blob: 59df69d56a7f5d11db9a0086eaff2132ae67dade [file] [log] [blame]
David Gibsonc125a182006-02-01 03:05:22 -08001 Booting the Linux/ppc kernel without Open Firmware
2 --------------------------------------------------
3
David Gibsonc125a182006-02-01 03:05:22 -08004(c) 2005 Benjamin Herrenschmidt <benh at kernel.crashing.org>,
5 IBM Corp.
6(c) 2005 Becky Bruce <becky.bruce at freescale.com>,
7 Freescale Semiconductor, FSL SOC and 32-bit additions
Vitaly Wool28f9ec32006-11-20 16:32:39 +03008(c) 2006 MontaVista Software, Inc.
9 Flash chip node definition
David Gibsonc125a182006-02-01 03:05:22 -080010
Stuart Yoder5e1e9ba2007-06-06 04:29:14 +100011Table of Contents
12=================
13
14 I - Introduction
15 1) Entry point for arch/powerpc
16 2) Board support
17
18 II - The DT block format
19 1) Header
20 2) Device tree generalities
21 3) Device tree "structure" block
22 4) Device tree "strings" block
23
24 III - Required content of the device tree
25 1) Note about cells and address representation
26 2) Note about "compatible" properties
27 3) Note about "name" properties
28 4) Note about node and property names and character set
29 5) Required nodes and properties
30 a) The root node
31 b) The /cpus node
32 c) The /cpus/* nodes
33 d) the /memory node(s)
34 e) The /chosen node
35 f) the /soc<SOCname> node
36
37 IV - "dtc", the device tree compiler
38
39 V - Recommendations for a bootloader
40
41 VI - System-on-a-chip devices and nodes
42 1) Defining child nodes of an SOC
43 2) Representing devices without a current OF specification
44 a) MDIO IO device
Stuart Yoder5e1e9ba2007-06-06 04:29:14 +100045 b) Gianfar-compatible ethernet nodes
Roy Zanga4ecaba2007-06-19 15:19:31 +080046 c) PHY nodes
Stuart Yoder5e1e9ba2007-06-06 04:29:14 +100047 d) Interrupt controllers
48 e) I2C
49 f) Freescale SOC USB controllers
50 g) Freescale SOC SEC Security Engines
51 h) Board Control and Status (BCSR)
52 i) Freescale QUICC Engine module (QE)
David Gibson20991722007-09-07 13:23:53 +100053 j) CFI or JEDEC memory-mapped NOR flash
Roy Zang3b824f82007-06-19 15:19:18 +080054 k) Global Utilities Block
Grant Likely7ae0fa492007-10-23 14:27:41 +100055 l) Xilinx IP cores
Stuart Yoder5e1e9ba2007-06-06 04:29:14 +100056
57 VII - Specifying interrupt information for devices
58 1) interrupts property
59 2) interrupt-parent property
60 3) OpenPIC Interrupt Controllers
61 4) ISA Interrupt Controllers
62
63 Appendix A - Sample SOC node for MPC8540
64
65
66Revision Information
67====================
68
David Gibsonc125a182006-02-01 03:05:22 -080069 May 18, 2005: Rev 0.1 - Initial draft, no chapter III yet.
70
71 May 19, 2005: Rev 0.2 - Add chapter III and bits & pieces here or
72 clarifies the fact that a lot of things are
73 optional, the kernel only requires a very
74 small device tree, though it is encouraged
75 to provide an as complete one as possible.
76
77 May 24, 2005: Rev 0.3 - Precise that DT block has to be in RAM
78 - Misc fixes
79 - Define version 3 and new format version 16
80 for the DT block (version 16 needs kernel
81 patches, will be fwd separately).
82 String block now has a size, and full path
83 is replaced by unit name for more
84 compactness.
85 linux,phandle is made optional, only nodes
86 that are referenced by other nodes need it.
87 "name" property is now automatically
88 deduced from the unit name
89
90 June 1, 2005: Rev 0.4 - Correct confusion between OF_DT_END and
91 OF_DT_END_NODE in structure definition.
92 - Change version 16 format to always align
93 property data to 4 bytes. Since tokens are
94 already aligned, that means no specific
Matt LaPlante5d3f0832006-11-30 05:21:10 +010095 required alignment between property size
David Gibsonc125a182006-02-01 03:05:22 -080096 and property data. The old style variable
97 alignment would make it impossible to do
98 "simple" insertion of properties using
Domen Puncer5dd60162007-03-02 21:44:45 +110099 memmove (thanks Milton for
David Gibsonc125a182006-02-01 03:05:22 -0800100 noticing). Updated kernel patch as well
Matt LaPlante5d3f0832006-11-30 05:21:10 +0100101 - Correct a few more alignment constraints
David Gibsonc125a182006-02-01 03:05:22 -0800102 - Add a chapter about the device-tree
103 compiler and the textural representation of
104 the tree that can be "compiled" by dtc.
105
David Gibsonc125a182006-02-01 03:05:22 -0800106 November 21, 2005: Rev 0.5
107 - Additions/generalizations for 32-bit
108 - Changed to reflect the new arch/powerpc
109 structure
110 - Added chapter VI
111
112
113 ToDo:
114 - Add some definitions of interrupt tree (simple/complex)
Domen Puncer5dd60162007-03-02 21:44:45 +1100115 - Add some definitions for PCI host bridges
David Gibsonc125a182006-02-01 03:05:22 -0800116 - Add some common address format examples
117 - Add definitions for standard properties and "compatible"
118 names for cells that are not already defined by the existing
119 OF spec.
120 - Compare FSL SOC use of PCI to standard and make sure no new
121 node definition required.
122 - Add more information about node definitions for SOC devices
123 that currently have no standard, like the FSL CPM.
124
125
126I - Introduction
127================
128
129During the recent development of the Linux/ppc64 kernel, and more
130specifically, the addition of new platform types outside of the old
131IBM pSeries/iSeries pair, it was decided to enforce some strict rules
132regarding the kernel entry and bootloader <-> kernel interfaces, in
133order to avoid the degeneration that had become the ppc32 kernel entry
134point and the way a new platform should be added to the kernel. The
135legacy iSeries platform breaks those rules as it predates this scheme,
136but no new board support will be accepted in the main tree that
137doesn't follows them properly. In addition, since the advent of the
138arch/powerpc merged architecture for ppc32 and ppc64, new 32-bit
139platforms and 32-bit platforms which move into arch/powerpc will be
140required to use these rules as well.
141
142The main requirement that will be defined in more detail below is
143the presence of a device-tree whose format is defined after Open
144Firmware specification. However, in order to make life easier
145to embedded board vendors, the kernel doesn't require the device-tree
146to represent every device in the system and only requires some nodes
147and properties to be present. This will be described in detail in
148section III, but, for example, the kernel does not require you to
149create a node for every PCI device in the system. It is a requirement
150to have a node for PCI host bridges in order to provide interrupt
151routing informations and memory/IO ranges, among others. It is also
152recommended to define nodes for on chip devices and other busses that
153don't specifically fit in an existing OF specification. This creates a
154great flexibility in the way the kernel can then probe those and match
155drivers to device, without having to hard code all sorts of tables. It
156also makes it more flexible for board vendors to do minor hardware
157upgrades without significantly impacting the kernel code or cluttering
158it with special cases.
159
160
1611) Entry point for arch/powerpc
162-------------------------------
163
164 There is one and one single entry point to the kernel, at the start
165 of the kernel image. That entry point supports two calling
166 conventions:
167
168 a) Boot from Open Firmware. If your firmware is compatible
169 with Open Firmware (IEEE 1275) or provides an OF compatible
170 client interface API (support for "interpret" callback of
171 forth words isn't required), you can enter the kernel with:
172
173 r5 : OF callback pointer as defined by IEEE 1275
Domen Puncer5dd60162007-03-02 21:44:45 +1100174 bindings to powerpc. Only the 32-bit client interface
David Gibsonc125a182006-02-01 03:05:22 -0800175 is currently supported
176
177 r3, r4 : address & length of an initrd if any or 0
178
179 The MMU is either on or off; the kernel will run the
180 trampoline located in arch/powerpc/kernel/prom_init.c to
181 extract the device-tree and other information from open
182 firmware and build a flattened device-tree as described
183 in b). prom_init() will then re-enter the kernel using
184 the second method. This trampoline code runs in the
185 context of the firmware, which is supposed to handle all
186 exceptions during that time.
187
188 b) Direct entry with a flattened device-tree block. This entry
189 point is called by a) after the OF trampoline and can also be
190 called directly by a bootloader that does not support the Open
191 Firmware client interface. It is also used by "kexec" to
192 implement "hot" booting of a new kernel from a previous
193 running one. This method is what I will describe in more
194 details in this document, as method a) is simply standard Open
195 Firmware, and thus should be implemented according to the
196 various standard documents defining it and its binding to the
197 PowerPC platform. The entry point definition then becomes:
198
199 r3 : physical pointer to the device-tree block
200 (defined in chapter II) in RAM
201
202 r4 : physical pointer to the kernel itself. This is
203 used by the assembly code to properly disable the MMU
204 in case you are entering the kernel with MMU enabled
205 and a non-1:1 mapping.
206
Matt LaPlante2fe0ae72006-10-03 22:50:39 +0200207 r5 : NULL (as to differentiate with method a)
David Gibsonc125a182006-02-01 03:05:22 -0800208
209 Note about SMP entry: Either your firmware puts your other
210 CPUs in some sleep loop or spin loop in ROM where you can get
211 them out via a soft reset or some other means, in which case
212 you don't need to care, or you'll have to enter the kernel
213 with all CPUs. The way to do that with method b) will be
214 described in a later revision of this document.
215
216
2172) Board support
218----------------
219
22064-bit kernels:
221
222 Board supports (platforms) are not exclusive config options. An
223 arbitrary set of board supports can be built in a single kernel
224 image. The kernel will "know" what set of functions to use for a
225 given platform based on the content of the device-tree. Thus, you
226 should:
227
228 a) add your platform support as a _boolean_ option in
229 arch/powerpc/Kconfig, following the example of PPC_PSERIES,
230 PPC_PMAC and PPC_MAPLE. The later is probably a good
231 example of a board support to start from.
232
233 b) create your main platform file as
234 "arch/powerpc/platforms/myplatform/myboard_setup.c" and add it
235 to the Makefile under the condition of your CONFIG_
236 option. This file will define a structure of type "ppc_md"
237 containing the various callbacks that the generic code will
238 use to get to your platform specific code
239
240 c) Add a reference to your "ppc_md" structure in the
241 "machines" table in arch/powerpc/kernel/setup_64.c if you are
242 a 64-bit platform.
243
244 d) request and get assigned a platform number (see PLATFORM_*
245 constants in include/asm-powerpc/processor.h
246
24732-bit embedded kernels:
248
249 Currently, board support is essentially an exclusive config option.
250 The kernel is configured for a single platform. Part of the reason
251 for this is to keep kernels on embedded systems small and efficient;
252 part of this is due to the fact the code is already that way. In the
253 future, a kernel may support multiple platforms, but only if the
Domen Puncer5dd60162007-03-02 21:44:45 +1100254 platforms feature the same core architecture. A single kernel build
David Gibsonc125a182006-02-01 03:05:22 -0800255 cannot support both configurations with Book E and configurations
256 with classic Powerpc architectures.
257
258 32-bit embedded platforms that are moved into arch/powerpc using a
259 flattened device tree should adopt the merged tree practice of
260 setting ppc_md up dynamically, even though the kernel is currently
261 built with support for only a single platform at a time. This allows
262 unification of the setup code, and will make it easier to go to a
263 multiple-platform-support model in the future.
264
265NOTE: I believe the above will be true once Ben's done with the merge
266of the boot sequences.... someone speak up if this is wrong!
267
268 To add a 32-bit embedded platform support, follow the instructions
269 for 64-bit platforms above, with the exception that the Kconfig
270 option should be set up such that the kernel builds exclusively for
271 the platform selected. The processor type for the platform should
272 enable another config option to select the specific board
273 supported.
274
Domen Puncer5dd60162007-03-02 21:44:45 +1100275NOTE: If Ben doesn't merge the setup files, may need to change this to
David Gibsonc125a182006-02-01 03:05:22 -0800276point to setup_32.c
277
278
279 I will describe later the boot process and various callbacks that
280 your platform should implement.
281
282
283II - The DT block format
284========================
285
286
287This chapter defines the actual format of the flattened device-tree
288passed to the kernel. The actual content of it and kernel requirements
289are described later. You can find example of code manipulating that
290format in various places, including arch/powerpc/kernel/prom_init.c
291which will generate a flattened device-tree from the Open Firmware
292representation, or the fs2dt utility which is part of the kexec tools
293which will generate one from a filesystem representation. It is
294expected that a bootloader like uboot provides a bit more support,
295that will be discussed later as well.
296
297Note: The block has to be in main memory. It has to be accessible in
298both real mode and virtual mode with no mapping other than main
299memory. If you are writing a simple flash bootloader, it should copy
300the block to RAM before passing it to the kernel.
301
302
3031) Header
304---------
305
306 The kernel is entered with r3 pointing to an area of memory that is
Matt LaPlanted6bc8ac2006-10-03 22:54:15 +0200307 roughly described in include/asm-powerpc/prom.h by the structure
David Gibsonc125a182006-02-01 03:05:22 -0800308 boot_param_header:
309
310struct boot_param_header {
311 u32 magic; /* magic word OF_DT_HEADER */
312 u32 totalsize; /* total size of DT block */
313 u32 off_dt_struct; /* offset to structure */
314 u32 off_dt_strings; /* offset to strings */
315 u32 off_mem_rsvmap; /* offset to memory reserve map
Domen Puncer5dd60162007-03-02 21:44:45 +1100316 */
David Gibsonc125a182006-02-01 03:05:22 -0800317 u32 version; /* format version */
318 u32 last_comp_version; /* last compatible version */
319
320 /* version 2 fields below */
321 u32 boot_cpuid_phys; /* Which physical CPU id we're
322 booting on */
323 /* version 3 fields below */
324 u32 size_dt_strings; /* size of the strings block */
David Gibson0e0293c2007-03-14 11:50:40 +1100325
326 /* version 17 fields below */
327 u32 size_dt_struct; /* size of the DT structure block */
David Gibsonc125a182006-02-01 03:05:22 -0800328};
329
330 Along with the constants:
331
332/* Definitions used by the flattened device tree */
333#define OF_DT_HEADER 0xd00dfeed /* 4: version,
334 4: total size */
335#define OF_DT_BEGIN_NODE 0x1 /* Start node: full name
Domen Puncer5dd60162007-03-02 21:44:45 +1100336 */
David Gibsonc125a182006-02-01 03:05:22 -0800337#define OF_DT_END_NODE 0x2 /* End node */
338#define OF_DT_PROP 0x3 /* Property: name off,
339 size, content */
340#define OF_DT_END 0x9
341
342 All values in this header are in big endian format, the various
343 fields in this header are defined more precisely below. All
344 "offset" values are in bytes from the start of the header; that is
345 from the value of r3.
346
347 - magic
348
349 This is a magic value that "marks" the beginning of the
350 device-tree block header. It contains the value 0xd00dfeed and is
351 defined by the constant OF_DT_HEADER
352
353 - totalsize
354
355 This is the total size of the DT block including the header. The
356 "DT" block should enclose all data structures defined in this
357 chapter (who are pointed to by offsets in this header). That is,
358 the device-tree structure, strings, and the memory reserve map.
359
360 - off_dt_struct
361
362 This is an offset from the beginning of the header to the start
363 of the "structure" part the device tree. (see 2) device tree)
364
365 - off_dt_strings
366
367 This is an offset from the beginning of the header to the start
368 of the "strings" part of the device-tree
369
370 - off_mem_rsvmap
371
372 This is an offset from the beginning of the header to the start
Domen Puncer5dd60162007-03-02 21:44:45 +1100373 of the reserved memory map. This map is a list of pairs of 64-
David Gibsonc125a182006-02-01 03:05:22 -0800374 bit integers. Each pair is a physical address and a size. The
David Gibsonc125a182006-02-01 03:05:22 -0800375 list is terminated by an entry of size 0. This map provides the
376 kernel with a list of physical memory areas that are "reserved"
377 and thus not to be used for memory allocations, especially during
378 early initialization. The kernel needs to allocate memory during
379 boot for things like un-flattening the device-tree, allocating an
380 MMU hash table, etc... Those allocations must be done in such a
381 way to avoid overriding critical things like, on Open Firmware
382 capable machines, the RTAS instance, or on some pSeries, the TCE
383 tables used for the iommu. Typically, the reserve map should
384 contain _at least_ this DT block itself (header,total_size). If
385 you are passing an initrd to the kernel, you should reserve it as
386 well. You do not need to reserve the kernel image itself. The map
Domen Puncer5dd60162007-03-02 21:44:45 +1100387 should be 64-bit aligned.
David Gibsonc125a182006-02-01 03:05:22 -0800388
389 - version
390
391 This is the version of this structure. Version 1 stops
392 here. Version 2 adds an additional field boot_cpuid_phys.
393 Version 3 adds the size of the strings block, allowing the kernel
394 to reallocate it easily at boot and free up the unused flattened
395 structure after expansion. Version 16 introduces a new more
396 "compact" format for the tree itself that is however not backward
David Gibson0e0293c2007-03-14 11:50:40 +1100397 compatible. Version 17 adds an additional field, size_dt_struct,
398 allowing it to be reallocated or moved more easily (this is
399 particularly useful for bootloaders which need to make
400 adjustments to a device tree based on probed information). You
401 should always generate a structure of the highest version defined
402 at the time of your implementation. Currently that is version 17,
403 unless you explicitly aim at being backward compatible.
David Gibsonc125a182006-02-01 03:05:22 -0800404
405 - last_comp_version
406
407 Last compatible version. This indicates down to what version of
408 the DT block you are backward compatible. For example, version 2
409 is backward compatible with version 1 (that is, a kernel build
410 for version 1 will be able to boot with a version 2 format). You
411 should put a 1 in this field if you generate a device tree of
David Gibson0e0293c2007-03-14 11:50:40 +1100412 version 1 to 3, or 16 if you generate a tree of version 16 or 17
David Gibsonc125a182006-02-01 03:05:22 -0800413 using the new unit name format.
414
415 - boot_cpuid_phys
416
417 This field only exist on version 2 headers. It indicate which
418 physical CPU ID is calling the kernel entry point. This is used,
419 among others, by kexec. If you are on an SMP system, this value
420 should match the content of the "reg" property of the CPU node in
421 the device-tree corresponding to the CPU calling the kernel entry
422 point (see further chapters for more informations on the required
423 device-tree contents)
424
David Gibson0e0293c2007-03-14 11:50:40 +1100425 - size_dt_strings
426
427 This field only exists on version 3 and later headers. It
428 gives the size of the "strings" section of the device tree (which
429 starts at the offset given by off_dt_strings).
430
431 - size_dt_struct
432
433 This field only exists on version 17 and later headers. It gives
434 the size of the "structure" section of the device tree (which
435 starts at the offset given by off_dt_struct).
David Gibsonc125a182006-02-01 03:05:22 -0800436
437 So the typical layout of a DT block (though the various parts don't
438 need to be in that order) looks like this (addresses go from top to
439 bottom):
440
441
442 ------------------------------
443 r3 -> | struct boot_param_header |
444 ------------------------------
445 | (alignment gap) (*) |
446 ------------------------------
447 | memory reserve map |
448 ------------------------------
449 | (alignment gap) |
450 ------------------------------
451 | |
452 | device-tree structure |
453 | |
454 ------------------------------
455 | (alignment gap) |
456 ------------------------------
457 | |
458 | device-tree strings |
459 | |
460 -----> ------------------------------
461 |
462 |
463 --- (r3 + totalsize)
464
465 (*) The alignment gaps are not necessarily present; their presence
466 and size are dependent on the various alignment requirements of
467 the individual data blocks.
468
469
4702) Device tree generalities
471---------------------------
472
473This device-tree itself is separated in two different blocks, a
474structure block and a strings block. Both need to be aligned to a 4
475byte boundary.
476
477First, let's quickly describe the device-tree concept before detailing
478the storage format. This chapter does _not_ describe the detail of the
479required types of nodes & properties for the kernel, this is done
480later in chapter III.
481
482The device-tree layout is strongly inherited from the definition of
483the Open Firmware IEEE 1275 device-tree. It's basically a tree of
484nodes, each node having two or more named properties. A property can
485have a value or not.
486
487It is a tree, so each node has one and only one parent except for the
488root node who has no parent.
489
490A node has 2 names. The actual node name is generally contained in a
491property of type "name" in the node property list whose value is a
492zero terminated string and is mandatory for version 1 to 3 of the
David Gibson0e0293c2007-03-14 11:50:40 +1100493format definition (as it is in Open Firmware). Version 16 makes it
David Gibsonc125a182006-02-01 03:05:22 -0800494optional as it can generate it from the unit name defined below.
495
Matt LaPlante2fe0ae72006-10-03 22:50:39 +0200496There is also a "unit name" that is used to differentiate nodes with
David Gibsonc125a182006-02-01 03:05:22 -0800497the same name at the same level, it is usually made of the node
Matt LaPlante2fe0ae72006-10-03 22:50:39 +0200498names, the "@" sign, and a "unit address", which definition is
David Gibsonc125a182006-02-01 03:05:22 -0800499specific to the bus type the node sits on.
500
501The unit name doesn't exist as a property per-se but is included in
502the device-tree structure. It is typically used to represent "path" in
503the device-tree. More details about the actual format of these will be
504below.
505
506The kernel powerpc generic code does not make any formal use of the
507unit address (though some board support code may do) so the only real
508requirement here for the unit address is to ensure uniqueness of
509the node unit name at a given level of the tree. Nodes with no notion
510of address and no possible sibling of the same name (like /memory or
511/cpus) may omit the unit address in the context of this specification,
512or use the "@0" default unit address. The unit name is used to define
513a node "full path", which is the concatenation of all parent node
514unit names separated with "/".
515
516The root node doesn't have a defined name, and isn't required to have
517a name property either if you are using version 3 or earlier of the
518format. It also has no unit address (no @ symbol followed by a unit
519address). The root node unit name is thus an empty string. The full
520path to the root node is "/".
521
522Every node which actually represents an actual device (that is, a node
523which isn't only a virtual "container" for more nodes, like "/cpus"
524is) is also required to have a "device_type" property indicating the
525type of node .
526
527Finally, every node that can be referenced from a property in another
528node is required to have a "linux,phandle" property. Real open
529firmware implementations provide a unique "phandle" value for every
530node that the "prom_init()" trampoline code turns into
531"linux,phandle" properties. However, this is made optional if the
532flattened device tree is used directly. An example of a node
533referencing another node via "phandle" is when laying out the
534interrupt tree which will be described in a further version of this
535document.
536
Domen Puncer5dd60162007-03-02 21:44:45 +1100537This "linux, phandle" property is a 32-bit value that uniquely
David Gibsonc125a182006-02-01 03:05:22 -0800538identifies a node. You are free to use whatever values or system of
539values, internal pointers, or whatever to generate these, the only
540requirement is that every node for which you provide that property has
541a unique value for it.
542
543Here is an example of a simple device-tree. In this example, an "o"
544designates a node followed by the node unit name. Properties are
545presented with their name followed by their content. "content"
546represents an ASCII string (zero terminated) value, while <content>
Domen Puncer5dd60162007-03-02 21:44:45 +1100547represents a 32-bit hexadecimal value. The various nodes in this
David Gibsonc125a182006-02-01 03:05:22 -0800548example will be discussed in a later chapter. At this point, it is
549only meant to give you a idea of what a device-tree looks like. I have
550purposefully kept the "name" and "linux,phandle" properties which
551aren't necessary in order to give you a better idea of what the tree
552looks like in practice.
553
554 / o device-tree
555 |- name = "device-tree"
556 |- model = "MyBoardName"
557 |- compatible = "MyBoardFamilyName"
558 |- #address-cells = <2>
559 |- #size-cells = <2>
560 |- linux,phandle = <0>
561 |
562 o cpus
563 | | - name = "cpus"
564 | | - linux,phandle = <1>
565 | | - #address-cells = <1>
566 | | - #size-cells = <0>
567 | |
568 | o PowerPC,970@0
569 | |- name = "PowerPC,970"
570 | |- device_type = "cpu"
571 | |- reg = <0>
572 | |- clock-frequency = <5f5e1000>
Timur Tabi32aed2a2007-02-14 15:29:07 -0600573 | |- 64-bit
David Gibsonc125a182006-02-01 03:05:22 -0800574 | |- linux,phandle = <2>
575 |
576 o memory@0
577 | |- name = "memory"
578 | |- device_type = "memory"
579 | |- reg = <00000000 00000000 00000000 20000000>
580 | |- linux,phandle = <3>
581 |
582 o chosen
583 |- name = "chosen"
584 |- bootargs = "root=/dev/sda2"
David Gibsonc125a182006-02-01 03:05:22 -0800585 |- linux,phandle = <4>
586
587This tree is almost a minimal tree. It pretty much contains the
588minimal set of required nodes and properties to boot a linux kernel;
589that is, some basic model informations at the root, the CPUs, and the
590physical memory layout. It also includes misc information passed
591through /chosen, like in this example, the platform type (mandatory)
592and the kernel command line arguments (optional).
593
Timur Tabi32aed2a2007-02-14 15:29:07 -0600594The /cpus/PowerPC,970@0/64-bit property is an example of a
David Gibsonc125a182006-02-01 03:05:22 -0800595property without a value. All other properties have a value. The
596significance of the #address-cells and #size-cells properties will be
597explained in chapter IV which defines precisely the required nodes and
598properties and their content.
599
600
6013) Device tree "structure" block
602
603The structure of the device tree is a linearized tree structure. The
604"OF_DT_BEGIN_NODE" token starts a new node, and the "OF_DT_END_NODE"
605ends that node definition. Child nodes are simply defined before
606"OF_DT_END_NODE" (that is nodes within the node). A 'token' is a 32
607bit value. The tree has to be "finished" with a OF_DT_END token
608
609Here's the basic structure of a single node:
610
611 * token OF_DT_BEGIN_NODE (that is 0x00000001)
612 * for version 1 to 3, this is the node full path as a zero
613 terminated string, starting with "/". For version 16 and later,
614 this is the node unit name only (or an empty string for the
615 root node)
616 * [align gap to next 4 bytes boundary]
617 * for each property:
618 * token OF_DT_PROP (that is 0x00000003)
Domen Puncer5dd60162007-03-02 21:44:45 +1100619 * 32-bit value of property value size in bytes (or 0 if no
620 value)
621 * 32-bit value of offset in string block of property name
David Gibsonc125a182006-02-01 03:05:22 -0800622 * property value data if any
623 * [align gap to next 4 bytes boundary]
624 * [child nodes if any]
625 * token OF_DT_END_NODE (that is 0x00000002)
626
Domen Puncer5dd60162007-03-02 21:44:45 +1100627So the node content can be summarized as a start token, a full path,
Matt LaPlante53cb4722006-10-03 22:55:17 +0200628a list of properties, a list of child nodes, and an end token. Every
David Gibsonc125a182006-02-01 03:05:22 -0800629child node is a full node structure itself as defined above.
630
David Gibsoneff2ebd2007-06-28 15:56:26 +1000631NOTE: The above definition requires that all property definitions for
632a particular node MUST precede any subnode definitions for that node.
633Although the structure would not be ambiguous if properties and
634subnodes were intermingled, the kernel parser requires that the
635properties come first (up until at least 2.6.22). Any tools
636manipulating a flattened tree must take care to preserve this
637constraint.
638
Matt LaPlante53cb4722006-10-03 22:55:17 +02006394) Device tree "strings" block
David Gibsonc125a182006-02-01 03:05:22 -0800640
641In order to save space, property names, which are generally redundant,
642are stored separately in the "strings" block. This block is simply the
643whole bunch of zero terminated strings for all property names
644concatenated together. The device-tree property definitions in the
645structure block will contain offset values from the beginning of the
646strings block.
647
648
649III - Required content of the device tree
650=========================================
651
652WARNING: All "linux,*" properties defined in this document apply only
653to a flattened device-tree. If your platform uses a real
654implementation of Open Firmware or an implementation compatible with
655the Open Firmware client interface, those properties will be created
656by the trampoline code in the kernel's prom_init() file. For example,
657that's where you'll have to add code to detect your board model and
Matt LaPlantea2ffd272006-10-03 22:49:15 +0200658set the platform number. However, when using the flattened device-tree
David Gibsonc125a182006-02-01 03:05:22 -0800659entry point, there is no prom_init() pass, and thus you have to
660provide those properties yourself.
661
662
6631) Note about cells and address representation
664----------------------------------------------
665
666The general rule is documented in the various Open Firmware
Domen Puncer5dd60162007-03-02 21:44:45 +1100667documentations. If you choose to describe a bus with the device-tree
David Gibsonc125a182006-02-01 03:05:22 -0800668and there exist an OF bus binding, then you should follow the
669specification. However, the kernel does not require every single
670device or bus to be described by the device tree.
671
672In general, the format of an address for a device is defined by the
673parent bus type, based on the #address-cells and #size-cells
674property. In the absence of such a property, the parent's parent
675values are used, etc... The kernel requires the root node to have
676those properties defining addresses format for devices directly mapped
677on the processor bus.
678
679Those 2 properties define 'cells' for representing an address and a
Domen Puncer5dd60162007-03-02 21:44:45 +1100680size. A "cell" is a 32-bit number. For example, if both contain 2
David Gibsonc125a182006-02-01 03:05:22 -0800681like the example tree given above, then an address and a size are both
Domen Puncer5dd60162007-03-02 21:44:45 +1100682composed of 2 cells, and each is a 64-bit number (cells are
David Gibsonc125a182006-02-01 03:05:22 -0800683concatenated and expected to be in big endian format). Another example
684is the way Apple firmware defines them, with 2 cells for an address
685and one cell for a size. Most 32-bit implementations should define
686#address-cells and #size-cells to 1, which represents a 32-bit value.
687Some 32-bit processors allow for physical addresses greater than 32
688bits; these processors should define #address-cells as 2.
689
690"reg" properties are always a tuple of the type "address size" where
691the number of cells of address and size is specified by the bus
692#address-cells and #size-cells. When a bus supports various address
693spaces and other flags relative to a given address allocation (like
694prefetchable, etc...) those flags are usually added to the top level
695bits of the physical address. For example, a PCI physical address is
696made of 3 cells, the bottom two containing the actual address itself
697while the top cell contains address space indication, flags, and pci
698bus & device numbers.
699
700For busses that support dynamic allocation, it's the accepted practice
701to then not provide the address in "reg" (keep it 0) though while
702providing a flag indicating the address is dynamically allocated, and
703then, to provide a separate "assigned-addresses" property that
704contains the fully allocated addresses. See the PCI OF bindings for
705details.
706
707In general, a simple bus with no address space bits and no dynamic
708allocation is preferred if it reflects your hardware, as the existing
709kernel address parsing functions will work out of the box. If you
710define a bus type with a more complex address format, including things
711like address space bits, you'll have to add a bus translator to the
712prom_parse.c file of the recent kernels for your bus type.
713
714The "reg" property only defines addresses and sizes (if #size-cells
Matt LaPlante992caac2006-10-03 22:52:05 +0200715is non-0) within a given bus. In order to translate addresses upward
Domen Puncer5dd60162007-03-02 21:44:45 +1100716(that is into parent bus addresses, and possibly into CPU physical
David Gibsonc125a182006-02-01 03:05:22 -0800717addresses), all busses must contain a "ranges" property. If the
718"ranges" property is missing at a given level, it's assumed that
Matt LaPlante992caac2006-10-03 22:52:05 +0200719translation isn't possible. The format of the "ranges" property for a
David Gibsonc125a182006-02-01 03:05:22 -0800720bus is a list of:
721
722 bus address, parent bus address, size
723
724"bus address" is in the format of the bus this bus node is defining,
725that is, for a PCI bridge, it would be a PCI address. Thus, (bus
726address, size) defines a range of addresses for child devices. "parent
727bus address" is in the format of the parent bus of this bus. For
728example, for a PCI host controller, that would be a CPU address. For a
729PCI<->ISA bridge, that would be a PCI address. It defines the base
730address in the parent bus where the beginning of that range is mapped.
731
Domen Puncer5dd60162007-03-02 21:44:45 +1100732For a new 64-bit powerpc board, I recommend either the 2/2 format or
David Gibsonc125a182006-02-01 03:05:22 -0800733Apple's 2/1 format which is slightly more compact since sizes usually
Domen Puncer5dd60162007-03-02 21:44:45 +1100734fit in a single 32-bit word. New 32-bit powerpc boards should use a
David Gibsonc125a182006-02-01 03:05:22 -08007351/1 format, unless the processor supports physical addresses greater
736than 32-bits, in which case a 2/1 format is recommended.
737
738
7392) Note about "compatible" properties
740-------------------------------------
741
742These properties are optional, but recommended in devices and the root
743node. The format of a "compatible" property is a list of concatenated
744zero terminated strings. They allow a device to express its
745compatibility with a family of similar devices, in some cases,
746allowing a single driver to match against several devices regardless
747of their actual names.
748
7493) Note about "name" properties
750-------------------------------
751
752While earlier users of Open Firmware like OldWorld macintoshes tended
753to use the actual device name for the "name" property, it's nowadays
754considered a good practice to use a name that is closer to the device
755class (often equal to device_type). For example, nowadays, ethernet
756controllers are named "ethernet", an additional "model" property
757defining precisely the chip type/model, and "compatible" property
758defining the family in case a single driver can driver more than one
759of these chips. However, the kernel doesn't generally put any
760restriction on the "name" property; it is simply considered good
761practice to follow the standard and its evolutions as closely as
762possible.
763
764Note also that the new format version 16 makes the "name" property
765optional. If it's absent for a node, then the node's unit name is then
766used to reconstruct the name. That is, the part of the unit name
767before the "@" sign is used (or the entire unit name if no "@" sign
768is present).
769
7704) Note about node and property names and character set
771-------------------------------------------------------
772
Matt LaPlantea2ffd272006-10-03 22:49:15 +0200773While open firmware provides more flexible usage of 8859-1, this
David Gibsonc125a182006-02-01 03:05:22 -0800774specification enforces more strict rules. Nodes and properties should
775be comprised only of ASCII characters 'a' to 'z', '0' to
776'9', ',', '.', '_', '+', '#', '?', and '-'. Node names additionally
777allow uppercase characters 'A' to 'Z' (property names should be
778lowercase. The fact that vendors like Apple don't respect this rule is
779irrelevant here). Additionally, node and property names should always
780begin with a character in the range 'a' to 'z' (or 'A' to 'Z' for node
781names).
782
783The maximum number of characters for both nodes and property names
784is 31. In the case of node names, this is only the leftmost part of
785a unit name (the pure "name" property), it doesn't include the unit
786address which can extend beyond that limit.
787
788
7895) Required nodes and properties
790--------------------------------
791 These are all that are currently required. However, it is strongly
792 recommended that you expose PCI host bridges as documented in the
793 PCI binding to open firmware, and your interrupt tree as documented
794 in OF interrupt tree specification.
795
796 a) The root node
797
798 The root node requires some properties to be present:
799
800 - model : this is your board name/model
801 - #address-cells : address representation for "root" devices
802 - #size-cells: the size representation for "root" devices
Benjamin Herrenschmidte8222502006-03-28 23:15:54 +1100803 - device_type : This property shouldn't be necessary. However, if
804 you decide to create a device_type for your root node, make sure it
805 is _not_ "chrp" unless your platform is a pSeries or PAPR compliant
806 one for 64-bit, or a CHRP-type machine for 32-bit as this will
807 matched by the kernel this way.
David Gibsonc125a182006-02-01 03:05:22 -0800808
809 Additionally, some recommended properties are:
810
811 - compatible : the board "family" generally finds its way here,
812 for example, if you have 2 board models with a similar layout,
813 that typically get driven by the same platform code in the
814 kernel, you would use a different "model" property but put a
815 value in "compatible". The kernel doesn't directly use that
Stuart Yoder143a42d2007-02-16 11:30:29 -0600816 value but it is generally useful.
David Gibsonc125a182006-02-01 03:05:22 -0800817
818 The root node is also generally where you add additional properties
819 specific to your board like the serial number if any, that sort of
Matt LaPlante6c28f2c2006-10-03 22:46:31 +0200820 thing. It is recommended that if you add any "custom" property whose
David Gibsonc125a182006-02-01 03:05:22 -0800821 name may clash with standard defined ones, you prefix them with your
822 vendor name and a comma.
823
824 b) The /cpus node
825
826 This node is the parent of all individual CPU nodes. It doesn't
827 have any specific requirements, though it's generally good practice
828 to have at least:
829
830 #address-cells = <00000001>
831 #size-cells = <00000000>
832
833 This defines that the "address" for a CPU is a single cell, and has
834 no meaningful size. This is not necessary but the kernel will assume
835 that format when reading the "reg" properties of a CPU node, see
836 below
837
838 c) The /cpus/* nodes
839
840 So under /cpus, you are supposed to create a node for every CPU on
841 the machine. There is no specific restriction on the name of the
842 CPU, though It's common practice to call it PowerPC,<name>. For
843 example, Apple uses PowerPC,G5 while IBM uses PowerPC,970FX.
844
845 Required properties:
846
847 - device_type : has to be "cpu"
Domen Puncer5dd60162007-03-02 21:44:45 +1100848 - reg : This is the physical CPU number, it's a single 32-bit cell
David Gibsonc125a182006-02-01 03:05:22 -0800849 and is also used as-is as the unit number for constructing the
850 unit name in the full path. For example, with 2 CPUs, you would
851 have the full path:
852 /cpus/PowerPC,970FX@0
853 /cpus/PowerPC,970FX@1
854 (unit addresses do not require leading zeroes)
855 - d-cache-line-size : one cell, L1 data cache line size in bytes
856 - i-cache-line-size : one cell, L1 instruction cache line size in
857 bytes
858 - d-cache-size : one cell, size of L1 data cache in bytes
859 - i-cache-size : one cell, size of L1 instruction cache in bytes
David Gibsonc125a182006-02-01 03:05:22 -0800860
861 Recommended properties:
862
863 - timebase-frequency : a cell indicating the frequency of the
864 timebase in Hz. This is not directly used by the generic code,
865 but you are welcome to copy/paste the pSeries code for setting
866 the kernel timebase/decrementer calibration based on this
867 value.
868 - clock-frequency : a cell indicating the CPU core clock frequency
Domen Puncer5dd60162007-03-02 21:44:45 +1100869 in Hz. A new property will be defined for 64-bit values, but if
David Gibsonc125a182006-02-01 03:05:22 -0800870 your frequency is < 4Ghz, one cell is enough. Here as well as
871 for the above, the common code doesn't use that property, but
872 you are welcome to re-use the pSeries or Maple one. A future
873 kernel version might provide a common function for this.
874
875 You are welcome to add any property you find relevant to your board,
876 like some information about the mechanism used to soft-reset the
877 CPUs. For example, Apple puts the GPIO number for CPU soft reset
878 lines in there as a "soft-reset" property since they start secondary
879 CPUs by soft-resetting them.
880
881
882 d) the /memory node(s)
883
884 To define the physical memory layout of your board, you should
885 create one or more memory node(s). You can either create a single
886 node with all memory ranges in its reg property, or you can create
887 several nodes, as you wish. The unit address (@ part) used for the
888 full path is the address of the first range of memory defined by a
889 given node. If you use a single memory node, this will typically be
890 @0.
891
892 Required properties:
893
894 - device_type : has to be "memory"
895 - reg : This property contains all the physical memory ranges of
896 your board. It's a list of addresses/sizes concatenated
897 together, with the number of cells of each defined by the
898 #address-cells and #size-cells of the root node. For example,
Matt LaPlante6c28f2c2006-10-03 22:46:31 +0200899 with both of these properties being 2 like in the example given
David Gibsonc125a182006-02-01 03:05:22 -0800900 earlier, a 970 based machine with 6Gb of RAM could typically
901 have a "reg" property here that looks like:
902
903 00000000 00000000 00000000 80000000
904 00000001 00000000 00000001 00000000
905
906 That is a range starting at 0 of 0x80000000 bytes and a range
907 starting at 0x100000000 and of 0x100000000 bytes. You can see
908 that there is no memory covering the IO hole between 2Gb and
909 4Gb. Some vendors prefer splitting those ranges into smaller
910 segments, but the kernel doesn't care.
911
912 e) The /chosen node
913
914 This node is a bit "special". Normally, that's where open firmware
915 puts some variable environment information, like the arguments, or
Stuart Yoderd1bff9e2007-02-19 11:25:05 -0600916 the default input/output devices.
David Gibsonc125a182006-02-01 03:05:22 -0800917
918 This specification makes a few of these mandatory, but also defines
919 some linux-specific properties that would be normally constructed by
920 the prom_init() trampoline when booting with an OF client interface,
921 but that you have to provide yourself when using the flattened format.
922
David Gibsonc125a182006-02-01 03:05:22 -0800923 Recommended properties:
924
925 - bootargs : This zero-terminated string is passed as the kernel
926 command line
927 - linux,stdout-path : This is the full path to your standard
928 console device if any. Typically, if you have serial devices on
929 your board, you may want to put the full path to the one set as
930 the default console in the firmware here, for the kernel to pick
Matt LaPlante5d3f0832006-11-30 05:21:10 +0100931 it up as its own default console. If you look at the function
David Gibsonc125a182006-02-01 03:05:22 -0800932 set_preferred_console() in arch/ppc64/kernel/setup.c, you'll see
933 that the kernel tries to find out the default console and has
934 knowledge of various types like 8250 serial ports. You may want
935 to extend this function to add your own.
David Gibsonc125a182006-02-01 03:05:22 -0800936
937 Note that u-boot creates and fills in the chosen node for platforms
938 that use it.
939
Stuart Yoderd1bff9e2007-02-19 11:25:05 -0600940 (Note: a practice that is now obsolete was to include a property
941 under /chosen called interrupt-controller which had a phandle value
942 that pointed to the main interrupt controller)
943
David Gibsonc125a182006-02-01 03:05:22 -0800944 f) the /soc<SOCname> node
945
946 This node is used to represent a system-on-a-chip (SOC) and must be
947 present if the processor is a SOC. The top-level soc node contains
948 information that is global to all devices on the SOC. The node name
949 should contain a unit address for the SOC, which is the base address
950 of the memory-mapped register set for the SOC. The name of an soc
951 node should start with "soc", and the remainder of the name should
952 represent the part number for the soc. For example, the MPC8540's
953 soc node would be called "soc8540".
954
955 Required properties:
956
957 - device_type : Should be "soc"
958 - ranges : Should be defined as specified in 1) to describe the
959 translation of SOC addresses for memory mapped SOC registers.
Becky Bruce7d4b95a2006-02-06 14:26:31 -0600960 - bus-frequency: Contains the bus frequency for the SOC node.
961 Typically, the value of this field is filled in by the boot
962 loader.
963
David Gibsonc125a182006-02-01 03:05:22 -0800964
965 Recommended properties:
966
967 - reg : This property defines the address and size of the
968 memory-mapped registers that are used for the SOC node itself.
969 It does not include the child device registers - these will be
970 defined inside each child node. The address specified in the
971 "reg" property should match the unit address of the SOC node.
972 - #address-cells : Address representation for "soc" devices. The
973 format of this field may vary depending on whether or not the
974 device registers are memory mapped. For memory mapped
975 registers, this field represents the number of cells needed to
976 represent the address of the registers. For SOCs that do not
977 use MMIO, a special address format should be defined that
978 contains enough cells to represent the required information.
979 See 1) above for more details on defining #address-cells.
980 - #size-cells : Size representation for "soc" devices
981 - #interrupt-cells : Defines the width of cells used to represent
982 interrupts. Typically this value is <2>, which includes a
983 32-bit number that represents the interrupt number, and a
984 32-bit number that represents the interrupt sense and level.
985 This field is only needed if the SOC contains an interrupt
986 controller.
987
988 The SOC node may contain child nodes for each SOC device that the
989 platform uses. Nodes should not be created for devices which exist
990 on the SOC but are not used by a particular platform. See chapter VI
Domen Puncer5dd60162007-03-02 21:44:45 +1100991 for more information on how to specify devices that are part of a SOC.
David Gibsonc125a182006-02-01 03:05:22 -0800992
993 Example SOC node for the MPC8540:
994
995 soc8540@e0000000 {
996 #address-cells = <1>;
997 #size-cells = <1>;
998 #interrupt-cells = <2>;
999 device_type = "soc";
1000 ranges = <00000000 e0000000 00100000>
1001 reg = <e0000000 00003000>;
Becky Bruce7d4b95a2006-02-06 14:26:31 -06001002 bus-frequency = <0>;
David Gibsonc125a182006-02-01 03:05:22 -08001003 }
1004
1005
1006
1007IV - "dtc", the device tree compiler
1008====================================
1009
1010
1011dtc source code can be found at
1012<http://ozlabs.org/~dgibson/dtc/dtc.tar.gz>
1013
1014WARNING: This version is still in early development stage; the
1015resulting device-tree "blobs" have not yet been validated with the
1016kernel. The current generated bloc lacks a useful reserve map (it will
1017be fixed to generate an empty one, it's up to the bootloader to fill
1018it up) among others. The error handling needs work, bugs are lurking,
1019etc...
1020
1021dtc basically takes a device-tree in a given format and outputs a
1022device-tree in another format. The currently supported formats are:
1023
1024 Input formats:
1025 -------------
1026
1027 - "dtb": "blob" format, that is a flattened device-tree block
1028 with
1029 header all in a binary blob.
1030 - "dts": "source" format. This is a text file containing a
1031 "source" for a device-tree. The format is defined later in this
1032 chapter.
1033 - "fs" format. This is a representation equivalent to the
1034 output of /proc/device-tree, that is nodes are directories and
1035 properties are files
1036
1037 Output formats:
1038 ---------------
1039
1040 - "dtb": "blob" format
1041 - "dts": "source" format
1042 - "asm": assembly language file. This is a file that can be
1043 sourced by gas to generate a device-tree "blob". That file can
1044 then simply be added to your Makefile. Additionally, the
Matt LaPlante6c28f2c2006-10-03 22:46:31 +02001045 assembly file exports some symbols that can be used.
David Gibsonc125a182006-02-01 03:05:22 -08001046
1047
1048The syntax of the dtc tool is
1049
1050 dtc [-I <input-format>] [-O <output-format>]
1051 [-o output-filename] [-V output_version] input_filename
1052
1053
Domen Puncer5dd60162007-03-02 21:44:45 +11001054The "output_version" defines what version of the "blob" format will be
David Gibsonc125a182006-02-01 03:05:22 -08001055generated. Supported versions are 1,2,3 and 16. The default is
1056currently version 3 but that may change in the future to version 16.
1057
1058Additionally, dtc performs various sanity checks on the tree, like the
Matt LaPlante6c28f2c2006-10-03 22:46:31 +02001059uniqueness of linux, phandle properties, validity of strings, etc...
David Gibsonc125a182006-02-01 03:05:22 -08001060
1061The format of the .dts "source" file is "C" like, supports C and C++
Matt LaPlante6c28f2c2006-10-03 22:46:31 +02001062style comments.
David Gibsonc125a182006-02-01 03:05:22 -08001063
1064/ {
1065}
1066
1067The above is the "device-tree" definition. It's the only statement
1068supported currently at the toplevel.
1069
1070/ {
1071 property1 = "string_value"; /* define a property containing a 0
1072 * terminated string
1073 */
1074
1075 property2 = <1234abcd>; /* define a property containing a
Domen Puncer5dd60162007-03-02 21:44:45 +11001076 * numerical 32-bit value (hexadecimal)
David Gibsonc125a182006-02-01 03:05:22 -08001077 */
1078
1079 property3 = <12345678 12345678 deadbeef>;
1080 /* define a property containing 3
Domen Puncer5dd60162007-03-02 21:44:45 +11001081 * numerical 32-bit values (cells) in
David Gibsonc125a182006-02-01 03:05:22 -08001082 * hexadecimal
1083 */
1084 property4 = [0a 0b 0c 0d de ea ad be ef];
1085 /* define a property whose content is
1086 * an arbitrary array of bytes
1087 */
1088
1089 childnode@addresss { /* define a child node named "childnode"
1090 * whose unit name is "childnode at
1091 * address"
1092 */
1093
1094 childprop = "hello\n"; /* define a property "childprop" of
1095 * childnode (in this case, a string)
1096 */
1097 };
1098};
1099
1100Nodes can contain other nodes etc... thus defining the hierarchical
1101structure of the tree.
1102
1103Strings support common escape sequences from C: "\n", "\t", "\r",
1104"\(octal value)", "\x(hex value)".
1105
1106It is also suggested that you pipe your source file through cpp (gcc
1107preprocessor) so you can use #include's, #define for constants, etc...
1108
1109Finally, various options are planned but not yet implemented, like
1110automatic generation of phandles, labels (exported to the asm file so
1111you can point to a property content and change it easily from whatever
1112you link the device-tree with), label or path instead of numeric value
1113in some cells to "point" to a node (replaced by a phandle at compile
1114time), export of reserve map address to the asm file, ability to
1115specify reserve map content at compile time, etc...
1116
1117We may provide a .h include file with common definitions of that
1118proves useful for some properties (like building PCI properties or
1119interrupt maps) though it may be better to add a notion of struct
1120definitions to the compiler...
1121
1122
1123V - Recommendations for a bootloader
1124====================================
1125
1126
1127Here are some various ideas/recommendations that have been proposed
1128while all this has been defined and implemented.
1129
1130 - The bootloader may want to be able to use the device-tree itself
1131 and may want to manipulate it (to add/edit some properties,
1132 like physical memory size or kernel arguments). At this point, 2
1133 choices can be made. Either the bootloader works directly on the
1134 flattened format, or the bootloader has its own internal tree
1135 representation with pointers (similar to the kernel one) and
1136 re-flattens the tree when booting the kernel. The former is a bit
1137 more difficult to edit/modify, the later requires probably a bit
1138 more code to handle the tree structure. Note that the structure
1139 format has been designed so it's relatively easy to "insert"
1140 properties or nodes or delete them by just memmoving things
1141 around. It contains no internal offsets or pointers for this
1142 purpose.
1143
Matt LaPlanted6bc8ac2006-10-03 22:54:15 +02001144 - An example of code for iterating nodes & retrieving properties
David Gibsonc125a182006-02-01 03:05:22 -08001145 directly from the flattened tree format can be found in the kernel
1146 file arch/ppc64/kernel/prom.c, look at scan_flat_dt() function,
Matt LaPlanted6bc8ac2006-10-03 22:54:15 +02001147 its usage in early_init_devtree(), and the corresponding various
David Gibsonc125a182006-02-01 03:05:22 -08001148 early_init_dt_scan_*() callbacks. That code can be re-used in a
1149 GPL bootloader, and as the author of that code, I would be happy
Domen Puncer5dd60162007-03-02 21:44:45 +11001150 to discuss possible free licensing to any vendor who wishes to
David Gibsonc125a182006-02-01 03:05:22 -08001151 integrate all or part of this code into a non-GPL bootloader.
1152
1153
1154
1155VI - System-on-a-chip devices and nodes
1156=======================================
1157
1158Many companies are now starting to develop system-on-a-chip
Domen Puncer5dd60162007-03-02 21:44:45 +11001159processors, where the processor core (CPU) and many peripheral devices
David Gibsonc125a182006-02-01 03:05:22 -08001160exist on a single piece of silicon. For these SOCs, an SOC node
1161should be used that defines child nodes for the devices that make
1162up the SOC. While platforms are not required to use this model in
1163order to boot the kernel, it is highly encouraged that all SOC
1164implementations define as complete a flat-device-tree as possible to
1165describe the devices on the SOC. This will allow for the
1166genericization of much of the kernel code.
1167
1168
11691) Defining child nodes of an SOC
1170---------------------------------
1171
1172Each device that is part of an SOC may have its own node entry inside
1173the SOC node. For each device that is included in the SOC, the unit
1174address property represents the address offset for this device's
1175memory-mapped registers in the parent's address space. The parent's
1176address space is defined by the "ranges" property in the top-level soc
1177node. The "reg" property for each node that exists directly under the
1178SOC node should contain the address mapping from the child address space
1179to the parent SOC address space and the size of the device's
1180memory-mapped register file.
1181
1182For many devices that may exist inside an SOC, there are predefined
1183specifications for the format of the device tree node. All SOC child
1184nodes should follow these specifications, except where noted in this
1185document.
1186
1187See appendix A for an example partial SOC node definition for the
1188MPC8540.
1189
1190
Stuart Yoder27565902007-03-02 13:42:33 -060011912) Representing devices without a current OF specification
David Gibsonc125a182006-02-01 03:05:22 -08001192----------------------------------------------------------
1193
1194Currently, there are many devices on SOCs that do not have a standard
1195representation pre-defined as part of the open firmware
1196specifications, mainly because the boards that contain these SOCs are
1197not currently booted using open firmware. This section contains
1198descriptions for the SOC devices for which new nodes have been
1199defined; this list will expand as more and more SOC-containing
1200platforms are moved over to use the flattened-device-tree model.
1201
1202 a) MDIO IO device
1203
1204 The MDIO is a bus to which the PHY devices are connected. For each
1205 device that exists on this bus, a child node should be created. See
1206 the definition of the PHY node below for an example of how to define
1207 a PHY.
1208
1209 Required properties:
1210 - reg : Offset and length of the register set for the device
1211 - device_type : Should be "mdio"
1212 - compatible : Should define the compatible device type for the
1213 mdio. Currently, this is most likely to be "gianfar"
1214
1215 Example:
1216
1217 mdio@24520 {
1218 reg = <24520 20>;
Becky Bruce7d4b95a2006-02-06 14:26:31 -06001219 device_type = "mdio";
1220 compatible = "gianfar";
David Gibsonc125a182006-02-01 03:05:22 -08001221
1222 ethernet-phy@0 {
1223 ......
1224 };
1225 };
1226
1227
1228 b) Gianfar-compatible ethernet nodes
1229
1230 Required properties:
1231
1232 - device_type : Should be "network"
1233 - model : Model of the device. Can be "TSEC", "eTSEC", or "FEC"
1234 - compatible : Should be "gianfar"
1235 - reg : Offset and length of the register set for the device
Jon Loeligerf5831652006-08-17 08:42:35 -05001236 - mac-address : List of bytes representing the ethernet address of
David Gibsonc125a182006-02-01 03:05:22 -08001237 this controller
1238 - interrupts : <a b> where a is the interrupt number and b is a
1239 field that represents an encoding of the sense and level
1240 information for the interrupt. This should be encoded based on
1241 the information in section 2) depending on the type of interrupt
1242 controller you have.
1243 - interrupt-parent : the phandle for the interrupt controller that
1244 services interrupts for this device.
1245 - phy-handle : The phandle for the PHY connected to this ethernet
1246 controller.
1247
Scott Woode0a2f282007-03-16 12:28:46 -05001248 Recommended properties:
1249
1250 - linux,network-index : This is the intended "index" of this
1251 network device. This is used by the bootwrapper to interpret
1252 MAC addresses passed by the firmware when no information other
1253 than indices is available to associate an address with a device.
Andy Flemingcc651852007-07-10 17:28:49 -05001254 - phy-connection-type : a string naming the controller/PHY interface type,
1255 i.e., "mii" (default), "rmii", "gmii", "rgmii", "rgmii-id", "sgmii",
1256 "tbi", or "rtbi". This property is only really needed if the connection
1257 is of type "rgmii-id", as all other connection types are detected by
1258 hardware.
1259
Scott Woode0a2f282007-03-16 12:28:46 -05001260
David Gibsonc125a182006-02-01 03:05:22 -08001261 Example:
1262
1263 ethernet@24000 {
1264 #size-cells = <0>;
1265 device_type = "network";
1266 model = "TSEC";
1267 compatible = "gianfar";
1268 reg = <24000 1000>;
Jon Loeligerf5831652006-08-17 08:42:35 -05001269 mac-address = [ 00 E0 0C 00 73 00 ];
David Gibsonc125a182006-02-01 03:05:22 -08001270 interrupts = <d 3 e 3 12 3>;
1271 interrupt-parent = <40000>;
1272 phy-handle = <2452000>
1273 };
1274
1275
1276
1277 c) PHY nodes
1278
1279 Required properties:
1280
1281 - device_type : Should be "ethernet-phy"
1282 - interrupts : <a b> where a is the interrupt number and b is a
1283 field that represents an encoding of the sense and level
1284 information for the interrupt. This should be encoded based on
1285 the information in section 2) depending on the type of interrupt
1286 controller you have.
1287 - interrupt-parent : the phandle for the interrupt controller that
1288 services interrupts for this device.
1289 - reg : The ID number for the phy, usually a small integer
1290 - linux,phandle : phandle for this node; likely referenced by an
1291 ethernet controller node.
1292
1293
1294 Example:
1295
1296 ethernet-phy@0 {
1297 linux,phandle = <2452000>
1298 interrupt-parent = <40000>;
1299 interrupts = <35 1>;
1300 reg = <0>;
1301 device_type = "ethernet-phy";
1302 };
1303
1304
1305 d) Interrupt controllers
1306
1307 Some SOC devices contain interrupt controllers that are different
1308 from the standard Open PIC specification. The SOC device nodes for
1309 these types of controllers should be specified just like a standard
1310 OpenPIC controller. Sense and level information should be encoded
1311 as specified in section 2) of this chapter for each device that
1312 specifies an interrupt.
1313
1314 Example :
1315
1316 pic@40000 {
1317 linux,phandle = <40000>;
1318 clock-frequency = <0>;
1319 interrupt-controller;
1320 #address-cells = <0>;
1321 reg = <40000 40000>;
1322 built-in;
1323 compatible = "chrp,open-pic";
1324 device_type = "open-pic";
1325 big-endian;
1326 };
1327
1328
1329 e) I2C
1330
1331 Required properties :
1332
1333 - device_type : Should be "i2c"
1334 - reg : Offset and length of the register set for the device
1335
1336 Recommended properties :
1337
1338 - compatible : Should be "fsl-i2c" for parts compatible with
1339 Freescale I2C specifications.
1340 - interrupts : <a b> where a is the interrupt number and b is a
1341 field that represents an encoding of the sense and level
1342 information for the interrupt. This should be encoded based on
1343 the information in section 2) depending on the type of interrupt
1344 controller you have.
1345 - interrupt-parent : the phandle for the interrupt controller that
1346 services interrupts for this device.
1347 - dfsrr : boolean; if defined, indicates that this I2C device has
1348 a digital filter sampling rate register
1349 - fsl5200-clocking : boolean; if defined, indicated that this device
1350 uses the FSL 5200 clocking mechanism.
1351
1352 Example :
1353
1354 i2c@3000 {
1355 interrupt-parent = <40000>;
1356 interrupts = <1b 3>;
1357 reg = <3000 18>;
1358 device_type = "i2c";
1359 compatible = "fsl-i2c";
1360 dfsrr;
1361 };
1362
1363
Becky Brucead71f122006-02-07 13:44:08 -06001364 f) Freescale SOC USB controllers
1365
1366 The device node for a USB controller that is part of a Freescale
1367 SOC is as described in the document "Open Firmware Recommended
1368 Practice : Universal Serial Bus" with the following modifications
1369 and additions :
1370
1371 Required properties :
Domen Puncer5dd60162007-03-02 21:44:45 +11001372 - compatible : Should be "fsl-usb2-mph" for multi port host USB
1373 controllers, or "fsl-usb2-dr" for dual role USB controllers
1374 - phy_type : For multi port host USB controllers, should be one of
1375 "ulpi", or "serial". For dual role USB controllers, should be
Becky Brucead71f122006-02-07 13:44:08 -06001376 one of "ulpi", "utmi", "utmi_wide", or "serial".
1377 - reg : Offset and length of the register set for the device
1378 - port0 : boolean; if defined, indicates port0 is connected for
1379 fsl-usb2-mph compatible controllers. Either this property or
1380 "port1" (or both) must be defined for "fsl-usb2-mph" compatible
1381 controllers.
1382 - port1 : boolean; if defined, indicates port1 is connected for
1383 fsl-usb2-mph compatible controllers. Either this property or
1384 "port0" (or both) must be defined for "fsl-usb2-mph" compatible
1385 controllers.
Li Yangea5b7a62007-02-07 13:51:09 +08001386 - dr_mode : indicates the working mode for "fsl-usb2-dr" compatible
1387 controllers. Can be "host", "peripheral", or "otg". Default to
1388 "host" if not defined for backward compatibility.
Becky Brucead71f122006-02-07 13:44:08 -06001389
1390 Recommended properties :
1391 - interrupts : <a b> where a is the interrupt number and b is a
1392 field that represents an encoding of the sense and level
1393 information for the interrupt. This should be encoded based on
1394 the information in section 2) depending on the type of interrupt
1395 controller you have.
1396 - interrupt-parent : the phandle for the interrupt controller that
1397 services interrupts for this device.
1398
Domen Puncer5dd60162007-03-02 21:44:45 +11001399 Example multi port host USB controller device node :
Becky Brucead71f122006-02-07 13:44:08 -06001400 usb@22000 {
1401 device_type = "usb";
1402 compatible = "fsl-usb2-mph";
1403 reg = <22000 1000>;
1404 #address-cells = <1>;
1405 #size-cells = <0>;
1406 interrupt-parent = <700>;
1407 interrupts = <27 1>;
1408 phy_type = "ulpi";
1409 port0;
1410 port1;
1411 };
1412
Domen Puncer5dd60162007-03-02 21:44:45 +11001413 Example dual role USB controller device node :
Becky Brucead71f122006-02-07 13:44:08 -06001414 usb@23000 {
1415 device_type = "usb";
1416 compatible = "fsl-usb2-dr";
1417 reg = <23000 1000>;
1418 #address-cells = <1>;
1419 #size-cells = <0>;
1420 interrupt-parent = <700>;
1421 interrupts = <26 1>;
Li Yangea5b7a62007-02-07 13:51:09 +08001422 dr_mode = "otg";
Becky Brucead71f122006-02-07 13:44:08 -06001423 phy = "ulpi";
1424 };
1425
1426
Kim Phillipsb88a0b12006-03-22 14:39:03 -06001427 g) Freescale SOC SEC Security Engines
1428
1429 Required properties:
1430
1431 - device_type : Should be "crypto"
1432 - model : Model of the device. Should be "SEC1" or "SEC2"
1433 - compatible : Should be "talitos"
1434 - reg : Offset and length of the register set for the device
1435 - interrupts : <a b> where a is the interrupt number and b is a
1436 field that represents an encoding of the sense and level
1437 information for the interrupt. This should be encoded based on
1438 the information in section 2) depending on the type of interrupt
1439 controller you have.
1440 - interrupt-parent : the phandle for the interrupt controller that
1441 services interrupts for this device.
1442 - num-channels : An integer representing the number of channels
1443 available.
1444 - channel-fifo-len : An integer representing the number of
1445 descriptor pointers each channel fetch fifo can hold.
1446 - exec-units-mask : The bitmask representing what execution units
Domen Puncer5dd60162007-03-02 21:44:45 +11001447 (EUs) are available. It's a single 32-bit cell. EU information
Kim Phillipsb88a0b12006-03-22 14:39:03 -06001448 should be encoded following the SEC's Descriptor Header Dword
1449 EU_SEL0 field documentation, i.e. as follows:
1450
1451 bit 0 = reserved - should be 0
1452 bit 1 = set if SEC has the ARC4 EU (AFEU)
1453 bit 2 = set if SEC has the DES/3DES EU (DEU)
1454 bit 3 = set if SEC has the message digest EU (MDEU)
1455 bit 4 = set if SEC has the random number generator EU (RNG)
1456 bit 5 = set if SEC has the public key EU (PKEU)
1457 bit 6 = set if SEC has the AES EU (AESU)
1458 bit 7 = set if SEC has the Kasumi EU (KEU)
1459
1460 bits 8 through 31 are reserved for future SEC EUs.
1461
1462 - descriptor-types-mask : The bitmask representing what descriptors
Domen Puncer5dd60162007-03-02 21:44:45 +11001463 are available. It's a single 32-bit cell. Descriptor type
Kim Phillipsb88a0b12006-03-22 14:39:03 -06001464 information should be encoded following the SEC's Descriptor
1465 Header Dword DESC_TYPE field documentation, i.e. as follows:
1466
1467 bit 0 = set if SEC supports the aesu_ctr_nonsnoop desc. type
1468 bit 1 = set if SEC supports the ipsec_esp descriptor type
1469 bit 2 = set if SEC supports the common_nonsnoop desc. type
1470 bit 3 = set if SEC supports the 802.11i AES ccmp desc. type
1471 bit 4 = set if SEC supports the hmac_snoop_no_afeu desc. type
1472 bit 5 = set if SEC supports the srtp descriptor type
1473 bit 6 = set if SEC supports the non_hmac_snoop_no_afeu desc.type
1474 bit 7 = set if SEC supports the pkeu_assemble descriptor type
1475 bit 8 = set if SEC supports the aesu_key_expand_output desc.type
1476 bit 9 = set if SEC supports the pkeu_ptmul descriptor type
1477 bit 10 = set if SEC supports the common_nonsnoop_afeu desc. type
1478 bit 11 = set if SEC supports the pkeu_ptadd_dbl descriptor type
1479
1480 ..and so on and so forth.
1481
1482 Example:
1483
1484 /* MPC8548E */
1485 crypto@30000 {
1486 device_type = "crypto";
1487 model = "SEC2";
1488 compatible = "talitos";
1489 reg = <30000 10000>;
1490 interrupts = <1d 3>;
1491 interrupt-parent = <40000>;
1492 num-channels = <4>;
Kim Phillipscbdb54d2006-07-03 15:10:14 -05001493 channel-fifo-len = <18>;
Kim Phillipsb88a0b12006-03-22 14:39:03 -06001494 exec-units-mask = <000000fe>;
Kim Phillipscbdb54d2006-07-03 15:10:14 -05001495 descriptor-types-mask = <012b0ebf>;
Kim Phillipsb88a0b12006-03-22 14:39:03 -06001496 };
1497
Li Yang9a1ab882006-10-02 20:08:59 -05001498 h) Board Control and Status (BCSR)
1499
1500 Required properties:
1501
1502 - device_type : Should be "board-control"
1503 - reg : Offset and length of the register set for the device
1504
1505 Example:
1506
1507 bcsr@f8000000 {
1508 device_type = "board-control";
1509 reg = <f8000000 8000>;
1510 };
1511
1512 i) Freescale QUICC Engine module (QE)
1513 This represents qe module that is installed on PowerQUICC II Pro.
Scott Woode631ae32007-09-14 13:04:54 -05001514
1515 NOTE: This is an interim binding; it should be updated to fit
1516 in with the CPM binding later in this document.
1517
Li Yang9a1ab882006-10-02 20:08:59 -05001518 Basically, it is a bus of devices, that could act more or less
1519 as a complete entity (UCC, USB etc ). All of them should be siblings on
1520 the "root" qe node, using the common properties from there.
Michael Opdenacker59c51592007-05-09 08:57:56 +02001521 The description below applies to the qe of MPC8360 and
Li Yang9a1ab882006-10-02 20:08:59 -05001522 more nodes and properties would be extended in the future.
1523
1524 i) Root QE device
1525
1526 Required properties:
1527 - device_type : should be "qe";
1528 - model : precise model of the QE, Can be "QE", "CPM", or "CPM2"
1529 - reg : offset and length of the device registers.
1530 - bus-frequency : the clock frequency for QUICC Engine.
1531
1532 Recommended properties
1533 - brg-frequency : the internal clock source frequency for baud-rate
1534 generators in Hz.
1535
1536 Example:
1537 qe@e0100000 {
1538 #address-cells = <1>;
1539 #size-cells = <1>;
1540 #interrupt-cells = <2>;
1541 device_type = "qe";
1542 model = "QE";
1543 ranges = <0 e0100000 00100000>;
1544 reg = <e0100000 480>;
1545 brg-frequency = <0>;
1546 bus-frequency = <179A7B00>;
1547 }
1548
1549
1550 ii) SPI (Serial Peripheral Interface)
1551
1552 Required properties:
1553 - device_type : should be "spi".
1554 - compatible : should be "fsl_spi".
Peter Korsgaardf023dc72007-10-03 18:29:09 +02001555 - mode : the SPI operation mode, it can be "cpu" or "cpu-qe".
Li Yang9a1ab882006-10-02 20:08:59 -05001556 - reg : Offset and length of the register set for the device
1557 - interrupts : <a b> where a is the interrupt number and b is a
1558 field that represents an encoding of the sense and level
1559 information for the interrupt. This should be encoded based on
1560 the information in section 2) depending on the type of interrupt
1561 controller you have.
1562 - interrupt-parent : the phandle for the interrupt controller that
1563 services interrupts for this device.
1564
1565 Example:
1566 spi@4c0 {
1567 device_type = "spi";
1568 compatible = "fsl_spi";
1569 reg = <4c0 40>;
1570 interrupts = <82 0>;
1571 interrupt-parent = <700>;
1572 mode = "cpu";
1573 };
1574
1575
1576 iii) USB (Universal Serial Bus Controller)
1577
1578 Required properties:
1579 - device_type : should be "usb".
1580 - compatible : could be "qe_udc" or "fhci-hcd".
1581 - mode : the could be "host" or "slave".
1582 - reg : Offset and length of the register set for the device
1583 - interrupts : <a b> where a is the interrupt number and b is a
1584 field that represents an encoding of the sense and level
1585 information for the interrupt. This should be encoded based on
1586 the information in section 2) depending on the type of interrupt
1587 controller you have.
1588 - interrupt-parent : the phandle for the interrupt controller that
1589 services interrupts for this device.
1590
1591 Example(slave):
1592 usb@6c0 {
1593 device_type = "usb";
1594 compatible = "qe_udc";
1595 reg = <6c0 40>;
1596 interrupts = <8b 0>;
1597 interrupt-parent = <700>;
1598 mode = "slave";
1599 };
1600
1601
1602 iv) UCC (Unified Communications Controllers)
1603
1604 Required properties:
1605 - device_type : should be "network", "hldc", "uart", "transparent"
1606 "bisync" or "atm".
1607 - compatible : could be "ucc_geth" or "fsl_atm" and so on.
1608 - model : should be "UCC".
1609 - device-id : the ucc number(1-8), corresponding to UCCx in UM.
1610 - reg : Offset and length of the register set for the device
1611 - interrupts : <a b> where a is the interrupt number and b is a
1612 field that represents an encoding of the sense and level
1613 information for the interrupt. This should be encoded based on
1614 the information in section 2) depending on the type of interrupt
1615 controller you have.
1616 - interrupt-parent : the phandle for the interrupt controller that
1617 services interrupts for this device.
1618 - pio-handle : The phandle for the Parallel I/O port configuration.
1619 - rx-clock : represents the UCC receive clock source.
1620 0x00 : clock source is disabled;
1621 0x1~0x10 : clock source is BRG1~BRG16 respectively;
1622 0x11~0x28: clock source is QE_CLK1~QE_CLK24 respectively.
1623 - tx-clock: represents the UCC transmit clock source;
1624 0x00 : clock source is disabled;
1625 0x1~0x10 : clock source is BRG1~BRG16 respectively;
1626 0x11~0x28: clock source is QE_CLK1~QE_CLK24 respectively.
1627
1628 Required properties for network device_type:
1629 - mac-address : list of bytes representing the ethernet address.
1630 - phy-handle : The phandle for the PHY connected to this controller.
1631
Scott Woode0a2f282007-03-16 12:28:46 -05001632 Recommended properties:
1633 - linux,network-index : This is the intended "index" of this
1634 network device. This is used by the bootwrapper to interpret
1635 MAC addresses passed by the firmware when no information other
1636 than indices is available to associate an address with a device.
Kim Phillips60c19222007-04-24 07:26:10 +10001637 - phy-connection-type : a string naming the controller/PHY interface type,
1638 i.e., "mii" (default), "rmii", "gmii", "rgmii", "rgmii-id", "tbi",
1639 or "rtbi".
Scott Woode0a2f282007-03-16 12:28:46 -05001640
Li Yang9a1ab882006-10-02 20:08:59 -05001641 Example:
1642 ucc@2000 {
1643 device_type = "network";
1644 compatible = "ucc_geth";
1645 model = "UCC";
1646 device-id = <1>;
1647 reg = <2000 200>;
1648 interrupts = <a0 0>;
1649 interrupt-parent = <700>;
1650 mac-address = [ 00 04 9f 00 23 23 ];
1651 rx-clock = "none";
1652 tx-clock = "clk9";
1653 phy-handle = <212000>;
Kim Phillips60c19222007-04-24 07:26:10 +10001654 phy-connection-type = "gmii";
Li Yang9a1ab882006-10-02 20:08:59 -05001655 pio-handle = <140001>;
1656 };
1657
1658
1659 v) Parallel I/O Ports
1660
1661 This node configures Parallel I/O ports for CPUs with QE support.
1662 The node should reside in the "soc" node of the tree. For each
1663 device that using parallel I/O ports, a child node should be created.
1664 See the definition of the Pin configuration nodes below for more
1665 information.
1666
1667 Required properties:
1668 - device_type : should be "par_io".
1669 - reg : offset to the register set and its length.
1670 - num-ports : number of Parallel I/O ports
1671
1672 Example:
1673 par_io@1400 {
1674 reg = <1400 100>;
1675 #address-cells = <1>;
1676 #size-cells = <0>;
1677 device_type = "par_io";
1678 num-ports = <7>;
1679 ucc_pin@01 {
1680 ......
1681 };
1682
1683
1684 vi) Pin configuration nodes
1685
1686 Required properties:
1687 - linux,phandle : phandle of this node; likely referenced by a QE
1688 device.
1689 - pio-map : array of pin configurations. Each pin is defined by 6
1690 integers. The six numbers are respectively: port, pin, dir,
1691 open_drain, assignment, has_irq.
1692 - port : port number of the pin; 0-6 represent port A-G in UM.
1693 - pin : pin number in the port.
1694 - dir : direction of the pin, should encode as follows:
1695
1696 0 = The pin is disabled
1697 1 = The pin is an output
1698 2 = The pin is an input
1699 3 = The pin is I/O
1700
1701 - open_drain : indicates the pin is normal or wired-OR:
1702
1703 0 = The pin is actively driven as an output
1704 1 = The pin is an open-drain driver. As an output, the pin is
1705 driven active-low, otherwise it is three-stated.
1706
1707 - assignment : function number of the pin according to the Pin Assignment
1708 tables in User Manual. Each pin can have up to 4 possible functions in
1709 QE and two options for CPM.
Matt LaPlantea982ac02007-05-09 07:35:06 +02001710 - has_irq : indicates if the pin is used as source of external
Li Yang9a1ab882006-10-02 20:08:59 -05001711 interrupts.
1712
1713 Example:
1714 ucc_pin@01 {
1715 linux,phandle = <140001>;
1716 pio-map = <
1717 /* port pin dir open_drain assignment has_irq */
1718 0 3 1 0 1 0 /* TxD0 */
1719 0 4 1 0 1 0 /* TxD1 */
1720 0 5 1 0 1 0 /* TxD2 */
1721 0 6 1 0 1 0 /* TxD3 */
1722 1 6 1 0 3 0 /* TxD4 */
1723 1 7 1 0 1 0 /* TxD5 */
1724 1 9 1 0 2 0 /* TxD6 */
1725 1 a 1 0 2 0 /* TxD7 */
1726 0 9 2 0 1 0 /* RxD0 */
1727 0 a 2 0 1 0 /* RxD1 */
1728 0 b 2 0 1 0 /* RxD2 */
1729 0 c 2 0 1 0 /* RxD3 */
1730 0 d 2 0 1 0 /* RxD4 */
1731 1 1 2 0 2 0 /* RxD5 */
1732 1 0 2 0 2 0 /* RxD6 */
1733 1 4 2 0 2 0 /* RxD7 */
1734 0 7 1 0 1 0 /* TX_EN */
1735 0 8 1 0 1 0 /* TX_ER */
1736 0 f 2 0 1 0 /* RX_DV */
1737 0 10 2 0 1 0 /* RX_ER */
1738 0 0 2 0 1 0 /* RX_CLK */
1739 2 9 1 0 3 0 /* GTX_CLK - CLK10 */
1740 2 8 2 0 1 0>; /* GTX125 - CLK9 */
1741 };
1742
1743 vii) Multi-User RAM (MURAM)
1744
1745 Required properties:
1746 - device_type : should be "muram".
1747 - mode : the could be "host" or "slave".
1748 - ranges : Should be defined as specified in 1) to describe the
1749 translation of MURAM addresses.
1750 - data-only : sub-node which defines the address area under MURAM
1751 bus that can be allocated as data/parameter
1752
1753 Example:
1754
1755 muram@10000 {
1756 device_type = "muram";
1757 ranges = <0 00010000 0000c000>;
1758
1759 data-only@0{
1760 reg = <0 c000>;
1761 };
1762 };
Kim Phillipsb88a0b12006-03-22 14:39:03 -06001763
David Gibson20991722007-09-07 13:23:53 +10001764 j) CFI or JEDEC memory-mapped NOR flash
Vitaly Wool28f9ec32006-11-20 16:32:39 +03001765
1766 Flash chips (Memory Technology Devices) are often used for solid state
1767 file systems on embedded devices.
1768
David Gibson20991722007-09-07 13:23:53 +10001769 - compatible : should contain the specific model of flash chip(s)
1770 used, if known, followed by either "cfi-flash" or "jedec-flash"
1771 - reg : Address range of the flash chip
1772 - bank-width : Width (in bytes) of the flash bank. Equal to the
1773 device width times the number of interleaved chips.
1774 - device-width : (optional) Width of a single flash chip. If
1775 omitted, assumed to be equal to 'bank-width'.
1776 - #address-cells, #size-cells : Must be present if the flash has
1777 sub-nodes representing partitions (see below). In this case
1778 both #address-cells and #size-cells must be equal to 1.
Vitaly Wool28f9ec32006-11-20 16:32:39 +03001779
David Gibson20991722007-09-07 13:23:53 +10001780 For JEDEC compatible devices, the following additional properties
1781 are defined:
Vitaly Wool28f9ec32006-11-20 16:32:39 +03001782
David Gibson20991722007-09-07 13:23:53 +10001783 - vendor-id : Contains the flash chip's vendor id (1 byte).
1784 - device-id : Contains the flash chip's device id (1 byte).
Vitaly Wool28f9ec32006-11-20 16:32:39 +03001785
David Gibson20991722007-09-07 13:23:53 +10001786 In addition to the information on the flash bank itself, the
1787 device tree may optionally contain additional information
1788 describing partitions of the flash address space. This can be
1789 used on platforms which have strong conventions about which
1790 portions of the flash are used for what purposes, but which don't
1791 use an on-flash partition table such as RedBoot.
Vitaly Wool28f9ec32006-11-20 16:32:39 +03001792
David Gibson20991722007-09-07 13:23:53 +10001793 Each partition is represented as a sub-node of the flash device.
1794 Each node's name represents the name of the corresponding
1795 partition of the flash device.
Vitaly Wool28f9ec32006-11-20 16:32:39 +03001796
David Gibson20991722007-09-07 13:23:53 +10001797 Flash partitions
1798 - reg : The partition's offset and size within the flash bank.
1799 - label : (optional) The label / name for this flash partition.
1800 If omitted, the label is taken from the node name (excluding
1801 the unit address).
1802 - read-only : (optional) This parameter, if present, is a hint to
1803 Linux that this flash partition should only be mounted
1804 read-only. This is usually used for flash partitions
1805 containing early-boot firmware images or data which should not
1806 be clobbered.
1807
1808 Example:
1809
1810 flash@ff000000 {
1811 compatible = "amd,am29lv128ml", "cfi-flash";
1812 reg = <ff000000 01000000>;
1813 bank-width = <4>;
1814 device-width = <1>;
1815 #address-cells = <1>;
1816 #size-cells = <1>;
1817 fs@0 {
1818 label = "fs";
1819 reg = <0 f80000>;
1820 };
1821 firmware@f80000 {
1822 label ="firmware";
1823 reg = <f80000 80000>;
1824 read-only;
1825 };
1826 };
Vitaly Wool28f9ec32006-11-20 16:32:39 +03001827
Roy Zang3b824f82007-06-19 15:19:18 +08001828 k) Global Utilities Block
1829
1830 The global utilities block controls power management, I/O device
1831 enabling, power-on-reset configuration monitoring, general-purpose
1832 I/O signal configuration, alternate function selection for multiplexed
1833 signals, and clock control.
1834
1835 Required properties:
1836
1837 - compatible : Should define the compatible device type for
1838 global-utilities.
1839 - reg : Offset and length of the register set for the device.
1840
1841 Recommended properties:
1842
1843 - fsl,has-rstcr : Indicates that the global utilities register set
1844 contains a functioning "reset control register" (i.e. the board
1845 is wired to reset upon setting the HRESET_REQ bit in this register).
1846
1847 Example:
1848
1849 global-utilities@e0000 { /* global utilities block */
1850 compatible = "fsl,mpc8548-guts";
1851 reg = <e0000 1000>;
1852 fsl,has-rstcr;
1853 };
1854
Scott Woode631ae32007-09-14 13:04:54 -05001855 l) Freescale Communications Processor Module
David Gibson1d3bb992007-08-23 13:56:01 +10001856
Scott Woode631ae32007-09-14 13:04:54 -05001857 NOTE: This is an interim binding, and will likely change slightly,
1858 as more devices are supported. The QE bindings especially are
1859 incomplete.
1860
1861 i) Root CPM node
1862
1863 Properties:
1864 - compatible : "fsl,cpm1", "fsl,cpm2", or "fsl,qe".
Scott Wood15f8c602007-09-28 14:06:16 -05001865 - reg : A 48-byte region beginning with CPCR.
Scott Woode631ae32007-09-14 13:04:54 -05001866
1867 Example:
1868 cpm@119c0 {
1869 #address-cells = <1>;
1870 #size-cells = <1>;
1871 #interrupt-cells = <2>;
1872 compatible = "fsl,mpc8272-cpm", "fsl,cpm2";
Scott Wood15f8c602007-09-28 14:06:16 -05001873 reg = <119c0 30>;
Scott Woode631ae32007-09-14 13:04:54 -05001874 }
1875
1876 ii) Properties common to mulitple CPM/QE devices
1877
1878 - fsl,cpm-command : This value is ORed with the opcode and command flag
1879 to specify the device on which a CPM command operates.
1880
1881 - fsl,cpm-brg : Indicates which baud rate generator the device
1882 is associated with. If absent, an unused BRG
1883 should be dynamically allocated. If zero, the
1884 device uses an external clock rather than a BRG.
1885
1886 - reg : Unless otherwise specified, the first resource represents the
1887 scc/fcc/ucc registers, and the second represents the device's
1888 parameter RAM region (if it has one).
1889
1890 iii) Serial
1891
1892 Currently defined compatibles:
1893 - fsl,cpm1-smc-uart
1894 - fsl,cpm2-smc-uart
1895 - fsl,cpm1-scc-uart
1896 - fsl,cpm2-scc-uart
1897 - fsl,qe-uart
1898
1899 Example:
1900
1901 serial@11a00 {
1902 device_type = "serial";
1903 compatible = "fsl,mpc8272-scc-uart",
1904 "fsl,cpm2-scc-uart";
1905 reg = <11a00 20 8000 100>;
1906 interrupts = <28 8>;
1907 interrupt-parent = <&PIC>;
1908 fsl,cpm-brg = <1>;
1909 fsl,cpm-command = <00800000>;
1910 };
1911
1912 iii) Network
1913
1914 Currently defined compatibles:
1915 - fsl,cpm1-scc-enet
1916 - fsl,cpm2-scc-enet
1917 - fsl,cpm1-fec-enet
1918 - fsl,cpm2-fcc-enet (third resource is GFEMR)
1919 - fsl,qe-enet
1920
1921 Example:
1922
1923 ethernet@11300 {
1924 device_type = "network";
1925 compatible = "fsl,mpc8272-fcc-enet",
1926 "fsl,cpm2-fcc-enet";
1927 reg = <11300 20 8400 100 11390 1>;
1928 local-mac-address = [ 00 00 00 00 00 00 ];
1929 interrupts = <20 8>;
1930 interrupt-parent = <&PIC>;
1931 phy-handle = <&PHY0>;
1932 linux,network-index = <0>;
1933 fsl,cpm-command = <12000300>;
1934 };
1935
1936 iv) MDIO
1937
1938 Currently defined compatibles:
1939 fsl,pq1-fec-mdio (reg is same as first resource of FEC device)
1940 fsl,cpm2-mdio-bitbang (reg is port C registers)
1941
1942 Properties for fsl,cpm2-mdio-bitbang:
1943 fsl,mdio-pin : pin of port C controlling mdio data
1944 fsl,mdc-pin : pin of port C controlling mdio clock
1945
1946 Example:
1947
1948 mdio@10d40 {
1949 device_type = "mdio";
1950 compatible = "fsl,mpc8272ads-mdio-bitbang",
1951 "fsl,mpc8272-mdio-bitbang",
1952 "fsl,cpm2-mdio-bitbang";
1953 reg = <10d40 14>;
1954 #address-cells = <1>;
1955 #size-cells = <0>;
1956 fsl,mdio-pin = <12>;
1957 fsl,mdc-pin = <13>;
1958 };
1959
1960 v) Baud Rate Generators
1961
1962 Currently defined compatibles:
1963 fsl,cpm-brg
1964 fsl,cpm1-brg
1965 fsl,cpm2-brg
1966
1967 Properties:
1968 - reg : There may be an arbitrary number of reg resources; BRG
1969 numbers are assigned to these in order.
1970 - clock-frequency : Specifies the base frequency driving
1971 the BRG.
1972
1973 Example:
1974
1975 brg@119f0 {
1976 compatible = "fsl,mpc8272-brg",
1977 "fsl,cpm2-brg",
1978 "fsl,cpm-brg";
1979 reg = <119f0 10 115f0 10>;
1980 clock-frequency = <d#25000000>;
1981 };
1982
1983 vi) Interrupt Controllers
1984
1985 Currently defined compatibles:
1986 - fsl,cpm1-pic
1987 - only one interrupt cell
1988 - fsl,pq1-pic
1989 - fsl,cpm2-pic
1990 - second interrupt cell is level/sense:
1991 - 2 is falling edge
1992 - 8 is active low
1993
1994 Example:
1995
1996 interrupt-controller@10c00 {
1997 #interrupt-cells = <2>;
1998 interrupt-controller;
1999 reg = <10c00 80>;
2000 compatible = "mpc8272-pic", "fsl,cpm2-pic";
2001 };
2002
2003 vii) USB (Universal Serial Bus Controller)
2004
2005 Properties:
2006 - compatible : "fsl,cpm1-usb", "fsl,cpm2-usb", "fsl,qe-usb"
2007
2008 Example:
2009 usb@11bc0 {
2010 #address-cells = <1>;
2011 #size-cells = <0>;
2012 compatible = "fsl,cpm2-usb";
2013 reg = <11b60 18 8b00 100>;
2014 interrupts = <b 8>;
2015 interrupt-parent = <&PIC>;
2016 fsl,cpm-command = <2e600000>;
2017 };
2018
Scott Wood15f8c602007-09-28 14:06:16 -05002019 viii) Multi-User RAM (MURAM)
2020
2021 The multi-user/dual-ported RAM is expressed as a bus under the CPM node.
2022
2023 Ranges must be set up subject to the following restrictions:
2024
2025 - Children's reg nodes must be offsets from the start of all muram, even
2026 if the user-data area does not begin at zero.
2027 - If multiple range entries are used, the difference between the parent
2028 address and the child address must be the same in all, so that a single
2029 mapping can cover them all while maintaining the ability to determine
2030 CPM-side offsets with pointer subtraction. It is recommended that
2031 multiple range entries not be used.
2032 - A child address of zero must be translatable, even if no reg resources
2033 contain it.
2034
2035 A child "data" node must exist, compatible with "fsl,cpm-muram-data", to
2036 indicate the portion of muram that is usable by the OS for arbitrary
2037 purposes. The data node may have an arbitrary number of reg resources,
2038 all of which contribute to the allocatable muram pool.
2039
2040 Example, based on mpc8272:
2041
2042 muram@0 {
2043 #address-cells = <1>;
2044 #size-cells = <1>;
2045 ranges = <0 0 10000>;
2046
2047 data@0 {
2048 compatible = "fsl,cpm-muram-data";
2049 reg = <0 2000 9800 800>;
2050 };
2051 };
2052
Scott Wood96fca1de2007-09-14 13:24:02 -05002053 m) Chipselect/Local Bus
2054
2055 Properties:
2056 - name : Should be localbus
2057 - #address-cells : Should be either two or three. The first cell is the
2058 chipselect number, and the remaining cells are the
2059 offset into the chipselect.
2060 - #size-cells : Either one or two, depending on how large each chipselect
2061 can be.
2062 - ranges : Each range corresponds to a single chipselect, and cover
2063 the entire access window as configured.
2064
2065 Example:
2066 localbus@f0010100 {
2067 compatible = "fsl,mpc8272ads-localbus",
2068 "fsl,mpc8272-localbus",
2069 "fsl,pq2-localbus";
2070 #address-cells = <2>;
2071 #size-cells = <1>;
2072 reg = <f0010100 40>;
2073
2074 ranges = <0 0 fe000000 02000000
2075 1 0 f4500000 00008000>;
2076
2077 flash@0,0 {
2078 compatible = "jedec-flash";
2079 reg = <0 0 2000000>;
2080 bank-width = <4>;
2081 device-width = <1>;
2082 };
2083
2084 board-control@1,0 {
2085 reg = <1 0 20>;
2086 compatible = "fsl,mpc8272ads-bcsr";
2087 };
2088 };
2089
2090
Linus Torvaldse8690862007-10-11 21:55:47 -07002091 n) 4xx/Axon EMAC ethernet nodes
David Gibson1d3bb992007-08-23 13:56:01 +10002092
2093 The EMAC ethernet controller in IBM and AMCC 4xx chips, and also
2094 the Axon bridge. To operate this needs to interact with a ths
2095 special McMAL DMA controller, and sometimes an RGMII or ZMII
2096 interface. In addition to the nodes and properties described
2097 below, the node for the OPB bus on which the EMAC sits must have a
2098 correct clock-frequency property.
2099
2100 i) The EMAC node itself
2101
2102 Required properties:
2103 - device_type : "network"
2104
2105 - compatible : compatible list, contains 2 entries, first is
2106 "ibm,emac-CHIP" where CHIP is the host ASIC (440gx,
2107 405gp, Axon) and second is either "ibm,emac" or
2108 "ibm,emac4". For Axon, thus, we have: "ibm,emac-axon",
2109 "ibm,emac4"
2110 - interrupts : <interrupt mapping for EMAC IRQ and WOL IRQ>
2111 - interrupt-parent : optional, if needed for interrupt mapping
2112 - reg : <registers mapping>
2113 - local-mac-address : 6 bytes, MAC address
2114 - mal-device : phandle of the associated McMAL node
2115 - mal-tx-channel : 1 cell, index of the tx channel on McMAL associated
2116 with this EMAC
2117 - mal-rx-channel : 1 cell, index of the rx channel on McMAL associated
2118 with this EMAC
2119 - cell-index : 1 cell, hardware index of the EMAC cell on a given
2120 ASIC (typically 0x0 and 0x1 for EMAC0 and EMAC1 on
2121 each Axon chip)
2122 - max-frame-size : 1 cell, maximum frame size supported in bytes
2123 - rx-fifo-size : 1 cell, Rx fifo size in bytes for 10 and 100 Mb/sec
2124 operations.
2125 For Axon, 2048
2126 - tx-fifo-size : 1 cell, Tx fifo size in bytes for 10 and 100 Mb/sec
2127 operations.
2128 For Axon, 2048.
2129 - fifo-entry-size : 1 cell, size of a fifo entry (used to calculate
2130 thresholds).
2131 For Axon, 0x00000010
2132 - mal-burst-size : 1 cell, MAL burst size (used to calculate thresholds)
2133 in bytes.
2134 For Axon, 0x00000100 (I think ...)
2135 - phy-mode : string, mode of operations of the PHY interface.
2136 Supported values are: "mii", "rmii", "smii", "rgmii",
2137 "tbi", "gmii", rtbi", "sgmii".
2138 For Axon on CAB, it is "rgmii"
2139 - mdio-device : 1 cell, required iff using shared MDIO registers
2140 (440EP). phandle of the EMAC to use to drive the
2141 MDIO lines for the PHY used by this EMAC.
2142 - zmii-device : 1 cell, required iff connected to a ZMII. phandle of
2143 the ZMII device node
2144 - zmii-channel : 1 cell, required iff connected to a ZMII. Which ZMII
2145 channel or 0xffffffff if ZMII is only used for MDIO.
2146 - rgmii-device : 1 cell, required iff connected to an RGMII. phandle
2147 of the RGMII device node.
2148 For Axon: phandle of plb5/plb4/opb/rgmii
2149 - rgmii-channel : 1 cell, required iff connected to an RGMII. Which
2150 RGMII channel is used by this EMAC.
2151 Fox Axon: present, whatever value is appropriate for each
2152 EMAC, that is the content of the current (bogus) "phy-port"
2153 property.
2154
2155 Recommended properties:
2156 - linux,network-index : This is the intended "index" of this
2157 network device. This is used by the bootwrapper to interpret
2158 MAC addresses passed by the firmware when no information other
2159 than indices is available to associate an address with a device.
2160
2161 Optional properties:
2162 - phy-address : 1 cell, optional, MDIO address of the PHY. If absent,
2163 a search is performed.
2164 - phy-map : 1 cell, optional, bitmap of addresses to probe the PHY
2165 for, used if phy-address is absent. bit 0x00000001 is
2166 MDIO address 0.
2167 For Axon it can be absent, thouugh my current driver
2168 doesn't handle phy-address yet so for now, keep
2169 0x00ffffff in it.
2170 - rx-fifo-size-gige : 1 cell, Rx fifo size in bytes for 1000 Mb/sec
2171 operations (if absent the value is the same as
2172 rx-fifo-size). For Axon, either absent or 2048.
2173 - tx-fifo-size-gige : 1 cell, Tx fifo size in bytes for 1000 Mb/sec
2174 operations (if absent the value is the same as
2175 tx-fifo-size). For Axon, either absent or 2048.
2176 - tah-device : 1 cell, optional. If connected to a TAH engine for
2177 offload, phandle of the TAH device node.
2178 - tah-channel : 1 cell, optional. If appropriate, channel used on the
2179 TAH engine.
2180
2181 Example:
2182
2183 EMAC0: ethernet@40000800 {
2184 linux,network-index = <0>;
2185 device_type = "network";
2186 compatible = "ibm,emac-440gp", "ibm,emac";
2187 interrupt-parent = <&UIC1>;
2188 interrupts = <1c 4 1d 4>;
2189 reg = <40000800 70>;
2190 local-mac-address = [00 04 AC E3 1B 1E];
2191 mal-device = <&MAL0>;
2192 mal-tx-channel = <0 1>;
2193 mal-rx-channel = <0>;
2194 cell-index = <0>;
2195 max-frame-size = <5dc>;
2196 rx-fifo-size = <1000>;
2197 tx-fifo-size = <800>;
2198 phy-mode = "rmii";
2199 phy-map = <00000001>;
2200 zmii-device = <&ZMII0>;
2201 zmii-channel = <0>;
2202 };
2203
2204 ii) McMAL node
2205
2206 Required properties:
2207 - device_type : "dma-controller"
2208 - compatible : compatible list, containing 2 entries, first is
2209 "ibm,mcmal-CHIP" where CHIP is the host ASIC (like
2210 emac) and the second is either "ibm,mcmal" or
2211 "ibm,mcmal2".
2212 For Axon, "ibm,mcmal-axon","ibm,mcmal2"
2213 - interrupts : <interrupt mapping for the MAL interrupts sources:
2214 5 sources: tx_eob, rx_eob, serr, txde, rxde>.
2215 For Axon: This is _different_ from the current
2216 firmware. We use the "delayed" interrupts for txeob
2217 and rxeob. Thus we end up with mapping those 5 MPIC
2218 interrupts, all level positive sensitive: 10, 11, 32,
2219 33, 34 (in decimal)
2220 - dcr-reg : < DCR registers range >
2221 - dcr-parent : if needed for dcr-reg
2222 - num-tx-chans : 1 cell, number of Tx channels
2223 - num-rx-chans : 1 cell, number of Rx channels
2224
2225 iii) ZMII node
2226
2227 Required properties:
2228 - compatible : compatible list, containing 2 entries, first is
2229 "ibm,zmii-CHIP" where CHIP is the host ASIC (like
2230 EMAC) and the second is "ibm,zmii".
2231 For Axon, there is no ZMII node.
2232 - reg : <registers mapping>
2233
2234 iv) RGMII node
2235
2236 Required properties:
2237 - compatible : compatible list, containing 2 entries, first is
2238 "ibm,rgmii-CHIP" where CHIP is the host ASIC (like
2239 EMAC) and the second is "ibm,rgmii".
2240 For Axon, "ibm,rgmii-axon","ibm,rgmii"
2241 - reg : <registers mapping>
2242 - revision : as provided by the RGMII new version register if
2243 available.
2244 For Axon: 0x0000012a
2245
Grant Likely7ae0fa492007-10-23 14:27:41 +10002246 l) Xilinx IP cores
2247
2248 The Xilinx EDK toolchain ships with a set of IP cores (devices) for use
2249 in Xilinx Spartan and Virtex FPGAs. The devices cover the whole range
2250 of standard device types (network, serial, etc.) and miscellanious
2251 devices (gpio, LCD, spi, etc). Also, since these devices are
2252 implemented within the fpga fabric every instance of the device can be
2253 synthesised with different options that change the behaviour.
2254
2255 Each IP-core has a set of parameters which the FPGA designer can use to
2256 control how the core is synthesized. Historically, the EDK tool would
2257 extract the device parameters relevant to device drivers and copy them
2258 into an 'xparameters.h' in the form of #define symbols. This tells the
2259 device drivers how the IP cores are configured, but it requres the kernel
2260 to be recompiled every time the FPGA bitstream is resynthesized.
2261
2262 The new approach is to export the parameters into the device tree and
2263 generate a new device tree each time the FPGA bitstream changes. The
2264 parameters which used to be exported as #defines will now become
2265 properties of the device node. In general, device nodes for IP-cores
2266 will take the following form:
2267
2268 (name)@(base-address) {
2269 compatible = "xlnx,(ip-core-name)-(HW_VER)"
2270 [, (list of compatible devices), ...];
2271 reg = <(baseaddr) (size)>;
2272 interrupt-parent = <&interrupt-controller-phandle>;
2273 interrupts = < ... >;
2274 xlnx,(parameter1) = "(string-value)";
2275 xlnx,(parameter2) = <(int-value)>;
2276 };
2277
2278 (ip-core-name): the name of the ip block (given after the BEGIN
2279 directive in system.mhs). Should be in lowercase
2280 and all underscores '_' converted to dashes '-'.
2281 (name): is derived from the "PARAMETER INSTANCE" value.
2282 (parameter#): C_* parameters from system.mhs. The C_ prefix is
2283 dropped from the parameter name, the name is converted
2284 to lowercase and all underscore '_' characters are
2285 converted to dashes '-'.
2286 (baseaddr): the C_BASEADDR parameter.
2287 (HW_VER): from the HW_VER parameter.
2288 (size): equals C_HIGHADDR - C_BASEADDR + 1
2289
2290 Typically, the compatible list will include the exact IP core version
2291 followed by an older IP core version which implements the same
2292 interface or any other device with the same interface.
2293
2294 'reg', 'interrupt-parent' and 'interrupts' are all optional properties.
2295
2296 For example, the following block from system.mhs:
2297
2298 BEGIN opb_uartlite
2299 PARAMETER INSTANCE = opb_uartlite_0
2300 PARAMETER HW_VER = 1.00.b
2301 PARAMETER C_BAUDRATE = 115200
2302 PARAMETER C_DATA_BITS = 8
2303 PARAMETER C_ODD_PARITY = 0
2304 PARAMETER C_USE_PARITY = 0
2305 PARAMETER C_CLK_FREQ = 50000000
2306 PARAMETER C_BASEADDR = 0xEC100000
2307 PARAMETER C_HIGHADDR = 0xEC10FFFF
2308 BUS_INTERFACE SOPB = opb_7
2309 PORT OPB_Clk = CLK_50MHz
2310 PORT Interrupt = opb_uartlite_0_Interrupt
2311 PORT RX = opb_uartlite_0_RX
2312 PORT TX = opb_uartlite_0_TX
2313 PORT OPB_Rst = sys_bus_reset_0
2314 END
2315
2316 becomes the following device tree node:
2317
2318 opb-uartlite-0@ec100000 {
2319 device_type = "serial";
2320 compatible = "xlnx,opb-uartlite-1.00.b";
2321 reg = <ec100000 10000>;
2322 interrupt-parent = <&opb-intc>;
2323 interrupts = <1 0>; // got this from the opb_intc parameters
2324 current-speed = <d#115200>; // standard serial device prop
2325 clock-frequency = <d#50000000>; // standard serial device prop
2326 xlnx,data-bits = <8>;
2327 xlnx,odd-parity = <0>;
2328 xlnx,use-parity = <0>;
2329 };
2330
2331 Some IP cores actually implement 2 or more logical devices. In this case,
2332 the device should still describe the whole IP core with a single node
2333 and add a child node for each logical device. The ranges property can
2334 be used to translate from parent IP-core to the registers of each device.
2335 (Note: this makes the assumption that both logical devices have the same
2336 bus binding. If this is not true, then separate nodes should be used for
2337 each logical device). The 'cell-index' property can be used to enumerate
2338 logical devices within an IP core. For example, the following is the
2339 system.mhs entry for the dual ps2 controller found on the ml403 reference
2340 design.
2341
2342 BEGIN opb_ps2_dual_ref
2343 PARAMETER INSTANCE = opb_ps2_dual_ref_0
2344 PARAMETER HW_VER = 1.00.a
2345 PARAMETER C_BASEADDR = 0xA9000000
2346 PARAMETER C_HIGHADDR = 0xA9001FFF
2347 BUS_INTERFACE SOPB = opb_v20_0
2348 PORT Sys_Intr1 = ps2_1_intr
2349 PORT Sys_Intr2 = ps2_2_intr
2350 PORT Clkin1 = ps2_clk_rx_1
2351 PORT Clkin2 = ps2_clk_rx_2
2352 PORT Clkpd1 = ps2_clk_tx_1
2353 PORT Clkpd2 = ps2_clk_tx_2
2354 PORT Rx1 = ps2_d_rx_1
2355 PORT Rx2 = ps2_d_rx_2
2356 PORT Txpd1 = ps2_d_tx_1
2357 PORT Txpd2 = ps2_d_tx_2
2358 END
2359
2360 It would result in the following device tree nodes:
2361
2362 opb_ps2_dual_ref_0@a9000000 {
2363 ranges = <0 a9000000 2000>;
2364 // If this device had extra parameters, then they would
2365 // go here.
2366 ps2@0 {
2367 compatible = "xlnx,opb-ps2-dual-ref-1.00.a";
2368 reg = <0 40>;
2369 interrupt-parent = <&opb-intc>;
2370 interrupts = <3 0>;
2371 cell-index = <0>;
2372 };
2373 ps2@1000 {
2374 compatible = "xlnx,opb-ps2-dual-ref-1.00.a";
2375 reg = <1000 40>;
2376 interrupt-parent = <&opb-intc>;
2377 interrupts = <3 0>;
2378 cell-index = <0>;
2379 };
2380 };
2381
2382 Also, the system.mhs file defines bus attachments from the processor
2383 to the devices. The device tree structure should reflect the bus
2384 attachments. Again an example; this system.mhs fragment:
2385
2386 BEGIN ppc405_virtex4
2387 PARAMETER INSTANCE = ppc405_0
2388 PARAMETER HW_VER = 1.01.a
2389 BUS_INTERFACE DPLB = plb_v34_0
2390 BUS_INTERFACE IPLB = plb_v34_0
2391 END
2392
2393 BEGIN opb_intc
2394 PARAMETER INSTANCE = opb_intc_0
2395 PARAMETER HW_VER = 1.00.c
2396 PARAMETER C_BASEADDR = 0xD1000FC0
2397 PARAMETER C_HIGHADDR = 0xD1000FDF
2398 BUS_INTERFACE SOPB = opb_v20_0
2399 END
2400
2401 BEGIN opb_uart16550
2402 PARAMETER INSTANCE = opb_uart16550_0
2403 PARAMETER HW_VER = 1.00.d
2404 PARAMETER C_BASEADDR = 0xa0000000
2405 PARAMETER C_HIGHADDR = 0xa0001FFF
2406 BUS_INTERFACE SOPB = opb_v20_0
2407 END
2408
2409 BEGIN plb_v34
2410 PARAMETER INSTANCE = plb_v34_0
2411 PARAMETER HW_VER = 1.02.a
2412 END
2413
2414 BEGIN plb_bram_if_cntlr
2415 PARAMETER INSTANCE = plb_bram_if_cntlr_0
2416 PARAMETER HW_VER = 1.00.b
2417 PARAMETER C_BASEADDR = 0xFFFF0000
2418 PARAMETER C_HIGHADDR = 0xFFFFFFFF
2419 BUS_INTERFACE SPLB = plb_v34_0
2420 END
2421
2422 BEGIN plb2opb_bridge
2423 PARAMETER INSTANCE = plb2opb_bridge_0
2424 PARAMETER HW_VER = 1.01.a
2425 PARAMETER C_RNG0_BASEADDR = 0x20000000
2426 PARAMETER C_RNG0_HIGHADDR = 0x3FFFFFFF
2427 PARAMETER C_RNG1_BASEADDR = 0x60000000
2428 PARAMETER C_RNG1_HIGHADDR = 0x7FFFFFFF
2429 PARAMETER C_RNG2_BASEADDR = 0x80000000
2430 PARAMETER C_RNG2_HIGHADDR = 0xBFFFFFFF
2431 PARAMETER C_RNG3_BASEADDR = 0xC0000000
2432 PARAMETER C_RNG3_HIGHADDR = 0xDFFFFFFF
2433 BUS_INTERFACE SPLB = plb_v34_0
2434 BUS_INTERFACE MOPB = opb_v20_0
2435 END
2436
2437 Gives this device tree (some properties removed for clarity):
2438
2439 plb-v34-0 {
2440 #address-cells = <1>;
2441 #size-cells = <1>;
2442 device_type = "ibm,plb";
2443 ranges; // 1:1 translation
2444
2445 plb-bram-if-cntrl-0@ffff0000 {
2446 reg = <ffff0000 10000>;
2447 }
2448
2449 opb-v20-0 {
2450 #address-cells = <1>;
2451 #size-cells = <1>;
2452 ranges = <20000000 20000000 20000000
2453 60000000 60000000 20000000
2454 80000000 80000000 40000000
2455 c0000000 c0000000 20000000>;
2456
2457 opb-uart16550-0@a0000000 {
2458 reg = <a00000000 2000>;
2459 };
2460
2461 opb-intc-0@d1000fc0 {
2462 reg = <d1000fc0 20>;
2463 };
2464 };
2465 };
2466
2467 That covers the general approach to binding xilinx IP cores into the
2468 device tree. The following are bindings for specific devices:
2469
2470 i) Xilinx ML300 Framebuffer
2471
2472 Simple framebuffer device from the ML300 reference design (also on the
2473 ML403 reference design as well as others).
2474
2475 Optional properties:
2476 - resolution = <xres yres> : pixel resolution of framebuffer. Some
2477 implementations use a different resolution.
2478 Default is <d#640 d#480>
2479 - virt-resolution = <xvirt yvirt> : Size of framebuffer in memory.
2480 Default is <d#1024 d#480>.
2481 - rotate-display (empty) : rotate display 180 degrees.
2482
2483 ii) Xilinx SystemACE
2484
2485 The Xilinx SystemACE device is used to program FPGAs from an FPGA
2486 bitstream stored on a CF card. It can also be used as a generic CF
2487 interface device.
2488
2489 Optional properties:
2490 - 8-bit (empty) : Set this property for SystemACE in 8 bit mode
2491
2492 iii) Xilinx EMAC and Xilinx TEMAC
2493
2494 Xilinx Ethernet devices. In addition to general xilinx properties
2495 listed above, nodes for these devices should include a phy-handle
2496 property, and may include other common network device properties
2497 like local-mac-address.
2498
2499 iv) Xilinx Uartlite
2500
2501 Xilinx uartlite devices are simple fixed speed serial ports.
2502
2503 Requred properties:
2504 - current-speed : Baud rate of uartlite
2505
David Gibsonc125a182006-02-01 03:05:22 -08002506 More devices will be defined as this spec matures.
2507
Stuart Yoder27565902007-03-02 13:42:33 -06002508VII - Specifying interrupt information for devices
2509===================================================
2510
2511The device tree represents the busses and devices of a hardware
2512system in a form similar to the physical bus topology of the
2513hardware.
2514
2515In addition, a logical 'interrupt tree' exists which represents the
2516hierarchy and routing of interrupts in the hardware.
2517
2518The interrupt tree model is fully described in the
2519document "Open Firmware Recommended Practice: Interrupt
2520Mapping Version 0.9". The document is available at:
2521<http://playground.sun.com/1275/practice>.
2522
25231) interrupts property
2524----------------------
2525
2526Devices that generate interrupts to a single interrupt controller
2527should use the conventional OF representation described in the
2528OF interrupt mapping documentation.
2529
2530Each device which generates interrupts must have an 'interrupt'
2531property. The interrupt property value is an arbitrary number of
2532of 'interrupt specifier' values which describe the interrupt or
2533interrupts for the device.
2534
2535The encoding of an interrupt specifier is determined by the
2536interrupt domain in which the device is located in the
2537interrupt tree. The root of an interrupt domain specifies in
2538its #interrupt-cells property the number of 32-bit cells
2539required to encode an interrupt specifier. See the OF interrupt
2540mapping documentation for a detailed description of domains.
2541
2542For example, the binding for the OpenPIC interrupt controller
2543specifies an #interrupt-cells value of 2 to encode the interrupt
2544number and level/sense information. All interrupt children in an
2545OpenPIC interrupt domain use 2 cells per interrupt in their interrupts
2546property.
2547
2548The PCI bus binding specifies a #interrupt-cell value of 1 to encode
2549which interrupt pin (INTA,INTB,INTC,INTD) is used.
2550
25512) interrupt-parent property
2552----------------------------
2553
2554The interrupt-parent property is specified to define an explicit
2555link between a device node and its interrupt parent in
2556the interrupt tree. The value of interrupt-parent is the
2557phandle of the parent node.
2558
2559If the interrupt-parent property is not defined for a node, it's
2560interrupt parent is assumed to be an ancestor in the node's
2561_device tree_ hierarchy.
2562
25633) OpenPIC Interrupt Controllers
2564--------------------------------
2565
2566OpenPIC interrupt controllers require 2 cells to encode
2567interrupt information. The first cell defines the interrupt
2568number. The second cell defines the sense and level
2569information.
2570
2571Sense and level information should be encoded as follows:
2572
2573 0 = low to high edge sensitive type enabled
2574 1 = active low level sensitive type enabled
2575 2 = active high level sensitive type enabled
2576 3 = high to low edge sensitive type enabled
2577
25784) ISA Interrupt Controllers
2579----------------------------
2580
2581ISA PIC interrupt controllers require 2 cells to encode
2582interrupt information. The first cell defines the interrupt
2583number. The second cell defines the sense and level
2584information.
2585
2586ISA PIC interrupt controllers should adhere to the ISA PIC
2587encodings listed below:
2588
2589 0 = active low level sensitive type enabled
2590 1 = active high level sensitive type enabled
2591 2 = high to low edge sensitive type enabled
2592 3 = low to high edge sensitive type enabled
2593
David Gibsonc125a182006-02-01 03:05:22 -08002594
2595Appendix A - Sample SOC node for MPC8540
2596========================================
2597
2598Note that the #address-cells and #size-cells for the SoC node
2599in this example have been explicitly listed; these are likely
2600not necessary as they are usually the same as the root node.
2601
2602 soc8540@e0000000 {
2603 #address-cells = <1>;
2604 #size-cells = <1>;
2605 #interrupt-cells = <2>;
2606 device_type = "soc";
2607 ranges = <00000000 e0000000 00100000>
2608 reg = <e0000000 00003000>;
Becky Bruce7d4b95a2006-02-06 14:26:31 -06002609 bus-frequency = <0>;
David Gibsonc125a182006-02-01 03:05:22 -08002610
2611 mdio@24520 {
2612 reg = <24520 20>;
2613 device_type = "mdio";
2614 compatible = "gianfar";
2615
2616 ethernet-phy@0 {
2617 linux,phandle = <2452000>
2618 interrupt-parent = <40000>;
2619 interrupts = <35 1>;
2620 reg = <0>;
2621 device_type = "ethernet-phy";
2622 };
2623
2624 ethernet-phy@1 {
2625 linux,phandle = <2452001>
2626 interrupt-parent = <40000>;
2627 interrupts = <35 1>;
2628 reg = <1>;
2629 device_type = "ethernet-phy";
2630 };
2631
2632 ethernet-phy@3 {
2633 linux,phandle = <2452002>
2634 interrupt-parent = <40000>;
2635 interrupts = <35 1>;
2636 reg = <3>;
2637 device_type = "ethernet-phy";
2638 };
2639
2640 };
2641
2642 ethernet@24000 {
2643 #size-cells = <0>;
2644 device_type = "network";
2645 model = "TSEC";
2646 compatible = "gianfar";
2647 reg = <24000 1000>;
Jon Loeligerf5831652006-08-17 08:42:35 -05002648 mac-address = [ 00 E0 0C 00 73 00 ];
David Gibsonc125a182006-02-01 03:05:22 -08002649 interrupts = <d 3 e 3 12 3>;
2650 interrupt-parent = <40000>;
2651 phy-handle = <2452000>;
2652 };
2653
2654 ethernet@25000 {
2655 #address-cells = <1>;
2656 #size-cells = <0>;
2657 device_type = "network";
2658 model = "TSEC";
2659 compatible = "gianfar";
2660 reg = <25000 1000>;
Jon Loeligerf5831652006-08-17 08:42:35 -05002661 mac-address = [ 00 E0 0C 00 73 01 ];
David Gibsonc125a182006-02-01 03:05:22 -08002662 interrupts = <13 3 14 3 18 3>;
2663 interrupt-parent = <40000>;
2664 phy-handle = <2452001>;
2665 };
2666
2667 ethernet@26000 {
2668 #address-cells = <1>;
2669 #size-cells = <0>;
2670 device_type = "network";
2671 model = "FEC";
2672 compatible = "gianfar";
2673 reg = <26000 1000>;
Jon Loeligerf5831652006-08-17 08:42:35 -05002674 mac-address = [ 00 E0 0C 00 73 02 ];
David Gibsonc125a182006-02-01 03:05:22 -08002675 interrupts = <19 3>;
2676 interrupt-parent = <40000>;
2677 phy-handle = <2452002>;
2678 };
2679
2680 serial@4500 {
2681 device_type = "serial";
2682 compatible = "ns16550";
2683 reg = <4500 100>;
2684 clock-frequency = <0>;
2685 interrupts = <1a 3>;
2686 interrupt-parent = <40000>;
2687 };
2688
2689 pic@40000 {
2690 linux,phandle = <40000>;
2691 clock-frequency = <0>;
2692 interrupt-controller;
2693 #address-cells = <0>;
2694 reg = <40000 40000>;
2695 built-in;
2696 compatible = "chrp,open-pic";
2697 device_type = "open-pic";
2698 big-endian;
2699 };
2700
2701 i2c@3000 {
2702 interrupt-parent = <40000>;
2703 interrupts = <1b 3>;
2704 reg = <3000 18>;
2705 device_type = "i2c";
2706 compatible = "fsl-i2c";
2707 dfsrr;
2708 };
2709
2710 };