blob: 06e3b22a0c1bd1ae077e419a38bac6a85d645180 [file] [log] [blame]
Artem Bityutskiy1e517642008-07-14 19:08:37 +03001/*
2 * This file is part of UBIFS.
3 *
4 * Copyright (C) 2006-2008 Nokia Corporation.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 *
19 * Authors: Artem Bityutskiy (Битюцкий Артём)
20 * Adrian Hunter
21 */
22
23/*
24 * This file implements UBIFS initialization and VFS superblock operations. Some
25 * initialization stuff which is rather large and complex is placed at
26 * corresponding subsystems, but most of it is here.
27 */
28
29#include <linux/init.h>
30#include <linux/slab.h>
31#include <linux/module.h>
32#include <linux/ctype.h>
33#include <linux/random.h>
34#include <linux/kthread.h>
35#include <linux/parser.h>
36#include <linux/seq_file.h>
37#include <linux/mount.h>
38#include "ubifs.h"
39
40/* Slab cache for UBIFS inodes */
41struct kmem_cache *ubifs_inode_slab;
42
43/* UBIFS TNC shrinker description */
44static struct shrinker ubifs_shrinker_info = {
45 .shrink = ubifs_shrinker,
46 .seeks = DEFAULT_SEEKS,
47};
48
49/**
50 * validate_inode - validate inode.
51 * @c: UBIFS file-system description object
52 * @inode: the inode to validate
53 *
54 * This is a helper function for 'ubifs_iget()' which validates various fields
55 * of a newly built inode to make sure they contain sane values and prevent
56 * possible vulnerabilities. Returns zero if the inode is all right and
57 * a non-zero error code if not.
58 */
59static int validate_inode(struct ubifs_info *c, const struct inode *inode)
60{
61 int err;
62 const struct ubifs_inode *ui = ubifs_inode(inode);
63
64 if (inode->i_size > c->max_inode_sz) {
65 ubifs_err("inode is too large (%lld)",
66 (long long)inode->i_size);
67 return 1;
68 }
69
70 if (ui->compr_type < 0 || ui->compr_type >= UBIFS_COMPR_TYPES_CNT) {
71 ubifs_err("unknown compression type %d", ui->compr_type);
72 return 2;
73 }
74
75 if (ui->xattr_names + ui->xattr_cnt > XATTR_LIST_MAX)
76 return 3;
77
78 if (ui->data_len < 0 || ui->data_len > UBIFS_MAX_INO_DATA)
79 return 4;
80
81 if (ui->xattr && (inode->i_mode & S_IFMT) != S_IFREG)
82 return 5;
83
84 if (!ubifs_compr_present(ui->compr_type)) {
85 ubifs_warn("inode %lu uses '%s' compression, but it was not "
86 "compiled in", inode->i_ino,
87 ubifs_compr_name(ui->compr_type));
88 }
89
90 err = dbg_check_dir_size(c, inode);
91 return err;
92}
93
94struct inode *ubifs_iget(struct super_block *sb, unsigned long inum)
95{
96 int err;
97 union ubifs_key key;
98 struct ubifs_ino_node *ino;
99 struct ubifs_info *c = sb->s_fs_info;
100 struct inode *inode;
101 struct ubifs_inode *ui;
102
103 dbg_gen("inode %lu", inum);
104
105 inode = iget_locked(sb, inum);
106 if (!inode)
107 return ERR_PTR(-ENOMEM);
108 if (!(inode->i_state & I_NEW))
109 return inode;
110 ui = ubifs_inode(inode);
111
112 ino = kmalloc(UBIFS_MAX_INO_NODE_SZ, GFP_NOFS);
113 if (!ino) {
114 err = -ENOMEM;
115 goto out;
116 }
117
118 ino_key_init(c, &key, inode->i_ino);
119
120 err = ubifs_tnc_lookup(c, &key, ino);
121 if (err)
122 goto out_ino;
123
124 inode->i_flags |= (S_NOCMTIME | S_NOATIME);
125 inode->i_nlink = le32_to_cpu(ino->nlink);
126 inode->i_uid = le32_to_cpu(ino->uid);
127 inode->i_gid = le32_to_cpu(ino->gid);
128 inode->i_atime.tv_sec = (int64_t)le64_to_cpu(ino->atime_sec);
129 inode->i_atime.tv_nsec = le32_to_cpu(ino->atime_nsec);
130 inode->i_mtime.tv_sec = (int64_t)le64_to_cpu(ino->mtime_sec);
131 inode->i_mtime.tv_nsec = le32_to_cpu(ino->mtime_nsec);
132 inode->i_ctime.tv_sec = (int64_t)le64_to_cpu(ino->ctime_sec);
133 inode->i_ctime.tv_nsec = le32_to_cpu(ino->ctime_nsec);
134 inode->i_mode = le32_to_cpu(ino->mode);
135 inode->i_size = le64_to_cpu(ino->size);
136
137 ui->data_len = le32_to_cpu(ino->data_len);
138 ui->flags = le32_to_cpu(ino->flags);
139 ui->compr_type = le16_to_cpu(ino->compr_type);
140 ui->creat_sqnum = le64_to_cpu(ino->creat_sqnum);
141 ui->xattr_cnt = le32_to_cpu(ino->xattr_cnt);
142 ui->xattr_size = le32_to_cpu(ino->xattr_size);
143 ui->xattr_names = le32_to_cpu(ino->xattr_names);
144 ui->synced_i_size = ui->ui_size = inode->i_size;
145
146 ui->xattr = (ui->flags & UBIFS_XATTR_FL) ? 1 : 0;
147
148 err = validate_inode(c, inode);
149 if (err)
150 goto out_invalid;
151
152 /* Disable readahead */
153 inode->i_mapping->backing_dev_info = &c->bdi;
154
155 switch (inode->i_mode & S_IFMT) {
156 case S_IFREG:
157 inode->i_mapping->a_ops = &ubifs_file_address_operations;
158 inode->i_op = &ubifs_file_inode_operations;
159 inode->i_fop = &ubifs_file_operations;
160 if (ui->xattr) {
161 ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
162 if (!ui->data) {
163 err = -ENOMEM;
164 goto out_ino;
165 }
166 memcpy(ui->data, ino->data, ui->data_len);
167 ((char *)ui->data)[ui->data_len] = '\0';
168 } else if (ui->data_len != 0) {
169 err = 10;
170 goto out_invalid;
171 }
172 break;
173 case S_IFDIR:
174 inode->i_op = &ubifs_dir_inode_operations;
175 inode->i_fop = &ubifs_dir_operations;
176 if (ui->data_len != 0) {
177 err = 11;
178 goto out_invalid;
179 }
180 break;
181 case S_IFLNK:
182 inode->i_op = &ubifs_symlink_inode_operations;
183 if (ui->data_len <= 0 || ui->data_len > UBIFS_MAX_INO_DATA) {
184 err = 12;
185 goto out_invalid;
186 }
187 ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
188 if (!ui->data) {
189 err = -ENOMEM;
190 goto out_ino;
191 }
192 memcpy(ui->data, ino->data, ui->data_len);
193 ((char *)ui->data)[ui->data_len] = '\0';
194 break;
195 case S_IFBLK:
196 case S_IFCHR:
197 {
198 dev_t rdev;
199 union ubifs_dev_desc *dev;
200
201 ui->data = kmalloc(sizeof(union ubifs_dev_desc), GFP_NOFS);
202 if (!ui->data) {
203 err = -ENOMEM;
204 goto out_ino;
205 }
206
207 dev = (union ubifs_dev_desc *)ino->data;
208 if (ui->data_len == sizeof(dev->new))
209 rdev = new_decode_dev(le32_to_cpu(dev->new));
210 else if (ui->data_len == sizeof(dev->huge))
211 rdev = huge_decode_dev(le64_to_cpu(dev->huge));
212 else {
213 err = 13;
214 goto out_invalid;
215 }
216 memcpy(ui->data, ino->data, ui->data_len);
217 inode->i_op = &ubifs_file_inode_operations;
218 init_special_inode(inode, inode->i_mode, rdev);
219 break;
220 }
221 case S_IFSOCK:
222 case S_IFIFO:
223 inode->i_op = &ubifs_file_inode_operations;
224 init_special_inode(inode, inode->i_mode, 0);
225 if (ui->data_len != 0) {
226 err = 14;
227 goto out_invalid;
228 }
229 break;
230 default:
231 err = 15;
232 goto out_invalid;
233 }
234
235 kfree(ino);
236 ubifs_set_inode_flags(inode);
237 unlock_new_inode(inode);
238 return inode;
239
240out_invalid:
241 ubifs_err("inode %lu validation failed, error %d", inode->i_ino, err);
242 dbg_dump_node(c, ino);
243 dbg_dump_inode(c, inode);
244 err = -EINVAL;
245out_ino:
246 kfree(ino);
247out:
248 ubifs_err("failed to read inode %lu, error %d", inode->i_ino, err);
249 iget_failed(inode);
250 return ERR_PTR(err);
251}
252
253static struct inode *ubifs_alloc_inode(struct super_block *sb)
254{
255 struct ubifs_inode *ui;
256
257 ui = kmem_cache_alloc(ubifs_inode_slab, GFP_NOFS);
258 if (!ui)
259 return NULL;
260
261 memset((void *)ui + sizeof(struct inode), 0,
262 sizeof(struct ubifs_inode) - sizeof(struct inode));
263 mutex_init(&ui->ui_mutex);
264 spin_lock_init(&ui->ui_lock);
265 return &ui->vfs_inode;
266};
267
268static void ubifs_destroy_inode(struct inode *inode)
269{
270 struct ubifs_inode *ui = ubifs_inode(inode);
271
272 kfree(ui->data);
273 kmem_cache_free(ubifs_inode_slab, inode);
274}
275
276/*
277 * Note, Linux write-back code calls this without 'i_mutex'.
278 */
279static int ubifs_write_inode(struct inode *inode, int wait)
280{
281 int err;
282 struct ubifs_info *c = inode->i_sb->s_fs_info;
283 struct ubifs_inode *ui = ubifs_inode(inode);
284
285 ubifs_assert(!ui->xattr);
286 if (is_bad_inode(inode))
287 return 0;
288
289 mutex_lock(&ui->ui_mutex);
290 /*
291 * Due to races between write-back forced by budgeting
292 * (see 'sync_some_inodes()') and pdflush write-back, the inode may
293 * have already been synchronized, do not do this again. This might
294 * also happen if it was synchronized in an VFS operation, e.g.
295 * 'ubifs_link()'.
296 */
297 if (!ui->dirty) {
298 mutex_unlock(&ui->ui_mutex);
299 return 0;
300 }
301
Artem Bityutskiy7d32c2b2008-07-18 18:54:29 +0300302 dbg_gen("inode %lu, mode %#x", inode->i_ino, (int)inode->i_mode);
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300303 err = ubifs_jnl_write_inode(c, inode, 0);
304 if (err)
305 ubifs_err("can't write inode %lu, error %d", inode->i_ino, err);
306
307 ui->dirty = 0;
308 mutex_unlock(&ui->ui_mutex);
309 ubifs_release_dirty_inode_budget(c, ui);
310 return err;
311}
312
313static void ubifs_delete_inode(struct inode *inode)
314{
315 int err;
316 struct ubifs_info *c = inode->i_sb->s_fs_info;
317
318 if (ubifs_inode(inode)->xattr)
319 /*
320 * Extended attribute inode deletions are fully handled in
321 * 'ubifs_removexattr()'. These inodes are special and have
322 * limited usage, so there is nothing to do here.
323 */
324 goto out;
325
Artem Bityutskiy7d32c2b2008-07-18 18:54:29 +0300326 dbg_gen("inode %lu, mode %#x", inode->i_ino, (int)inode->i_mode);
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300327 ubifs_assert(!atomic_read(&inode->i_count));
328 ubifs_assert(inode->i_nlink == 0);
Artem Bityutskiy7d32c2b2008-07-18 18:54:29 +0300329 ubifs_assert(!ubifs_inode(inode)->dirty);
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300330
331 truncate_inode_pages(&inode->i_data, 0);
332 if (is_bad_inode(inode))
333 goto out;
334
335 ubifs_inode(inode)->ui_size = inode->i_size = 0;
336 err = ubifs_jnl_write_inode(c, inode, 1);
337 if (err)
338 /*
339 * Worst case we have a lost orphan inode wasting space, so a
340 * simple error message is ok here.
341 */
342 ubifs_err("can't write inode %lu, error %d", inode->i_ino, err);
343out:
344 clear_inode(inode);
345}
346
347static void ubifs_dirty_inode(struct inode *inode)
348{
349 struct ubifs_inode *ui = ubifs_inode(inode);
350
351 ubifs_assert(mutex_is_locked(&ui->ui_mutex));
352 if (!ui->dirty) {
353 ui->dirty = 1;
354 dbg_gen("inode %lu", inode->i_ino);
355 }
356}
357
358static int ubifs_statfs(struct dentry *dentry, struct kstatfs *buf)
359{
360 struct ubifs_info *c = dentry->d_sb->s_fs_info;
361 unsigned long long free;
362
363 free = ubifs_budg_get_free_space(c);
364 dbg_gen("free space %lld bytes (%lld blocks)",
365 free, free >> UBIFS_BLOCK_SHIFT);
366
367 buf->f_type = UBIFS_SUPER_MAGIC;
368 buf->f_bsize = UBIFS_BLOCK_SIZE;
369 buf->f_blocks = c->block_cnt;
370 buf->f_bfree = free >> UBIFS_BLOCK_SHIFT;
371 if (free > c->report_rp_size)
372 buf->f_bavail = (free - c->report_rp_size) >> UBIFS_BLOCK_SHIFT;
373 else
374 buf->f_bavail = 0;
375 buf->f_files = 0;
376 buf->f_ffree = 0;
377 buf->f_namelen = UBIFS_MAX_NLEN;
378
379 return 0;
380}
381
382static int ubifs_show_options(struct seq_file *s, struct vfsmount *mnt)
383{
384 struct ubifs_info *c = mnt->mnt_sb->s_fs_info;
385
386 if (c->mount_opts.unmount_mode == 2)
387 seq_printf(s, ",fast_unmount");
388 else if (c->mount_opts.unmount_mode == 1)
389 seq_printf(s, ",norm_unmount");
390
391 return 0;
392}
393
394static int ubifs_sync_fs(struct super_block *sb, int wait)
395{
396 struct ubifs_info *c = sb->s_fs_info;
397 int i, ret = 0, err;
398
399 if (c->jheads)
400 for (i = 0; i < c->jhead_cnt; i++) {
401 err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
402 if (err && !ret)
403 ret = err;
404 }
405 /*
406 * We ought to call sync for c->ubi but it does not have one. If it had
407 * it would in turn call mtd->sync, however mtd operations are
408 * synchronous anyway, so we don't lose any sleep here.
409 */
410 return ret;
411}
412
413/**
414 * init_constants_early - initialize UBIFS constants.
415 * @c: UBIFS file-system description object
416 *
417 * This function initialize UBIFS constants which do not need the superblock to
418 * be read. It also checks that the UBI volume satisfies basic UBIFS
419 * requirements. Returns zero in case of success and a negative error code in
420 * case of failure.
421 */
422static int init_constants_early(struct ubifs_info *c)
423{
424 if (c->vi.corrupted) {
425 ubifs_warn("UBI volume is corrupted - read-only mode");
426 c->ro_media = 1;
427 }
428
429 if (c->di.ro_mode) {
430 ubifs_msg("read-only UBI device");
431 c->ro_media = 1;
432 }
433
434 if (c->vi.vol_type == UBI_STATIC_VOLUME) {
435 ubifs_msg("static UBI volume - read-only mode");
436 c->ro_media = 1;
437 }
438
439 c->leb_cnt = c->vi.size;
440 c->leb_size = c->vi.usable_leb_size;
441 c->half_leb_size = c->leb_size / 2;
442 c->min_io_size = c->di.min_io_size;
443 c->min_io_shift = fls(c->min_io_size) - 1;
444
445 if (c->leb_size < UBIFS_MIN_LEB_SZ) {
446 ubifs_err("too small LEBs (%d bytes), min. is %d bytes",
447 c->leb_size, UBIFS_MIN_LEB_SZ);
448 return -EINVAL;
449 }
450
451 if (c->leb_cnt < UBIFS_MIN_LEB_CNT) {
452 ubifs_err("too few LEBs (%d), min. is %d",
453 c->leb_cnt, UBIFS_MIN_LEB_CNT);
454 return -EINVAL;
455 }
456
457 if (!is_power_of_2(c->min_io_size)) {
458 ubifs_err("bad min. I/O size %d", c->min_io_size);
459 return -EINVAL;
460 }
461
462 /*
463 * UBIFS aligns all node to 8-byte boundary, so to make function in
464 * io.c simpler, assume minimum I/O unit size to be 8 bytes if it is
465 * less than 8.
466 */
467 if (c->min_io_size < 8) {
468 c->min_io_size = 8;
469 c->min_io_shift = 3;
470 }
471
472 c->ref_node_alsz = ALIGN(UBIFS_REF_NODE_SZ, c->min_io_size);
473 c->mst_node_alsz = ALIGN(UBIFS_MST_NODE_SZ, c->min_io_size);
474
475 /*
476 * Initialize node length ranges which are mostly needed for node
477 * length validation.
478 */
479 c->ranges[UBIFS_PAD_NODE].len = UBIFS_PAD_NODE_SZ;
480 c->ranges[UBIFS_SB_NODE].len = UBIFS_SB_NODE_SZ;
481 c->ranges[UBIFS_MST_NODE].len = UBIFS_MST_NODE_SZ;
482 c->ranges[UBIFS_REF_NODE].len = UBIFS_REF_NODE_SZ;
483 c->ranges[UBIFS_TRUN_NODE].len = UBIFS_TRUN_NODE_SZ;
484 c->ranges[UBIFS_CS_NODE].len = UBIFS_CS_NODE_SZ;
485
486 c->ranges[UBIFS_INO_NODE].min_len = UBIFS_INO_NODE_SZ;
487 c->ranges[UBIFS_INO_NODE].max_len = UBIFS_MAX_INO_NODE_SZ;
488 c->ranges[UBIFS_ORPH_NODE].min_len =
489 UBIFS_ORPH_NODE_SZ + sizeof(__le64);
490 c->ranges[UBIFS_ORPH_NODE].max_len = c->leb_size;
491 c->ranges[UBIFS_DENT_NODE].min_len = UBIFS_DENT_NODE_SZ;
492 c->ranges[UBIFS_DENT_NODE].max_len = UBIFS_MAX_DENT_NODE_SZ;
493 c->ranges[UBIFS_XENT_NODE].min_len = UBIFS_XENT_NODE_SZ;
494 c->ranges[UBIFS_XENT_NODE].max_len = UBIFS_MAX_XENT_NODE_SZ;
495 c->ranges[UBIFS_DATA_NODE].min_len = UBIFS_DATA_NODE_SZ;
496 c->ranges[UBIFS_DATA_NODE].max_len = UBIFS_MAX_DATA_NODE_SZ;
497 /*
498 * Minimum indexing node size is amended later when superblock is
499 * read and the key length is known.
500 */
501 c->ranges[UBIFS_IDX_NODE].min_len = UBIFS_IDX_NODE_SZ + UBIFS_BRANCH_SZ;
502 /*
503 * Maximum indexing node size is amended later when superblock is
504 * read and the fanout is known.
505 */
506 c->ranges[UBIFS_IDX_NODE].max_len = INT_MAX;
507
508 /*
509 * Initialize dead and dark LEB space watermarks.
510 *
511 * Dead space is the space which cannot be used. Its watermark is
512 * equivalent to min. I/O unit or minimum node size if it is greater
513 * then min. I/O unit.
514 *
515 * Dark space is the space which might be used, or might not, depending
516 * on which node should be written to the LEB. Its watermark is
517 * equivalent to maximum UBIFS node size.
518 */
519 c->dead_wm = ALIGN(MIN_WRITE_SZ, c->min_io_size);
520 c->dark_wm = ALIGN(UBIFS_MAX_NODE_SZ, c->min_io_size);
521
522 return 0;
523}
524
525/**
526 * bud_wbuf_callback - bud LEB write-buffer synchronization call-back.
527 * @c: UBIFS file-system description object
528 * @lnum: LEB the write-buffer was synchronized to
529 * @free: how many free bytes left in this LEB
530 * @pad: how many bytes were padded
531 *
532 * This is a callback function which is called by the I/O unit when the
533 * write-buffer is synchronized. We need this to correctly maintain space
534 * accounting in bud logical eraseblocks. This function returns zero in case of
535 * success and a negative error code in case of failure.
536 *
537 * This function actually belongs to the journal, but we keep it here because
538 * we want to keep it static.
539 */
540static int bud_wbuf_callback(struct ubifs_info *c, int lnum, int free, int pad)
541{
542 return ubifs_update_one_lp(c, lnum, free, pad, 0, 0);
543}
544
545/*
546 * init_constants_late - initialize UBIFS constants.
547 * @c: UBIFS file-system description object
548 *
549 * This is a helper function which initializes various UBIFS constants after
550 * the superblock has been read. It also checks various UBIFS parameters and
551 * makes sure they are all right. Returns zero in case of success and a
552 * negative error code in case of failure.
553 */
554static int init_constants_late(struct ubifs_info *c)
555{
556 int tmp, err;
557 uint64_t tmp64;
558
559 c->main_bytes = (long long)c->main_lebs * c->leb_size;
560 c->max_znode_sz = sizeof(struct ubifs_znode) +
561 c->fanout * sizeof(struct ubifs_zbranch);
562
563 tmp = ubifs_idx_node_sz(c, 1);
564 c->ranges[UBIFS_IDX_NODE].min_len = tmp;
565 c->min_idx_node_sz = ALIGN(tmp, 8);
566
567 tmp = ubifs_idx_node_sz(c, c->fanout);
568 c->ranges[UBIFS_IDX_NODE].max_len = tmp;
569 c->max_idx_node_sz = ALIGN(tmp, 8);
570
571 /* Make sure LEB size is large enough to fit full commit */
572 tmp = UBIFS_CS_NODE_SZ + UBIFS_REF_NODE_SZ * c->jhead_cnt;
573 tmp = ALIGN(tmp, c->min_io_size);
574 if (tmp > c->leb_size) {
575 dbg_err("too small LEB size %d, at least %d needed",
576 c->leb_size, tmp);
577 return -EINVAL;
578 }
579
580 /*
581 * Make sure that the log is large enough to fit reference nodes for
582 * all buds plus one reserved LEB.
583 */
584 tmp64 = c->max_bud_bytes;
585 tmp = do_div(tmp64, c->leb_size);
586 c->max_bud_cnt = tmp64 + !!tmp;
587 tmp = (c->ref_node_alsz * c->max_bud_cnt + c->leb_size - 1);
588 tmp /= c->leb_size;
589 tmp += 1;
590 if (c->log_lebs < tmp) {
591 dbg_err("too small log %d LEBs, required min. %d LEBs",
592 c->log_lebs, tmp);
593 return -EINVAL;
594 }
595
596 /*
597 * When budgeting we assume worst-case scenarios when the pages are not
598 * be compressed and direntries are of the maximum size.
599 *
600 * Note, data, which may be stored in inodes is budgeted separately, so
601 * it is not included into 'c->inode_budget'.
602 */
603 c->page_budget = UBIFS_MAX_DATA_NODE_SZ * UBIFS_BLOCKS_PER_PAGE;
604 c->inode_budget = UBIFS_INO_NODE_SZ;
605 c->dent_budget = UBIFS_MAX_DENT_NODE_SZ;
606
607 /*
608 * When the amount of flash space used by buds becomes
609 * 'c->max_bud_bytes', UBIFS just blocks all writers and starts commit.
610 * The writers are unblocked when the commit is finished. To avoid
611 * writers to be blocked UBIFS initiates background commit in advance,
612 * when number of bud bytes becomes above the limit defined below.
613 */
614 c->bg_bud_bytes = (c->max_bud_bytes * 13) >> 4;
615
616 /*
617 * Ensure minimum journal size. All the bytes in the journal heads are
618 * considered to be used, when calculating the current journal usage.
619 * Consequently, if the journal is too small, UBIFS will treat it as
620 * always full.
621 */
622 tmp64 = (uint64_t)(c->jhead_cnt + 1) * c->leb_size + 1;
623 if (c->bg_bud_bytes < tmp64)
624 c->bg_bud_bytes = tmp64;
625 if (c->max_bud_bytes < tmp64 + c->leb_size)
626 c->max_bud_bytes = tmp64 + c->leb_size;
627
628 err = ubifs_calc_lpt_geom(c);
629 if (err)
630 return err;
631
632 c->min_idx_lebs = ubifs_calc_min_idx_lebs(c);
633
634 /*
635 * Calculate total amount of FS blocks. This number is not used
636 * internally because it does not make much sense for UBIFS, but it is
637 * necessary to report something for the 'statfs()' call.
638 *
639 * Subtract the LEB reserved for GC and the LEB which is reserved for
640 * deletions.
641 *
642 * Review 'ubifs_calc_available()' if changing this calculation.
643 */
644 tmp64 = c->main_lebs - 2;
645 tmp64 *= (uint64_t)c->leb_size - c->dark_wm;
646 tmp64 = ubifs_reported_space(c, tmp64);
647 c->block_cnt = tmp64 >> UBIFS_BLOCK_SHIFT;
648
649 return 0;
650}
651
652/**
653 * take_gc_lnum - reserve GC LEB.
654 * @c: UBIFS file-system description object
655 *
656 * This function ensures that the LEB reserved for garbage collection is
657 * unmapped and is marked as "taken" in lprops. We also have to set free space
658 * to LEB size and dirty space to zero, because lprops may contain out-of-date
659 * information if the file-system was un-mounted before it has been committed.
660 * This function returns zero in case of success and a negative error code in
661 * case of failure.
662 */
663static int take_gc_lnum(struct ubifs_info *c)
664{
665 int err;
666
667 if (c->gc_lnum == -1) {
668 ubifs_err("no LEB for GC");
669 return -EINVAL;
670 }
671
672 err = ubifs_leb_unmap(c, c->gc_lnum);
673 if (err)
674 return err;
675
676 /* And we have to tell lprops that this LEB is taken */
677 err = ubifs_change_one_lp(c, c->gc_lnum, c->leb_size, 0,
678 LPROPS_TAKEN, 0, 0);
679 return err;
680}
681
682/**
683 * alloc_wbufs - allocate write-buffers.
684 * @c: UBIFS file-system description object
685 *
686 * This helper function allocates and initializes UBIFS write-buffers. Returns
687 * zero in case of success and %-ENOMEM in case of failure.
688 */
689static int alloc_wbufs(struct ubifs_info *c)
690{
691 int i, err;
692
693 c->jheads = kzalloc(c->jhead_cnt * sizeof(struct ubifs_jhead),
694 GFP_KERNEL);
695 if (!c->jheads)
696 return -ENOMEM;
697
698 /* Initialize journal heads */
699 for (i = 0; i < c->jhead_cnt; i++) {
700 INIT_LIST_HEAD(&c->jheads[i].buds_list);
701 err = ubifs_wbuf_init(c, &c->jheads[i].wbuf);
702 if (err)
703 return err;
704
705 c->jheads[i].wbuf.sync_callback = &bud_wbuf_callback;
706 c->jheads[i].wbuf.jhead = i;
707 }
708
709 c->jheads[BASEHD].wbuf.dtype = UBI_SHORTTERM;
710 /*
711 * Garbage Collector head likely contains long-term data and
712 * does not need to be synchronized by timer.
713 */
714 c->jheads[GCHD].wbuf.dtype = UBI_LONGTERM;
715 c->jheads[GCHD].wbuf.timeout = 0;
716
717 return 0;
718}
719
720/**
721 * free_wbufs - free write-buffers.
722 * @c: UBIFS file-system description object
723 */
724static void free_wbufs(struct ubifs_info *c)
725{
726 int i;
727
728 if (c->jheads) {
729 for (i = 0; i < c->jhead_cnt; i++) {
730 kfree(c->jheads[i].wbuf.buf);
731 kfree(c->jheads[i].wbuf.inodes);
732 }
733 kfree(c->jheads);
734 c->jheads = NULL;
735 }
736}
737
738/**
739 * free_orphans - free orphans.
740 * @c: UBIFS file-system description object
741 */
742static void free_orphans(struct ubifs_info *c)
743{
744 struct ubifs_orphan *orph;
745
746 while (c->orph_dnext) {
747 orph = c->orph_dnext;
748 c->orph_dnext = orph->dnext;
749 list_del(&orph->list);
750 kfree(orph);
751 }
752
753 while (!list_empty(&c->orph_list)) {
754 orph = list_entry(c->orph_list.next, struct ubifs_orphan, list);
755 list_del(&orph->list);
756 kfree(orph);
757 dbg_err("orphan list not empty at unmount");
758 }
759
760 vfree(c->orph_buf);
761 c->orph_buf = NULL;
762}
763
764/**
765 * free_buds - free per-bud objects.
766 * @c: UBIFS file-system description object
767 */
768static void free_buds(struct ubifs_info *c)
769{
770 struct rb_node *this = c->buds.rb_node;
771 struct ubifs_bud *bud;
772
773 while (this) {
774 if (this->rb_left)
775 this = this->rb_left;
776 else if (this->rb_right)
777 this = this->rb_right;
778 else {
779 bud = rb_entry(this, struct ubifs_bud, rb);
780 this = rb_parent(this);
781 if (this) {
782 if (this->rb_left == &bud->rb)
783 this->rb_left = NULL;
784 else
785 this->rb_right = NULL;
786 }
787 kfree(bud);
788 }
789 }
790}
791
792/**
793 * check_volume_empty - check if the UBI volume is empty.
794 * @c: UBIFS file-system description object
795 *
796 * This function checks if the UBIFS volume is empty by looking if its LEBs are
797 * mapped or not. The result of checking is stored in the @c->empty variable.
798 * Returns zero in case of success and a negative error code in case of
799 * failure.
800 */
801static int check_volume_empty(struct ubifs_info *c)
802{
803 int lnum, err;
804
805 c->empty = 1;
806 for (lnum = 0; lnum < c->leb_cnt; lnum++) {
807 err = ubi_is_mapped(c->ubi, lnum);
808 if (unlikely(err < 0))
809 return err;
810 if (err == 1) {
811 c->empty = 0;
812 break;
813 }
814
815 cond_resched();
816 }
817
818 return 0;
819}
820
821/*
822 * UBIFS mount options.
823 *
824 * Opt_fast_unmount: do not run a journal commit before un-mounting
825 * Opt_norm_unmount: run a journal commit before un-mounting
826 * Opt_err: just end of array marker
827 */
828enum {
829 Opt_fast_unmount,
830 Opt_norm_unmount,
831 Opt_err,
832};
833
834static match_table_t tokens = {
835 {Opt_fast_unmount, "fast_unmount"},
836 {Opt_norm_unmount, "norm_unmount"},
837 {Opt_err, NULL},
838};
839
840/**
841 * ubifs_parse_options - parse mount parameters.
842 * @c: UBIFS file-system description object
843 * @options: parameters to parse
844 * @is_remount: non-zero if this is FS re-mount
845 *
846 * This function parses UBIFS mount options and returns zero in case success
847 * and a negative error code in case of failure.
848 */
849static int ubifs_parse_options(struct ubifs_info *c, char *options,
850 int is_remount)
851{
852 char *p;
853 substring_t args[MAX_OPT_ARGS];
854
855 if (!options)
856 return 0;
857
858 while ((p = strsep(&options, ","))) {
859 int token;
860
861 if (!*p)
862 continue;
863
864 token = match_token(p, tokens, args);
865 switch (token) {
866 case Opt_fast_unmount:
867 c->mount_opts.unmount_mode = 2;
868 c->fast_unmount = 1;
869 break;
870 case Opt_norm_unmount:
871 c->mount_opts.unmount_mode = 1;
872 c->fast_unmount = 0;
873 break;
874 default:
875 ubifs_err("unrecognized mount option \"%s\" "
876 "or missing value", p);
877 return -EINVAL;
878 }
879 }
880
881 return 0;
882}
883
884/**
885 * destroy_journal - destroy journal data structures.
886 * @c: UBIFS file-system description object
887 *
888 * This function destroys journal data structures including those that may have
889 * been created by recovery functions.
890 */
891static void destroy_journal(struct ubifs_info *c)
892{
893 while (!list_empty(&c->unclean_leb_list)) {
894 struct ubifs_unclean_leb *ucleb;
895
896 ucleb = list_entry(c->unclean_leb_list.next,
897 struct ubifs_unclean_leb, list);
898 list_del(&ucleb->list);
899 kfree(ucleb);
900 }
901 while (!list_empty(&c->old_buds)) {
902 struct ubifs_bud *bud;
903
904 bud = list_entry(c->old_buds.next, struct ubifs_bud, list);
905 list_del(&bud->list);
906 kfree(bud);
907 }
908 ubifs_destroy_idx_gc(c);
909 ubifs_destroy_size_tree(c);
910 ubifs_tnc_close(c);
911 free_buds(c);
912}
913
914/**
915 * mount_ubifs - mount UBIFS file-system.
916 * @c: UBIFS file-system description object
917 *
918 * This function mounts UBIFS file system. Returns zero in case of success and
919 * a negative error code in case of failure.
920 *
921 * Note, the function does not de-allocate resources it it fails half way
922 * through, and the caller has to do this instead.
923 */
924static int mount_ubifs(struct ubifs_info *c)
925{
926 struct super_block *sb = c->vfs_sb;
927 int err, mounted_read_only = (sb->s_flags & MS_RDONLY);
928 long long x;
929 size_t sz;
930
931 err = init_constants_early(c);
932 if (err)
933 return err;
934
935#ifdef CONFIG_UBIFS_FS_DEBUG
936 c->dbg_buf = vmalloc(c->leb_size);
937 if (!c->dbg_buf)
938 return -ENOMEM;
939#endif
940
941 err = check_volume_empty(c);
942 if (err)
943 goto out_free;
944
945 if (c->empty && (mounted_read_only || c->ro_media)) {
946 /*
947 * This UBI volume is empty, and read-only, or the file system
948 * is mounted read-only - we cannot format it.
949 */
950 ubifs_err("can't format empty UBI volume: read-only %s",
951 c->ro_media ? "UBI volume" : "mount");
952 err = -EROFS;
953 goto out_free;
954 }
955
956 if (c->ro_media && !mounted_read_only) {
957 ubifs_err("cannot mount read-write - read-only media");
958 err = -EROFS;
959 goto out_free;
960 }
961
962 /*
963 * The requirement for the buffer is that it should fit indexing B-tree
964 * height amount of integers. We assume the height if the TNC tree will
965 * never exceed 64.
966 */
967 err = -ENOMEM;
968 c->bottom_up_buf = kmalloc(BOTTOM_UP_HEIGHT * sizeof(int), GFP_KERNEL);
969 if (!c->bottom_up_buf)
970 goto out_free;
971
972 c->sbuf = vmalloc(c->leb_size);
973 if (!c->sbuf)
974 goto out_free;
975
976 if (!mounted_read_only) {
977 c->ileb_buf = vmalloc(c->leb_size);
978 if (!c->ileb_buf)
979 goto out_free;
980 }
981
982 err = ubifs_read_superblock(c);
983 if (err)
984 goto out_free;
985
986 /*
987 * Make sure the compressor which is set as the default on in the
988 * superblock was actually compiled in.
989 */
990 if (!ubifs_compr_present(c->default_compr)) {
991 ubifs_warn("'%s' compressor is set by superblock, but not "
992 "compiled in", ubifs_compr_name(c->default_compr));
993 c->default_compr = UBIFS_COMPR_NONE;
994 }
995
996 dbg_failure_mode_registration(c);
997
998 err = init_constants_late(c);
999 if (err)
1000 goto out_dereg;
1001
1002 sz = ALIGN(c->max_idx_node_sz, c->min_io_size);
1003 sz = ALIGN(sz + c->max_idx_node_sz, c->min_io_size);
1004 c->cbuf = kmalloc(sz, GFP_NOFS);
1005 if (!c->cbuf) {
1006 err = -ENOMEM;
1007 goto out_dereg;
1008 }
1009
1010 if (!mounted_read_only) {
1011 err = alloc_wbufs(c);
1012 if (err)
1013 goto out_cbuf;
1014
1015 /* Create background thread */
1016 sprintf(c->bgt_name, BGT_NAME_PATTERN, c->vi.ubi_num,
1017 c->vi.vol_id);
1018 c->bgt = kthread_create(ubifs_bg_thread, c, c->bgt_name);
1019 if (!c->bgt)
1020 c->bgt = ERR_PTR(-EINVAL);
1021 if (IS_ERR(c->bgt)) {
1022 err = PTR_ERR(c->bgt);
1023 c->bgt = NULL;
1024 ubifs_err("cannot spawn \"%s\", error %d",
1025 c->bgt_name, err);
1026 goto out_wbufs;
1027 }
1028 wake_up_process(c->bgt);
1029 }
1030
1031 err = ubifs_read_master(c);
1032 if (err)
1033 goto out_master;
1034
1035 if ((c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY)) != 0) {
1036 ubifs_msg("recovery needed");
1037 c->need_recovery = 1;
1038 if (!mounted_read_only) {
1039 err = ubifs_recover_inl_heads(c, c->sbuf);
1040 if (err)
1041 goto out_master;
1042 }
1043 } else if (!mounted_read_only) {
1044 /*
1045 * Set the "dirty" flag so that if we reboot uncleanly we
1046 * will notice this immediately on the next mount.
1047 */
1048 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
1049 err = ubifs_write_master(c);
1050 if (err)
1051 goto out_master;
1052 }
1053
1054 err = ubifs_lpt_init(c, 1, !mounted_read_only);
1055 if (err)
1056 goto out_lpt;
1057
1058 err = dbg_check_idx_size(c, c->old_idx_sz);
1059 if (err)
1060 goto out_lpt;
1061
1062 err = ubifs_replay_journal(c);
1063 if (err)
1064 goto out_journal;
1065
1066 err = ubifs_mount_orphans(c, c->need_recovery, mounted_read_only);
1067 if (err)
1068 goto out_orphans;
1069
1070 if (!mounted_read_only) {
1071 int lnum;
1072
1073 /* Check for enough free space */
1074 if (ubifs_calc_available(c, c->min_idx_lebs) <= 0) {
1075 ubifs_err("insufficient available space");
1076 err = -EINVAL;
1077 goto out_orphans;
1078 }
1079
1080 /* Check for enough log space */
1081 lnum = c->lhead_lnum + 1;
1082 if (lnum >= UBIFS_LOG_LNUM + c->log_lebs)
1083 lnum = UBIFS_LOG_LNUM;
1084 if (lnum == c->ltail_lnum) {
1085 err = ubifs_consolidate_log(c);
1086 if (err)
1087 goto out_orphans;
1088 }
1089
1090 if (c->need_recovery) {
1091 err = ubifs_recover_size(c);
1092 if (err)
1093 goto out_orphans;
1094 err = ubifs_rcvry_gc_commit(c);
1095 } else
1096 err = take_gc_lnum(c);
1097 if (err)
1098 goto out_orphans;
1099
1100 err = dbg_check_lprops(c);
1101 if (err)
1102 goto out_orphans;
1103 } else if (c->need_recovery) {
1104 err = ubifs_recover_size(c);
1105 if (err)
1106 goto out_orphans;
1107 }
1108
1109 spin_lock(&ubifs_infos_lock);
1110 list_add_tail(&c->infos_list, &ubifs_infos);
1111 spin_unlock(&ubifs_infos_lock);
1112
1113 if (c->need_recovery) {
1114 if (mounted_read_only)
1115 ubifs_msg("recovery deferred");
1116 else {
1117 c->need_recovery = 0;
1118 ubifs_msg("recovery completed");
1119 }
1120 }
1121
1122 err = dbg_check_filesystem(c);
1123 if (err)
1124 goto out_infos;
1125
Artem Bityutskiyce769ca2008-07-18 12:54:21 +03001126 ubifs_msg("mounted UBI device %d, volume %d, name \"%s\"",
1127 c->vi.ubi_num, c->vi.vol_id, c->vi.name);
Artem Bityutskiy1e517642008-07-14 19:08:37 +03001128 if (mounted_read_only)
1129 ubifs_msg("mounted read-only");
1130 x = (long long)c->main_lebs * c->leb_size;
1131 ubifs_msg("file system size: %lld bytes (%lld KiB, %lld MiB, %d LEBs)",
1132 x, x >> 10, x >> 20, c->main_lebs);
1133 x = (long long)c->log_lebs * c->leb_size + c->max_bud_bytes;
1134 ubifs_msg("journal size: %lld bytes (%lld KiB, %lld MiB, %d LEBs)",
1135 x, x >> 10, x >> 20, c->log_lebs + c->max_bud_cnt);
1136 ubifs_msg("default compressor: %s", ubifs_compr_name(c->default_compr));
1137 ubifs_msg("media format %d, latest format %d",
1138 c->fmt_version, UBIFS_FORMAT_VERSION);
1139
1140 dbg_msg("compiled on: " __DATE__ " at " __TIME__);
1141 dbg_msg("min. I/O unit size: %d bytes", c->min_io_size);
1142 dbg_msg("LEB size: %d bytes (%d KiB)",
1143 c->leb_size, c->leb_size / 1024);
1144 dbg_msg("data journal heads: %d",
1145 c->jhead_cnt - NONDATA_JHEADS_CNT);
1146 dbg_msg("UUID: %02X%02X%02X%02X-%02X%02X"
1147 "-%02X%02X-%02X%02X-%02X%02X%02X%02X%02X%02X",
1148 c->uuid[0], c->uuid[1], c->uuid[2], c->uuid[3],
1149 c->uuid[4], c->uuid[5], c->uuid[6], c->uuid[7],
1150 c->uuid[8], c->uuid[9], c->uuid[10], c->uuid[11],
1151 c->uuid[12], c->uuid[13], c->uuid[14], c->uuid[15]);
1152 dbg_msg("fast unmount: %d", c->fast_unmount);
1153 dbg_msg("big_lpt %d", c->big_lpt);
1154 dbg_msg("log LEBs: %d (%d - %d)",
1155 c->log_lebs, UBIFS_LOG_LNUM, c->log_last);
1156 dbg_msg("LPT area LEBs: %d (%d - %d)",
1157 c->lpt_lebs, c->lpt_first, c->lpt_last);
1158 dbg_msg("orphan area LEBs: %d (%d - %d)",
1159 c->orph_lebs, c->orph_first, c->orph_last);
1160 dbg_msg("main area LEBs: %d (%d - %d)",
1161 c->main_lebs, c->main_first, c->leb_cnt - 1);
1162 dbg_msg("index LEBs: %d", c->lst.idx_lebs);
1163 dbg_msg("total index bytes: %lld (%lld KiB, %lld MiB)",
1164 c->old_idx_sz, c->old_idx_sz >> 10, c->old_idx_sz >> 20);
1165 dbg_msg("key hash type: %d", c->key_hash_type);
1166 dbg_msg("tree fanout: %d", c->fanout);
1167 dbg_msg("reserved GC LEB: %d", c->gc_lnum);
1168 dbg_msg("first main LEB: %d", c->main_first);
1169 dbg_msg("dead watermark: %d", c->dead_wm);
1170 dbg_msg("dark watermark: %d", c->dark_wm);
1171 x = (long long)c->main_lebs * c->dark_wm;
1172 dbg_msg("max. dark space: %lld (%lld KiB, %lld MiB)",
1173 x, x >> 10, x >> 20);
1174 dbg_msg("maximum bud bytes: %lld (%lld KiB, %lld MiB)",
1175 c->max_bud_bytes, c->max_bud_bytes >> 10,
1176 c->max_bud_bytes >> 20);
1177 dbg_msg("BG commit bud bytes: %lld (%lld KiB, %lld MiB)",
1178 c->bg_bud_bytes, c->bg_bud_bytes >> 10,
1179 c->bg_bud_bytes >> 20);
1180 dbg_msg("current bud bytes %lld (%lld KiB, %lld MiB)",
1181 c->bud_bytes, c->bud_bytes >> 10, c->bud_bytes >> 20);
1182 dbg_msg("max. seq. number: %llu", c->max_sqnum);
1183 dbg_msg("commit number: %llu", c->cmt_no);
1184
1185 return 0;
1186
1187out_infos:
1188 spin_lock(&ubifs_infos_lock);
1189 list_del(&c->infos_list);
1190 spin_unlock(&ubifs_infos_lock);
1191out_orphans:
1192 free_orphans(c);
1193out_journal:
1194 destroy_journal(c);
1195out_lpt:
1196 ubifs_lpt_free(c, 0);
1197out_master:
1198 kfree(c->mst_node);
1199 kfree(c->rcvrd_mst_node);
1200 if (c->bgt)
1201 kthread_stop(c->bgt);
1202out_wbufs:
1203 free_wbufs(c);
1204out_cbuf:
1205 kfree(c->cbuf);
1206out_dereg:
1207 dbg_failure_mode_deregistration(c);
1208out_free:
1209 vfree(c->ileb_buf);
1210 vfree(c->sbuf);
1211 kfree(c->bottom_up_buf);
1212 UBIFS_DBG(vfree(c->dbg_buf));
1213 return err;
1214}
1215
1216/**
1217 * ubifs_umount - un-mount UBIFS file-system.
1218 * @c: UBIFS file-system description object
1219 *
1220 * Note, this function is called to free allocated resourced when un-mounting,
1221 * as well as free resources when an error occurred while we were half way
1222 * through mounting (error path cleanup function). So it has to make sure the
1223 * resource was actually allocated before freeing it.
1224 */
1225static void ubifs_umount(struct ubifs_info *c)
1226{
1227 dbg_gen("un-mounting UBI device %d, volume %d", c->vi.ubi_num,
1228 c->vi.vol_id);
1229
1230 spin_lock(&ubifs_infos_lock);
1231 list_del(&c->infos_list);
1232 spin_unlock(&ubifs_infos_lock);
1233
1234 if (c->bgt)
1235 kthread_stop(c->bgt);
1236
1237 destroy_journal(c);
1238 free_wbufs(c);
1239 free_orphans(c);
1240 ubifs_lpt_free(c, 0);
1241
1242 kfree(c->cbuf);
1243 kfree(c->rcvrd_mst_node);
1244 kfree(c->mst_node);
1245 vfree(c->sbuf);
1246 kfree(c->bottom_up_buf);
1247 UBIFS_DBG(vfree(c->dbg_buf));
1248 vfree(c->ileb_buf);
1249 dbg_failure_mode_deregistration(c);
1250}
1251
1252/**
1253 * ubifs_remount_rw - re-mount in read-write mode.
1254 * @c: UBIFS file-system description object
1255 *
1256 * UBIFS avoids allocating many unnecessary resources when mounted in read-only
1257 * mode. This function allocates the needed resources and re-mounts UBIFS in
1258 * read-write mode.
1259 */
1260static int ubifs_remount_rw(struct ubifs_info *c)
1261{
1262 int err, lnum;
1263
1264 if (c->ro_media)
1265 return -EINVAL;
1266
1267 mutex_lock(&c->umount_mutex);
1268 c->remounting_rw = 1;
1269
1270 /* Check for enough free space */
1271 if (ubifs_calc_available(c, c->min_idx_lebs) <= 0) {
1272 ubifs_err("insufficient available space");
1273 err = -EINVAL;
1274 goto out;
1275 }
1276
1277 if (c->old_leb_cnt != c->leb_cnt) {
1278 struct ubifs_sb_node *sup;
1279
1280 sup = ubifs_read_sb_node(c);
1281 if (IS_ERR(sup)) {
1282 err = PTR_ERR(sup);
1283 goto out;
1284 }
1285 sup->leb_cnt = cpu_to_le32(c->leb_cnt);
1286 err = ubifs_write_sb_node(c, sup);
1287 if (err)
1288 goto out;
1289 }
1290
1291 if (c->need_recovery) {
1292 ubifs_msg("completing deferred recovery");
1293 err = ubifs_write_rcvrd_mst_node(c);
1294 if (err)
1295 goto out;
1296 err = ubifs_recover_size(c);
1297 if (err)
1298 goto out;
1299 err = ubifs_clean_lebs(c, c->sbuf);
1300 if (err)
1301 goto out;
1302 err = ubifs_recover_inl_heads(c, c->sbuf);
1303 if (err)
1304 goto out;
1305 }
1306
1307 if (!(c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY))) {
1308 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
1309 err = ubifs_write_master(c);
1310 if (err)
1311 goto out;
1312 }
1313
1314 c->ileb_buf = vmalloc(c->leb_size);
1315 if (!c->ileb_buf) {
1316 err = -ENOMEM;
1317 goto out;
1318 }
1319
1320 err = ubifs_lpt_init(c, 0, 1);
1321 if (err)
1322 goto out;
1323
1324 err = alloc_wbufs(c);
1325 if (err)
1326 goto out;
1327
1328 ubifs_create_buds_lists(c);
1329
1330 /* Create background thread */
1331 c->bgt = kthread_create(ubifs_bg_thread, c, c->bgt_name);
1332 if (!c->bgt)
1333 c->bgt = ERR_PTR(-EINVAL);
1334 if (IS_ERR(c->bgt)) {
1335 err = PTR_ERR(c->bgt);
1336 c->bgt = NULL;
1337 ubifs_err("cannot spawn \"%s\", error %d",
1338 c->bgt_name, err);
1339 return err;
1340 }
1341 wake_up_process(c->bgt);
1342
1343 c->orph_buf = vmalloc(c->leb_size);
1344 if (!c->orph_buf)
1345 return -ENOMEM;
1346
1347 /* Check for enough log space */
1348 lnum = c->lhead_lnum + 1;
1349 if (lnum >= UBIFS_LOG_LNUM + c->log_lebs)
1350 lnum = UBIFS_LOG_LNUM;
1351 if (lnum == c->ltail_lnum) {
1352 err = ubifs_consolidate_log(c);
1353 if (err)
1354 goto out;
1355 }
1356
1357 if (c->need_recovery)
1358 err = ubifs_rcvry_gc_commit(c);
1359 else
1360 err = take_gc_lnum(c);
1361 if (err)
1362 goto out;
1363
1364 if (c->need_recovery) {
1365 c->need_recovery = 0;
1366 ubifs_msg("deferred recovery completed");
1367 }
1368
1369 dbg_gen("re-mounted read-write");
1370 c->vfs_sb->s_flags &= ~MS_RDONLY;
1371 c->remounting_rw = 0;
1372 mutex_unlock(&c->umount_mutex);
1373 return 0;
1374
1375out:
1376 vfree(c->orph_buf);
1377 c->orph_buf = NULL;
1378 if (c->bgt) {
1379 kthread_stop(c->bgt);
1380 c->bgt = NULL;
1381 }
1382 free_wbufs(c);
1383 vfree(c->ileb_buf);
1384 c->ileb_buf = NULL;
1385 ubifs_lpt_free(c, 1);
1386 c->remounting_rw = 0;
1387 mutex_unlock(&c->umount_mutex);
1388 return err;
1389}
1390
1391/**
1392 * commit_on_unmount - commit the journal when un-mounting.
1393 * @c: UBIFS file-system description object
1394 *
1395 * This function is called during un-mounting and it commits the journal unless
1396 * the "fast unmount" mode is enabled. It also avoids committing the journal if
1397 * it contains too few data.
1398 *
1399 * Sometimes recovery requires the journal to be committed at least once, and
1400 * this function takes care about this.
1401 */
1402static void commit_on_unmount(struct ubifs_info *c)
1403{
1404 if (!c->fast_unmount) {
1405 long long bud_bytes;
1406
1407 spin_lock(&c->buds_lock);
1408 bud_bytes = c->bud_bytes;
1409 spin_unlock(&c->buds_lock);
1410 if (bud_bytes > c->leb_size)
1411 ubifs_run_commit(c);
1412 }
1413}
1414
1415/**
1416 * ubifs_remount_ro - re-mount in read-only mode.
1417 * @c: UBIFS file-system description object
1418 *
1419 * We rely on VFS to have stopped writing. Possibly the background thread could
1420 * be running a commit, however kthread_stop will wait in that case.
1421 */
1422static void ubifs_remount_ro(struct ubifs_info *c)
1423{
1424 int i, err;
1425
1426 ubifs_assert(!c->need_recovery);
1427 commit_on_unmount(c);
1428
1429 mutex_lock(&c->umount_mutex);
1430 if (c->bgt) {
1431 kthread_stop(c->bgt);
1432 c->bgt = NULL;
1433 }
1434
1435 for (i = 0; i < c->jhead_cnt; i++) {
1436 ubifs_wbuf_sync(&c->jheads[i].wbuf);
1437 del_timer_sync(&c->jheads[i].wbuf.timer);
1438 }
1439
1440 if (!c->ro_media) {
1441 c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY);
1442 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
1443 c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum);
1444 err = ubifs_write_master(c);
1445 if (err)
1446 ubifs_ro_mode(c, err);
1447 }
1448
1449 ubifs_destroy_idx_gc(c);
1450 free_wbufs(c);
1451 vfree(c->orph_buf);
1452 c->orph_buf = NULL;
1453 vfree(c->ileb_buf);
1454 c->ileb_buf = NULL;
1455 ubifs_lpt_free(c, 1);
1456 mutex_unlock(&c->umount_mutex);
1457}
1458
1459static void ubifs_put_super(struct super_block *sb)
1460{
1461 int i;
1462 struct ubifs_info *c = sb->s_fs_info;
1463
1464 ubifs_msg("un-mount UBI device %d, volume %d", c->vi.ubi_num,
1465 c->vi.vol_id);
1466 /*
1467 * The following asserts are only valid if there has not been a failure
1468 * of the media. For example, there will be dirty inodes if we failed
1469 * to write them back because of I/O errors.
1470 */
1471 ubifs_assert(atomic_long_read(&c->dirty_pg_cnt) == 0);
1472 ubifs_assert(c->budg_idx_growth == 0);
Artem Bityutskiy7d32c2b2008-07-18 18:54:29 +03001473 ubifs_assert(c->budg_dd_growth == 0);
Artem Bityutskiy1e517642008-07-14 19:08:37 +03001474 ubifs_assert(c->budg_data_growth == 0);
1475
1476 /*
1477 * The 'c->umount_lock' prevents races between UBIFS memory shrinker
1478 * and file system un-mount. Namely, it prevents the shrinker from
1479 * picking this superblock for shrinking - it will be just skipped if
1480 * the mutex is locked.
1481 */
1482 mutex_lock(&c->umount_mutex);
1483 if (!(c->vfs_sb->s_flags & MS_RDONLY)) {
1484 /*
1485 * First of all kill the background thread to make sure it does
1486 * not interfere with un-mounting and freeing resources.
1487 */
1488 if (c->bgt) {
1489 kthread_stop(c->bgt);
1490 c->bgt = NULL;
1491 }
1492
1493 /* Synchronize write-buffers */
1494 if (c->jheads)
1495 for (i = 0; i < c->jhead_cnt; i++) {
1496 ubifs_wbuf_sync(&c->jheads[i].wbuf);
1497 del_timer_sync(&c->jheads[i].wbuf.timer);
1498 }
1499
1500 /*
1501 * On fatal errors c->ro_media is set to 1, in which case we do
1502 * not write the master node.
1503 */
1504 if (!c->ro_media) {
1505 /*
1506 * We are being cleanly unmounted which means the
1507 * orphans were killed - indicate this in the master
1508 * node. Also save the reserved GC LEB number.
1509 */
1510 int err;
1511
1512 c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY);
1513 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
1514 c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum);
1515 err = ubifs_write_master(c);
1516 if (err)
1517 /*
1518 * Recovery will attempt to fix the master area
1519 * next mount, so we just print a message and
1520 * continue to unmount normally.
1521 */
1522 ubifs_err("failed to write master node, "
1523 "error %d", err);
1524 }
1525 }
1526
1527 ubifs_umount(c);
1528 bdi_destroy(&c->bdi);
1529 ubi_close_volume(c->ubi);
1530 mutex_unlock(&c->umount_mutex);
1531 kfree(c);
1532}
1533
1534static int ubifs_remount_fs(struct super_block *sb, int *flags, char *data)
1535{
1536 int err;
1537 struct ubifs_info *c = sb->s_fs_info;
1538
1539 dbg_gen("old flags %#lx, new flags %#x", sb->s_flags, *flags);
1540
1541 err = ubifs_parse_options(c, data, 1);
1542 if (err) {
1543 ubifs_err("invalid or unknown remount parameter");
1544 return err;
1545 }
1546 if ((sb->s_flags & MS_RDONLY) && !(*flags & MS_RDONLY)) {
1547 err = ubifs_remount_rw(c);
1548 if (err)
1549 return err;
1550 } else if (!(sb->s_flags & MS_RDONLY) && (*flags & MS_RDONLY))
1551 ubifs_remount_ro(c);
1552
1553 return 0;
1554}
1555
1556struct super_operations ubifs_super_operations = {
1557 .alloc_inode = ubifs_alloc_inode,
1558 .destroy_inode = ubifs_destroy_inode,
1559 .put_super = ubifs_put_super,
1560 .write_inode = ubifs_write_inode,
1561 .delete_inode = ubifs_delete_inode,
1562 .statfs = ubifs_statfs,
1563 .dirty_inode = ubifs_dirty_inode,
1564 .remount_fs = ubifs_remount_fs,
1565 .show_options = ubifs_show_options,
1566 .sync_fs = ubifs_sync_fs,
1567};
1568
1569/**
1570 * open_ubi - parse UBI device name string and open the UBI device.
1571 * @name: UBI volume name
1572 * @mode: UBI volume open mode
1573 *
1574 * There are several ways to specify UBI volumes when mounting UBIFS:
1575 * o ubiX_Y - UBI device number X, volume Y;
1576 * o ubiY - UBI device number 0, volume Y;
1577 * o ubiX:NAME - mount UBI device X, volume with name NAME;
1578 * o ubi:NAME - mount UBI device 0, volume with name NAME.
1579 *
1580 * Alternative '!' separator may be used instead of ':' (because some shells
1581 * like busybox may interpret ':' as an NFS host name separator). This function
1582 * returns ubi volume object in case of success and a negative error code in
1583 * case of failure.
1584 */
1585static struct ubi_volume_desc *open_ubi(const char *name, int mode)
1586{
1587 int dev, vol;
1588 char *endptr;
1589
1590 if (name[0] != 'u' || name[1] != 'b' || name[2] != 'i')
1591 return ERR_PTR(-EINVAL);
1592
1593 /* ubi:NAME method */
1594 if ((name[3] == ':' || name[3] == '!') && name[4] != '\0')
1595 return ubi_open_volume_nm(0, name + 4, mode);
1596
1597 if (!isdigit(name[3]))
1598 return ERR_PTR(-EINVAL);
1599
1600 dev = simple_strtoul(name + 3, &endptr, 0);
1601
1602 /* ubiY method */
1603 if (*endptr == '\0')
1604 return ubi_open_volume(0, dev, mode);
1605
1606 /* ubiX_Y method */
1607 if (*endptr == '_' && isdigit(endptr[1])) {
1608 vol = simple_strtoul(endptr + 1, &endptr, 0);
1609 if (*endptr != '\0')
1610 return ERR_PTR(-EINVAL);
1611 return ubi_open_volume(dev, vol, mode);
1612 }
1613
1614 /* ubiX:NAME method */
1615 if ((*endptr == ':' || *endptr == '!') && endptr[1] != '\0')
1616 return ubi_open_volume_nm(dev, ++endptr, mode);
1617
1618 return ERR_PTR(-EINVAL);
1619}
1620
1621static int ubifs_fill_super(struct super_block *sb, void *data, int silent)
1622{
1623 struct ubi_volume_desc *ubi = sb->s_fs_info;
1624 struct ubifs_info *c;
1625 struct inode *root;
1626 int err;
1627
1628 c = kzalloc(sizeof(struct ubifs_info), GFP_KERNEL);
1629 if (!c)
1630 return -ENOMEM;
1631
1632 spin_lock_init(&c->cnt_lock);
1633 spin_lock_init(&c->cs_lock);
1634 spin_lock_init(&c->buds_lock);
1635 spin_lock_init(&c->space_lock);
1636 spin_lock_init(&c->orphan_lock);
1637 init_rwsem(&c->commit_sem);
1638 mutex_init(&c->lp_mutex);
1639 mutex_init(&c->tnc_mutex);
1640 mutex_init(&c->log_mutex);
1641 mutex_init(&c->mst_mutex);
1642 mutex_init(&c->umount_mutex);
1643 init_waitqueue_head(&c->cmt_wq);
1644 c->buds = RB_ROOT;
1645 c->old_idx = RB_ROOT;
1646 c->size_tree = RB_ROOT;
1647 c->orph_tree = RB_ROOT;
1648 INIT_LIST_HEAD(&c->infos_list);
1649 INIT_LIST_HEAD(&c->idx_gc);
1650 INIT_LIST_HEAD(&c->replay_list);
1651 INIT_LIST_HEAD(&c->replay_buds);
1652 INIT_LIST_HEAD(&c->uncat_list);
1653 INIT_LIST_HEAD(&c->empty_list);
1654 INIT_LIST_HEAD(&c->freeable_list);
1655 INIT_LIST_HEAD(&c->frdi_idx_list);
1656 INIT_LIST_HEAD(&c->unclean_leb_list);
1657 INIT_LIST_HEAD(&c->old_buds);
1658 INIT_LIST_HEAD(&c->orph_list);
1659 INIT_LIST_HEAD(&c->orph_new);
1660
1661 c->highest_inum = UBIFS_FIRST_INO;
1662 get_random_bytes(&c->vfs_gen, sizeof(int));
1663 c->lhead_lnum = c->ltail_lnum = UBIFS_LOG_LNUM;
1664
1665 ubi_get_volume_info(ubi, &c->vi);
1666 ubi_get_device_info(c->vi.ubi_num, &c->di);
1667
1668 /* Re-open the UBI device in read-write mode */
1669 c->ubi = ubi_open_volume(c->vi.ubi_num, c->vi.vol_id, UBI_READWRITE);
1670 if (IS_ERR(c->ubi)) {
1671 err = PTR_ERR(c->ubi);
1672 goto out_free;
1673 }
1674
1675 /*
1676 * UBIFS provids 'backing_dev_info' in order to disable readahead. For
1677 * UBIFS, I/O is not deferred, it is done immediately in readpage,
1678 * which means the user would have to wait not just for their own I/O
1679 * but the readahead I/O as well i.e. completely pointless.
1680 *
1681 * Read-ahead will be disabled because @c->bdi.ra_pages is 0.
1682 */
1683 c->bdi.capabilities = BDI_CAP_MAP_COPY;
1684 c->bdi.unplug_io_fn = default_unplug_io_fn;
1685 err = bdi_init(&c->bdi);
1686 if (err)
1687 goto out_close;
1688
1689 err = ubifs_parse_options(c, data, 0);
1690 if (err)
1691 goto out_bdi;
1692
1693 c->vfs_sb = sb;
1694
1695 sb->s_fs_info = c;
1696 sb->s_magic = UBIFS_SUPER_MAGIC;
1697 sb->s_blocksize = UBIFS_BLOCK_SIZE;
1698 sb->s_blocksize_bits = UBIFS_BLOCK_SHIFT;
1699 sb->s_dev = c->vi.cdev;
1700 sb->s_maxbytes = c->max_inode_sz = key_max_inode_size(c);
1701 if (c->max_inode_sz > MAX_LFS_FILESIZE)
1702 sb->s_maxbytes = c->max_inode_sz = MAX_LFS_FILESIZE;
1703 sb->s_op = &ubifs_super_operations;
1704
1705 mutex_lock(&c->umount_mutex);
1706 err = mount_ubifs(c);
1707 if (err) {
1708 ubifs_assert(err < 0);
1709 goto out_unlock;
1710 }
1711
1712 /* Read the root inode */
1713 root = ubifs_iget(sb, UBIFS_ROOT_INO);
1714 if (IS_ERR(root)) {
1715 err = PTR_ERR(root);
1716 goto out_umount;
1717 }
1718
1719 sb->s_root = d_alloc_root(root);
1720 if (!sb->s_root)
1721 goto out_iput;
1722
1723 mutex_unlock(&c->umount_mutex);
1724
1725 return 0;
1726
1727out_iput:
1728 iput(root);
1729out_umount:
1730 ubifs_umount(c);
1731out_unlock:
1732 mutex_unlock(&c->umount_mutex);
1733out_bdi:
1734 bdi_destroy(&c->bdi);
1735out_close:
1736 ubi_close_volume(c->ubi);
1737out_free:
1738 kfree(c);
1739 return err;
1740}
1741
1742static int sb_test(struct super_block *sb, void *data)
1743{
1744 dev_t *dev = data;
1745
1746 return sb->s_dev == *dev;
1747}
1748
1749static int sb_set(struct super_block *sb, void *data)
1750{
1751 dev_t *dev = data;
1752
1753 sb->s_dev = *dev;
1754 return 0;
1755}
1756
1757static int ubifs_get_sb(struct file_system_type *fs_type, int flags,
1758 const char *name, void *data, struct vfsmount *mnt)
1759{
1760 struct ubi_volume_desc *ubi;
1761 struct ubi_volume_info vi;
1762 struct super_block *sb;
1763 int err;
1764
1765 dbg_gen("name %s, flags %#x", name, flags);
1766
1767 /*
1768 * Get UBI device number and volume ID. Mount it read-only so far
1769 * because this might be a new mount point, and UBI allows only one
1770 * read-write user at a time.
1771 */
1772 ubi = open_ubi(name, UBI_READONLY);
1773 if (IS_ERR(ubi)) {
1774 ubifs_err("cannot open \"%s\", error %d",
1775 name, (int)PTR_ERR(ubi));
1776 return PTR_ERR(ubi);
1777 }
1778 ubi_get_volume_info(ubi, &vi);
1779
1780 dbg_gen("opened ubi%d_%d", vi.ubi_num, vi.vol_id);
1781
1782 sb = sget(fs_type, &sb_test, &sb_set, &vi.cdev);
1783 if (IS_ERR(sb)) {
1784 err = PTR_ERR(sb);
1785 goto out_close;
1786 }
1787
1788 if (sb->s_root) {
1789 /* A new mount point for already mounted UBIFS */
1790 dbg_gen("this ubi volume is already mounted");
1791 if ((flags ^ sb->s_flags) & MS_RDONLY) {
1792 err = -EBUSY;
1793 goto out_deact;
1794 }
1795 } else {
1796 sb->s_flags = flags;
1797 /*
1798 * Pass 'ubi' to 'fill_super()' in sb->s_fs_info where it is
1799 * replaced by 'c'.
1800 */
1801 sb->s_fs_info = ubi;
1802 err = ubifs_fill_super(sb, data, flags & MS_SILENT ? 1 : 0);
1803 if (err)
1804 goto out_deact;
1805 /* We do not support atime */
1806 sb->s_flags |= MS_ACTIVE | MS_NOATIME;
1807 }
1808
1809 /* 'fill_super()' opens ubi again so we must close it here */
1810 ubi_close_volume(ubi);
1811
1812 return simple_set_mnt(mnt, sb);
1813
1814out_deact:
1815 up_write(&sb->s_umount);
1816 deactivate_super(sb);
1817out_close:
1818 ubi_close_volume(ubi);
1819 return err;
1820}
1821
1822static void ubifs_kill_sb(struct super_block *sb)
1823{
1824 struct ubifs_info *c = sb->s_fs_info;
1825
1826 /*
1827 * We do 'commit_on_unmount()' here instead of 'ubifs_put_super()'
1828 * in order to be outside BKL.
1829 */
1830 if (sb->s_root && !(sb->s_flags & MS_RDONLY))
1831 commit_on_unmount(c);
1832 /* The un-mount routine is actually done in put_super() */
1833 generic_shutdown_super(sb);
1834}
1835
1836static struct file_system_type ubifs_fs_type = {
1837 .name = "ubifs",
1838 .owner = THIS_MODULE,
1839 .get_sb = ubifs_get_sb,
1840 .kill_sb = ubifs_kill_sb
1841};
1842
1843/*
1844 * Inode slab cache constructor.
1845 */
Alexey Dobriyan51cc5062008-07-25 19:45:34 -07001846static void inode_slab_ctor(void *obj)
Artem Bityutskiy1e517642008-07-14 19:08:37 +03001847{
1848 struct ubifs_inode *ui = obj;
1849 inode_init_once(&ui->vfs_inode);
1850}
1851
1852static int __init ubifs_init(void)
1853{
1854 int err;
1855
1856 BUILD_BUG_ON(sizeof(struct ubifs_ch) != 24);
1857
1858 /* Make sure node sizes are 8-byte aligned */
1859 BUILD_BUG_ON(UBIFS_CH_SZ & 7);
1860 BUILD_BUG_ON(UBIFS_INO_NODE_SZ & 7);
1861 BUILD_BUG_ON(UBIFS_DENT_NODE_SZ & 7);
1862 BUILD_BUG_ON(UBIFS_XENT_NODE_SZ & 7);
1863 BUILD_BUG_ON(UBIFS_DATA_NODE_SZ & 7);
1864 BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ & 7);
1865 BUILD_BUG_ON(UBIFS_SB_NODE_SZ & 7);
1866 BUILD_BUG_ON(UBIFS_MST_NODE_SZ & 7);
1867 BUILD_BUG_ON(UBIFS_REF_NODE_SZ & 7);
1868 BUILD_BUG_ON(UBIFS_CS_NODE_SZ & 7);
1869 BUILD_BUG_ON(UBIFS_ORPH_NODE_SZ & 7);
1870
1871 BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ & 7);
1872 BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ & 7);
1873 BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ & 7);
1874 BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ & 7);
1875 BUILD_BUG_ON(UBIFS_MAX_NODE_SZ & 7);
1876 BUILD_BUG_ON(MIN_WRITE_SZ & 7);
1877
1878 /* Check min. node size */
1879 BUILD_BUG_ON(UBIFS_INO_NODE_SZ < MIN_WRITE_SZ);
1880 BUILD_BUG_ON(UBIFS_DENT_NODE_SZ < MIN_WRITE_SZ);
1881 BUILD_BUG_ON(UBIFS_XENT_NODE_SZ < MIN_WRITE_SZ);
1882 BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ < MIN_WRITE_SZ);
1883
1884 BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ > UBIFS_MAX_NODE_SZ);
1885 BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ > UBIFS_MAX_NODE_SZ);
1886 BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ > UBIFS_MAX_NODE_SZ);
1887 BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ > UBIFS_MAX_NODE_SZ);
1888
1889 /* Defined node sizes */
1890 BUILD_BUG_ON(UBIFS_SB_NODE_SZ != 4096);
1891 BUILD_BUG_ON(UBIFS_MST_NODE_SZ != 512);
1892 BUILD_BUG_ON(UBIFS_INO_NODE_SZ != 160);
1893 BUILD_BUG_ON(UBIFS_REF_NODE_SZ != 64);
1894
1895 /*
1896 * We require that PAGE_CACHE_SIZE is greater-than-or-equal-to
1897 * UBIFS_BLOCK_SIZE. It is assumed that both are powers of 2.
1898 */
1899 if (PAGE_CACHE_SIZE < UBIFS_BLOCK_SIZE) {
1900 ubifs_err("VFS page cache size is %u bytes, but UBIFS requires"
1901 " at least 4096 bytes",
1902 (unsigned int)PAGE_CACHE_SIZE);
1903 return -EINVAL;
1904 }
1905
1906 err = register_filesystem(&ubifs_fs_type);
1907 if (err) {
1908 ubifs_err("cannot register file system, error %d", err);
1909 return err;
1910 }
1911
1912 err = -ENOMEM;
1913 ubifs_inode_slab = kmem_cache_create("ubifs_inode_slab",
1914 sizeof(struct ubifs_inode), 0,
1915 SLAB_MEM_SPREAD | SLAB_RECLAIM_ACCOUNT,
1916 &inode_slab_ctor);
1917 if (!ubifs_inode_slab)
1918 goto out_reg;
1919
1920 register_shrinker(&ubifs_shrinker_info);
1921
1922 err = ubifs_compressors_init();
1923 if (err)
1924 goto out_compr;
1925
1926 return 0;
1927
1928out_compr:
1929 unregister_shrinker(&ubifs_shrinker_info);
1930 kmem_cache_destroy(ubifs_inode_slab);
1931out_reg:
1932 unregister_filesystem(&ubifs_fs_type);
1933 return err;
1934}
1935/* late_initcall to let compressors initialize first */
1936late_initcall(ubifs_init);
1937
1938static void __exit ubifs_exit(void)
1939{
1940 ubifs_assert(list_empty(&ubifs_infos));
1941 ubifs_assert(atomic_long_read(&ubifs_clean_zn_cnt) == 0);
1942
1943 ubifs_compressors_exit();
1944 unregister_shrinker(&ubifs_shrinker_info);
1945 kmem_cache_destroy(ubifs_inode_slab);
1946 unregister_filesystem(&ubifs_fs_type);
1947}
1948module_exit(ubifs_exit);
1949
1950MODULE_LICENSE("GPL");
1951MODULE_VERSION(__stringify(UBIFS_VERSION));
1952MODULE_AUTHOR("Artem Bityutskiy, Adrian Hunter");
1953MODULE_DESCRIPTION("UBIFS - UBI File System");