_page_read);
259 printk(KERN_DEBUG "\tread_in_a_row %lu\n", ui->read_in_a_row);
260 printk(KERN_DEBUG "\tdata_len %d\n", ui->data_len);
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300261}
262
263void dbg_dump_node(const struct ubifs_info *c, const void *node)
264{
265 int i, n;
266 union ubifs_key key;
267 const struct ubifs_ch *ch = node;
268
269 if (dbg_failure_mode)
270 return;
271
272 /* If the magic is incorrect, just hexdump the first bytes */
273 if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC) {
274 printk(KERN_DEBUG "Not a node, first %zu bytes:", UBIFS_CH_SZ);
275 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
276 (void *)node, UBIFS_CH_SZ, 1);
277 return;
278 }
279
280 spin_lock(&dbg_lock);
281 dump_ch(node);
282
283 switch (ch->node_type) {
284 case UBIFS_PAD_NODE:
285 {
286 const struct ubifs_pad_node *pad = node;
287
288 printk(KERN_DEBUG "\tpad_len %u\n",
289 le32_to_cpu(pad->pad_len));
290 break;
291 }
292 case UBIFS_SB_NODE:
293 {
294 const struct ubifs_sb_node *sup = node;
295 unsigned int sup_flags = le32_to_cpu(sup->flags);
296
297 printk(KERN_DEBUG "\tkey_hash %d (%s)\n",
298 (int)sup->key_hash, get_key_hash(sup->key_hash));
299 printk(KERN_DEBUG "\tkey_fmt %d (%s)\n",
300 (int)sup->key_fmt, get_key_fmt(sup->key_fmt));
301 printk(KERN_DEBUG "\tflags %#x\n", sup_flags);
302 printk(KERN_DEBUG "\t big_lpt %u\n",
303 !!(sup_flags & UBIFS_FLG_BIGLPT));
304 printk(KERN_DEBUG "\tmin_io_size %u\n",
305 le32_to_cpu(sup->min_io_size));
306 printk(KERN_DEBUG "\tleb_size %u\n",
307 le32_to_cpu(sup->leb_size));
308 printk(KERN_DEBUG "\tleb_cnt %u\n",
309 le32_to_cpu(sup->leb_cnt));
310 printk(KERN_DEBUG "\tmax_leb_cnt %u\n",
311 le32_to_cpu(sup->max_leb_cnt));
312 printk(KERN_DEBUG "\tmax_bud_bytes %llu\n",
313 (unsigned long long)le64_to_cpu(sup->max_bud_bytes));
314 printk(KERN_DEBUG "\tlog_lebs %u\n",
315 le32_to_cpu(sup->log_lebs));
316 printk(KERN_DEBUG "\tlpt_lebs %u\n",
317 le32_to_cpu(sup->lpt_lebs));
318 printk(KERN_DEBUG "\torph_lebs %u\n",
319 le32_to_cpu(sup->orph_lebs));
320 printk(KERN_DEBUG "\tjhead_cnt %u\n",
321 le32_to_cpu(sup->jhead_cnt));
322 printk(KERN_DEBUG "\tfanout %u\n",
323 le32_to_cpu(sup->fanout));
324 printk(KERN_DEBUG "\tlsave_cnt %u\n",
325 le32_to_cpu(sup->lsave_cnt));
326 printk(KERN_DEBUG "\tdefault_compr %u\n",
327 (int)le16_to_cpu(sup->default_compr));
328 printk(KERN_DEBUG "\trp_size %llu\n",
329 (unsigned long long)le64_to_cpu(sup->rp_size));
330 printk(KERN_DEBUG "\trp_uid %u\n",
331 le32_to_cpu(sup->rp_uid));
332 printk(KERN_DEBUG "\trp_gid %u\n",
333 le32_to_cpu(sup->rp_gid));
334 printk(KERN_DEBUG "\tfmt_version %u\n",
335 le32_to_cpu(sup->fmt_version));
336 printk(KERN_DEBUG "\ttime_gran %u\n",
337 le32_to_cpu(sup->time_gran));
338 printk(KERN_DEBUG "\tUUID %02X%02X%02X%02X-%02X%02X"
339 "-%02X%02X-%02X%02X-%02X%02X%02X%02X%02X%02X\n",
340 sup->uuid[0], sup->uuid[1], sup->uuid[2], sup->uuid[3],
341 sup->uuid[4], sup->uuid[5], sup->uuid[6], sup->uuid[7],
342 sup->uuid[8], sup->uuid[9], sup->uuid[10], sup->uuid[11],
343 sup->uuid[12], sup->uuid[13], sup->uuid[14],
344 sup->uuid[15]);
345 break;
346 }
347 case UBIFS_MST_NODE:
348 {
349 const struct ubifs_mst_node *mst = node;
350
351 printk(KERN_DEBUG "\thighest_inum %llu\n",
352 (unsigned long long)le64_to_cpu(mst->highest_inum));
353 printk(KERN_DEBUG "\tcommit number %llu\n",
354 (unsigned long long)le64_to_cpu(mst->cmt_no));
355 printk(KERN_DEBUG "\tflags %#x\n",
356 le32_to_cpu(mst->flags));
357 printk(KERN_DEBUG "\tlog_lnum %u\n",
358 le32_to_cpu(mst->log_lnum));
359 printk(KERN_DEBUG "\troot_lnum %u\n",
360 le32_to_cpu(mst->root_lnum));
361 printk(KERN_DEBUG "\troot_offs %u\n",
362 le32_to_cpu(mst->root_offs));
363 printk(KERN_DEBUG "\troot_len %u\n",
364 le32_to_cpu(mst->root_len));
365 printk(KERN_DEBUG "\tgc_lnum %u\n",
366 le32_to_cpu(mst->gc_lnum));
367 printk(KERN_DEBUG "\tihead_lnum %u\n",
368 le32_to_cpu(mst->ihead_lnum));
369 printk(KERN_DEBUG "\tihead_offs %u\n",
370 le32_to_cpu(mst->ihead_offs));
Harvey Harrison0ecb9522008-10-24 10:52:57 -0700371 printk(KERN_DEBUG "\tindex_size %llu\n",
372 (unsigned long long)le64_to_cpu(mst->index_size));
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300373 printk(KERN_DEBUG "\tlpt_lnum %u\n",
374 le32_to_cpu(mst->lpt_lnum));
375 printk(KERN_DEBUG "\tlpt_offs %u\n",
376 le32_to_cpu(mst->lpt_offs));
377 printk(KERN_DEBUG "\tnhead_lnum %u\n",
378 le32_to_cpu(mst->nhead_lnum));
379 printk(KERN_DEBUG "\tnhead_offs %u\n",
380 le32_to_cpu(mst->nhead_offs));
381 printk(KERN_DEBUG "\tltab_lnum %u\n",
382 le32_to_cpu(mst->ltab_lnum));
383 printk(KERN_DEBUG "\tltab_offs %u\n",
384 le32_to_cpu(mst->ltab_offs));
385 printk(KERN_DEBUG "\tlsave_lnum %u\n",
386 le32_to_cpu(mst->lsave_lnum));
387 printk(KERN_DEBUG "\tlsave_offs %u\n",
388 le32_to_cpu(mst->lsave_offs));
389 printk(KERN_DEBUG "\tlscan_lnum %u\n",
390 le32_to_cpu(mst->lscan_lnum));
391 printk(KERN_DEBUG "\tleb_cnt %u\n",
392 le32_to_cpu(mst->leb_cnt));
393 printk(KERN_DEBUG "\tempty_lebs %u\n",
394 le32_to_cpu(mst->empty_lebs));
395 printk(KERN_DEBUG "\tidx_lebs %u\n",
396 le32_to_cpu(mst->idx_lebs));
397 printk(KERN_DEBUG "\ttotal_free %llu\n",
398 (unsigned long long)le64_to_cpu(mst->total_free));
399 printk(KERN_DEBUG "\ttotal_dirty %llu\n",
400 (unsigned long long)le64_to_cpu(mst->total_dirty));
401 printk(KERN_DEBUG "\ttotal_used %llu\n",
402 (unsigned long long)le64_to_cpu(mst->total_used));
403 printk(KERN_DEBUG "\ttotal_dead %llu\n",
404 (unsigned long long)le64_to_cpu(mst->total_dead));
405 printk(KERN_DEBUG "\ttotal_dark %llu\n",
406 (unsigned long long)le64_to_cpu(mst->total_dark));
407 break;
408 }
409 case UBIFS_REF_NODE:
410 {
411 const struct ubifs_ref_node *ref = node;
412
413 printk(KERN_DEBUG "\tlnum %u\n",
414 le32_to_cpu(ref->lnum));
415 printk(KERN_DEBUG "\toffs %u\n",
416 le32_to_cpu(ref->offs));
417 printk(KERN_DEBUG "\tjhead %u\n",
418 le32_to_cpu(ref->jhead));
419 break;
420 }
421 case UBIFS_INO_NODE:
422 {
423 const struct ubifs_ino_node *ino = node;
424
425 key_read(c, &ino->key, &key);
426 printk(KERN_DEBUG "\tkey %s\n", DBGKEY(&key));
427 printk(KERN_DEBUG "\tcreat_sqnum %llu\n",
428 (unsigned long long)le64_to_cpu(ino->creat_sqnum));
429 printk(KERN_DEBUG "\tsize %llu\n",
430 (unsigned long long)le64_to_cpu(ino->size));
431 printk(KERN_DEBUG "\tnlink %u\n",
432 le32_to_cpu(ino->nlink));
433 printk(KERN_DEBUG "\tatime %lld.%u\n",
434 (long long)le64_to_cpu(ino->atime_sec),
435 le32_to_cpu(ino->atime_nsec));
436 printk(KERN_DEBUG "\tmtime %lld.%u\n",
437 (long long)le64_to_cpu(ino->mtime_sec),
438 le32_to_cpu(ino->mtime_nsec));
439 printk(KERN_DEBUG "\tctime %lld.%u\n",
440 (long long)le64_to_cpu(ino->ctime_sec),
441 le32_to_cpu(ino->ctime_nsec));
442 printk(KERN_DEBUG "\tuid %u\n",
443 le32_to_cpu(ino->uid));
444 printk(KERN_DEBUG "\tgid %u\n",
445 le32_to_cpu(ino->gid));
446 printk(KERN_DEBUG "\tmode %u\n",
447 le32_to_cpu(ino->mode));
448 printk(KERN_DEBUG "\tflags %#x\n",
449 le32_to_cpu(ino->flags));
450 printk(KERN_DEBUG "\txattr_cnt %u\n",
451 le32_to_cpu(ino->xattr_cnt));
452 printk(KERN_DEBUG "\txattr_size %u\n",
453 le32_to_cpu(ino->xattr_size));
454 printk(KERN_DEBUG "\txattr_names %u\n",
455 le32_to_cpu(ino->xattr_names));
456 printk(KERN_DEBUG "\tcompr_type %#x\n",
457 (int)le16_to_cpu(ino->compr_type));
458 printk(KERN_DEBUG "\tdata len %u\n",
459 le32_to_cpu(ino->data_len));
460 break;
461 }
462 case UBIFS_DENT_NODE:
463 case UBIFS_XENT_NODE:
464 {
465 const struct ubifs_dent_node *dent = node;
466 int nlen = le16_to_cpu(dent->nlen);
467
468 key_read(c, &dent->key, &key);
469 printk(KERN_DEBUG "\tkey %s\n", DBGKEY(&key));
470 printk(KERN_DEBUG "\tinum %llu\n",
471 (unsigned long long)le64_to_cpu(dent->inum));
472 printk(KERN_DEBUG "\ttype %d\n", (int)dent->type);
473 printk(KERN_DEBUG "\tnlen %d\n", nlen);
474 printk(KERN_DEBUG "\tname ");
475
476 if (nlen > UBIFS_MAX_NLEN)
477 printk(KERN_DEBUG "(bad name length, not printing, "
478 "bad or corrupted node)");
479 else {
480 for (i = 0; i < nlen && dent->name[i]; i++)
481 printk("%c", dent->name[i]);
482 }
483 printk("\n");
484
485 break;
486 }
487 case UBIFS_DATA_NODE:
488 {
489 const struct ubifs_data_node *dn = node;
490 int dlen = le32_to_cpu(ch->len) - UBIFS_DATA_NODE_SZ;
491
492 key_read(c, &dn->key, &key);
493 printk(KERN_DEBUG "\tkey %s\n", DBGKEY(&key));
494 printk(KERN_DEBUG "\tsize %u\n",
495 le32_to_cpu(dn->size));
496 printk(KERN_DEBUG "\tcompr_typ %d\n",
497 (int)le16_to_cpu(dn->compr_type));
498 printk(KERN_DEBUG "\tdata size %d\n",
499 dlen);
500 printk(KERN_DEBUG "\tdata:\n");
501 print_hex_dump(KERN_DEBUG, "\t", DUMP_PREFIX_OFFSET, 32, 1,
502 (void *)&dn->data, dlen, 0);
503 break;
504 }
505 case UBIFS_TRUN_NODE:
506 {
507 const struct ubifs_trun_node *trun = node;
508
509 printk(KERN_DEBUG "\tinum %u\n",
510 le32_to_cpu(trun->inum));
511 printk(KERN_DEBUG "\told_size %llu\n",
512 (unsigned long long)le64_to_cpu(trun->old_size));
513 printk(KERN_DEBUG "\tnew_size %llu\n",
514 (unsigned long long)le64_to_cpu(trun->new_size));
515 break;
516 }
517 case UBIFS_IDX_NODE:
518 {
519 const struct ubifs_idx_node *idx = node;
520
521 n = le16_to_cpu(idx->child_cnt);
522 printk(KERN_DEBUG "\tchild_cnt %d\n", n);
523 printk(KERN_DEBUG "\tlevel %d\n",
524 (int)le16_to_cpu(idx->level));
525 printk(KERN_DEBUG "\tBranches:\n");
526
527 for (i = 0; i < n && i < c->fanout - 1; i++) {
528 const struct ubifs_branch *br;
529
530 br = ubifs_idx_branch(c, idx, i);
531 key_read(c, &br->key, &key);
532 printk(KERN_DEBUG "\t%d: LEB %d:%d len %d key %s\n",
533 i, le32_to_cpu(br->lnum), le32_to_cpu(br->offs),
534 le32_to_cpu(br->len), DBGKEY(&key));
535 }
536 break;
537 }
538 case UBIFS_CS_NODE:
539 break;
540 case UBIFS_ORPH_NODE:
541 {
542 const struct ubifs_orph_node *orph = node;
543
544 printk(KERN_DEBUG "\tcommit number %llu\n",
545 (unsigned long long)
546 le64_to_cpu(orph->cmt_no) & LLONG_MAX);
547 printk(KERN_DEBUG "\tlast node flag %llu\n",
548 (unsigned long long)(le64_to_cpu(orph->cmt_no)) >> 63);
549 n = (le32_to_cpu(ch->len) - UBIFS_ORPH_NODE_SZ) >> 3;
550 printk(KERN_DEBUG "\t%d orphan inode numbers:\n", n);
551 for (i = 0; i < n; i++)
552 printk(KERN_DEBUG "\t ino %llu\n",
Alexander Beregalov7424bac2008-09-17 22:09:41 +0400553 (unsigned long long)le64_to_cpu(orph->inos[i]));
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300554 break;
555 }
556 default:
557 printk(KERN_DEBUG "node type %d was not recognized\n",
558 (int)ch->node_type);
559 }
560 spin_unlock(&dbg_lock);
561}
562
563void dbg_dump_budget_req(const struct ubifs_budget_req *req)
564{
565 spin_lock(&dbg_lock);
566 printk(KERN_DEBUG "Budgeting request: new_ino %d, dirtied_ino %d\n",
567 req->new_ino, req->dirtied_ino);
568 printk(KERN_DEBUG "\tnew_ino_d %d, dirtied_ino_d %d\n",
569 req->new_ino_d, req->dirtied_ino_d);
570 printk(KERN_DEBUG "\tnew_page %d, dirtied_page %d\n",
571 req->new_page, req->dirtied_page);
572 printk(KERN_DEBUG "\tnew_dent %d, mod_dent %d\n",
573 req->new_dent, req->mod_dent);
574 printk(KERN_DEBUG "\tidx_growth %d\n", req->idx_growth);
575 printk(KERN_DEBUG "\tdata_growth %d dd_growth %d\n",
576 req->data_growth, req->dd_growth);
577 spin_unlock(&dbg_lock);
578}
579
580void dbg_dump_lstats(const struct ubifs_lp_stats *lst)
581{
582 spin_lock(&dbg_lock);
Artem Bityutskiy1de94152008-07-25 12:58:38 +0300583 printk(KERN_DEBUG "(pid %d) Lprops statistics: empty_lebs %d, "
584 "idx_lebs %d\n", current->pid, lst->empty_lebs, lst->idx_lebs);
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300585 printk(KERN_DEBUG "\ttaken_empty_lebs %d, total_free %lld, "
586 "total_dirty %lld\n", lst->taken_empty_lebs, lst->total_free,
587 lst->total_dirty);
588 printk(KERN_DEBUG "\ttotal_used %lld, total_dark %lld, "
589 "total_dead %lld\n", lst->total_used, lst->total_dark,
590 lst->total_dead);
591 spin_unlock(&dbg_lock);
592}
593
594void dbg_dump_budg(struct ubifs_info *c)
595{
596 int i;
597 struct rb_node *rb;
598 struct ubifs_bud *bud;
599 struct ubifs_gced_idx_leb *idx_gc;
600
601 spin_lock(&dbg_lock);
Artem Bityutskiy1de94152008-07-25 12:58:38 +0300602 printk(KERN_DEBUG "(pid %d) Budgeting info: budg_data_growth %lld, "
603 "budg_dd_growth %lld, budg_idx_growth %lld\n", current->pid,
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300604 c->budg_data_growth, c->budg_dd_growth, c->budg_idx_growth);
605 printk(KERN_DEBUG "\tdata budget sum %lld, total budget sum %lld, "
606 "freeable_cnt %d\n", c->budg_data_growth + c->budg_dd_growth,
607 c->budg_data_growth + c->budg_dd_growth + c->budg_idx_growth,
608 c->freeable_cnt);
609 printk(KERN_DEBUG "\tmin_idx_lebs %d, old_idx_sz %lld, "
610 "calc_idx_sz %lld, idx_gc_cnt %d\n", c->min_idx_lebs,
611 c->old_idx_sz, c->calc_idx_sz, c->idx_gc_cnt);
612 printk(KERN_DEBUG "\tdirty_pg_cnt %ld, dirty_zn_cnt %ld, "
613 "clean_zn_cnt %ld\n", atomic_long_read(&c->dirty_pg_cnt),
614 atomic_long_read(&c->dirty_zn_cnt),
615 atomic_long_read(&c->clean_zn_cnt));
616 printk(KERN_DEBUG "\tdark_wm %d, dead_wm %d, max_idx_node_sz %d\n",
617 c->dark_wm, c->dead_wm, c->max_idx_node_sz);
618 printk(KERN_DEBUG "\tgc_lnum %d, ihead_lnum %d\n",
619 c->gc_lnum, c->ihead_lnum);
620 for (i = 0; i < c->jhead_cnt; i++)
621 printk(KERN_DEBUG "\tjhead %d\t LEB %d\n",
622 c->jheads[i].wbuf.jhead, c->jheads[i].wbuf.lnum);
623 for (rb = rb_first(&c->buds); rb; rb = rb_next(rb)) {
624 bud = rb_entry(rb, struct ubifs_bud, rb);
625 printk(KERN_DEBUG "\tbud LEB %d\n", bud->lnum);
626 }
627 list_for_each_entry(bud, &c->old_buds, list)
628 printk(KERN_DEBUG "\told bud LEB %d\n", bud->lnum);
629 list_for_each_entry(idx_gc, &c->idx_gc, list)
630 printk(KERN_DEBUG "\tGC'ed idx LEB %d unmap %d\n",
631 idx_gc->lnum, idx_gc->unmap);
632 printk(KERN_DEBUG "\tcommit state %d\n", c->cmt_state);
633 spin_unlock(&dbg_lock);
634}
635
636void dbg_dump_lprop(const struct ubifs_info *c, const struct ubifs_lprops *lp)
637{
638 printk(KERN_DEBUG "LEB %d lprops: free %d, dirty %d (used %d), "
639 "flags %#x\n", lp->lnum, lp->free, lp->dirty,
640 c->leb_size - lp->free - lp->dirty, lp->flags);
641}
642
643void dbg_dump_lprops(struct ubifs_info *c)
644{
645 int lnum, err;
646 struct ubifs_lprops lp;
647 struct ubifs_lp_stats lst;
648
Artem Bityutskiy1de94152008-07-25 12:58:38 +0300649 printk(KERN_DEBUG "(pid %d) Dumping LEB properties\n", current->pid);
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300650 ubifs_get_lp_stats(c, &lst);
651 dbg_dump_lstats(&lst);
652
653 for (lnum = c->main_first; lnum < c->leb_cnt; lnum++) {
654 err = ubifs_read_one_lp(c, lnum, &lp);
655 if (err)
656 ubifs_err("cannot read lprops for LEB %d", lnum);
657
658 dbg_dump_lprop(c, &lp);
659 }
660}
661
Adrian Hunter73944a62008-09-12 18:13:31 +0300662void dbg_dump_lpt_info(struct ubifs_info *c)
663{
664 int i;
665
666 spin_lock(&dbg_lock);
667 printk(KERN_DEBUG "\tlpt_sz: %lld\n", c->lpt_sz);
668 printk(KERN_DEBUG "\tpnode_sz: %d\n", c->pnode_sz);
669 printk(KERN_DEBUG "\tnnode_sz: %d\n", c->nnode_sz);
670 printk(KERN_DEBUG "\tltab_sz: %d\n", c->ltab_sz);
671 printk(KERN_DEBUG "\tlsave_sz: %d\n", c->lsave_sz);
672 printk(KERN_DEBUG "\tbig_lpt: %d\n", c->big_lpt);
673 printk(KERN_DEBUG "\tlpt_hght: %d\n", c->lpt_hght);
674 printk(KERN_DEBUG "\tpnode_cnt: %d\n", c->pnode_cnt);
675 printk(KERN_DEBUG "\tnnode_cnt: %d\n", c->nnode_cnt);
676 printk(KERN_DEBUG "\tdirty_pn_cnt: %d\n", c->dirty_pn_cnt);
677 printk(KERN_DEBUG "\tdirty_nn_cnt: %d\n", c->dirty_nn_cnt);
678 printk(KERN_DEBUG "\tlsave_cnt: %d\n", c->lsave_cnt);
679 printk(KERN_DEBUG "\tspace_bits: %d\n", c->space_bits);
680 printk(KERN_DEBUG "\tlpt_lnum_bits: %d\n", c->lpt_lnum_bits);
681 printk(KERN_DEBUG "\tlpt_offs_bits: %d\n", c->lpt_offs_bits);
682 printk(KERN_DEBUG "\tlpt_spc_bits: %d\n", c->lpt_spc_bits);
683 printk(KERN_DEBUG "\tpcnt_bits: %d\n", c->pcnt_bits);
684 printk(KERN_DEBUG "\tlnum_bits: %d\n", c->lnum_bits);
685 printk(KERN_DEBUG "\tLPT root is at %d:%d\n", c->lpt_lnum, c->lpt_offs);
686 printk(KERN_DEBUG "\tLPT head is at %d:%d\n",
687 c->nhead_lnum, c->nhead_offs);
688 printk(KERN_DEBUG "\tLPT ltab is at %d:%d\n", c->ltab_lnum, c->ltab_offs);
689 if (c->big_lpt)
690 printk(KERN_DEBUG "\tLPT lsave is at %d:%d\n",
691 c->lsave_lnum, c->lsave_offs);
692 for (i = 0; i < c->lpt_lebs; i++)
693 printk(KERN_DEBUG "\tLPT LEB %d free %d dirty %d tgc %d "
694 "cmt %d\n", i + c->lpt_first, c->ltab[i].free,
695 c->ltab[i].dirty, c->ltab[i].tgc, c->ltab[i].cmt);
696 spin_unlock(&dbg_lock);
697}
698
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300699void dbg_dump_leb(const struct ubifs_info *c, int lnum)
700{
701 struct ubifs_scan_leb *sleb;
702 struct ubifs_scan_node *snod;
703
704 if (dbg_failure_mode)
705 return;
706
Artem Bityutskiy1de94152008-07-25 12:58:38 +0300707 printk(KERN_DEBUG "(pid %d) Dumping LEB %d\n", current->pid, lnum);
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300708
Artem Bityutskiy17c2f9f2008-10-17 13:31:39 +0300709 sleb = ubifs_scan(c, lnum, 0, c->dbg->buf);
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300710 if (IS_ERR(sleb)) {
711 ubifs_err("scan error %d", (int)PTR_ERR(sleb));
712 return;
713 }
714
715 printk(KERN_DEBUG "LEB %d has %d nodes ending at %d\n", lnum,
716 sleb->nodes_cnt, sleb->endpt);
717
718 list_for_each_entry(snod, &sleb->nodes, list) {
719 cond_resched();
720 printk(KERN_DEBUG "Dumping node at LEB %d:%d len %d\n", lnum,
721 snod->offs, snod->len);
722 dbg_dump_node(c, snod->node);
723 }
724
725 ubifs_scan_destroy(sleb);
726 return;
727}
728
729void dbg_dump_znode(const struct ubifs_info *c,
730 const struct ubifs_znode *znode)
731{
732 int n;
733 const struct ubifs_zbranch *zbr;
734
735 spin_lock(&dbg_lock);
736 if (znode->parent)
737 zbr = &znode->parent->zbranch[znode->iip];
738 else
739 zbr = &c->zroot;
740
741 printk(KERN_DEBUG "znode %p, LEB %d:%d len %d parent %p iip %d level %d"
742 " child_cnt %d flags %lx\n", znode, zbr->lnum, zbr->offs,
743 zbr->len, znode->parent, znode->iip, znode->level,
744 znode->child_cnt, znode->flags);
745
746 if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
747 spin_unlock(&dbg_lock);
748 return;
749 }
750
751 printk(KERN_DEBUG "zbranches:\n");
752 for (n = 0; n < znode->child_cnt; n++) {
753 zbr = &znode->zbranch[n];
754 if (znode->level > 0)
755 printk(KERN_DEBUG "\t%d: znode %p LEB %d:%d len %d key "
756 "%s\n", n, zbr->znode, zbr->lnum,
757 zbr->offs, zbr->len,
758 DBGKEY(&zbr->key));
759 else
760 printk(KERN_DEBUG "\t%d: LNC %p LEB %d:%d len %d key "
761 "%s\n", n, zbr->znode, zbr->lnum,
762 zbr->offs, zbr->len,
763 DBGKEY(&zbr->key));
764 }
765 spin_unlock(&dbg_lock);
766}
767
768void dbg_dump_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, int cat)
769{
770 int i;
771
Artem Bityutskiy1de94152008-07-25 12:58:38 +0300772 printk(KERN_DEBUG "(pid %d) Dumping heap cat %d (%d elements)\n",
773 current->pid, cat, heap->cnt);
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300774 for (i = 0; i < heap->cnt; i++) {
775 struct ubifs_lprops *lprops = heap->arr[i];
776
777 printk(KERN_DEBUG "\t%d. LEB %d hpos %d free %d dirty %d "
778 "flags %d\n", i, lprops->lnum, lprops->hpos,
779 lprops->free, lprops->dirty, lprops->flags);
780 }
781}
782
783void dbg_dump_pnode(struct ubifs_info *c, struct ubifs_pnode *pnode,
784 struct ubifs_nnode *parent, int iip)
785{
786 int i;
787
Artem Bityutskiy1de94152008-07-25 12:58:38 +0300788 printk(KERN_DEBUG "(pid %d) Dumping pnode:\n", current->pid);
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300789 printk(KERN_DEBUG "\taddress %zx parent %zx cnext %zx\n",
790 (size_t)pnode, (size_t)parent, (size_t)pnode->cnext);
791 printk(KERN_DEBUG "\tflags %lu iip %d level %d num %d\n",
792 pnode->flags, iip, pnode->level, pnode->num);
793 for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
794 struct ubifs_lprops *lp = &pnode->lprops[i];
795
796 printk(KERN_DEBUG "\t%d: free %d dirty %d flags %d lnum %d\n",
797 i, lp->free, lp->dirty, lp->flags, lp->lnum);
798 }
799}
800
801void dbg_dump_tnc(struct ubifs_info *c)
802{
803 struct ubifs_znode *znode;
804 int level;
805
806 printk(KERN_DEBUG "\n");
Artem Bityutskiy1de94152008-07-25 12:58:38 +0300807 printk(KERN_DEBUG "(pid %d) Dumping the TNC tree\n", current->pid);
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300808 znode = ubifs_tnc_levelorder_next(c->zroot.znode, NULL);
809 level = znode->level;
810 printk(KERN_DEBUG "== Level %d ==\n", level);
811 while (znode) {
812 if (level != znode->level) {
813 level = znode->level;
814 printk(KERN_DEBUG "== Level %d ==\n", level);
815 }
816 dbg_dump_znode(c, znode);
817 znode = ubifs_tnc_levelorder_next(c->zroot.znode, znode);
818 }
819
820 printk(KERN_DEBUG "\n");
821}
822
823static int dump_znode(struct ubifs_info *c, struct ubifs_znode *znode,
824 void *priv)
825{
826 dbg_dump_znode(c, znode);
827 return 0;
828}
829
830/**
831 * dbg_dump_index - dump the on-flash index.
832 * @c: UBIFS file-system description object
833 *
834 * This function dumps whole UBIFS indexing B-tree, unlike 'dbg_dump_tnc()'
835 * which dumps only in-memory znodes and does not read znodes which from flash.
836 */
837void dbg_dump_index(struct ubifs_info *c)
838{
839 dbg_walk_index(c, NULL, dump_znode, NULL);
840}
841
842/**
843 * dbg_check_synced_i_size - check synchronized inode size.
844 * @inode: inode to check
845 *
846 * If inode is clean, synchronized inode size has to be equivalent to current
847 * inode size. This function has to be called only for locked inodes (@i_mutex
848 * has to be locked). Returns %0 if synchronized inode size if correct, and
849 * %-EINVAL if not.
850 */
851int dbg_check_synced_i_size(struct inode *inode)
852{
853 int err = 0;
854 struct ubifs_inode *ui = ubifs_inode(inode);
855
856 if (!(ubifs_chk_flags & UBIFS_CHK_GEN))
857 return 0;
858 if (!S_ISREG(inode->i_mode))
859 return 0;
860
861 mutex_lock(&ui->ui_mutex);
862 spin_lock(&ui->ui_lock);
863 if (ui->ui_size != ui->synced_i_size && !ui->dirty) {
864 ubifs_err("ui_size is %lld, synced_i_size is %lld, but inode "
865 "is clean", ui->ui_size, ui->synced_i_size);
866 ubifs_err("i_ino %lu, i_mode %#x, i_size %lld", inode->i_ino,
867 inode->i_mode, i_size_read(inode));
868 dbg_dump_stack();
869 err = -EINVAL;
870 }
871 spin_unlock(&ui->ui_lock);
872 mutex_unlock(&ui->ui_mutex);
873 return err;
874}
875
876/*
877 * dbg_check_dir - check directory inode size and link count.
878 * @c: UBIFS file-system description object
879 * @dir: the directory to calculate size for
880 * @size: the result is returned here
881 *
882 * This function makes sure that directory size and link count are correct.
883 * Returns zero in case of success and a negative error code in case of
884 * failure.
885 *
886 * Note, it is good idea to make sure the @dir->i_mutex is locked before
887 * calling this function.
888 */
889int dbg_check_dir_size(struct ubifs_info *c, const struct inode *dir)
890{
891 unsigned int nlink = 2;
892 union ubifs_key key;
893 struct ubifs_dent_node *dent, *pdent = NULL;
894 struct qstr nm = { .name = NULL };
895 loff_t size = UBIFS_INO_NODE_SZ;
896
897 if (!(ubifs_chk_flags & UBIFS_CHK_GEN))
898 return 0;
899
900 if (!S_ISDIR(dir->i_mode))
901 return 0;
902
903 lowest_dent_key(c, &key, dir->i_ino);
904 while (1) {
905 int err;
906
907 dent = ubifs_tnc_next_ent(c, &key, &nm);
908 if (IS_ERR(dent)) {
909 err = PTR_ERR(dent);
910 if (err == -ENOENT)
911 break;
912 return err;
913 }
914
915 nm.name = dent->name;
916 nm.len = le16_to_cpu(dent->nlen);
917 size += CALC_DENT_SIZE(nm.len);
918 if (dent->type == UBIFS_ITYPE_DIR)
919 nlink += 1;
920 kfree(pdent);
921 pdent = dent;
922 key_read(c, &dent->key, &key);
923 }
924 kfree(pdent);
925
926 if (i_size_read(dir) != size) {
927 ubifs_err("directory inode %lu has size %llu, "
928 "but calculated size is %llu", dir->i_ino,
929 (unsigned long long)i_size_read(dir),
930 (unsigned long long)size);
931 dump_stack();
932 return -EINVAL;
933 }
934 if (dir->i_nlink != nlink) {
935 ubifs_err("directory inode %lu has nlink %u, but calculated "
936 "nlink is %u", dir->i_ino, dir->i_nlink, nlink);
937 dump_stack();
938 return -EINVAL;
939 }
940
941 return 0;
942}
943
944/**
945 * dbg_check_key_order - make sure that colliding keys are properly ordered.
946 * @c: UBIFS file-system description object
947 * @zbr1: first zbranch
948 * @zbr2: following zbranch
949 *
950 * In UBIFS indexing B-tree colliding keys has to be sorted in binary order of
951 * names of the direntries/xentries which are referred by the keys. This
952 * function reads direntries/xentries referred by @zbr1 and @zbr2 and makes
953 * sure the name of direntry/xentry referred by @zbr1 is less than
954 * direntry/xentry referred by @zbr2. Returns zero if this is true, %1 if not,
955 * and a negative error code in case of failure.
956 */
957static int dbg_check_key_order(struct ubifs_info *c, struct ubifs_zbranch *zbr1,
958 struct ubifs_zbranch *zbr2)
959{
960 int err, nlen1, nlen2, cmp;
961 struct ubifs_dent_node *dent1, *dent2;
962 union ubifs_key key;
963
964 ubifs_assert(!keys_cmp(c, &zbr1->key, &zbr2->key));
965 dent1 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
966 if (!dent1)
967 return -ENOMEM;
968 dent2 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
969 if (!dent2) {
970 err = -ENOMEM;
971 goto out_free;
972 }
973
974 err = ubifs_tnc_read_node(c, zbr1, dent1);
975 if (err)
976 goto out_free;
977 err = ubifs_validate_entry(c, dent1);
978 if (err)
979 goto out_free;
980
981 err = ubifs_tnc_read_node(c, zbr2, dent2);
982 if (err)
983 goto out_free;
984 err = ubifs_validate_entry(c, dent2);
985 if (err)
986 goto out_free;
987
988 /* Make sure node keys are the same as in zbranch */
989 err = 1;
990 key_read(c, &dent1->key, &key);
991 if (keys_cmp(c, &zbr1->key, &key)) {
Artem Bityutskiy552ff312008-10-23 11:49:28 +0300992 ubifs_err("1st entry at %d:%d has key %s", zbr1->lnum,
993 zbr1->offs, DBGKEY(&key));
994 ubifs_err("but it should have key %s according to tnc",
995 DBGKEY(&zbr1->key)); dbg_dump_node(c, dent1);
996 goto out_free;
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300997 }
998
999 key_read(c, &dent2->key, &key);
1000 if (keys_cmp(c, &zbr2->key, &key)) {
Artem Bityutskiy552ff312008-10-23 11:49:28 +03001001 ubifs_err("2nd entry at %d:%d has key %s", zbr1->lnum,
1002 zbr1->offs, DBGKEY(&key));
1003 ubifs_err("but it should have key %s according to tnc",
1004 DBGKEY(&zbr2->key)); dbg_dump_node(c, dent2);
1005 goto out_free;
Artem Bityutskiy1e517642008-07-14 19:08:37 +03001006 }
1007
1008 nlen1 = le16_to_cpu(dent1->nlen);
1009 nlen2 = le16_to_cpu(dent2->nlen);
1010
1011 cmp = memcmp(dent1->name, dent2->name, min_t(int, nlen1, nlen2));
1012 if (cmp < 0 || (cmp == 0 && nlen1 < nlen2)) {
1013 err = 0;
1014 goto out_free;
1015 }
1016 if (cmp == 0 && nlen1 == nlen2)
Artem Bityutskiy552ff312008-10-23 11:49:28 +03001017 ubifs_err("2 xent/dent nodes with the same name");
Artem Bityutskiy1e517642008-07-14 19:08:37 +03001018 else
Artem Bityutskiy552ff312008-10-23 11:49:28 +03001019 ubifs_err("bad order of colliding key %s",
Artem Bityutskiy1e517642008-07-14 19:08:37 +03001020 DBGKEY(&key));
1021
Artem Bityutskiy552ff312008-10-23 11:49:28 +03001022 ubifs_msg("first node at %d:%d\n", zbr1->lnum, zbr1->offs);
Artem Bityutskiy1e517642008-07-14 19:08:37 +03001023 dbg_dump_node(c, dent1);
Artem Bityutskiy552ff312008-10-23 11:49:28 +03001024 ubifs_msg("second node at %d:%d\n", zbr2->lnum, zbr2->offs);
Artem Bityutskiy1e517642008-07-14 19:08:37 +03001025 dbg_dump_node(c, dent2);
1026
1027out_free:
1028 kfree(dent2);
1029 kfree(dent1);
1030 return err;
1031}
1032
1033/**
1034 * dbg_check_znode - check if znode is all right.
1035 * @c: UBIFS file-system description object
1036 * @zbr: zbranch which points to this znode
1037 *
1038 * This function makes sure that znode referred to by @zbr is all right.
1039 * Returns zero if it is, and %-EINVAL if it is not.
1040 */
1041static int dbg_check_znode(struct ubifs_info *c, struct ubifs_zbranch *zbr)
1042{
1043 struct ubifs_znode *znode = zbr->znode;
1044 struct ubifs_znode *zp = znode->parent;
1045 int n, err, cmp;
1046
1047 if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
1048 err = 1;
1049 goto out;
1050 }
1051 if (znode->level < 0) {
1052 err = 2;
1053 goto out;
1054 }
1055 if (znode->iip < 0 || znode->iip >= c->fanout) {
1056 err = 3;
1057 goto out;
1058 }
1059
1060 if (zbr->len == 0)
1061 /* Only dirty zbranch may have no on-flash nodes */
1062 if (!ubifs_zn_dirty(znode)) {
1063 err = 4;
1064 goto out;
1065 }
1066
1067 if (ubifs_zn_dirty(znode)) {
1068 /*
1069 * If znode is dirty, its parent has to be dirty as well. The
1070 * order of the operation is important, so we have to have
1071 * memory barriers.
1072 */
1073 smp_mb();
1074 if (zp && !ubifs_zn_dirty(zp)) {
1075 /*
1076 * The dirty flag is atomic and is cleared outside the
1077 * TNC mutex, so znode's dirty flag may now have
1078 * been cleared. The child is always cleared before the
1079 * parent, so we just need to check again.
1080 */
1081 smp_mb();
1082 if (ubifs_zn_dirty(znode)) {
1083 err = 5;
1084 goto out;
1085 }
1086 }
1087 }
1088
1089 if (zp) {
1090 const union ubifs_key *min, *max;
1091
1092 if (znode->level != zp->level - 1) {
1093 err = 6;
1094 goto out;
1095 }
1096
1097 /* Make sure the 'parent' pointer in our znode is correct */
1098 err = ubifs_search_zbranch(c, zp, &zbr->key, &n);
1099 if (!err) {
1100 /* This zbranch does not exist in the parent */
1101 err = 7;
1102 goto out;
1103 }
1104
1105 if (znode->iip >= zp->child_cnt) {
1106 err = 8;
1107 goto out;
1108 }
1109
1110 if (znode->iip != n) {
1111 /* This may happen only in case of collisions */
1112 if (keys_cmp(c, &zp->zbranch[n].key,
1113 &zp->zbranch[znode->iip].key)) {
1114 err = 9;
1115 goto out;
1116 }
1117 n = znode->iip;
1118 }
1119
1120 /*
1121 * Make sure that the first key in our znode is greater than or
1122 * equal to the key in the pointing zbranch.
1123 */
1124 min = &zbr->key;
1125 cmp = keys_cmp(c, min, &znode->zbranch[0].key);
1126 if (cmp == 1) {
1127 err = 10;
1128 goto out;
1129 }
1130
1131 if (n + 1 < zp->child_cnt) {
1132 max = &zp->zbranch[n + 1].key;
1133
1134 /*
1135 * Make sure the last key in our znode is less or
1136 * equivalent than the the key in zbranch which goes
1137 * after our pointing zbranch.
1138 */
1139 cmp = keys_cmp(c, max,
1140 &znode->zbranch[znode->child_cnt - 1].key);
1141 if (cmp == -1) {
1142 err = 11;
1143 goto out;
1144 }
1145 }
1146 } else {
1147 /* This may only be root znode */
1148 if (zbr != &c->zroot) {
1149 err = 12;
1150 goto out;
1151 }
1152 }
1153
1154 /*
1155 * Make sure that next key is greater or equivalent then the previous
1156 * one.
1157 */
1158 for (n = 1; n < znode->child_cnt; n++) {
1159 cmp = keys_cmp(c, &znode->zbranch[n - 1].key,
1160 &znode->zbranch[n].key);
1161 if (cmp > 0) {
1162 err = 13;
1163 goto out;
1164 }
1165 if (cmp == 0) {
1166 /* This can only be keys with colliding hash */
1167 if (!is_hash_key(c, &znode->zbranch[n].key)) {
1168 err = 14;
1169 goto out;
1170 }
1171
1172 if (znode->level != 0 || c->replaying)
1173 continue;
1174
1175 /*
1176 * Colliding keys should follow binary order of
1177 * corresponding xentry/dentry names.
1178 */
1179 err = dbg_check_key_order(c, &znode->zbranch[n - 1],
1180 &znode->zbranch[n]);
1181 if (err < 0)
1182 return err;
1183 if (err) {
1184 err = 15;
1185 goto out;
1186 }
1187 }
1188 }
1189
1190 for (n = 0; n < znode->child_cnt; n++) {
1191 if (!znode->zbranch[n].znode &&
1192 (znode->zbranch[n].lnum == 0 ||
1193 znode->zbranch[n].len == 0)) {
1194 err = 16;
1195 goto out;
1196 }
1197
1198 if (znode->zbranch[n].lnum != 0 &&
1199 znode->zbranch[n].len == 0) {
1200 err = 17;
1201 goto out;
1202 }
1203
1204 if (znode->zbranch[n].lnum == 0 &&
1205 znode->zbranch[n].len != 0) {
1206 err = 18;
1207 goto out;
1208 }
1209
1210 if (znode->zbranch[n].lnum == 0 &&
1211 znode->zbranch[n].offs != 0) {
1212 err = 19;
1213 goto out;
1214 }
1215
1216 if (znode->level != 0 && znode->zbranch[n].znode)
1217 if (znode->zbranch[n].znode->parent != znode) {
1218 err = 20;
1219 goto out;
1220 }
1221 }
1222
1223 return 0;
1224
1225out:
1226 ubifs_err("failed, error %d", err);
1227 ubifs_msg("dump of the znode");
1228 dbg_dump_znode(c, znode);
1229 if (zp) {
1230 ubifs_msg("dump of the parent znode");
1231 dbg_dump_znode(c, zp);
1232 }
1233 dump_stack();
1234 return -EINVAL;
1235}
1236
1237/**
1238 * dbg_check_tnc - check TNC tree.
1239 * @c: UBIFS file-system description object
1240 * @extra: do extra checks that are possible at start commit
1241 *
1242 * This function traverses whole TNC tree and checks every znode. Returns zero
1243 * if everything is all right and %-EINVAL if something is wrong with TNC.
1244 */
1245int dbg_check_tnc(struct ubifs_info *c, int extra)
1246{
1247 struct ubifs_znode *znode;
1248 long clean_cnt = 0, dirty_cnt = 0;
1249 int err, last;
1250
1251 if (!(ubifs_chk_flags & UBIFS_CHK_TNC))
1252 return 0;
1253
1254 ubifs_assert(mutex_is_locked(&c->tnc_mutex));
1255 if (!c->zroot.znode)
1256 return 0;
1257
1258 znode = ubifs_tnc_postorder_first(c->zroot.znode);
1259 while (1) {
1260 struct ubifs_znode *prev;
1261 struct ubifs_zbranch *zbr;
1262
1263 if (!znode->parent)
1264 zbr = &c->zroot;
1265 else
1266 zbr = &znode->parent->zbranch[znode->iip];
1267
1268 err = dbg_check_znode(c, zbr);
1269 if (err)
1270 return err;
1271
1272 if (extra) {
1273 if (ubifs_zn_dirty(znode))
1274 dirty_cnt += 1;
1275 else
1276 clean_cnt += 1;
1277 }
1278
1279 prev = znode;
1280 znode = ubifs_tnc_postorder_next(znode);
1281 if (!znode)
1282 break;
1283
1284 /*
1285 * If the last key of this znode is equivalent to the first key
1286 * of the next znode (collision), then check order of the keys.
1287 */
1288 last = prev->child_cnt - 1;
1289 if (prev->level == 0 && znode->level == 0 && !c->replaying &&
1290 !keys_cmp(c, &prev->zbranch[last].key,
1291 &znode->zbranch[0].key)) {
1292 err = dbg_check_key_order(c, &prev->zbranch[last],
1293 &znode->zbranch[0]);
1294 if (err < 0)
1295 return err;
1296 if (err) {
1297 ubifs_msg("first znode");
1298 dbg_dump_znode(c, prev);
1299 ubifs_msg("second znode");
1300 dbg_dump_znode(c, znode);
1301 return -EINVAL;
1302 }
1303 }
1304 }
1305
1306 if (extra) {
1307 if (clean_cnt != atomic_long_read(&c->clean_zn_cnt)) {
1308 ubifs_err("incorrect clean_zn_cnt %ld, calculated %ld",
1309 atomic_long_read(&c->clean_zn_cnt),
1310 clean_cnt);
1311 return -EINVAL;
1312 }
1313 if (dirty_cnt != atomic_long_read(&c->dirty_zn_cnt)) {
1314 ubifs_err("incorrect dirty_zn_cnt %ld, calculated %ld",
1315 atomic_long_read(&c->dirty_zn_cnt),
1316 dirty_cnt);
1317 return -EINVAL;
1318 }
1319 }
1320
1321 return 0;
1322}
1323
1324/**
1325 * dbg_walk_index - walk the on-flash index.
1326 * @c: UBIFS file-system description object
1327 * @leaf_cb: called for each leaf node
1328 * @znode_cb: called for each indexing node
1329 * @priv: private date which is passed to callbacks
1330 *
1331 * This function walks the UBIFS index and calls the @leaf_cb for each leaf
1332 * node and @znode_cb for each indexing node. Returns zero in case of success
1333 * and a negative error code in case of failure.
1334 *
1335 * It would be better if this function removed every znode it pulled to into
1336 * the TNC, so that the behavior more closely matched the non-debugging
1337 * behavior.
1338 */
1339int dbg_walk_index(struct ubifs_info *c, dbg_leaf_callback leaf_cb,
1340 dbg_znode_callback znode_cb, void *priv)
1341{
1342 int err;
1343 struct ubifs_zbranch *zbr;
1344 struct ubifs_znode *znode, *child;
1345
1346 mutex_lock(&c->tnc_mutex);
1347 /* If the root indexing node is not in TNC - pull it */
1348 if (!c->zroot.znode) {
1349 c->zroot.znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1350 if (IS_ERR(c->zroot.znode)) {
1351 err = PTR_ERR(c->zroot.znode);
1352 c->zroot.znode = NULL;
1353 goto out_unlock;
1354 }
1355 }
1356
1357 /*
1358 * We are going to traverse the indexing tree in the postorder manner.
1359 * Go down and find the leftmost indexing node where we are going to
1360 * start from.
1361 */
1362 znode = c->zroot.znode;
1363 while (znode->level > 0) {
1364 zbr = &znode->zbranch[0];
1365 child = zbr->znode;
1366 if (!child) {
1367 child = ubifs_load_znode(c, zbr, znode, 0);
1368 if (IS_ERR(child)) {
1369 err = PTR_ERR(child);
1370 goto out_unlock;
1371 }
1372 zbr->znode = child;
1373 }
1374
1375 znode = child;
1376 }
1377
1378 /* Iterate over all indexing nodes */
1379 while (1) {
1380 int idx;
1381
1382 cond_resched();
1383
1384 if (znode_cb) {
1385 err = znode_cb(c, znode, priv);
1386 if (err) {
1387 ubifs_err("znode checking function returned "
1388 "error %d", err);
1389 dbg_dump_znode(c, znode);
1390 goto out_dump;
1391 }
1392 }
1393 if (leaf_cb && znode->level == 0) {
1394 for (idx = 0; idx < znode->child_cnt; idx++) {
1395 zbr = &znode->zbranch[idx];
1396 err = leaf_cb(c, zbr, priv);
1397 if (err) {
1398 ubifs_err("leaf checking function "
1399 "returned error %d, for leaf "
1400 "at LEB %d:%d",
1401 err, zbr->lnum, zbr->offs);
1402 goto out_dump;
1403 }
1404 }
1405 }
1406
1407 if (!znode->parent)
1408 break;
1409
1410 idx = znode->iip + 1;
1411 znode = znode->parent;
1412 if (idx < znode->child_cnt) {
1413 /* Switch to the next index in the parent */
1414 zbr = &znode->zbranch[idx];
1415 child = zbr->znode;
1416 if (!child) {
1417 child = ubifs_load_znode(c, zbr, znode, idx);
1418 if (IS_ERR(child)) {
1419 err = PTR_ERR(child);
1420 goto out_unlock;
1421 }
1422 zbr->znode = child;
1423 }
1424 znode = child;
1425 } else
1426 /*
1427 * This is the last child, switch to the parent and
1428 * continue.
1429 */
1430 continue;
1431
1432 /* Go to the lowest leftmost znode in the new sub-tree */
1433 while (znode->level > 0) {
1434 zbr = &znode->zbranch[0];
1435 child = zbr->znode;
1436 if (!child) {
1437 child = ubifs_load_znode(c, zbr, znode, 0);
1438 if (IS_ERR(child)) {
1439 err = PTR_ERR(child);
1440 goto out_unlock;
1441 }
1442 zbr->znode = child;
1443 }
1444 znode = child;
1445 }
1446 }
1447
1448 mutex_unlock(&c->tnc_mutex);
1449 return 0;
1450
1451out_dump:
1452 if (znode->parent)
1453 zbr = &znode->parent->zbranch[znode->iip];
1454 else
1455 zbr = &c->zroot;
1456 ubifs_msg("dump of znode at LEB %d:%d", zbr->lnum, zbr->offs);
1457 dbg_dump_znode(c, znode);
1458out_unlock:
1459 mutex_unlock(&c->tnc_mutex);
1460 return err;
1461}
1462
1463/**
1464 * add_size - add znode size to partially calculated index size.
1465 * @c: UBIFS file-system description object
1466 * @znode: znode to add size for
1467 * @priv: partially calculated index size
1468 *
1469 * This is a helper function for 'dbg_check_idx_size()' which is called for
1470 * every indexing node and adds its size to the 'long long' variable pointed to
1471 * by @priv.
1472 */
1473static int add_size(struct ubifs_info *c, struct ubifs_znode *znode, void *priv)
1474{
1475 long long *idx_size = priv;
1476 int add;
1477
1478 add = ubifs_idx_node_sz(c, znode->child_cnt);
1479 add = ALIGN(add, 8);
1480 *idx_size += add;
1481 return 0;
1482}
1483
1484/**
1485 * dbg_check_idx_size - check index size.
1486 * @c: UBIFS file-system description object
1487 * @idx_size: size to check
1488 *
1489 * This function walks the UBIFS index, calculates its size and checks that the
1490 * size is equivalent to @idx_size. Returns zero in case of success and a
1491 * negative error code in case of failure.
1492 */
1493int dbg_check_idx_size(struct ubifs_info *c, long long idx_size)
1494{
1495 int err;
1496 long long calc = 0;
1497
1498 if (!(ubifs_chk_flags & UBIFS_CHK_IDX_SZ))
1499 return 0;
1500
1501 err = dbg_walk_index(c, NULL, add_size, &calc);
1502 if (err) {
1503 ubifs_err("error %d while walking the index", err);
1504 return err;
1505 }
1506
1507 if (calc != idx_size) {
1508 ubifs_err("index size check failed: calculated size is %lld, "
1509 "should be %lld", calc, idx_size);
1510 dump_stack();
1511 return -EINVAL;
1512 }
1513
1514 return 0;
1515}
1516
1517/**
1518 * struct fsck_inode - information about an inode used when checking the file-system.
1519 * @rb: link in the RB-tree of inodes
1520 * @inum: inode number
1521 * @mode: inode type, permissions, etc
1522 * @nlink: inode link count
1523 * @xattr_cnt: count of extended attributes
1524 * @references: how many directory/xattr entries refer this inode (calculated
1525 * while walking the index)
1526 * @calc_cnt: for directory inode count of child directories
1527 * @size: inode size (read from on-flash inode)
1528 * @xattr_sz: summary size of all extended attributes (read from on-flash
1529 * inode)
1530 * @calc_sz: for directories calculated directory size
1531 * @calc_xcnt: count of extended attributes
1532 * @calc_xsz: calculated summary size of all extended attributes
1533 * @xattr_nms: sum of lengths of all extended attribute names belonging to this
1534 * inode (read from on-flash inode)
1535 * @calc_xnms: calculated sum of lengths of all extended attribute names
1536 */
1537struct fsck_inode {
1538 struct rb_node rb;
1539 ino_t inum;
1540 umode_t mode;
1541 unsigned int nlink;
1542 unsigned int xattr_cnt;
1543 int references;
1544 int calc_cnt;
1545 long long size;
1546 unsigned int xattr_sz;
1547 long long calc_sz;
1548 long long calc_xcnt;
1549 long long calc_xsz;
1550 unsigned int xattr_nms;
1551 long long calc_xnms;
1552};
1553
1554/**
1555 * struct fsck_data - private FS checking information.
1556 * @inodes: RB-tree of all inodes (contains @struct fsck_inode objects)
1557 */
1558struct fsck_data {
1559 struct rb_root inodes;
1560};
1561
1562/**
1563 * add_inode - add inode information to RB-tree of inodes.
1564 * @c: UBIFS file-system description object
1565 * @fsckd: FS checking information
1566 * @ino: raw UBIFS inode to add
1567 *
1568 * This is a helper function for 'check_leaf()' which adds information about
1569 * inode @ino to the RB-tree of inodes. Returns inode information pointer in
1570 * case of success and a negative error code in case of failure.
1571 */
1572static struct fsck_inode *add_inode(struct ubifs_info *c,
1573 struct fsck_data *fsckd,
1574 struct ubifs_ino_node *ino)
1575{
1576 struct rb_node **p, *parent = NULL;
1577 struct fsck_inode *fscki;
1578 ino_t inum = key_inum_flash(c, &ino->key);
1579
1580 p = &fsckd->inodes.rb_node;
1581 while (*p) {
1582 parent = *p;
1583 fscki = rb_entry(parent, struct fsck_inode, rb);
1584 if (inum < fscki->inum)
1585 p = &(*p)->rb_left;
1586 else if (inum > fscki->inum)
1587 p = &(*p)->rb_right;
1588 else
1589 return fscki;
1590 }
1591
1592 if (inum > c->highest_inum) {
1593 ubifs_err("too high inode number, max. is %lu",
Artem Bityutskiye84461a2008-10-29 12:08:43 +02001594 (unsigned long)c->highest_inum);
Artem Bityutskiy1e517642008-07-14 19:08:37 +03001595 return ERR_PTR(-EINVAL);
1596 }
1597
1598 fscki = kzalloc(sizeof(struct fsck_inode), GFP_NOFS);
1599 if (!fscki)
1600 return ERR_PTR(-ENOMEM);
1601
1602 fscki->inum = inum;
1603 fscki->nlink = le32_to_cpu(ino->nlink);
1604 fscki->size = le64_to_cpu(ino->size);
1605 fscki->xattr_cnt = le32_to_cpu(ino->xattr_cnt);
1606 fscki->xattr_sz = le32_to_cpu(ino->xattr_size);
1607 fscki->xattr_nms = le32_to_cpu(ino->xattr_names);
1608 fscki->mode = le32_to_cpu(ino->mode);
1609 if (S_ISDIR(fscki->mode)) {
1610 fscki->calc_sz = UBIFS_INO_NODE_SZ;
1611 fscki->calc_cnt = 2;
1612 }
1613 rb_link_node(&fscki->rb, parent, p);
1614 rb_insert_color(&fscki->rb, &fsckd->inodes);
1615 return fscki;
1616}
1617
1618/**
1619 * search_inode - search inode in the RB-tree of inodes.
1620 * @fsckd: FS checking information
1621 * @inum: inode number to search
1622 *
1623 * This is a helper function for 'check_leaf()' which searches inode @inum in
1624 * the RB-tree of inodes and returns an inode information pointer or %NULL if
1625 * the inode was not found.
1626 */
1627static struct fsck_inode *search_inode(struct fsck_data *fsckd, ino_t inum)
1628{
1629 struct rb_node *p;
1630 struct fsck_inode *fscki;
1631
1632 p = fsckd->inodes.rb_node;
1633 while (p) {
1634 fscki = rb_entry(p, struct fsck_inode, rb);
1635 if (inum < fscki->inum)
1636 p = p->rb_left;
1637 else if (inum > fscki->inum)
1638 p = p->rb_right;
1639 else
1640 return fscki;
1641 }
1642 return NULL;
1643}
1644
1645/**
1646 * read_add_inode - read inode node and add it to RB-tree of inodes.
1647 * @c: UBIFS file-system description object
1648 * @fsckd: FS checking information
1649 * @inum: inode number to read
1650 *
1651 * This is a helper function for 'check_leaf()' which finds inode node @inum in
1652 * the index, reads it, and adds it to the RB-tree of inodes. Returns inode
1653 * information pointer in case of success and a negative error code in case of
1654 * failure.
1655 */
1656static struct fsck_inode *read_add_inode(struct ubifs_info *c,
1657 struct fsck_data *fsckd, ino_t inum)
1658{
1659 int n, err;
1660 union ubifs_key key;
1661 struct ubifs_znode *znode;
1662 struct ubifs_zbranch *zbr;
1663 struct ubifs_ino_node *ino;
1664 struct fsck_inode *fscki;
1665
1666 fscki = search_inode(fsckd, inum);
1667 if (fscki)
1668 return fscki;
1669
1670 ino_key_init(c, &key, inum);
1671 err = ubifs_lookup_level0(c, &key, &znode, &n);
1672 if (!err) {
Artem Bityutskiye84461a2008-10-29 12:08:43 +02001673 ubifs_err("inode %lu not found in index", (unsigned long)inum);
Artem Bityutskiy1e517642008-07-14 19:08:37 +03001674 return ERR_PTR(-ENOENT);
1675 } else if (err < 0) {
Artem Bityutskiye84461a2008-10-29 12:08:43 +02001676 ubifs_err("error %d while looking up inode %lu",
1677 err, (unsigned long)inum);
Artem Bityutskiy1e517642008-07-14 19:08:37 +03001678 return ERR_PTR(err);
1679 }
1680
1681 zbr = &znode->zbranch[n];
1682 if (zbr->len < UBIFS_INO_NODE_SZ) {
Artem Bityutskiye84461a2008-10-29 12:08:43 +02001683 ubifs_err("bad node %lu node length %d",
1684 (unsigned long)inum, zbr->len);
Artem Bityutskiy1e517642008-07-14 19:08:37 +03001685 return ERR_PTR(-EINVAL);
1686 }
1687
1688 ino = kmalloc(zbr->len, GFP_NOFS);
1689 if (!ino)
1690 return ERR_PTR(-ENOMEM);
1691
1692 err = ubifs_tnc_read_node(c, zbr, ino);
1693 if (err) {
1694 ubifs_err("cannot read inode node at LEB %d:%d, error %d",
1695 zbr->lnum, zbr->offs, err);
1696 kfree(ino);
1697 return ERR_PTR(err);
1698 }
1699
1700 fscki = add_inode(c, fsckd, ino);
1701 kfree(ino);
1702 if (IS_ERR(fscki)) {
1703 ubifs_err("error %ld while adding inode %lu node",
Artem Bityutskiye84461a2008-10-29 12:08:43 +02001704 PTR_ERR(fscki), (unsigned long)inum);
Artem Bityutskiy1e517642008-07-14 19:08:37 +03001705 return fscki;
1706 }
1707
1708 return fscki;
1709}
1710
1711/**
1712 * check_leaf - check leaf node.
1713 * @c: UBIFS file-system description object
1714 * @zbr: zbranch of the leaf node to check
1715 * @priv: FS checking information
1716 *
1717 * This is a helper function for 'dbg_check_filesystem()' which is called for
1718 * every single leaf node while walking the indexing tree. It checks that the
1719 * leaf node referred from the indexing tree exists, has correct CRC, and does
1720 * some other basic validation. This function is also responsible for building
1721 * an RB-tree of inodes - it adds all inodes into the RB-tree. It also
1722 * calculates reference count, size, etc for each inode in order to later
1723 * compare them to the information stored inside the inodes and detect possible
1724 * inconsistencies. Returns zero in case of success and a negative error code
1725 * in case of failure.
1726 */
1727static int check_leaf(struct ubifs_info *c, struct ubifs_zbranch *zbr,
1728 void *priv)
1729{
1730 ino_t inum;
1731 void *node;
1732 struct ubifs_ch *ch;
1733 int err, type = key_type(c, &zbr->key);
1734 struct fsck_inode *fscki;
1735
1736 if (zbr->len < UBIFS_CH_SZ) {
1737 ubifs_err("bad leaf length %d (LEB %d:%d)",
1738 zbr->len, zbr->lnum, zbr->offs);
1739 return -EINVAL;
1740 }
1741
1742 node = kmalloc(zbr->len, GFP_NOFS);
1743 if (!node)
1744 return -ENOMEM;
1745
1746 err = ubifs_tnc_read_node(c, zbr, node);
1747 if (err) {
1748 ubifs_err("cannot read leaf node at LEB %d:%d, error %d",
1749 zbr->lnum, zbr->offs, err);
1750 goto out_free;
1751 }
1752
1753 /* If this is an inode node, add it to RB-tree of inodes */
1754 if (type == UBIFS_INO_KEY) {
1755 fscki = add_inode(c, priv, node);
1756 if (IS_ERR(fscki)) {
1757 err = PTR_ERR(fscki);
1758 ubifs_err("error %d while adding inode node", err);
1759 goto out_dump;
1760 }
1761 goto out;
1762 }
1763
1764 if (type != UBIFS_DENT_KEY && type != UBIFS_XENT_KEY &&
1765 type != UBIFS_DATA_KEY) {
1766 ubifs_err("unexpected node type %d at LEB %d:%d",
1767 type, zbr->lnum, zbr->offs);
1768 err = -EINVAL;
1769 goto out_free;
1770 }
1771
1772 ch = node;
1773 if (le64_to_cpu(ch->sqnum) > c->max_sqnum) {
1774 ubifs_err("too high sequence number, max. is %llu",
1775 c->max_sqnum);
1776 err = -EINVAL;
1777 goto out_dump;
1778 }
1779
1780 if (type == UBIFS_DATA_KEY) {
1781 long long blk_offs;
1782 struct ubifs_data_node *dn = node;
1783
1784 /*
1785 * Search the inode node this data node belongs to and insert
1786 * it to the RB-tree of inodes.
1787 */
1788 inum = key_inum_flash(c, &dn->key);
1789 fscki = read_add_inode(c, priv, inum);
1790 if (IS_ERR(fscki)) {
1791 err = PTR_ERR(fscki);
1792 ubifs_err("error %d while processing data node and "
Artem Bityutskiye84461a2008-10-29 12:08:43 +02001793 "trying to find inode node %lu",
1794 err, (unsigned long)inum);
Artem Bityutskiy1e517642008-07-14 19:08:37 +03001795 goto out_dump;
1796 }
1797
1798 /* Make sure the data node is within inode size */
1799 blk_offs = key_block_flash(c, &dn->key);
1800 blk_offs <<= UBIFS_BLOCK_SHIFT;
1801 blk_offs += le32_to_cpu(dn->size);
1802 if (blk_offs > fscki->size) {
1803 ubifs_err("data node at LEB %d:%d is not within inode "
1804 "size %lld", zbr->lnum, zbr->offs,
1805 fscki->size);
1806 err = -EINVAL;
1807 goto out_dump;
1808 }
1809 } else {
1810 int nlen;
1811 struct ubifs_dent_node *dent = node;
1812 struct fsck_inode *fscki1;
1813
1814 err = ubifs_validate_entry(c, dent);
1815 if (err)
1816 goto out_dump;
1817
1818 /*
1819 * Search the inode node this entry refers to and the parent
1820 * inode node and insert them to the RB-tree of inodes.
1821 */
1822 inum = le64_to_cpu(dent->inum);
1823 fscki = read_add_inode(c, priv, inum);
1824 if (IS_ERR(fscki)) {
1825 err = PTR_ERR(fscki);
1826 ubifs_err("error %d while processing entry node and "
Artem Bityutskiye84461a2008-10-29 12:08:43 +02001827 "trying to find inode node %lu",
1828 err, (unsigned long)inum);
Artem Bityutskiy1e517642008-07-14 19:08:37 +03001829 goto out_dump;
1830 }
1831
1832 /* Count how many direntries or xentries refers this inode */
1833 fscki->references += 1;
1834
1835 inum = key_inum_flash(c, &dent->key);
1836 fscki1 = read_add_inode(c, priv, inum);
1837 if (IS_ERR(fscki1)) {
1838 err = PTR_ERR(fscki);
1839 ubifs_err("error %d while processing entry node and "
1840 "trying to find parent inode node %lu",
Artem Bityutskiye84461a2008-10-29 12:08:43 +02001841 err, (unsigned long)inum);
Artem Bityutskiy1e517642008-07-14 19:08:37 +03001842 goto out_dump;
1843 }
1844
1845 nlen = le16_to_cpu(dent->nlen);
1846 if (type == UBIFS_XENT_KEY) {
1847 fscki1->calc_xcnt += 1;
1848 fscki1->calc_xsz += CALC_DENT_SIZE(nlen);
1849 fscki1->calc_xsz += CALC_XATTR_BYTES(fscki->size);
1850 fscki1->calc_xnms += nlen;
1851 } else {
1852 fscki1->calc_sz += CALC_DENT_SIZE(nlen);
1853 if (dent->type == UBIFS_ITYPE_DIR)
1854 fscki1->calc_cnt += 1;
1855 }
1856 }
1857
1858out:
1859 kfree(node);
1860 return 0;
1861
1862out_dump:
1863 ubifs_msg("dump of node at LEB %d:%d", zbr->lnum, zbr->offs);
1864 dbg_dump_node(c, node);
1865out_free:
1866 kfree(node);
1867 return err;
1868}
1869
1870/**
1871 * free_inodes - free RB-tree of inodes.
1872 * @fsckd: FS checking information
1873 */
1874static void free_inodes(struct fsck_data *fsckd)
1875{
1876 struct rb_node *this = fsckd->inodes.rb_node;
1877 struct fsck_inode *fscki;
1878
1879 while (this) {
1880 if (this->rb_left)
1881 this = this->rb_left;
1882 else if (this->rb_right)
1883 this = this->rb_right;
1884 else {
1885 fscki = rb_entry(this, struct fsck_inode, rb);
1886 this = rb_parent(this);
1887 if (this) {
1888 if (this->rb_left == &fscki->rb)
1889 this->rb_left = NULL;
1890 else
1891 this->rb_right = NULL;
1892 }
1893 kfree(fscki);
1894 }
1895 }
1896}
1897
1898/**
1899 * check_inodes - checks all inodes.
1900 * @c: UBIFS file-system description object
1901 * @fsckd: FS checking information
1902 *
1903 * This is a helper function for 'dbg_check_filesystem()' which walks the
1904 * RB-tree of inodes after the index scan has been finished, and checks that
1905 * inode nlink, size, etc are correct. Returns zero if inodes are fine,
1906 * %-EINVAL if not, and a negative error code in case of failure.
1907 */
1908static int check_inodes(struct ubifs_info *c, struct fsck_data *fsckd)
1909{
1910 int n, err;
1911 union ubifs_key key;
1912 struct ubifs_znode *znode;
1913 struct ubifs_zbranch *zbr;
1914 struct ubifs_ino_node *ino;
1915 struct fsck_inode *fscki;
1916 struct rb_node *this = rb_first(&fsckd->inodes);
1917
1918 while (this) {
1919 fscki = rb_entry(this, struct fsck_inode, rb);
1920 this = rb_next(this);
1921
1922 if (S_ISDIR(fscki->mode)) {
1923 /*
1924 * Directories have to have exactly one reference (they
1925 * cannot have hardlinks), although root inode is an
1926 * exception.
1927 */
1928 if (fscki->inum != UBIFS_ROOT_INO &&
1929 fscki->references != 1) {
1930 ubifs_err("directory inode %lu has %d "
1931 "direntries which refer it, but "
Artem Bityutskiye84461a2008-10-29 12:08:43 +02001932 "should be 1",
1933 (unsigned long)fscki->inum,
Artem Bityutskiy1e517642008-07-14 19:08:37 +03001934 fscki->references);
1935 goto out_dump;
1936 }
1937 if (fscki->inum == UBIFS_ROOT_INO &&
1938 fscki->references != 0) {
1939 ubifs_err("root inode %lu has non-zero (%d) "
1940 "direntries which refer it",
Artem Bityutskiye84461a2008-10-29 12:08:43 +02001941 (unsigned long)fscki->inum,
1942 fscki->references);
Artem Bityutskiy1e517642008-07-14 19:08:37 +03001943 goto out_dump;
1944 }
1945 if (fscki->calc_sz != fscki->size) {
1946 ubifs_err("directory inode %lu size is %lld, "
1947 "but calculated size is %lld",
Artem Bityutskiye84461a2008-10-29 12:08:43 +02001948 (unsigned long)fscki->inum,
1949 fscki->size, fscki->calc_sz);
Artem Bityutskiy1e517642008-07-14 19:08:37 +03001950 goto out_dump;
1951 }
1952 if (fscki->calc_cnt != fscki->nlink) {
1953 ubifs_err("directory inode %lu nlink is %d, "
1954 "but calculated nlink is %d",
Artem Bityutskiye84461a2008-10-29 12:08:43 +02001955 (unsigned long)fscki->inum,
1956 fscki->nlink, fscki->calc_cnt);
Artem Bityutskiy1e517642008-07-14 19:08:37 +03001957 goto out_dump;
1958 }
1959 } else {
1960 if (fscki->references != fscki->nlink) {
1961 ubifs_err("inode %lu nlink is %d, but "
Artem Bityutskiye84461a2008-10-29 12:08:43 +02001962 "calculated nlink is %d",
1963 (unsigned long)fscki->inum,
Artem Bityutskiy1e517642008-07-14 19:08:37 +03001964 fscki->nlink, fscki->references);
1965 goto out_dump;
1966 }
1967 }
1968 if (fscki->xattr_sz != fscki->calc_xsz) {
1969 ubifs_err("inode %lu has xattr size %u, but "
1970 "calculated size is %lld",
Artem Bityutskiye84461a2008-10-29 12:08:43 +02001971 (unsigned long)fscki->inum, fscki->xattr_sz,
Artem Bityutskiy1e517642008-07-14 19:08:37 +03001972 fscki->calc_xsz);
1973 goto out_dump;
1974 }
1975 if (fscki->xattr_cnt != fscki->calc_xcnt) {
1976 ubifs_err("inode %lu has %u xattrs, but "
Artem Bityutskiye84461a2008-10-29 12:08:43 +02001977 "calculated count is %lld",
1978 (unsigned long)fscki->inum,
Artem Bityutskiy1e517642008-07-14 19:08:37 +03001979 fscki->xattr_cnt, fscki->calc_xcnt);
1980 goto out_dump;
1981 }
1982 if (fscki->xattr_nms != fscki->calc_xnms) {
1983 ubifs_err("inode %lu has xattr names' size %u, but "
1984 "calculated names' size is %lld",
Artem Bityutskiye84461a2008-10-29 12:08:43 +02001985 (unsigned long)fscki->inum, fscki->xattr_nms,
Artem Bityutskiy1e517642008-07-14 19:08:37 +03001986 fscki->calc_xnms);
1987 goto out_dump;
1988 }
1989 }
1990
1991 return 0;
1992
1993out_dump:
1994 /* Read the bad inode and dump it */
1995 ino_key_init(c, &key, fscki->inum);
1996 err = ubifs_lookup_level0(c, &key, &znode, &n);
1997 if (!err) {
Artem Bityutskiye84461a2008-10-29 12:08:43 +02001998 ubifs_err("inode %lu not found in index",
1999 (unsigned long)fscki->inum);
Artem Bityutskiy1e517642008-07-14 19:08:37 +03002000 return -ENOENT;
2001 } else if (err < 0) {
2002 ubifs_err("error %d while looking up inode %lu",
Artem Bityutskiye84461a2008-10-29 12:08:43 +02002003 err, (unsigned long)fscki->inum);
Artem Bityutskiy1e517642008-07-14 19:08:37 +03002004 return err;
2005 }
2006
2007 zbr = &znode->zbranch[n];
2008 ino = kmalloc(zbr->len, GFP_NOFS);
2009 if (!ino)
2010 return -ENOMEM;
2011
2012 err = ubifs_tnc_read_node(c, zbr, ino);
2013 if (err) {
2014 ubifs_err("cannot read inode node at LEB %d:%d, error %d",
2015 zbr->lnum, zbr->offs, err);
2016 kfree(ino);
2017 return err;
2018 }
2019
2020 ubifs_msg("dump of the inode %lu sitting in LEB %d:%d",
Artem Bityutskiye84461a2008-10-29 12:08:43 +02002021 (unsigned long)fscki->inum, zbr->lnum, zbr->offs);
Artem Bityutskiy1e517642008-07-14 19:08:37 +03002022 dbg_dump_node(c, ino);
2023 kfree(ino);
2024 return -EINVAL;
2025}
2026
2027/**
2028 * dbg_check_filesystem - check the file-system.
2029 * @c: UBIFS file-system description object
2030 *
2031 * This function checks the file system, namely:
2032 * o makes sure that all leaf nodes exist and their CRCs are correct;
2033 * o makes sure inode nlink, size, xattr size/count are correct (for all
2034 * inodes).
2035 *
2036 * The function reads whole indexing tree and all nodes, so it is pretty
2037 * heavy-weight. Returns zero if the file-system is consistent, %-EINVAL if
2038 * not, and a negative error code in case of failure.
2039 */
2040int dbg_check_filesystem(struct ubifs_info *c)
2041{
2042 int err;
2043 struct fsck_data fsckd;
2044
2045 if (!(ubifs_chk_flags & UBIFS_CHK_FS))
2046 return 0;
2047
2048 fsckd.inodes = RB_ROOT;
2049 err = dbg_walk_index(c, check_leaf, NULL, &fsckd);
2050 if (err)
2051 goto out_free;
2052
2053 err = check_inodes(c, &fsckd);
2054 if (err)
2055 goto out_free;
2056
2057 free_inodes(&fsckd);
2058 return 0;
2059
2060out_free:
2061 ubifs_err("file-system check failed with error %d", err);
2062 dump_stack();
2063 free_inodes(&fsckd);
2064 return err;
2065}
2066
2067static int invocation_cnt;
2068
2069int dbg_force_in_the_gaps(void)
2070{
2071 if (!dbg_force_in_the_gaps_enabled)
2072 return 0;
2073 /* Force in-the-gaps every 8th commit */
2074 return !((invocation_cnt++) & 0x7);
2075}
2076
2077/* Failure mode for recovery testing */
2078
2079#define chance(n, d) (simple_rand() <= (n) * 32768LL / (d))
2080
2081struct failure_mode_info {
2082 struct list_head list;
2083 struct ubifs_info *c;
2084};
2085
2086static LIST_HEAD(fmi_list);
2087static DEFINE_SPINLOCK(fmi_lock);
2088
2089static unsigned int next;
2090
2091static int simple_rand(void)
2092{
2093 if (next == 0)
2094 next = current->pid;
2095 next = next * 1103515245 + 12345;
2096 return (next >> 16) & 32767;
2097}
2098
Artem Bityutskiy17c2f9f2008-10-17 13:31:39 +03002099static void failure_mode_init(struct ubifs_info *c)
Artem Bityutskiy1e517642008-07-14 19:08:37 +03002100{
2101 struct failure_mode_info *fmi;
2102
2103 fmi = kmalloc(sizeof(struct failure_mode_info), GFP_NOFS);
2104 if (!fmi) {
Artem Bityutskiy552ff312008-10-23 11:49:28 +03002105 ubifs_err("Failed to register failure mode - no memory");
Artem Bityutskiy1e517642008-07-14 19:08:37 +03002106 return;
2107 }
2108 fmi->c = c;
2109 spin_lock(&fmi_lock);
2110 list_add_tail(&fmi->list, &fmi_list);
2111 spin_unlock(&fmi_lock);
2112}
2113
Artem Bityutskiy17c2f9f2008-10-17 13:31:39 +03002114static void failure_mode_exit(struct ubifs_info *c)
Artem Bityutskiy1e517642008-07-14 19:08:37 +03002115{
2116 struct failure_mode_info *fmi, *tmp;
2117
2118 spin_lock(&fmi_lock);
2119 list_for_each_entry_safe(fmi, tmp, &fmi_list, list)
2120 if (fmi->c == c) {
2121 list_del(&fmi->list);
2122 kfree(fmi);
2123 }
2124 spin_unlock(&fmi_lock);
2125}
2126
2127static struct ubifs_info *dbg_find_info(struct ubi_volume_desc *desc)
2128{
2129 struct failure_mode_info *fmi;
2130
2131 spin_lock(&fmi_lock);
2132 list_for_each_entry(fmi, &fmi_list, list)
2133 if (fmi->c->ubi == desc) {
2134 struct ubifs_info *c = fmi->c;
2135
2136 spin_unlock(&fmi_lock);
2137 return c;
2138 }
2139 spin_unlock(&fmi_lock);
2140 return NULL;
2141}
2142
2143static int in_failure_mode(struct ubi_volume_desc *desc)
2144{
2145 struct ubifs_info *c = dbg_find_info(desc);
2146
2147 if (c && dbg_failure_mode)
Artem Bityutskiy17c2f9f2008-10-17 13:31:39 +03002148 return c->dbg->failure_mode;
Artem Bityutskiy1e517642008-07-14 19:08:37 +03002149 return 0;
2150}
2151
2152static int do_fail(struct ubi_volume_desc *desc, int lnum, int write)
2153{
2154 struct ubifs_info *c = dbg_find_info(desc);
Artem Bityutskiy17c2f9f2008-10-17 13:31:39 +03002155 struct ubifs_debug_info *d;
Artem Bityutskiy1e517642008-07-14 19:08:37 +03002156
2157 if (!c || !dbg_failure_mode)
2158 return 0;
Artem Bityutskiy17c2f9f2008-10-17 13:31:39 +03002159 d = c->dbg;
2160 if (d->failure_mode)
Artem Bityutskiy1e517642008-07-14 19:08:37 +03002161 return 1;
Artem Bityutskiy17c2f9f2008-10-17 13:31:39 +03002162 if (!d->fail_cnt) {
Artem Bityutskiy1e517642008-07-14 19:08:37 +03002163 /* First call - decide delay to failure */
2164 if (chance(1, 2)) {
2165 unsigned int delay = 1 << (simple_rand() >> 11);
2166
2167 if (chance(1, 2)) {
Artem Bityutskiy17c2f9f2008-10-17 13:31:39 +03002168 d->fail_delay = 1;
2169 d->fail_timeout = jiffies +
Artem Bityutskiy1e517642008-07-14 19:08:37 +03002170 msecs_to_jiffies(delay);
2171 dbg_rcvry("failing after %ums", delay);
2172 } else {
Artem Bityutskiy17c2f9f2008-10-17 13:31:39 +03002173 d->fail_delay = 2;
2174 d->fail_cnt_max = delay;
Artem Bityutskiy1e517642008-07-14 19:08:37 +03002175 dbg_rcvry("failing after %u calls", delay);
2176 }
2177 }
Artem Bityutskiy17c2f9f2008-10-17 13:31:39 +03002178 d->fail_cnt += 1;
Artem Bityutskiy1e517642008-07-14 19:08:37 +03002179 }
2180 /* Determine if failure delay has expired */
Artem Bityutskiy17c2f9f2008-10-17 13:31:39 +03002181 if (d->fail_delay == 1) {
2182 if (time_before(jiffies, d->fail_timeout))
Artem Bityutskiy1e517642008-07-14 19:08:37 +03002183 return 0;
Artem Bityutskiy17c2f9f2008-10-17 13:31:39 +03002184 } else if (d->fail_delay == 2)
2185 if (d->fail_cnt++ < d->fail_cnt_max)
Artem Bityutskiy1e517642008-07-14 19:08:37 +03002186 return 0;
2187 if (lnum == UBIFS_SB_LNUM) {
2188 if (write) {
2189 if (chance(1, 2))
2190 return 0;
2191 } else if (chance(19, 20))
2192 return 0;
2193 dbg_rcvry("failing in super block LEB %d", lnum);
2194 } else if (lnum == UBIFS_MST_LNUM || lnum == UBIFS_MST_LNUM + 1) {
2195 if (chance(19, 20))
2196 return 0;
2197 dbg_rcvry("failing in master LEB %d", lnum);
2198 } else if (lnum >= UBIFS_LOG_LNUM && lnum <= c->log_last) {
2199 if (write) {
2200 if (chance(99, 100))
2201 return 0;
2202 } else if (chance(399, 400))
2203 return 0;
2204 dbg_rcvry("failing in log LEB %d", lnum);
2205 } else if (lnum >= c->lpt_first && lnum <= c->lpt_last) {
2206 if (write) {
2207 if (chance(7, 8))
2208 return 0;
2209 } else if (chance(19, 20))
2210 return 0;
2211 dbg_rcvry("failing in LPT LEB %d", lnum);
2212 } else if (lnum >= c->orph_first && lnum <= c->orph_last) {
2213 if (write) {
2214 if (chance(1, 2))
2215 return 0;
2216 } else if (chance(9, 10))
2217 return 0;
2218 dbg_rcvry("failing in orphan LEB %d", lnum);
2219 } else if (lnum == c->ihead_lnum) {
2220 if (chance(99, 100))
2221 return 0;
2222 dbg_rcvry("failing in index head LEB %d", lnum);
2223 } else if (c->jheads && lnum == c->jheads[GCHD].wbuf.lnum) {
2224 if (chance(9, 10))
2225 return 0;
2226 dbg_rcvry("failing in GC head LEB %d", lnum);
2227 } else if (write && !RB_EMPTY_ROOT(&c->buds) &&
2228 !ubifs_search_bud(c, lnum)) {
2229 if (chance(19, 20))
2230 return 0;
2231 dbg_rcvry("failing in non-bud LEB %d", lnum);
2232 } else if (c->cmt_state == COMMIT_RUNNING_BACKGROUND ||
2233 c->cmt_state == COMMIT_RUNNING_REQUIRED) {
2234 if (chance(999, 1000))
2235 return 0;
2236 dbg_rcvry("failing in bud LEB %d commit running", lnum);
2237 } else {
2238 if (chance(9999, 10000))
2239 return 0;
2240 dbg_rcvry("failing in bud LEB %d commit not running", lnum);
2241 }
2242 ubifs_err("*** SETTING FAILURE MODE ON (LEB %d) ***", lnum);
Artem Bityutskiy17c2f9f2008-10-17 13:31:39 +03002243 d->failure_mode = 1;
Artem Bityutskiy1e517642008-07-14 19:08:37 +03002244 dump_stack();
2245 return 1;
2246}
2247
2248static void cut_data(const void *buf, int len)
2249{
2250 int flen, i;
2251 unsigned char *p = (void *)buf;
2252
2253 flen = (len * (long long)simple_rand()) >> 15;
2254 for (i = flen; i < len; i++)
2255 p[i] = 0xff;
2256}
2257
2258int dbg_leb_read(struct ubi_volume_desc *desc, int lnum, char *buf, int offset,
2259 int len, int check)
2260{
2261 if (in_failure_mode(desc))
2262 return -EIO;
2263 return ubi_leb_read(desc, lnum, buf, offset, len, check);
2264}
2265
2266int dbg_leb_write(struct ubi_volume_desc *desc, int lnum, const void *buf,
2267 int offset, int len, int dtype)
2268{
Adrian Hunter16dfd802008-07-18 16:47:41 +03002269 int err, failing;
Artem Bityutskiy1e517642008-07-14 19:08:37 +03002270
2271 if (in_failure_mode(desc))
2272 return -EIO;
Adrian Hunter16dfd802008-07-18 16:47:41 +03002273 failing = do_fail(desc, lnum, 1);
2274 if (failing)
Artem Bityutskiy1e517642008-07-14 19:08:37 +03002275 cut_data(buf, len);
2276 err = ubi_leb_write(desc, lnum, buf, offset, len, dtype);
2277 if (err)
2278 return err;
Adrian Hunter16dfd802008-07-18 16:47:41 +03002279 if (failing)
Artem Bityutskiy1e517642008-07-14 19:08:37 +03002280 return -EIO;
2281 return 0;
2282}
2283
2284int dbg_leb_change(struct ubi_volume_desc *desc, int lnum, const void *buf,
2285 int len, int dtype)
2286{
2287 int err;
2288
2289 if (do_fail(desc, lnum, 1))
2290 return -EIO;
2291 err = ubi_leb_change(desc, lnum, buf, len, dtype);
2292 if (err)
2293 return err;
2294 if (do_fail(desc, lnum, 1))
2295 return -EIO;
2296 return 0;
2297}
2298
2299int dbg_leb_erase(struct ubi_volume_desc *desc, int lnum)
2300{
2301 int err;
2302
2303 if (do_fail(desc, lnum, 0))
2304 return -EIO;
2305 err = ubi_leb_erase(desc, lnum);
2306 if (err)
2307 return err;
2308 if (do_fail(desc, lnum, 0))
2309 return -EIO;
2310 return 0;
2311}
2312
2313int dbg_leb_unmap(struct ubi_volume_desc *desc, int lnum)
2314{
2315 int err;
2316
2317 if (do_fail(desc, lnum, 0))
2318 return -EIO;
2319 err = ubi_leb_unmap(desc, lnum);
2320 if (err)
2321 return err;
2322 if (do_fail(desc, lnum, 0))
2323 return -EIO;
2324 return 0;
2325}
2326
2327int dbg_is_mapped(struct ubi_volume_desc *desc, int lnum)
2328{
2329 if (in_failure_mode(desc))
2330 return -EIO;
2331 return ubi_is_mapped(desc, lnum);
2332}
2333
2334int dbg_leb_map(struct ubi_volume_desc *desc, int lnum, int dtype)
2335{
2336 int err;
2337
2338 if (do_fail(desc, lnum, 0))
2339 return -EIO;
2340 err = ubi_leb_map(desc, lnum, dtype);
2341 if (err)
2342 return err;
2343 if (do_fail(desc, lnum, 0))
2344 return -EIO;
2345 return 0;
2346}
2347
Artem Bityutskiy17c2f9f2008-10-17 13:31:39 +03002348/**
2349 * ubifs_debugging_init - initialize UBIFS debugging.
2350 * @c: UBIFS file-system description object
2351 *
2352 * This function initializes debugging-related data for the file system.
2353 * Returns zero in case of success and a negative error code in case of
2354 * failure.
2355 */
2356int ubifs_debugging_init(struct ubifs_info *c)
2357{
2358 c->dbg = kzalloc(sizeof(struct ubifs_debug_info), GFP_KERNEL);
2359 if (!c->dbg)
2360 return -ENOMEM;
2361
2362 c->dbg->buf = vmalloc(c->leb_size);
2363 if (!c->dbg->buf)
2364 goto out;
2365
2366 failure_mode_init(c);
2367 return 0;
2368
2369out:
2370 kfree(c->dbg);
2371 return -ENOMEM;
2372}
2373
2374/**
2375 * ubifs_debugging_exit - free debugging data.
2376 * @c: UBIFS file-system description object
2377 */
2378void ubifs_debugging_exit(struct ubifs_info *c)
2379{
2380 failure_mode_exit(c);
2381 vfree(c->dbg->buf);
2382 kfree(c->dbg);
2383}
2384
Artem Bityutskiy552ff312008-10-23 11:49:28 +03002385/*
2386 * Root directory for UBIFS stuff in debugfs. Contains sub-directories which
2387 * contain the stuff specific to particular file-system mounts.
2388 */
2389static struct dentry *debugfs_rootdir;
2390
2391/**
2392 * dbg_debugfs_init - initialize debugfs file-system.
2393 *
2394 * UBIFS uses debugfs file-system to expose various debugging knobs to
2395 * user-space. This function creates "ubifs" directory in the debugfs
2396 * file-system. Returns zero in case of success and a negative error code in
2397 * case of failure.
2398 */
2399int dbg_debugfs_init(void)
2400{
2401 debugfs_rootdir = debugfs_create_dir("ubifs", NULL);
2402 if (IS_ERR(debugfs_rootdir)) {
2403 int err = PTR_ERR(debugfs_rootdir);
2404 ubifs_err("cannot create \"ubifs\" debugfs directory, "
2405 "error %d\n", err);
2406 return err;
2407 }
2408
2409 return 0;
2410}
2411
2412/**
2413 * dbg_debugfs_exit - remove the "ubifs" directory from debugfs file-system.
2414 */
2415void dbg_debugfs_exit(void)
2416{
2417 debugfs_remove(debugfs_rootdir);
2418}
2419
2420static int open_debugfs_file(struct inode *inode, struct file *file)
2421{
2422 file->private_data = inode->i_private;
2423 return 0;
2424}
2425
2426static ssize_t write_debugfs_file(struct file *file, const char __user *buf,
2427 size_t count, loff_t *ppos)
2428{
2429 struct ubifs_info *c = file->private_data;
2430 struct ubifs_debug_info *d = c->dbg;
2431
2432 if (file->f_path.dentry == d->dump_lprops)
2433 dbg_dump_lprops(c);
2434 else if (file->f_path.dentry == d->dump_budg) {
2435 spin_lock(&c->space_lock);
2436 dbg_dump_budg(c);
2437 spin_unlock(&c->space_lock);
2438 } else if (file->f_path.dentry == d->dump_budg) {
2439 mutex_lock(&c->tnc_mutex);
2440 dbg_dump_tnc(c);
2441 mutex_unlock(&c->tnc_mutex);
2442 } else
2443 return -EINVAL;
2444
2445 *ppos += count;
2446 return count;
2447}
2448
2449static const struct file_operations debugfs_fops = {
2450 .open = open_debugfs_file,
2451 .write = write_debugfs_file,
2452 .owner = THIS_MODULE,
2453};
2454
2455/**
2456 * dbg_debugfs_init_fs - initialize debugfs for UBIFS instance.
2457 * @c: UBIFS file-system description object
2458 *
2459 * This function creates all debugfs files for this instance of UBIFS. Returns
2460 * zero in case of success and a negative error code in case of failure.
2461 *
2462 * Note, the only reason we have not merged this function with the
2463 * 'ubifs_debugging_init()' function is because it is better to initialize
2464 * debugfs interfaces at the very end of the mount process, and remove them at
2465 * the very beginning of the mount process.
2466 */
2467int dbg_debugfs_init_fs(struct ubifs_info *c)
2468{
2469 int err;
2470 const char *fname;
2471 struct dentry *dent;
2472 struct ubifs_debug_info *d = c->dbg;
2473
2474 sprintf(d->debugfs_dir_name, "ubi%d_%d", c->vi.ubi_num, c->vi.vol_id);
2475 d->debugfs_dir = debugfs_create_dir(d->debugfs_dir_name,
2476 debugfs_rootdir);
2477 if (IS_ERR(d->debugfs_dir)) {
2478 err = PTR_ERR(d->debugfs_dir);
2479 ubifs_err("cannot create \"%s\" debugfs directory, error %d\n",
2480 d->debugfs_dir_name, err);
2481 goto out;
2482 }
2483
2484 fname = "dump_lprops";
2485 dent = debugfs_create_file(fname, S_IWUGO, d->debugfs_dir, c,
2486 &debugfs_fops);
2487 if (IS_ERR(dent))
2488 goto out_remove;
2489 d->dump_lprops = dent;
2490
2491 fname = "dump_budg";
2492 dent = debugfs_create_file(fname, S_IWUGO, d->debugfs_dir, c,
2493 &debugfs_fops);
2494 if (IS_ERR(dent))
2495 goto out_remove;
2496 d->dump_budg = dent;
2497
2498 fname = "dump_tnc";
2499 dent = debugfs_create_file(fname, S_IWUGO, d->debugfs_dir, c,
2500 &debugfs_fops);
2501 if (IS_ERR(dent))
2502 goto out_remove;
2503 d->dump_tnc = dent;
2504
2505 return 0;
2506
2507out_remove:
2508 err = PTR_ERR(dent);
2509 ubifs_err("cannot create \"%s\" debugfs directory, error %d\n",
2510 fname, err);
2511 debugfs_remove_recursive(d->debugfs_dir);
2512out:
2513 return err;
2514}
2515
2516/**
2517 * dbg_debugfs_exit_fs - remove all debugfs files.
2518 * @c: UBIFS file-system description object
2519 */
2520void dbg_debugfs_exit_fs(struct ubifs_info *c)
2521{
2522 debugfs_remove_recursive(c->dbg->debugfs_dir);
2523}
2524
Artem Bityutskiy1e517642008-07-14 19:08:37 +03002525#endif /* CONFIG_UBIFS_FS_DEBUG */