Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* |
| 2 | * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx. |
| 3 | * Copyright (c) 1997 Dan Malek (dmalek@jlc.net) |
| 4 | * |
| 5 | * This version of the driver is specific to the FADS implementation, |
| 6 | * since the board contains control registers external to the processor |
| 7 | * for the control of the LevelOne LXT970 transceiver. The MPC860T manual |
| 8 | * describes connections using the internal parallel port I/O, which |
| 9 | * is basically all of Port D. |
| 10 | * |
| 11 | * Includes support for the following PHYs: QS6612, LXT970, LXT971/2. |
| 12 | * |
| 13 | * Right now, I am very wasteful with the buffers. I allocate memory |
| 14 | * pages and then divide them into 2K frame buffers. This way I know I |
| 15 | * have buffers large enough to hold one frame within one buffer descriptor. |
| 16 | * Once I get this working, I will use 64 or 128 byte CPM buffers, which |
| 17 | * will be much more memory efficient and will easily handle lots of |
| 18 | * small packets. |
| 19 | * |
| 20 | * Much better multiple PHY support by Magnus Damm. |
| 21 | * Copyright (c) 2000 Ericsson Radio Systems AB. |
| 22 | * |
| 23 | * Make use of MII for PHY control configurable. |
| 24 | * Some fixes. |
| 25 | * Copyright (c) 2000-2002 Wolfgang Denk, DENX Software Engineering. |
| 26 | * |
| 27 | * Support for AMD AM79C874 added. |
| 28 | * Thomas Lange, thomas@corelatus.com |
| 29 | */ |
| 30 | |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 31 | #include <linux/kernel.h> |
| 32 | #include <linux/sched.h> |
| 33 | #include <linux/string.h> |
| 34 | #include <linux/ptrace.h> |
| 35 | #include <linux/errno.h> |
| 36 | #include <linux/ioport.h> |
| 37 | #include <linux/slab.h> |
| 38 | #include <linux/interrupt.h> |
| 39 | #include <linux/pci.h> |
| 40 | #include <linux/init.h> |
| 41 | #include <linux/delay.h> |
| 42 | #include <linux/netdevice.h> |
| 43 | #include <linux/etherdevice.h> |
| 44 | #include <linux/skbuff.h> |
| 45 | #include <linux/spinlock.h> |
| 46 | #include <linux/bitops.h> |
| 47 | #ifdef CONFIG_FEC_PACKETHOOK |
| 48 | #include <linux/pkthook.h> |
| 49 | #endif |
| 50 | |
| 51 | #include <asm/8xx_immap.h> |
| 52 | #include <asm/pgtable.h> |
| 53 | #include <asm/mpc8xx.h> |
| 54 | #include <asm/irq.h> |
| 55 | #include <asm/uaccess.h> |
| 56 | #include <asm/commproc.h> |
| 57 | |
| 58 | #ifdef CONFIG_USE_MDIO |
| 59 | /* Forward declarations of some structures to support different PHYs |
| 60 | */ |
| 61 | |
| 62 | typedef struct { |
| 63 | uint mii_data; |
| 64 | void (*funct)(uint mii_reg, struct net_device *dev); |
| 65 | } phy_cmd_t; |
| 66 | |
| 67 | typedef struct { |
| 68 | uint id; |
| 69 | char *name; |
| 70 | |
| 71 | const phy_cmd_t *config; |
| 72 | const phy_cmd_t *startup; |
| 73 | const phy_cmd_t *ack_int; |
| 74 | const phy_cmd_t *shutdown; |
| 75 | } phy_info_t; |
| 76 | #endif /* CONFIG_USE_MDIO */ |
| 77 | |
| 78 | /* The number of Tx and Rx buffers. These are allocated from the page |
| 79 | * pool. The code may assume these are power of two, so it is best |
| 80 | * to keep them that size. |
| 81 | * We don't need to allocate pages for the transmitter. We just use |
| 82 | * the skbuffer directly. |
| 83 | */ |
| 84 | #ifdef CONFIG_ENET_BIG_BUFFERS |
| 85 | #define FEC_ENET_RX_PAGES 16 |
| 86 | #define FEC_ENET_RX_FRSIZE 2048 |
| 87 | #define FEC_ENET_RX_FRPPG (PAGE_SIZE / FEC_ENET_RX_FRSIZE) |
| 88 | #define RX_RING_SIZE (FEC_ENET_RX_FRPPG * FEC_ENET_RX_PAGES) |
| 89 | #define TX_RING_SIZE 16 /* Must be power of two */ |
| 90 | #define TX_RING_MOD_MASK 15 /* for this to work */ |
| 91 | #else |
| 92 | #define FEC_ENET_RX_PAGES 4 |
| 93 | #define FEC_ENET_RX_FRSIZE 2048 |
| 94 | #define FEC_ENET_RX_FRPPG (PAGE_SIZE / FEC_ENET_RX_FRSIZE) |
| 95 | #define RX_RING_SIZE (FEC_ENET_RX_FRPPG * FEC_ENET_RX_PAGES) |
| 96 | #define TX_RING_SIZE 8 /* Must be power of two */ |
| 97 | #define TX_RING_MOD_MASK 7 /* for this to work */ |
| 98 | #endif |
| 99 | |
| 100 | /* Interrupt events/masks. |
| 101 | */ |
| 102 | #define FEC_ENET_HBERR ((uint)0x80000000) /* Heartbeat error */ |
| 103 | #define FEC_ENET_BABR ((uint)0x40000000) /* Babbling receiver */ |
| 104 | #define FEC_ENET_BABT ((uint)0x20000000) /* Babbling transmitter */ |
| 105 | #define FEC_ENET_GRA ((uint)0x10000000) /* Graceful stop complete */ |
| 106 | #define FEC_ENET_TXF ((uint)0x08000000) /* Full frame transmitted */ |
| 107 | #define FEC_ENET_TXB ((uint)0x04000000) /* A buffer was transmitted */ |
| 108 | #define FEC_ENET_RXF ((uint)0x02000000) /* Full frame received */ |
| 109 | #define FEC_ENET_RXB ((uint)0x01000000) /* A buffer was received */ |
| 110 | #define FEC_ENET_MII ((uint)0x00800000) /* MII interrupt */ |
| 111 | #define FEC_ENET_EBERR ((uint)0x00400000) /* SDMA bus error */ |
| 112 | |
| 113 | /* |
| 114 | */ |
| 115 | #define FEC_ECNTRL_PINMUX 0x00000004 |
| 116 | #define FEC_ECNTRL_ETHER_EN 0x00000002 |
| 117 | #define FEC_ECNTRL_RESET 0x00000001 |
| 118 | |
| 119 | #define FEC_RCNTRL_BC_REJ 0x00000010 |
| 120 | #define FEC_RCNTRL_PROM 0x00000008 |
| 121 | #define FEC_RCNTRL_MII_MODE 0x00000004 |
| 122 | #define FEC_RCNTRL_DRT 0x00000002 |
| 123 | #define FEC_RCNTRL_LOOP 0x00000001 |
| 124 | |
| 125 | #define FEC_TCNTRL_FDEN 0x00000004 |
| 126 | #define FEC_TCNTRL_HBC 0x00000002 |
| 127 | #define FEC_TCNTRL_GTS 0x00000001 |
| 128 | |
| 129 | /* Delay to wait for FEC reset command to complete (in us) |
| 130 | */ |
| 131 | #define FEC_RESET_DELAY 50 |
| 132 | |
| 133 | /* The FEC stores dest/src/type, data, and checksum for receive packets. |
| 134 | */ |
| 135 | #define PKT_MAXBUF_SIZE 1518 |
| 136 | #define PKT_MINBUF_SIZE 64 |
| 137 | #define PKT_MAXBLR_SIZE 1520 |
| 138 | |
| 139 | /* The FEC buffer descriptors track the ring buffers. The rx_bd_base and |
| 140 | * tx_bd_base always point to the base of the buffer descriptors. The |
| 141 | * cur_rx and cur_tx point to the currently available buffer. |
| 142 | * The dirty_tx tracks the current buffer that is being sent by the |
| 143 | * controller. The cur_tx and dirty_tx are equal under both completely |
| 144 | * empty and completely full conditions. The empty/ready indicator in |
| 145 | * the buffer descriptor determines the actual condition. |
| 146 | */ |
| 147 | struct fec_enet_private { |
| 148 | /* The saved address of a sent-in-place packet/buffer, for skfree(). */ |
| 149 | struct sk_buff* tx_skbuff[TX_RING_SIZE]; |
| 150 | ushort skb_cur; |
| 151 | ushort skb_dirty; |
| 152 | |
| 153 | /* CPM dual port RAM relative addresses. |
| 154 | */ |
| 155 | cbd_t *rx_bd_base; /* Address of Rx and Tx buffers. */ |
| 156 | cbd_t *tx_bd_base; |
| 157 | cbd_t *cur_rx, *cur_tx; /* The next free ring entry */ |
| 158 | cbd_t *dirty_tx; /* The ring entries to be free()ed. */ |
| 159 | |
| 160 | /* Virtual addresses for the receive buffers because we can't |
| 161 | * do a __va() on them anymore. |
| 162 | */ |
| 163 | unsigned char *rx_vaddr[RX_RING_SIZE]; |
| 164 | |
| 165 | struct net_device_stats stats; |
| 166 | uint tx_full; |
| 167 | spinlock_t lock; |
| 168 | |
| 169 | #ifdef CONFIG_USE_MDIO |
| 170 | uint phy_id; |
| 171 | uint phy_id_done; |
| 172 | uint phy_status; |
| 173 | uint phy_speed; |
| 174 | phy_info_t *phy; |
Aristeu Sergio Rozanski Filho | 8b0ed2f | 2005-08-07 09:42:28 -0700 | [diff] [blame] | 175 | struct work_struct phy_task; |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 176 | |
| 177 | uint sequence_done; |
| 178 | |
| 179 | uint phy_addr; |
| 180 | #endif /* CONFIG_USE_MDIO */ |
| 181 | |
| 182 | int link; |
| 183 | int old_link; |
| 184 | int full_duplex; |
| 185 | |
| 186 | #ifdef CONFIG_FEC_PACKETHOOK |
| 187 | unsigned long ph_lock; |
| 188 | fec_ph_func *ph_rxhandler; |
| 189 | fec_ph_func *ph_txhandler; |
| 190 | __u16 ph_proto; |
| 191 | volatile __u32 *ph_regaddr; |
| 192 | void *ph_priv; |
| 193 | #endif |
| 194 | }; |
| 195 | |
| 196 | static int fec_enet_open(struct net_device *dev); |
| 197 | static int fec_enet_start_xmit(struct sk_buff *skb, struct net_device *dev); |
| 198 | #ifdef CONFIG_USE_MDIO |
| 199 | static void fec_enet_mii(struct net_device *dev); |
| 200 | #endif /* CONFIG_USE_MDIO */ |
Aristeu Sergio Rozanski Filho | fbccb3d | 2005-08-07 09:42:36 -0700 | [diff] [blame] | 201 | static irqreturn_t fec_enet_interrupt(int irq, void * dev_id, |
| 202 | struct pt_regs * regs); |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 203 | #ifdef CONFIG_FEC_PACKETHOOK |
| 204 | static void fec_enet_tx(struct net_device *dev, __u32 regval); |
| 205 | static void fec_enet_rx(struct net_device *dev, __u32 regval); |
| 206 | #else |
| 207 | static void fec_enet_tx(struct net_device *dev); |
| 208 | static void fec_enet_rx(struct net_device *dev); |
| 209 | #endif |
| 210 | static int fec_enet_close(struct net_device *dev); |
| 211 | static struct net_device_stats *fec_enet_get_stats(struct net_device *dev); |
| 212 | static void set_multicast_list(struct net_device *dev); |
| 213 | static void fec_restart(struct net_device *dev, int duplex); |
| 214 | static void fec_stop(struct net_device *dev); |
| 215 | static ushort my_enet_addr[3]; |
| 216 | |
| 217 | #ifdef CONFIG_USE_MDIO |
| 218 | /* MII processing. We keep this as simple as possible. Requests are |
| 219 | * placed on the list (if there is room). When the request is finished |
| 220 | * by the MII, an optional function may be called. |
| 221 | */ |
| 222 | typedef struct mii_list { |
| 223 | uint mii_regval; |
| 224 | void (*mii_func)(uint val, struct net_device *dev); |
| 225 | struct mii_list *mii_next; |
| 226 | } mii_list_t; |
| 227 | |
| 228 | #define NMII 20 |
| 229 | mii_list_t mii_cmds[NMII]; |
| 230 | mii_list_t *mii_free; |
| 231 | mii_list_t *mii_head; |
| 232 | mii_list_t *mii_tail; |
| 233 | |
| 234 | static int mii_queue(struct net_device *dev, int request, |
| 235 | void (*func)(uint, struct net_device *)); |
| 236 | |
| 237 | /* Make MII read/write commands for the FEC. |
| 238 | */ |
| 239 | #define mk_mii_read(REG) (0x60020000 | ((REG & 0x1f) << 18)) |
| 240 | #define mk_mii_write(REG, VAL) (0x50020000 | ((REG & 0x1f) << 18) | \ |
| 241 | (VAL & 0xffff)) |
| 242 | #define mk_mii_end 0 |
| 243 | #endif /* CONFIG_USE_MDIO */ |
| 244 | |
| 245 | /* Transmitter timeout. |
| 246 | */ |
| 247 | #define TX_TIMEOUT (2*HZ) |
| 248 | |
| 249 | #ifdef CONFIG_USE_MDIO |
| 250 | /* Register definitions for the PHY. |
| 251 | */ |
| 252 | |
| 253 | #define MII_REG_CR 0 /* Control Register */ |
| 254 | #define MII_REG_SR 1 /* Status Register */ |
| 255 | #define MII_REG_PHYIR1 2 /* PHY Identification Register 1 */ |
| 256 | #define MII_REG_PHYIR2 3 /* PHY Identification Register 2 */ |
| 257 | #define MII_REG_ANAR 4 /* A-N Advertisement Register */ |
| 258 | #define MII_REG_ANLPAR 5 /* A-N Link Partner Ability Register */ |
| 259 | #define MII_REG_ANER 6 /* A-N Expansion Register */ |
| 260 | #define MII_REG_ANNPTR 7 /* A-N Next Page Transmit Register */ |
| 261 | #define MII_REG_ANLPRNPR 8 /* A-N Link Partner Received Next Page Reg. */ |
| 262 | |
| 263 | /* values for phy_status */ |
| 264 | |
| 265 | #define PHY_CONF_ANE 0x0001 /* 1 auto-negotiation enabled */ |
| 266 | #define PHY_CONF_LOOP 0x0002 /* 1 loopback mode enabled */ |
| 267 | #define PHY_CONF_SPMASK 0x00f0 /* mask for speed */ |
| 268 | #define PHY_CONF_10HDX 0x0010 /* 10 Mbit half duplex supported */ |
| 269 | #define PHY_CONF_10FDX 0x0020 /* 10 Mbit full duplex supported */ |
| 270 | #define PHY_CONF_100HDX 0x0040 /* 100 Mbit half duplex supported */ |
| 271 | #define PHY_CONF_100FDX 0x0080 /* 100 Mbit full duplex supported */ |
| 272 | |
| 273 | #define PHY_STAT_LINK 0x0100 /* 1 up - 0 down */ |
| 274 | #define PHY_STAT_FAULT 0x0200 /* 1 remote fault */ |
| 275 | #define PHY_STAT_ANC 0x0400 /* 1 auto-negotiation complete */ |
| 276 | #define PHY_STAT_SPMASK 0xf000 /* mask for speed */ |
| 277 | #define PHY_STAT_10HDX 0x1000 /* 10 Mbit half duplex selected */ |
| 278 | #define PHY_STAT_10FDX 0x2000 /* 10 Mbit full duplex selected */ |
| 279 | #define PHY_STAT_100HDX 0x4000 /* 100 Mbit half duplex selected */ |
| 280 | #define PHY_STAT_100FDX 0x8000 /* 100 Mbit full duplex selected */ |
| 281 | #endif /* CONFIG_USE_MDIO */ |
| 282 | |
| 283 | #ifdef CONFIG_FEC_PACKETHOOK |
| 284 | int |
| 285 | fec_register_ph(struct net_device *dev, fec_ph_func *rxfun, fec_ph_func *txfun, |
| 286 | __u16 proto, volatile __u32 *regaddr, void *priv) |
| 287 | { |
| 288 | struct fec_enet_private *fep; |
| 289 | int retval = 0; |
| 290 | |
| 291 | fep = dev->priv; |
| 292 | |
| 293 | if (test_and_set_bit(0, (void*)&fep->ph_lock) != 0) { |
| 294 | /* Someone is messing with the packet hook */ |
| 295 | return -EAGAIN; |
| 296 | } |
| 297 | if (fep->ph_rxhandler != NULL || fep->ph_txhandler != NULL) { |
| 298 | retval = -EBUSY; |
| 299 | goto out; |
| 300 | } |
| 301 | fep->ph_rxhandler = rxfun; |
| 302 | fep->ph_txhandler = txfun; |
| 303 | fep->ph_proto = proto; |
| 304 | fep->ph_regaddr = regaddr; |
| 305 | fep->ph_priv = priv; |
| 306 | |
| 307 | out: |
| 308 | fep->ph_lock = 0; |
| 309 | |
| 310 | return retval; |
| 311 | } |
| 312 | |
| 313 | |
| 314 | int |
| 315 | fec_unregister_ph(struct net_device *dev) |
| 316 | { |
| 317 | struct fec_enet_private *fep; |
| 318 | int retval = 0; |
| 319 | |
| 320 | fep = dev->priv; |
| 321 | |
| 322 | if (test_and_set_bit(0, (void*)&fep->ph_lock) != 0) { |
| 323 | /* Someone is messing with the packet hook */ |
| 324 | return -EAGAIN; |
| 325 | } |
| 326 | |
| 327 | fep->ph_rxhandler = fep->ph_txhandler = NULL; |
| 328 | fep->ph_proto = 0; |
| 329 | fep->ph_regaddr = NULL; |
| 330 | fep->ph_priv = NULL; |
| 331 | |
| 332 | fep->ph_lock = 0; |
| 333 | |
| 334 | return retval; |
| 335 | } |
| 336 | |
| 337 | EXPORT_SYMBOL(fec_register_ph); |
| 338 | EXPORT_SYMBOL(fec_unregister_ph); |
| 339 | |
| 340 | #endif /* CONFIG_FEC_PACKETHOOK */ |
| 341 | |
| 342 | static int |
| 343 | fec_enet_start_xmit(struct sk_buff *skb, struct net_device *dev) |
| 344 | { |
| 345 | struct fec_enet_private *fep; |
| 346 | volatile fec_t *fecp; |
| 347 | volatile cbd_t *bdp; |
| 348 | |
| 349 | fep = dev->priv; |
| 350 | fecp = (volatile fec_t*)dev->base_addr; |
| 351 | |
| 352 | if (!fep->link) { |
| 353 | /* Link is down or autonegotiation is in progress. */ |
| 354 | return 1; |
| 355 | } |
| 356 | |
| 357 | /* Fill in a Tx ring entry */ |
| 358 | bdp = fep->cur_tx; |
| 359 | |
| 360 | #ifndef final_version |
| 361 | if (bdp->cbd_sc & BD_ENET_TX_READY) { |
| 362 | /* Ooops. All transmit buffers are full. Bail out. |
| 363 | * This should not happen, since dev->tbusy should be set. |
| 364 | */ |
| 365 | printk("%s: tx queue full!.\n", dev->name); |
| 366 | return 1; |
| 367 | } |
| 368 | #endif |
| 369 | |
| 370 | /* Clear all of the status flags. |
| 371 | */ |
| 372 | bdp->cbd_sc &= ~BD_ENET_TX_STATS; |
| 373 | |
| 374 | /* Set buffer length and buffer pointer. |
| 375 | */ |
| 376 | bdp->cbd_bufaddr = __pa(skb->data); |
| 377 | bdp->cbd_datlen = skb->len; |
| 378 | |
| 379 | /* Save skb pointer. |
| 380 | */ |
| 381 | fep->tx_skbuff[fep->skb_cur] = skb; |
| 382 | |
| 383 | fep->stats.tx_bytes += skb->len; |
| 384 | fep->skb_cur = (fep->skb_cur+1) & TX_RING_MOD_MASK; |
| 385 | |
| 386 | /* Push the data cache so the CPM does not get stale memory |
| 387 | * data. |
| 388 | */ |
| 389 | flush_dcache_range((unsigned long)skb->data, |
| 390 | (unsigned long)skb->data + skb->len); |
| 391 | |
| 392 | /* disable interrupts while triggering transmit */ |
| 393 | spin_lock_irq(&fep->lock); |
| 394 | |
| 395 | /* Send it on its way. Tell FEC its ready, interrupt when done, |
| 396 | * its the last BD of the frame, and to put the CRC on the end. |
| 397 | */ |
| 398 | |
| 399 | bdp->cbd_sc |= (BD_ENET_TX_READY | BD_ENET_TX_INTR |
| 400 | | BD_ENET_TX_LAST | BD_ENET_TX_TC); |
| 401 | |
| 402 | dev->trans_start = jiffies; |
| 403 | |
| 404 | /* Trigger transmission start */ |
| 405 | fecp->fec_x_des_active = 0x01000000; |
| 406 | |
| 407 | /* If this was the last BD in the ring, start at the beginning again. |
| 408 | */ |
| 409 | if (bdp->cbd_sc & BD_ENET_TX_WRAP) { |
| 410 | bdp = fep->tx_bd_base; |
| 411 | } else { |
| 412 | bdp++; |
| 413 | } |
| 414 | |
| 415 | if (bdp->cbd_sc & BD_ENET_TX_READY) { |
| 416 | netif_stop_queue(dev); |
| 417 | fep->tx_full = 1; |
| 418 | } |
| 419 | |
| 420 | fep->cur_tx = (cbd_t *)bdp; |
| 421 | |
| 422 | spin_unlock_irq(&fep->lock); |
| 423 | |
| 424 | return 0; |
| 425 | } |
| 426 | |
| 427 | static void |
| 428 | fec_timeout(struct net_device *dev) |
| 429 | { |
| 430 | struct fec_enet_private *fep = dev->priv; |
| 431 | |
| 432 | printk("%s: transmit timed out.\n", dev->name); |
| 433 | fep->stats.tx_errors++; |
| 434 | #ifndef final_version |
| 435 | { |
| 436 | int i; |
| 437 | cbd_t *bdp; |
| 438 | |
| 439 | printk("Ring data dump: cur_tx %lx%s, dirty_tx %lx cur_rx: %lx\n", |
| 440 | (unsigned long)fep->cur_tx, fep->tx_full ? " (full)" : "", |
| 441 | (unsigned long)fep->dirty_tx, |
| 442 | (unsigned long)fep->cur_rx); |
| 443 | |
| 444 | bdp = fep->tx_bd_base; |
| 445 | printk(" tx: %u buffers\n", TX_RING_SIZE); |
| 446 | for (i = 0 ; i < TX_RING_SIZE; i++) { |
| 447 | printk(" %08x: %04x %04x %08x\n", |
| 448 | (uint) bdp, |
| 449 | bdp->cbd_sc, |
| 450 | bdp->cbd_datlen, |
| 451 | bdp->cbd_bufaddr); |
| 452 | bdp++; |
| 453 | } |
| 454 | |
| 455 | bdp = fep->rx_bd_base; |
| 456 | printk(" rx: %lu buffers\n", RX_RING_SIZE); |
| 457 | for (i = 0 ; i < RX_RING_SIZE; i++) { |
| 458 | printk(" %08x: %04x %04x %08x\n", |
| 459 | (uint) bdp, |
| 460 | bdp->cbd_sc, |
| 461 | bdp->cbd_datlen, |
| 462 | bdp->cbd_bufaddr); |
| 463 | bdp++; |
| 464 | } |
| 465 | } |
| 466 | #endif |
| 467 | if (!fep->tx_full) |
| 468 | netif_wake_queue(dev); |
| 469 | } |
| 470 | |
| 471 | /* The interrupt handler. |
| 472 | * This is called from the MPC core interrupt. |
| 473 | */ |
Aristeu Sergio Rozanski Filho | fbccb3d | 2005-08-07 09:42:36 -0700 | [diff] [blame] | 474 | static irqreturn_t |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 475 | fec_enet_interrupt(int irq, void * dev_id, struct pt_regs * regs) |
| 476 | { |
| 477 | struct net_device *dev = dev_id; |
| 478 | volatile fec_t *fecp; |
| 479 | uint int_events; |
| 480 | #ifdef CONFIG_FEC_PACKETHOOK |
| 481 | struct fec_enet_private *fep = dev->priv; |
| 482 | __u32 regval; |
| 483 | |
| 484 | if (fep->ph_regaddr) regval = *fep->ph_regaddr; |
| 485 | #endif |
| 486 | fecp = (volatile fec_t*)dev->base_addr; |
| 487 | |
| 488 | /* Get the interrupt events that caused us to be here. |
| 489 | */ |
| 490 | while ((int_events = fecp->fec_ievent) != 0) { |
| 491 | fecp->fec_ievent = int_events; |
| 492 | if ((int_events & (FEC_ENET_HBERR | FEC_ENET_BABR | |
| 493 | FEC_ENET_BABT | FEC_ENET_EBERR)) != 0) { |
| 494 | printk("FEC ERROR %x\n", int_events); |
| 495 | } |
| 496 | |
| 497 | /* Handle receive event in its own function. |
| 498 | */ |
| 499 | if (int_events & FEC_ENET_RXF) { |
| 500 | #ifdef CONFIG_FEC_PACKETHOOK |
| 501 | fec_enet_rx(dev, regval); |
| 502 | #else |
| 503 | fec_enet_rx(dev); |
| 504 | #endif |
| 505 | } |
| 506 | |
| 507 | /* Transmit OK, or non-fatal error. Update the buffer |
| 508 | descriptors. FEC handles all errors, we just discover |
| 509 | them as part of the transmit process. |
| 510 | */ |
| 511 | if (int_events & FEC_ENET_TXF) { |
| 512 | #ifdef CONFIG_FEC_PACKETHOOK |
| 513 | fec_enet_tx(dev, regval); |
| 514 | #else |
| 515 | fec_enet_tx(dev); |
| 516 | #endif |
| 517 | } |
| 518 | |
| 519 | if (int_events & FEC_ENET_MII) { |
| 520 | #ifdef CONFIG_USE_MDIO |
| 521 | fec_enet_mii(dev); |
| 522 | #else |
| 523 | printk("%s[%d] %s: unexpected FEC_ENET_MII event\n", __FILE__,__LINE__,__FUNCTION__); |
| 524 | #endif /* CONFIG_USE_MDIO */ |
| 525 | } |
| 526 | |
| 527 | } |
Aristeu Sergio Rozanski Filho | fbccb3d | 2005-08-07 09:42:36 -0700 | [diff] [blame] | 528 | return IRQ_RETVAL(IRQ_HANDLED); |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 529 | } |
| 530 | |
| 531 | |
| 532 | static void |
| 533 | #ifdef CONFIG_FEC_PACKETHOOK |
| 534 | fec_enet_tx(struct net_device *dev, __u32 regval) |
| 535 | #else |
| 536 | fec_enet_tx(struct net_device *dev) |
| 537 | #endif |
| 538 | { |
| 539 | struct fec_enet_private *fep; |
| 540 | volatile cbd_t *bdp; |
| 541 | struct sk_buff *skb; |
| 542 | |
| 543 | fep = dev->priv; |
| 544 | /* lock while transmitting */ |
| 545 | spin_lock(&fep->lock); |
| 546 | bdp = fep->dirty_tx; |
| 547 | |
| 548 | while ((bdp->cbd_sc&BD_ENET_TX_READY) == 0) { |
| 549 | if (bdp == fep->cur_tx && fep->tx_full == 0) break; |
| 550 | |
| 551 | skb = fep->tx_skbuff[fep->skb_dirty]; |
| 552 | /* Check for errors. */ |
| 553 | if (bdp->cbd_sc & (BD_ENET_TX_HB | BD_ENET_TX_LC | |
| 554 | BD_ENET_TX_RL | BD_ENET_TX_UN | |
| 555 | BD_ENET_TX_CSL)) { |
| 556 | fep->stats.tx_errors++; |
| 557 | if (bdp->cbd_sc & BD_ENET_TX_HB) /* No heartbeat */ |
| 558 | fep->stats.tx_heartbeat_errors++; |
| 559 | if (bdp->cbd_sc & BD_ENET_TX_LC) /* Late collision */ |
| 560 | fep->stats.tx_window_errors++; |
| 561 | if (bdp->cbd_sc & BD_ENET_TX_RL) /* Retrans limit */ |
| 562 | fep->stats.tx_aborted_errors++; |
| 563 | if (bdp->cbd_sc & BD_ENET_TX_UN) /* Underrun */ |
| 564 | fep->stats.tx_fifo_errors++; |
| 565 | if (bdp->cbd_sc & BD_ENET_TX_CSL) /* Carrier lost */ |
| 566 | fep->stats.tx_carrier_errors++; |
| 567 | } else { |
| 568 | #ifdef CONFIG_FEC_PACKETHOOK |
| 569 | /* Packet hook ... */ |
| 570 | if (fep->ph_txhandler && |
| 571 | ((struct ethhdr *)skb->data)->h_proto |
| 572 | == fep->ph_proto) { |
| 573 | fep->ph_txhandler((__u8*)skb->data, skb->len, |
| 574 | regval, fep->ph_priv); |
| 575 | } |
| 576 | #endif |
| 577 | fep->stats.tx_packets++; |
| 578 | } |
| 579 | |
| 580 | #ifndef final_version |
| 581 | if (bdp->cbd_sc & BD_ENET_TX_READY) |
| 582 | printk("HEY! Enet xmit interrupt and TX_READY.\n"); |
| 583 | #endif |
| 584 | /* Deferred means some collisions occurred during transmit, |
| 585 | * but we eventually sent the packet OK. |
| 586 | */ |
| 587 | if (bdp->cbd_sc & BD_ENET_TX_DEF) |
| 588 | fep->stats.collisions++; |
| 589 | |
| 590 | /* Free the sk buffer associated with this last transmit. |
| 591 | */ |
| 592 | #if 0 |
| 593 | printk("TXI: %x %x %x\n", bdp, skb, fep->skb_dirty); |
| 594 | #endif |
| 595 | dev_kfree_skb_irq (skb/*, FREE_WRITE*/); |
| 596 | fep->tx_skbuff[fep->skb_dirty] = NULL; |
| 597 | fep->skb_dirty = (fep->skb_dirty + 1) & TX_RING_MOD_MASK; |
| 598 | |
| 599 | /* Update pointer to next buffer descriptor to be transmitted. |
| 600 | */ |
| 601 | if (bdp->cbd_sc & BD_ENET_TX_WRAP) |
| 602 | bdp = fep->tx_bd_base; |
| 603 | else |
| 604 | bdp++; |
| 605 | |
| 606 | /* Since we have freed up a buffer, the ring is no longer |
| 607 | * full. |
| 608 | */ |
| 609 | if (fep->tx_full) { |
| 610 | fep->tx_full = 0; |
| 611 | if (netif_queue_stopped(dev)) |
| 612 | netif_wake_queue(dev); |
| 613 | } |
| 614 | #ifdef CONFIG_FEC_PACKETHOOK |
| 615 | /* Re-read register. Not exactly guaranteed to be correct, |
| 616 | but... */ |
| 617 | if (fep->ph_regaddr) regval = *fep->ph_regaddr; |
| 618 | #endif |
| 619 | } |
| 620 | fep->dirty_tx = (cbd_t *)bdp; |
| 621 | spin_unlock(&fep->lock); |
| 622 | } |
| 623 | |
| 624 | |
| 625 | /* During a receive, the cur_rx points to the current incoming buffer. |
| 626 | * When we update through the ring, if the next incoming buffer has |
| 627 | * not been given to the system, we just set the empty indicator, |
| 628 | * effectively tossing the packet. |
| 629 | */ |
| 630 | static void |
| 631 | #ifdef CONFIG_FEC_PACKETHOOK |
| 632 | fec_enet_rx(struct net_device *dev, __u32 regval) |
| 633 | #else |
| 634 | fec_enet_rx(struct net_device *dev) |
| 635 | #endif |
| 636 | { |
| 637 | struct fec_enet_private *fep; |
| 638 | volatile fec_t *fecp; |
| 639 | volatile cbd_t *bdp; |
| 640 | struct sk_buff *skb; |
| 641 | ushort pkt_len; |
| 642 | __u8 *data; |
| 643 | |
| 644 | fep = dev->priv; |
| 645 | fecp = (volatile fec_t*)dev->base_addr; |
| 646 | |
| 647 | /* First, grab all of the stats for the incoming packet. |
| 648 | * These get messed up if we get called due to a busy condition. |
| 649 | */ |
| 650 | bdp = fep->cur_rx; |
| 651 | |
| 652 | while (!(bdp->cbd_sc & BD_ENET_RX_EMPTY)) { |
| 653 | |
| 654 | #ifndef final_version |
| 655 | /* Since we have allocated space to hold a complete frame, |
| 656 | * the last indicator should be set. |
| 657 | */ |
| 658 | if ((bdp->cbd_sc & BD_ENET_RX_LAST) == 0) |
| 659 | printk("FEC ENET: rcv is not +last\n"); |
| 660 | #endif |
| 661 | |
| 662 | /* Check for errors. */ |
| 663 | if (bdp->cbd_sc & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO | |
| 664 | BD_ENET_RX_CR | BD_ENET_RX_OV)) { |
| 665 | fep->stats.rx_errors++; |
| 666 | if (bdp->cbd_sc & (BD_ENET_RX_LG | BD_ENET_RX_SH)) { |
| 667 | /* Frame too long or too short. */ |
| 668 | fep->stats.rx_length_errors++; |
| 669 | } |
| 670 | if (bdp->cbd_sc & BD_ENET_RX_NO) /* Frame alignment */ |
| 671 | fep->stats.rx_frame_errors++; |
| 672 | if (bdp->cbd_sc & BD_ENET_RX_CR) /* CRC Error */ |
| 673 | fep->stats.rx_crc_errors++; |
| 674 | if (bdp->cbd_sc & BD_ENET_RX_OV) /* FIFO overrun */ |
| 675 | fep->stats.rx_crc_errors++; |
| 676 | } |
| 677 | |
| 678 | /* Report late collisions as a frame error. |
| 679 | * On this error, the BD is closed, but we don't know what we |
| 680 | * have in the buffer. So, just drop this frame on the floor. |
| 681 | */ |
| 682 | if (bdp->cbd_sc & BD_ENET_RX_CL) { |
| 683 | fep->stats.rx_errors++; |
| 684 | fep->stats.rx_frame_errors++; |
| 685 | goto rx_processing_done; |
| 686 | } |
| 687 | |
| 688 | /* Process the incoming frame. |
| 689 | */ |
| 690 | fep->stats.rx_packets++; |
| 691 | pkt_len = bdp->cbd_datlen; |
| 692 | fep->stats.rx_bytes += pkt_len; |
| 693 | data = fep->rx_vaddr[bdp - fep->rx_bd_base]; |
| 694 | |
| 695 | #ifdef CONFIG_FEC_PACKETHOOK |
| 696 | /* Packet hook ... */ |
| 697 | if (fep->ph_rxhandler) { |
| 698 | if (((struct ethhdr *)data)->h_proto == fep->ph_proto) { |
| 699 | switch (fep->ph_rxhandler(data, pkt_len, regval, |
| 700 | fep->ph_priv)) { |
| 701 | case 1: |
| 702 | goto rx_processing_done; |
| 703 | break; |
| 704 | case 0: |
| 705 | break; |
| 706 | default: |
| 707 | fep->stats.rx_errors++; |
| 708 | goto rx_processing_done; |
| 709 | } |
| 710 | } |
| 711 | } |
| 712 | |
| 713 | /* If it wasn't filtered - copy it to an sk buffer. */ |
| 714 | #endif |
| 715 | |
| 716 | /* This does 16 byte alignment, exactly what we need. |
| 717 | * The packet length includes FCS, but we don't want to |
| 718 | * include that when passing upstream as it messes up |
| 719 | * bridging applications. |
| 720 | */ |
| 721 | skb = dev_alloc_skb(pkt_len-4); |
| 722 | |
| 723 | if (skb == NULL) { |
| 724 | printk("%s: Memory squeeze, dropping packet.\n", dev->name); |
| 725 | fep->stats.rx_dropped++; |
| 726 | } else { |
| 727 | skb->dev = dev; |
| 728 | skb_put(skb,pkt_len-4); /* Make room */ |
| 729 | eth_copy_and_sum(skb, data, pkt_len-4, 0); |
| 730 | skb->protocol=eth_type_trans(skb,dev); |
| 731 | netif_rx(skb); |
| 732 | } |
| 733 | rx_processing_done: |
| 734 | |
| 735 | /* Clear the status flags for this buffer. |
| 736 | */ |
| 737 | bdp->cbd_sc &= ~BD_ENET_RX_STATS; |
| 738 | |
| 739 | /* Mark the buffer empty. |
| 740 | */ |
| 741 | bdp->cbd_sc |= BD_ENET_RX_EMPTY; |
| 742 | |
| 743 | /* Update BD pointer to next entry. |
| 744 | */ |
| 745 | if (bdp->cbd_sc & BD_ENET_RX_WRAP) |
| 746 | bdp = fep->rx_bd_base; |
| 747 | else |
| 748 | bdp++; |
| 749 | |
| 750 | #if 1 |
| 751 | /* Doing this here will keep the FEC running while we process |
| 752 | * incoming frames. On a heavily loaded network, we should be |
| 753 | * able to keep up at the expense of system resources. |
| 754 | */ |
| 755 | fecp->fec_r_des_active = 0x01000000; |
| 756 | #endif |
| 757 | #ifdef CONFIG_FEC_PACKETHOOK |
| 758 | /* Re-read register. Not exactly guaranteed to be correct, |
| 759 | but... */ |
| 760 | if (fep->ph_regaddr) regval = *fep->ph_regaddr; |
| 761 | #endif |
| 762 | } /* while (!(bdp->cbd_sc & BD_ENET_RX_EMPTY)) */ |
| 763 | fep->cur_rx = (cbd_t *)bdp; |
| 764 | |
| 765 | #if 0 |
| 766 | /* Doing this here will allow us to process all frames in the |
| 767 | * ring before the FEC is allowed to put more there. On a heavily |
| 768 | * loaded network, some frames may be lost. Unfortunately, this |
| 769 | * increases the interrupt overhead since we can potentially work |
| 770 | * our way back to the interrupt return only to come right back |
| 771 | * here. |
| 772 | */ |
| 773 | fecp->fec_r_des_active = 0x01000000; |
| 774 | #endif |
| 775 | } |
| 776 | |
| 777 | |
| 778 | #ifdef CONFIG_USE_MDIO |
| 779 | static void |
| 780 | fec_enet_mii(struct net_device *dev) |
| 781 | { |
| 782 | struct fec_enet_private *fep; |
| 783 | volatile fec_t *ep; |
| 784 | mii_list_t *mip; |
| 785 | uint mii_reg; |
| 786 | |
| 787 | fep = (struct fec_enet_private *)dev->priv; |
| 788 | ep = &(((immap_t *)IMAP_ADDR)->im_cpm.cp_fec); |
| 789 | mii_reg = ep->fec_mii_data; |
| 790 | |
| 791 | if ((mip = mii_head) == NULL) { |
| 792 | printk("MII and no head!\n"); |
| 793 | return; |
| 794 | } |
| 795 | |
| 796 | if (mip->mii_func != NULL) |
| 797 | (*(mip->mii_func))(mii_reg, dev); |
| 798 | |
| 799 | mii_head = mip->mii_next; |
| 800 | mip->mii_next = mii_free; |
| 801 | mii_free = mip; |
| 802 | |
| 803 | if ((mip = mii_head) != NULL) { |
| 804 | ep->fec_mii_data = mip->mii_regval; |
| 805 | |
| 806 | } |
| 807 | } |
| 808 | |
| 809 | static int |
| 810 | mii_queue(struct net_device *dev, int regval, void (*func)(uint, struct net_device *)) |
| 811 | { |
| 812 | struct fec_enet_private *fep; |
| 813 | unsigned long flags; |
| 814 | mii_list_t *mip; |
| 815 | int retval; |
| 816 | |
| 817 | /* Add PHY address to register command. |
| 818 | */ |
| 819 | fep = dev->priv; |
| 820 | regval |= fep->phy_addr << 23; |
| 821 | |
| 822 | retval = 0; |
| 823 | |
| 824 | /* lock while modifying mii_list */ |
| 825 | spin_lock_irqsave(&fep->lock, flags); |
| 826 | |
| 827 | if ((mip = mii_free) != NULL) { |
| 828 | mii_free = mip->mii_next; |
| 829 | mip->mii_regval = regval; |
| 830 | mip->mii_func = func; |
| 831 | mip->mii_next = NULL; |
| 832 | if (mii_head) { |
| 833 | mii_tail->mii_next = mip; |
| 834 | mii_tail = mip; |
| 835 | } else { |
| 836 | mii_head = mii_tail = mip; |
| 837 | (&(((immap_t *)IMAP_ADDR)->im_cpm.cp_fec))->fec_mii_data = regval; |
| 838 | } |
| 839 | } else { |
| 840 | retval = 1; |
| 841 | } |
| 842 | |
| 843 | spin_unlock_irqrestore(&fep->lock, flags); |
| 844 | |
| 845 | return(retval); |
| 846 | } |
| 847 | |
| 848 | static void mii_do_cmd(struct net_device *dev, const phy_cmd_t *c) |
| 849 | { |
| 850 | int k; |
| 851 | |
| 852 | if(!c) |
| 853 | return; |
| 854 | |
| 855 | for(k = 0; (c+k)->mii_data != mk_mii_end; k++) |
| 856 | mii_queue(dev, (c+k)->mii_data, (c+k)->funct); |
| 857 | } |
| 858 | |
| 859 | static void mii_parse_sr(uint mii_reg, struct net_device *dev) |
| 860 | { |
| 861 | struct fec_enet_private *fep = dev->priv; |
| 862 | volatile uint *s = &(fep->phy_status); |
| 863 | |
| 864 | *s &= ~(PHY_STAT_LINK | PHY_STAT_FAULT | PHY_STAT_ANC); |
| 865 | |
| 866 | if (mii_reg & 0x0004) |
| 867 | *s |= PHY_STAT_LINK; |
| 868 | if (mii_reg & 0x0010) |
| 869 | *s |= PHY_STAT_FAULT; |
| 870 | if (mii_reg & 0x0020) |
| 871 | *s |= PHY_STAT_ANC; |
| 872 | |
| 873 | fep->link = (*s & PHY_STAT_LINK) ? 1 : 0; |
| 874 | } |
| 875 | |
| 876 | static void mii_parse_cr(uint mii_reg, struct net_device *dev) |
| 877 | { |
| 878 | struct fec_enet_private *fep = dev->priv; |
| 879 | volatile uint *s = &(fep->phy_status); |
| 880 | |
| 881 | *s &= ~(PHY_CONF_ANE | PHY_CONF_LOOP); |
| 882 | |
| 883 | if (mii_reg & 0x1000) |
| 884 | *s |= PHY_CONF_ANE; |
| 885 | if (mii_reg & 0x4000) |
| 886 | *s |= PHY_CONF_LOOP; |
| 887 | } |
| 888 | |
| 889 | static void mii_parse_anar(uint mii_reg, struct net_device *dev) |
| 890 | { |
| 891 | struct fec_enet_private *fep = dev->priv; |
| 892 | volatile uint *s = &(fep->phy_status); |
| 893 | |
| 894 | *s &= ~(PHY_CONF_SPMASK); |
| 895 | |
| 896 | if (mii_reg & 0x0020) |
| 897 | *s |= PHY_CONF_10HDX; |
| 898 | if (mii_reg & 0x0040) |
| 899 | *s |= PHY_CONF_10FDX; |
| 900 | if (mii_reg & 0x0080) |
| 901 | *s |= PHY_CONF_100HDX; |
| 902 | if (mii_reg & 0x00100) |
| 903 | *s |= PHY_CONF_100FDX; |
| 904 | } |
| 905 | #if 0 |
| 906 | static void mii_disp_reg(uint mii_reg, struct net_device *dev) |
| 907 | { |
| 908 | printk("reg %u = 0x%04x\n", (mii_reg >> 18) & 0x1f, mii_reg & 0xffff); |
| 909 | } |
| 910 | #endif |
| 911 | |
| 912 | /* ------------------------------------------------------------------------- */ |
| 913 | /* The Level one LXT970 is used by many boards */ |
| 914 | |
| 915 | #ifdef CONFIG_FEC_LXT970 |
| 916 | |
| 917 | #define MII_LXT970_MIRROR 16 /* Mirror register */ |
| 918 | #define MII_LXT970_IER 17 /* Interrupt Enable Register */ |
| 919 | #define MII_LXT970_ISR 18 /* Interrupt Status Register */ |
| 920 | #define MII_LXT970_CONFIG 19 /* Configuration Register */ |
| 921 | #define MII_LXT970_CSR 20 /* Chip Status Register */ |
| 922 | |
| 923 | static void mii_parse_lxt970_csr(uint mii_reg, struct net_device *dev) |
| 924 | { |
| 925 | struct fec_enet_private *fep = dev->priv; |
| 926 | volatile uint *s = &(fep->phy_status); |
| 927 | |
| 928 | *s &= ~(PHY_STAT_SPMASK); |
| 929 | |
| 930 | if (mii_reg & 0x0800) { |
| 931 | if (mii_reg & 0x1000) |
| 932 | *s |= PHY_STAT_100FDX; |
| 933 | else |
| 934 | *s |= PHY_STAT_100HDX; |
| 935 | } |
| 936 | else { |
| 937 | if (mii_reg & 0x1000) |
| 938 | *s |= PHY_STAT_10FDX; |
| 939 | else |
| 940 | *s |= PHY_STAT_10HDX; |
| 941 | } |
| 942 | } |
| 943 | |
| 944 | static phy_info_t phy_info_lxt970 = { |
| 945 | 0x07810000, |
| 946 | "LXT970", |
| 947 | |
| 948 | (const phy_cmd_t []) { /* config */ |
| 949 | #if 0 |
| 950 | // { mk_mii_write(MII_REG_ANAR, 0x0021), NULL }, |
| 951 | |
| 952 | /* Set default operation of 100-TX....for some reason |
| 953 | * some of these bits are set on power up, which is wrong. |
| 954 | */ |
| 955 | { mk_mii_write(MII_LXT970_CONFIG, 0), NULL }, |
| 956 | #endif |
| 957 | { mk_mii_read(MII_REG_CR), mii_parse_cr }, |
| 958 | { mk_mii_read(MII_REG_ANAR), mii_parse_anar }, |
| 959 | { mk_mii_end, } |
| 960 | }, |
| 961 | (const phy_cmd_t []) { /* startup - enable interrupts */ |
| 962 | { mk_mii_write(MII_LXT970_IER, 0x0002), NULL }, |
| 963 | { mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */ |
| 964 | { mk_mii_end, } |
| 965 | }, |
| 966 | (const phy_cmd_t []) { /* ack_int */ |
| 967 | /* read SR and ISR to acknowledge */ |
| 968 | |
| 969 | { mk_mii_read(MII_REG_SR), mii_parse_sr }, |
| 970 | { mk_mii_read(MII_LXT970_ISR), NULL }, |
| 971 | |
| 972 | /* find out the current status */ |
| 973 | |
| 974 | { mk_mii_read(MII_LXT970_CSR), mii_parse_lxt970_csr }, |
| 975 | { mk_mii_end, } |
| 976 | }, |
| 977 | (const phy_cmd_t []) { /* shutdown - disable interrupts */ |
| 978 | { mk_mii_write(MII_LXT970_IER, 0x0000), NULL }, |
| 979 | { mk_mii_end, } |
| 980 | }, |
| 981 | }; |
| 982 | |
| 983 | #endif /* CONFIG_FEC_LXT970 */ |
| 984 | |
| 985 | /* ------------------------------------------------------------------------- */ |
| 986 | /* The Level one LXT971 is used on some of my custom boards */ |
| 987 | |
| 988 | #ifdef CONFIG_FEC_LXT971 |
| 989 | |
| 990 | /* register definitions for the 971 */ |
| 991 | |
| 992 | #define MII_LXT971_PCR 16 /* Port Control Register */ |
| 993 | #define MII_LXT971_SR2 17 /* Status Register 2 */ |
| 994 | #define MII_LXT971_IER 18 /* Interrupt Enable Register */ |
| 995 | #define MII_LXT971_ISR 19 /* Interrupt Status Register */ |
| 996 | #define MII_LXT971_LCR 20 /* LED Control Register */ |
| 997 | #define MII_LXT971_TCR 30 /* Transmit Control Register */ |
| 998 | |
| 999 | /* |
| 1000 | * I had some nice ideas of running the MDIO faster... |
| 1001 | * The 971 should support 8MHz and I tried it, but things acted really |
| 1002 | * weird, so 2.5 MHz ought to be enough for anyone... |
| 1003 | */ |
| 1004 | |
| 1005 | static void mii_parse_lxt971_sr2(uint mii_reg, struct net_device *dev) |
| 1006 | { |
| 1007 | struct fec_enet_private *fep = dev->priv; |
| 1008 | volatile uint *s = &(fep->phy_status); |
| 1009 | |
| 1010 | *s &= ~(PHY_STAT_SPMASK); |
| 1011 | |
| 1012 | if (mii_reg & 0x4000) { |
| 1013 | if (mii_reg & 0x0200) |
| 1014 | *s |= PHY_STAT_100FDX; |
| 1015 | else |
| 1016 | *s |= PHY_STAT_100HDX; |
| 1017 | } |
| 1018 | else { |
| 1019 | if (mii_reg & 0x0200) |
| 1020 | *s |= PHY_STAT_10FDX; |
| 1021 | else |
| 1022 | *s |= PHY_STAT_10HDX; |
| 1023 | } |
| 1024 | if (mii_reg & 0x0008) |
| 1025 | *s |= PHY_STAT_FAULT; |
| 1026 | } |
| 1027 | |
| 1028 | static phy_info_t phy_info_lxt971 = { |
| 1029 | 0x0001378e, |
| 1030 | "LXT971", |
| 1031 | |
| 1032 | (const phy_cmd_t []) { /* config */ |
| 1033 | // { mk_mii_write(MII_REG_ANAR, 0x021), NULL }, /* 10 Mbps, HD */ |
| 1034 | { mk_mii_read(MII_REG_CR), mii_parse_cr }, |
| 1035 | { mk_mii_read(MII_REG_ANAR), mii_parse_anar }, |
| 1036 | { mk_mii_end, } |
| 1037 | }, |
| 1038 | (const phy_cmd_t []) { /* startup - enable interrupts */ |
| 1039 | { mk_mii_write(MII_LXT971_IER, 0x00f2), NULL }, |
| 1040 | { mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */ |
| 1041 | |
| 1042 | /* Somehow does the 971 tell me that the link is down |
| 1043 | * the first read after power-up. |
| 1044 | * read here to get a valid value in ack_int */ |
| 1045 | |
| 1046 | { mk_mii_read(MII_REG_SR), mii_parse_sr }, |
| 1047 | { mk_mii_end, } |
| 1048 | }, |
| 1049 | (const phy_cmd_t []) { /* ack_int */ |
| 1050 | /* find out the current status */ |
| 1051 | |
| 1052 | { mk_mii_read(MII_REG_SR), mii_parse_sr }, |
| 1053 | { mk_mii_read(MII_LXT971_SR2), mii_parse_lxt971_sr2 }, |
| 1054 | |
| 1055 | /* we only need to read ISR to acknowledge */ |
| 1056 | |
| 1057 | { mk_mii_read(MII_LXT971_ISR), NULL }, |
| 1058 | { mk_mii_end, } |
| 1059 | }, |
| 1060 | (const phy_cmd_t []) { /* shutdown - disable interrupts */ |
| 1061 | { mk_mii_write(MII_LXT971_IER, 0x0000), NULL }, |
| 1062 | { mk_mii_end, } |
| 1063 | }, |
| 1064 | }; |
| 1065 | |
| 1066 | #endif /* CONFIG_FEC_LXT970 */ |
| 1067 | |
| 1068 | |
| 1069 | /* ------------------------------------------------------------------------- */ |
| 1070 | /* The Quality Semiconductor QS6612 is used on the RPX CLLF */ |
| 1071 | |
| 1072 | #ifdef CONFIG_FEC_QS6612 |
| 1073 | |
| 1074 | /* register definitions */ |
| 1075 | |
| 1076 | #define MII_QS6612_MCR 17 /* Mode Control Register */ |
| 1077 | #define MII_QS6612_FTR 27 /* Factory Test Register */ |
| 1078 | #define MII_QS6612_MCO 28 /* Misc. Control Register */ |
| 1079 | #define MII_QS6612_ISR 29 /* Interrupt Source Register */ |
| 1080 | #define MII_QS6612_IMR 30 /* Interrupt Mask Register */ |
| 1081 | #define MII_QS6612_PCR 31 /* 100BaseTx PHY Control Reg. */ |
| 1082 | |
| 1083 | static void mii_parse_qs6612_pcr(uint mii_reg, struct net_device *dev) |
| 1084 | { |
| 1085 | struct fec_enet_private *fep = dev->priv; |
| 1086 | volatile uint *s = &(fep->phy_status); |
| 1087 | |
| 1088 | *s &= ~(PHY_STAT_SPMASK); |
| 1089 | |
| 1090 | switch((mii_reg >> 2) & 7) { |
| 1091 | case 1: *s |= PHY_STAT_10HDX; break; |
| 1092 | case 2: *s |= PHY_STAT_100HDX; break; |
| 1093 | case 5: *s |= PHY_STAT_10FDX; break; |
| 1094 | case 6: *s |= PHY_STAT_100FDX; break; |
| 1095 | } |
| 1096 | } |
| 1097 | |
| 1098 | static phy_info_t phy_info_qs6612 = { |
| 1099 | 0x00181440, |
| 1100 | "QS6612", |
| 1101 | |
| 1102 | (const phy_cmd_t []) { /* config */ |
| 1103 | // { mk_mii_write(MII_REG_ANAR, 0x061), NULL }, /* 10 Mbps */ |
| 1104 | |
| 1105 | /* The PHY powers up isolated on the RPX, |
| 1106 | * so send a command to allow operation. |
| 1107 | */ |
| 1108 | |
| 1109 | { mk_mii_write(MII_QS6612_PCR, 0x0dc0), NULL }, |
| 1110 | |
| 1111 | /* parse cr and anar to get some info */ |
| 1112 | |
| 1113 | { mk_mii_read(MII_REG_CR), mii_parse_cr }, |
| 1114 | { mk_mii_read(MII_REG_ANAR), mii_parse_anar }, |
| 1115 | { mk_mii_end, } |
| 1116 | }, |
| 1117 | (const phy_cmd_t []) { /* startup - enable interrupts */ |
| 1118 | { mk_mii_write(MII_QS6612_IMR, 0x003a), NULL }, |
| 1119 | { mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */ |
| 1120 | { mk_mii_end, } |
| 1121 | }, |
| 1122 | (const phy_cmd_t []) { /* ack_int */ |
| 1123 | |
| 1124 | /* we need to read ISR, SR and ANER to acknowledge */ |
| 1125 | |
| 1126 | { mk_mii_read(MII_QS6612_ISR), NULL }, |
| 1127 | { mk_mii_read(MII_REG_SR), mii_parse_sr }, |
| 1128 | { mk_mii_read(MII_REG_ANER), NULL }, |
| 1129 | |
| 1130 | /* read pcr to get info */ |
| 1131 | |
| 1132 | { mk_mii_read(MII_QS6612_PCR), mii_parse_qs6612_pcr }, |
| 1133 | { mk_mii_end, } |
| 1134 | }, |
| 1135 | (const phy_cmd_t []) { /* shutdown - disable interrupts */ |
| 1136 | { mk_mii_write(MII_QS6612_IMR, 0x0000), NULL }, |
| 1137 | { mk_mii_end, } |
| 1138 | }, |
| 1139 | }; |
| 1140 | |
| 1141 | #endif /* CONFIG_FEC_QS6612 */ |
| 1142 | |
| 1143 | /* ------------------------------------------------------------------------- */ |
| 1144 | /* The Advanced Micro Devices AM79C874 is used on the ICU862 */ |
| 1145 | |
| 1146 | #ifdef CONFIG_FEC_AM79C874 |
| 1147 | |
| 1148 | /* register definitions for the 79C874 */ |
| 1149 | |
| 1150 | #define MII_AM79C874_MFR 16 /* Miscellaneous Features Register */ |
| 1151 | #define MII_AM79C874_ICSR 17 /* Interrupt Control/Status Register */ |
| 1152 | #define MII_AM79C874_DR 18 /* Diagnostic Register */ |
| 1153 | #define MII_AM79C874_PMLR 19 /* Power Management & Loopback Register */ |
| 1154 | #define MII_AM79C874_MCR 21 /* Mode Control Register */ |
| 1155 | #define MII_AM79C874_DC 23 /* Disconnect Counter */ |
| 1156 | #define MII_AM79C874_REC 24 /* Receiver Error Counter */ |
| 1157 | |
| 1158 | static void mii_parse_amd79c874_dr(uint mii_reg, struct net_device *dev, uint data) |
| 1159 | { |
| 1160 | volatile struct fec_enet_private *fep = dev->priv; |
| 1161 | uint s = fep->phy_status; |
| 1162 | |
| 1163 | s &= ~(PHY_STAT_SPMASK); |
| 1164 | |
| 1165 | /* Register 18: Bit 10 is data rate, 11 is Duplex */ |
| 1166 | switch ((mii_reg >> 10) & 3) { |
| 1167 | case 0: s |= PHY_STAT_10HDX; break; |
| 1168 | case 1: s |= PHY_STAT_100HDX; break; |
| 1169 | case 2: s |= PHY_STAT_10FDX; break; |
| 1170 | case 3: s |= PHY_STAT_100FDX; break; |
| 1171 | } |
| 1172 | |
| 1173 | fep->phy_status = s; |
| 1174 | } |
| 1175 | |
| 1176 | static phy_info_t phy_info_amd79c874 = { |
| 1177 | 0x00022561, |
| 1178 | "AM79C874", |
| 1179 | |
| 1180 | (const phy_cmd_t []) { /* config */ |
| 1181 | // { mk_mii_write(MII_REG_ANAR, 0x021), NULL }, /* 10 Mbps, HD */ |
| 1182 | { mk_mii_read(MII_REG_CR), mii_parse_cr }, |
| 1183 | { mk_mii_read(MII_REG_ANAR), mii_parse_anar }, |
| 1184 | { mk_mii_end, } |
| 1185 | }, |
| 1186 | (const phy_cmd_t []) { /* startup - enable interrupts */ |
| 1187 | { mk_mii_write(MII_AM79C874_ICSR, 0xff00), NULL }, |
| 1188 | { mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */ |
| 1189 | { mk_mii_end, } |
| 1190 | }, |
| 1191 | (const phy_cmd_t []) { /* ack_int */ |
| 1192 | /* find out the current status */ |
| 1193 | |
| 1194 | { mk_mii_read(MII_REG_SR), mii_parse_sr }, |
| 1195 | { mk_mii_read(MII_AM79C874_DR), mii_parse_amd79c874_dr }, |
| 1196 | |
| 1197 | /* we only need to read ICSR to acknowledge */ |
| 1198 | |
| 1199 | { mk_mii_read(MII_AM79C874_ICSR), NULL }, |
| 1200 | { mk_mii_end, } |
| 1201 | }, |
| 1202 | (const phy_cmd_t []) { /* shutdown - disable interrupts */ |
| 1203 | { mk_mii_write(MII_AM79C874_ICSR, 0x0000), NULL }, |
| 1204 | { mk_mii_end, } |
| 1205 | }, |
| 1206 | }; |
| 1207 | |
| 1208 | #endif /* CONFIG_FEC_AM79C874 */ |
| 1209 | |
| 1210 | static phy_info_t *phy_info[] = { |
| 1211 | |
| 1212 | #ifdef CONFIG_FEC_LXT970 |
| 1213 | &phy_info_lxt970, |
| 1214 | #endif /* CONFIG_FEC_LXT970 */ |
| 1215 | |
| 1216 | #ifdef CONFIG_FEC_LXT971 |
| 1217 | &phy_info_lxt971, |
| 1218 | #endif /* CONFIG_FEC_LXT971 */ |
| 1219 | |
| 1220 | #ifdef CONFIG_FEC_QS6612 |
| 1221 | &phy_info_qs6612, |
| 1222 | #endif /* CONFIG_FEC_QS6612 */ |
| 1223 | |
| 1224 | #ifdef CONFIG_FEC_AM79C874 |
| 1225 | &phy_info_amd79c874, |
| 1226 | #endif /* CONFIG_FEC_AM79C874 */ |
| 1227 | |
| 1228 | NULL |
| 1229 | }; |
| 1230 | |
| 1231 | static void mii_display_status(struct net_device *dev) |
| 1232 | { |
| 1233 | struct fec_enet_private *fep = dev->priv; |
| 1234 | volatile uint *s = &(fep->phy_status); |
| 1235 | |
| 1236 | if (!fep->link && !fep->old_link) { |
| 1237 | /* Link is still down - don't print anything */ |
| 1238 | return; |
| 1239 | } |
| 1240 | |
| 1241 | printk("%s: status: ", dev->name); |
| 1242 | |
| 1243 | if (!fep->link) { |
| 1244 | printk("link down"); |
| 1245 | } else { |
| 1246 | printk("link up"); |
| 1247 | |
| 1248 | switch(*s & PHY_STAT_SPMASK) { |
| 1249 | case PHY_STAT_100FDX: printk(", 100 Mbps Full Duplex"); break; |
| 1250 | case PHY_STAT_100HDX: printk(", 100 Mbps Half Duplex"); break; |
| 1251 | case PHY_STAT_10FDX: printk(", 10 Mbps Full Duplex"); break; |
| 1252 | case PHY_STAT_10HDX: printk(", 10 Mbps Half Duplex"); break; |
| 1253 | default: |
| 1254 | printk(", Unknown speed/duplex"); |
| 1255 | } |
| 1256 | |
| 1257 | if (*s & PHY_STAT_ANC) |
| 1258 | printk(", auto-negotiation complete"); |
| 1259 | } |
| 1260 | |
| 1261 | if (*s & PHY_STAT_FAULT) |
| 1262 | printk(", remote fault"); |
| 1263 | |
| 1264 | printk(".\n"); |
| 1265 | } |
| 1266 | |
Aristeu Sergio Rozanski Filho | 8b0ed2f | 2005-08-07 09:42:28 -0700 | [diff] [blame] | 1267 | static void mii_display_config(void *priv) |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1268 | { |
Aristeu Sergio Rozanski Filho | 8b0ed2f | 2005-08-07 09:42:28 -0700 | [diff] [blame] | 1269 | struct net_device *dev = (struct net_device *)priv; |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1270 | struct fec_enet_private *fep = dev->priv; |
| 1271 | volatile uint *s = &(fep->phy_status); |
| 1272 | |
| 1273 | printk("%s: config: auto-negotiation ", dev->name); |
| 1274 | |
| 1275 | if (*s & PHY_CONF_ANE) |
| 1276 | printk("on"); |
| 1277 | else |
| 1278 | printk("off"); |
| 1279 | |
| 1280 | if (*s & PHY_CONF_100FDX) |
| 1281 | printk(", 100FDX"); |
| 1282 | if (*s & PHY_CONF_100HDX) |
| 1283 | printk(", 100HDX"); |
| 1284 | if (*s & PHY_CONF_10FDX) |
| 1285 | printk(", 10FDX"); |
| 1286 | if (*s & PHY_CONF_10HDX) |
| 1287 | printk(", 10HDX"); |
| 1288 | if (!(*s & PHY_CONF_SPMASK)) |
| 1289 | printk(", No speed/duplex selected?"); |
| 1290 | |
| 1291 | if (*s & PHY_CONF_LOOP) |
| 1292 | printk(", loopback enabled"); |
| 1293 | |
| 1294 | printk(".\n"); |
| 1295 | |
| 1296 | fep->sequence_done = 1; |
| 1297 | } |
| 1298 | |
Aristeu Sergio Rozanski Filho | 8b0ed2f | 2005-08-07 09:42:28 -0700 | [diff] [blame] | 1299 | static void mii_relink(void *priv) |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1300 | { |
Aristeu Sergio Rozanski Filho | 8b0ed2f | 2005-08-07 09:42:28 -0700 | [diff] [blame] | 1301 | struct net_device *dev = (struct net_device *)priv; |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1302 | struct fec_enet_private *fep = dev->priv; |
| 1303 | int duplex; |
| 1304 | |
| 1305 | fep->link = (fep->phy_status & PHY_STAT_LINK) ? 1 : 0; |
| 1306 | mii_display_status(dev); |
| 1307 | fep->old_link = fep->link; |
| 1308 | |
| 1309 | if (fep->link) { |
| 1310 | duplex = 0; |
| 1311 | if (fep->phy_status |
| 1312 | & (PHY_STAT_100FDX | PHY_STAT_10FDX)) |
| 1313 | duplex = 1; |
| 1314 | fec_restart(dev, duplex); |
| 1315 | } |
| 1316 | else |
| 1317 | fec_stop(dev); |
| 1318 | |
| 1319 | #if 0 |
| 1320 | enable_irq(fep->mii_irq); |
| 1321 | #endif |
| 1322 | |
| 1323 | } |
| 1324 | |
| 1325 | static void mii_queue_relink(uint mii_reg, struct net_device *dev) |
| 1326 | { |
| 1327 | struct fec_enet_private *fep = dev->priv; |
| 1328 | |
Aristeu Sergio Rozanski Filho | 8b0ed2f | 2005-08-07 09:42:28 -0700 | [diff] [blame] | 1329 | INIT_WORK(&fep->phy_task, mii_relink, (void *)dev); |
| 1330 | schedule_work(&fep->phy_task); |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1331 | } |
| 1332 | |
| 1333 | static void mii_queue_config(uint mii_reg, struct net_device *dev) |
| 1334 | { |
| 1335 | struct fec_enet_private *fep = dev->priv; |
| 1336 | |
Aristeu Sergio Rozanski Filho | 8b0ed2f | 2005-08-07 09:42:28 -0700 | [diff] [blame] | 1337 | INIT_WORK(&fep->phy_task, mii_display_config, (void *)dev); |
| 1338 | schedule_work(&fep->phy_task); |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1339 | } |
| 1340 | |
| 1341 | |
| 1342 | |
| 1343 | phy_cmd_t phy_cmd_relink[] = { { mk_mii_read(MII_REG_CR), mii_queue_relink }, |
| 1344 | { mk_mii_end, } }; |
| 1345 | phy_cmd_t phy_cmd_config[] = { { mk_mii_read(MII_REG_CR), mii_queue_config }, |
| 1346 | { mk_mii_end, } }; |
| 1347 | |
| 1348 | |
| 1349 | |
| 1350 | /* Read remainder of PHY ID. |
| 1351 | */ |
| 1352 | static void |
| 1353 | mii_discover_phy3(uint mii_reg, struct net_device *dev) |
| 1354 | { |
| 1355 | struct fec_enet_private *fep; |
| 1356 | int i; |
| 1357 | |
| 1358 | fep = dev->priv; |
| 1359 | fep->phy_id |= (mii_reg & 0xffff); |
| 1360 | |
| 1361 | for(i = 0; phy_info[i]; i++) |
| 1362 | if(phy_info[i]->id == (fep->phy_id >> 4)) |
| 1363 | break; |
| 1364 | |
| 1365 | if(!phy_info[i]) |
| 1366 | panic("%s: PHY id 0x%08x is not supported!\n", |
| 1367 | dev->name, fep->phy_id); |
| 1368 | |
| 1369 | fep->phy = phy_info[i]; |
| 1370 | fep->phy_id_done = 1; |
| 1371 | |
| 1372 | printk("%s: Phy @ 0x%x, type %s (0x%08x)\n", |
| 1373 | dev->name, fep->phy_addr, fep->phy->name, fep->phy_id); |
| 1374 | } |
| 1375 | |
| 1376 | /* Scan all of the MII PHY addresses looking for someone to respond |
| 1377 | * with a valid ID. This usually happens quickly. |
| 1378 | */ |
| 1379 | static void |
| 1380 | mii_discover_phy(uint mii_reg, struct net_device *dev) |
| 1381 | { |
| 1382 | struct fec_enet_private *fep; |
| 1383 | uint phytype; |
| 1384 | |
| 1385 | fep = dev->priv; |
| 1386 | |
| 1387 | if ((phytype = (mii_reg & 0xffff)) != 0xffff) { |
| 1388 | |
| 1389 | /* Got first part of ID, now get remainder. |
| 1390 | */ |
| 1391 | fep->phy_id = phytype << 16; |
| 1392 | mii_queue(dev, mk_mii_read(MII_REG_PHYIR2), mii_discover_phy3); |
| 1393 | } else { |
| 1394 | fep->phy_addr++; |
| 1395 | if (fep->phy_addr < 32) { |
| 1396 | mii_queue(dev, mk_mii_read(MII_REG_PHYIR1), |
| 1397 | mii_discover_phy); |
| 1398 | } else { |
| 1399 | printk("fec: No PHY device found.\n"); |
| 1400 | } |
| 1401 | } |
| 1402 | } |
| 1403 | #endif /* CONFIG_USE_MDIO */ |
| 1404 | |
| 1405 | /* This interrupt occurs when the PHY detects a link change. |
| 1406 | */ |
Aristeu Sergio Rozanski Filho | fbccb3d | 2005-08-07 09:42:36 -0700 | [diff] [blame] | 1407 | static |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1408 | #ifdef CONFIG_RPXCLASSIC |
Aristeu Sergio Rozanski Filho | fbccb3d | 2005-08-07 09:42:36 -0700 | [diff] [blame] | 1409 | void mii_link_interrupt(void *dev_id) |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1410 | #else |
Aristeu Sergio Rozanski Filho | fbccb3d | 2005-08-07 09:42:36 -0700 | [diff] [blame] | 1411 | irqreturn_t mii_link_interrupt(int irq, void * dev_id, struct pt_regs * regs) |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1412 | #endif |
| 1413 | { |
| 1414 | #ifdef CONFIG_USE_MDIO |
| 1415 | struct net_device *dev = dev_id; |
| 1416 | struct fec_enet_private *fep = dev->priv; |
| 1417 | volatile immap_t *immap = (immap_t *)IMAP_ADDR; |
| 1418 | volatile fec_t *fecp = &(immap->im_cpm.cp_fec); |
| 1419 | unsigned int ecntrl = fecp->fec_ecntrl; |
| 1420 | |
| 1421 | /* We need the FEC enabled to access the MII |
| 1422 | */ |
| 1423 | if ((ecntrl & FEC_ECNTRL_ETHER_EN) == 0) { |
| 1424 | fecp->fec_ecntrl |= FEC_ECNTRL_ETHER_EN; |
| 1425 | } |
| 1426 | #endif /* CONFIG_USE_MDIO */ |
| 1427 | |
| 1428 | #if 0 |
| 1429 | disable_irq(fep->mii_irq); /* disable now, enable later */ |
| 1430 | #endif |
| 1431 | |
| 1432 | |
| 1433 | #ifdef CONFIG_USE_MDIO |
| 1434 | mii_do_cmd(dev, fep->phy->ack_int); |
| 1435 | mii_do_cmd(dev, phy_cmd_relink); /* restart and display status */ |
| 1436 | |
| 1437 | if ((ecntrl & FEC_ECNTRL_ETHER_EN) == 0) { |
| 1438 | fecp->fec_ecntrl = ecntrl; /* restore old settings */ |
| 1439 | } |
| 1440 | #else |
| 1441 | printk("%s[%d] %s: unexpected Link interrupt\n", __FILE__,__LINE__,__FUNCTION__); |
| 1442 | #endif /* CONFIG_USE_MDIO */ |
| 1443 | |
Aristeu Sergio Rozanski Filho | fbccb3d | 2005-08-07 09:42:36 -0700 | [diff] [blame] | 1444 | #ifndef CONFIG_RPXCLASSIC |
| 1445 | return IRQ_RETVAL(IRQ_HANDLED); |
| 1446 | #endif /* CONFIG_RPXCLASSIC */ |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1447 | } |
| 1448 | |
| 1449 | static int |
| 1450 | fec_enet_open(struct net_device *dev) |
| 1451 | { |
| 1452 | struct fec_enet_private *fep = dev->priv; |
| 1453 | |
| 1454 | /* I should reset the ring buffers here, but I don't yet know |
| 1455 | * a simple way to do that. |
| 1456 | */ |
| 1457 | |
| 1458 | #ifdef CONFIG_USE_MDIO |
| 1459 | fep->sequence_done = 0; |
| 1460 | fep->link = 0; |
| 1461 | |
| 1462 | if (fep->phy) { |
| 1463 | mii_do_cmd(dev, fep->phy->ack_int); |
| 1464 | mii_do_cmd(dev, fep->phy->config); |
| 1465 | mii_do_cmd(dev, phy_cmd_config); /* display configuration */ |
| 1466 | while(!fep->sequence_done) |
| 1467 | schedule(); |
| 1468 | |
| 1469 | mii_do_cmd(dev, fep->phy->startup); |
| 1470 | netif_start_queue(dev); |
| 1471 | return 0; /* Success */ |
| 1472 | } |
| 1473 | return -ENODEV; /* No PHY we understand */ |
| 1474 | #else |
| 1475 | fep->link = 1; |
| 1476 | netif_start_queue(dev); |
| 1477 | return 0; /* Success */ |
| 1478 | #endif /* CONFIG_USE_MDIO */ |
| 1479 | |
| 1480 | } |
| 1481 | |
| 1482 | static int |
| 1483 | fec_enet_close(struct net_device *dev) |
| 1484 | { |
| 1485 | /* Don't know what to do yet. |
| 1486 | */ |
| 1487 | netif_stop_queue(dev); |
| 1488 | fec_stop(dev); |
| 1489 | |
| 1490 | return 0; |
| 1491 | } |
| 1492 | |
| 1493 | static struct net_device_stats *fec_enet_get_stats(struct net_device *dev) |
| 1494 | { |
| 1495 | struct fec_enet_private *fep = (struct fec_enet_private *)dev->priv; |
| 1496 | |
| 1497 | return &fep->stats; |
| 1498 | } |
| 1499 | |
| 1500 | /* Set or clear the multicast filter for this adaptor. |
| 1501 | * Skeleton taken from sunlance driver. |
| 1502 | * The CPM Ethernet implementation allows Multicast as well as individual |
| 1503 | * MAC address filtering. Some of the drivers check to make sure it is |
| 1504 | * a group multicast address, and discard those that are not. I guess I |
| 1505 | * will do the same for now, but just remove the test if you want |
| 1506 | * individual filtering as well (do the upper net layers want or support |
| 1507 | * this kind of feature?). |
| 1508 | */ |
| 1509 | |
| 1510 | static void set_multicast_list(struct net_device *dev) |
| 1511 | { |
| 1512 | struct fec_enet_private *fep; |
| 1513 | volatile fec_t *ep; |
| 1514 | |
| 1515 | fep = (struct fec_enet_private *)dev->priv; |
| 1516 | ep = &(((immap_t *)IMAP_ADDR)->im_cpm.cp_fec); |
| 1517 | |
| 1518 | if (dev->flags&IFF_PROMISC) { |
| 1519 | |
| 1520 | /* Log any net taps. */ |
| 1521 | printk("%s: Promiscuous mode enabled.\n", dev->name); |
| 1522 | ep->fec_r_cntrl |= FEC_RCNTRL_PROM; |
| 1523 | } else { |
| 1524 | |
| 1525 | ep->fec_r_cntrl &= ~FEC_RCNTRL_PROM; |
| 1526 | |
| 1527 | if (dev->flags & IFF_ALLMULTI) { |
| 1528 | /* Catch all multicast addresses, so set the |
| 1529 | * filter to all 1's. |
| 1530 | */ |
| 1531 | ep->fec_hash_table_high = 0xffffffff; |
| 1532 | ep->fec_hash_table_low = 0xffffffff; |
| 1533 | } |
| 1534 | #if 0 |
| 1535 | else { |
| 1536 | /* Clear filter and add the addresses in the list. |
| 1537 | */ |
| 1538 | ep->sen_gaddr1 = 0; |
| 1539 | ep->sen_gaddr2 = 0; |
| 1540 | ep->sen_gaddr3 = 0; |
| 1541 | ep->sen_gaddr4 = 0; |
| 1542 | |
| 1543 | dmi = dev->mc_list; |
| 1544 | |
| 1545 | for (i=0; i<dev->mc_count; i++) { |
| 1546 | |
| 1547 | /* Only support group multicast for now. |
| 1548 | */ |
| 1549 | if (!(dmi->dmi_addr[0] & 1)) |
| 1550 | continue; |
| 1551 | |
| 1552 | /* The address in dmi_addr is LSB first, |
| 1553 | * and taddr is MSB first. We have to |
| 1554 | * copy bytes MSB first from dmi_addr. |
| 1555 | */ |
| 1556 | mcptr = (u_char *)dmi->dmi_addr + 5; |
| 1557 | tdptr = (u_char *)&ep->sen_taddrh; |
| 1558 | for (j=0; j<6; j++) |
| 1559 | *tdptr++ = *mcptr--; |
| 1560 | |
| 1561 | /* Ask CPM to run CRC and set bit in |
| 1562 | * filter mask. |
| 1563 | */ |
| 1564 | cpmp->cp_cpcr = mk_cr_cmd(CPM_CR_CH_SCC1, CPM_CR_SET_GADDR) | CPM_CR_FLG; |
| 1565 | /* this delay is necessary here -- Cort */ |
| 1566 | udelay(10); |
| 1567 | while (cpmp->cp_cpcr & CPM_CR_FLG); |
| 1568 | } |
| 1569 | } |
| 1570 | #endif |
| 1571 | } |
| 1572 | } |
| 1573 | |
| 1574 | /* Initialize the FEC Ethernet on 860T. |
| 1575 | */ |
| 1576 | static int __init fec_enet_init(void) |
| 1577 | { |
| 1578 | struct net_device *dev; |
| 1579 | struct fec_enet_private *fep; |
| 1580 | int i, j, k, err; |
| 1581 | unsigned char *eap, *iap, *ba; |
Aristeu Sergio Rozanski Filho | fc007dd | 2005-08-07 09:42:33 -0700 | [diff] [blame] | 1582 | dma_addr_t mem_addr; |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1583 | volatile cbd_t *bdp; |
| 1584 | cbd_t *cbd_base; |
| 1585 | volatile immap_t *immap; |
| 1586 | volatile fec_t *fecp; |
| 1587 | bd_t *bd; |
| 1588 | #ifdef CONFIG_SCC_ENET |
| 1589 | unsigned char tmpaddr[6]; |
| 1590 | #endif |
| 1591 | |
| 1592 | immap = (immap_t *)IMAP_ADDR; /* pointer to internal registers */ |
| 1593 | |
| 1594 | bd = (bd_t *)__res; |
| 1595 | |
| 1596 | dev = alloc_etherdev(sizeof(*fep)); |
| 1597 | if (!dev) |
| 1598 | return -ENOMEM; |
| 1599 | |
| 1600 | fep = dev->priv; |
| 1601 | |
| 1602 | fecp = &(immap->im_cpm.cp_fec); |
| 1603 | |
| 1604 | /* Whack a reset. We should wait for this. |
| 1605 | */ |
| 1606 | fecp->fec_ecntrl = FEC_ECNTRL_PINMUX | FEC_ECNTRL_RESET; |
| 1607 | for (i = 0; |
| 1608 | (fecp->fec_ecntrl & FEC_ECNTRL_RESET) && (i < FEC_RESET_DELAY); |
| 1609 | ++i) { |
| 1610 | udelay(1); |
| 1611 | } |
| 1612 | if (i == FEC_RESET_DELAY) { |
| 1613 | printk ("FEC Reset timeout!\n"); |
| 1614 | } |
| 1615 | |
| 1616 | /* Set the Ethernet address. If using multiple Enets on the 8xx, |
| 1617 | * this needs some work to get unique addresses. |
| 1618 | */ |
| 1619 | eap = (unsigned char *)my_enet_addr; |
| 1620 | iap = bd->bi_enetaddr; |
| 1621 | |
| 1622 | #ifdef CONFIG_SCC_ENET |
| 1623 | /* |
| 1624 | * If a board has Ethernet configured both on a SCC and the |
| 1625 | * FEC, it needs (at least) 2 MAC addresses (we know that Sun |
| 1626 | * disagrees, but anyway). For the FEC port, we create |
| 1627 | * another address by setting one of the address bits above |
| 1628 | * something that would have (up to now) been allocated. |
| 1629 | */ |
| 1630 | for (i=0; i<6; i++) |
| 1631 | tmpaddr[i] = *iap++; |
| 1632 | tmpaddr[3] |= 0x80; |
| 1633 | iap = tmpaddr; |
| 1634 | #endif |
| 1635 | |
| 1636 | for (i=0; i<6; i++) { |
| 1637 | dev->dev_addr[i] = *eap++ = *iap++; |
| 1638 | } |
| 1639 | |
| 1640 | /* Allocate memory for buffer descriptors. |
| 1641 | */ |
| 1642 | if (((RX_RING_SIZE + TX_RING_SIZE) * sizeof(cbd_t)) > PAGE_SIZE) { |
| 1643 | printk("FEC init error. Need more space.\n"); |
| 1644 | printk("FEC initialization failed.\n"); |
| 1645 | return 1; |
| 1646 | } |
Aristeu Sergio Rozanski Filho | fc007dd | 2005-08-07 09:42:33 -0700 | [diff] [blame] | 1647 | cbd_base = (cbd_t *)dma_alloc_coherent(dev->class_dev.dev, PAGE_SIZE, |
| 1648 | &mem_addr, GFP_KERNEL); |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1649 | |
| 1650 | /* Set receive and transmit descriptor base. |
| 1651 | */ |
| 1652 | fep->rx_bd_base = cbd_base; |
| 1653 | fep->tx_bd_base = cbd_base + RX_RING_SIZE; |
| 1654 | |
| 1655 | fep->skb_cur = fep->skb_dirty = 0; |
| 1656 | |
| 1657 | /* Initialize the receive buffer descriptors. |
| 1658 | */ |
| 1659 | bdp = fep->rx_bd_base; |
| 1660 | k = 0; |
| 1661 | for (i=0; i<FEC_ENET_RX_PAGES; i++) { |
| 1662 | |
| 1663 | /* Allocate a page. |
| 1664 | */ |
Aristeu Sergio Rozanski Filho | fc007dd | 2005-08-07 09:42:33 -0700 | [diff] [blame] | 1665 | ba = (unsigned char *)dma_alloc_coherent(dev->class_dev.dev, |
| 1666 | PAGE_SIZE, |
| 1667 | &mem_addr, |
| 1668 | GFP_KERNEL); |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1669 | /* BUG: no check for failure */ |
| 1670 | |
| 1671 | /* Initialize the BD for every fragment in the page. |
| 1672 | */ |
| 1673 | for (j=0; j<FEC_ENET_RX_FRPPG; j++) { |
| 1674 | bdp->cbd_sc = BD_ENET_RX_EMPTY; |
| 1675 | bdp->cbd_bufaddr = mem_addr; |
| 1676 | fep->rx_vaddr[k++] = ba; |
| 1677 | mem_addr += FEC_ENET_RX_FRSIZE; |
| 1678 | ba += FEC_ENET_RX_FRSIZE; |
| 1679 | bdp++; |
| 1680 | } |
| 1681 | } |
| 1682 | |
| 1683 | /* Set the last buffer to wrap. |
| 1684 | */ |
| 1685 | bdp--; |
| 1686 | bdp->cbd_sc |= BD_SC_WRAP; |
| 1687 | |
| 1688 | #ifdef CONFIG_FEC_PACKETHOOK |
| 1689 | fep->ph_lock = 0; |
| 1690 | fep->ph_rxhandler = fep->ph_txhandler = NULL; |
| 1691 | fep->ph_proto = 0; |
| 1692 | fep->ph_regaddr = NULL; |
| 1693 | fep->ph_priv = NULL; |
| 1694 | #endif |
| 1695 | |
| 1696 | /* Install our interrupt handler. |
| 1697 | */ |
| 1698 | if (request_irq(FEC_INTERRUPT, fec_enet_interrupt, 0, "fec", dev) != 0) |
| 1699 | panic("Could not allocate FEC IRQ!"); |
| 1700 | |
| 1701 | #ifdef CONFIG_RPXCLASSIC |
| 1702 | /* Make Port C, bit 15 an input that causes interrupts. |
| 1703 | */ |
| 1704 | immap->im_ioport.iop_pcpar &= ~0x0001; |
| 1705 | immap->im_ioport.iop_pcdir &= ~0x0001; |
| 1706 | immap->im_ioport.iop_pcso &= ~0x0001; |
| 1707 | immap->im_ioport.iop_pcint |= 0x0001; |
| 1708 | cpm_install_handler(CPMVEC_PIO_PC15, mii_link_interrupt, dev); |
| 1709 | |
| 1710 | /* Make LEDS reflect Link status. |
| 1711 | */ |
| 1712 | *((uint *) RPX_CSR_ADDR) &= ~BCSR2_FETHLEDMODE; |
| 1713 | #endif |
| 1714 | |
| 1715 | #ifdef PHY_INTERRUPT |
| 1716 | ((immap_t *)IMAP_ADDR)->im_siu_conf.sc_siel |= |
| 1717 | (0x80000000 >> PHY_INTERRUPT); |
| 1718 | |
| 1719 | if (request_irq(PHY_INTERRUPT, mii_link_interrupt, 0, "mii", dev) != 0) |
| 1720 | panic("Could not allocate MII IRQ!"); |
| 1721 | #endif |
| 1722 | |
| 1723 | dev->base_addr = (unsigned long)fecp; |
| 1724 | |
| 1725 | /* The FEC Ethernet specific entries in the device structure. */ |
| 1726 | dev->open = fec_enet_open; |
| 1727 | dev->hard_start_xmit = fec_enet_start_xmit; |
| 1728 | dev->tx_timeout = fec_timeout; |
| 1729 | dev->watchdog_timeo = TX_TIMEOUT; |
| 1730 | dev->stop = fec_enet_close; |
| 1731 | dev->get_stats = fec_enet_get_stats; |
| 1732 | dev->set_multicast_list = set_multicast_list; |
| 1733 | |
| 1734 | #ifdef CONFIG_USE_MDIO |
| 1735 | for (i=0; i<NMII-1; i++) |
| 1736 | mii_cmds[i].mii_next = &mii_cmds[i+1]; |
| 1737 | mii_free = mii_cmds; |
| 1738 | #endif /* CONFIG_USE_MDIO */ |
| 1739 | |
| 1740 | /* Configure all of port D for MII. |
| 1741 | */ |
| 1742 | immap->im_ioport.iop_pdpar = 0x1fff; |
| 1743 | |
| 1744 | /* Bits moved from Rev. D onward. |
| 1745 | */ |
| 1746 | if ((mfspr(SPRN_IMMR) & 0xffff) < 0x0501) |
| 1747 | immap->im_ioport.iop_pddir = 0x1c58; /* Pre rev. D */ |
| 1748 | else |
| 1749 | immap->im_ioport.iop_pddir = 0x1fff; /* Rev. D and later */ |
| 1750 | |
| 1751 | #ifdef CONFIG_USE_MDIO |
| 1752 | /* Set MII speed to 2.5 MHz |
| 1753 | */ |
| 1754 | fecp->fec_mii_speed = fep->phy_speed = |
| 1755 | (( (bd->bi_intfreq + 500000) / 2500000 / 2 ) & 0x3F ) << 1; |
| 1756 | #else |
| 1757 | fecp->fec_mii_speed = 0; /* turn off MDIO */ |
| 1758 | #endif /* CONFIG_USE_MDIO */ |
| 1759 | |
| 1760 | err = register_netdev(dev); |
| 1761 | if (err) { |
| 1762 | free_netdev(dev); |
| 1763 | return err; |
| 1764 | } |
| 1765 | |
| 1766 | printk ("%s: FEC ENET Version 0.2, FEC irq %d" |
| 1767 | #ifdef PHY_INTERRUPT |
| 1768 | ", MII irq %d" |
| 1769 | #endif |
| 1770 | ", addr ", |
| 1771 | dev->name, FEC_INTERRUPT |
| 1772 | #ifdef PHY_INTERRUPT |
| 1773 | , PHY_INTERRUPT |
| 1774 | #endif |
| 1775 | ); |
| 1776 | for (i=0; i<6; i++) |
| 1777 | printk("%02x%c", dev->dev_addr[i], (i==5) ? '\n' : ':'); |
| 1778 | |
| 1779 | #ifdef CONFIG_USE_MDIO /* start in full duplex mode, and negotiate speed */ |
| 1780 | fec_restart (dev, 1); |
| 1781 | #else /* always use half duplex mode only */ |
| 1782 | fec_restart (dev, 0); |
| 1783 | #endif |
| 1784 | |
| 1785 | #ifdef CONFIG_USE_MDIO |
| 1786 | /* Queue up command to detect the PHY and initialize the |
| 1787 | * remainder of the interface. |
| 1788 | */ |
| 1789 | fep->phy_id_done = 0; |
| 1790 | fep->phy_addr = 0; |
| 1791 | mii_queue(dev, mk_mii_read(MII_REG_PHYIR1), mii_discover_phy); |
| 1792 | #endif /* CONFIG_USE_MDIO */ |
| 1793 | |
| 1794 | return 0; |
| 1795 | } |
| 1796 | module_init(fec_enet_init); |
| 1797 | |
| 1798 | /* This function is called to start or restart the FEC during a link |
| 1799 | * change. This only happens when switching between half and full |
| 1800 | * duplex. |
| 1801 | */ |
| 1802 | static void |
| 1803 | fec_restart(struct net_device *dev, int duplex) |
| 1804 | { |
| 1805 | struct fec_enet_private *fep; |
| 1806 | int i; |
| 1807 | volatile cbd_t *bdp; |
| 1808 | volatile immap_t *immap; |
| 1809 | volatile fec_t *fecp; |
| 1810 | |
| 1811 | immap = (immap_t *)IMAP_ADDR; /* pointer to internal registers */ |
| 1812 | |
| 1813 | fecp = &(immap->im_cpm.cp_fec); |
| 1814 | |
| 1815 | fep = dev->priv; |
| 1816 | |
| 1817 | /* Whack a reset. We should wait for this. |
| 1818 | */ |
| 1819 | fecp->fec_ecntrl = FEC_ECNTRL_PINMUX | FEC_ECNTRL_RESET; |
| 1820 | for (i = 0; |
| 1821 | (fecp->fec_ecntrl & FEC_ECNTRL_RESET) && (i < FEC_RESET_DELAY); |
| 1822 | ++i) { |
| 1823 | udelay(1); |
| 1824 | } |
| 1825 | if (i == FEC_RESET_DELAY) { |
| 1826 | printk ("FEC Reset timeout!\n"); |
| 1827 | } |
| 1828 | |
| 1829 | /* Set station address. |
| 1830 | */ |
| 1831 | fecp->fec_addr_low = (my_enet_addr[0] << 16) | my_enet_addr[1]; |
| 1832 | fecp->fec_addr_high = my_enet_addr[2]; |
| 1833 | |
| 1834 | /* Reset all multicast. |
| 1835 | */ |
| 1836 | fecp->fec_hash_table_high = 0; |
| 1837 | fecp->fec_hash_table_low = 0; |
| 1838 | |
| 1839 | /* Set maximum receive buffer size. |
| 1840 | */ |
| 1841 | fecp->fec_r_buff_size = PKT_MAXBLR_SIZE; |
| 1842 | fecp->fec_r_hash = PKT_MAXBUF_SIZE; |
| 1843 | |
| 1844 | /* Set receive and transmit descriptor base. |
| 1845 | */ |
| 1846 | fecp->fec_r_des_start = iopa((uint)(fep->rx_bd_base)); |
| 1847 | fecp->fec_x_des_start = iopa((uint)(fep->tx_bd_base)); |
| 1848 | |
| 1849 | fep->dirty_tx = fep->cur_tx = fep->tx_bd_base; |
| 1850 | fep->cur_rx = fep->rx_bd_base; |
| 1851 | |
| 1852 | /* Reset SKB transmit buffers. |
| 1853 | */ |
| 1854 | fep->skb_cur = fep->skb_dirty = 0; |
| 1855 | for (i=0; i<=TX_RING_MOD_MASK; i++) { |
| 1856 | if (fep->tx_skbuff[i] != NULL) { |
| 1857 | dev_kfree_skb(fep->tx_skbuff[i]); |
| 1858 | fep->tx_skbuff[i] = NULL; |
| 1859 | } |
| 1860 | } |
| 1861 | |
| 1862 | /* Initialize the receive buffer descriptors. |
| 1863 | */ |
| 1864 | bdp = fep->rx_bd_base; |
| 1865 | for (i=0; i<RX_RING_SIZE; i++) { |
| 1866 | |
| 1867 | /* Initialize the BD for every fragment in the page. |
| 1868 | */ |
| 1869 | bdp->cbd_sc = BD_ENET_RX_EMPTY; |
| 1870 | bdp++; |
| 1871 | } |
| 1872 | |
| 1873 | /* Set the last buffer to wrap. |
| 1874 | */ |
| 1875 | bdp--; |
| 1876 | bdp->cbd_sc |= BD_SC_WRAP; |
| 1877 | |
| 1878 | /* ...and the same for transmmit. |
| 1879 | */ |
| 1880 | bdp = fep->tx_bd_base; |
| 1881 | for (i=0; i<TX_RING_SIZE; i++) { |
| 1882 | |
| 1883 | /* Initialize the BD for every fragment in the page. |
| 1884 | */ |
| 1885 | bdp->cbd_sc = 0; |
| 1886 | bdp->cbd_bufaddr = 0; |
| 1887 | bdp++; |
| 1888 | } |
| 1889 | |
| 1890 | /* Set the last buffer to wrap. |
| 1891 | */ |
| 1892 | bdp--; |
| 1893 | bdp->cbd_sc |= BD_SC_WRAP; |
| 1894 | |
| 1895 | /* Enable MII mode. |
| 1896 | */ |
| 1897 | if (duplex) { |
| 1898 | fecp->fec_r_cntrl = FEC_RCNTRL_MII_MODE; /* MII enable */ |
| 1899 | fecp->fec_x_cntrl = FEC_TCNTRL_FDEN; /* FD enable */ |
| 1900 | } |
| 1901 | else { |
| 1902 | fecp->fec_r_cntrl = FEC_RCNTRL_MII_MODE | FEC_RCNTRL_DRT; |
| 1903 | fecp->fec_x_cntrl = 0; |
| 1904 | } |
| 1905 | fep->full_duplex = duplex; |
| 1906 | |
| 1907 | /* Enable big endian and don't care about SDMA FC. |
| 1908 | */ |
| 1909 | fecp->fec_fun_code = 0x78000000; |
| 1910 | |
| 1911 | #ifdef CONFIG_USE_MDIO |
| 1912 | /* Set MII speed. |
| 1913 | */ |
| 1914 | fecp->fec_mii_speed = fep->phy_speed; |
| 1915 | #endif /* CONFIG_USE_MDIO */ |
| 1916 | |
| 1917 | /* Clear any outstanding interrupt. |
| 1918 | */ |
| 1919 | fecp->fec_ievent = 0xffc0; |
| 1920 | |
| 1921 | fecp->fec_ivec = (FEC_INTERRUPT/2) << 29; |
| 1922 | |
| 1923 | /* Enable interrupts we wish to service. |
| 1924 | */ |
| 1925 | fecp->fec_imask = ( FEC_ENET_TXF | FEC_ENET_TXB | |
| 1926 | FEC_ENET_RXF | FEC_ENET_RXB | FEC_ENET_MII ); |
| 1927 | |
| 1928 | /* And last, enable the transmit and receive processing. |
| 1929 | */ |
| 1930 | fecp->fec_ecntrl = FEC_ECNTRL_PINMUX | FEC_ECNTRL_ETHER_EN; |
| 1931 | fecp->fec_r_des_active = 0x01000000; |
| 1932 | } |
| 1933 | |
| 1934 | static void |
| 1935 | fec_stop(struct net_device *dev) |
| 1936 | { |
| 1937 | volatile immap_t *immap; |
| 1938 | volatile fec_t *fecp; |
| 1939 | struct fec_enet_private *fep; |
| 1940 | int i; |
| 1941 | |
| 1942 | immap = (immap_t *)IMAP_ADDR; /* pointer to internal registers */ |
| 1943 | |
| 1944 | fecp = &(immap->im_cpm.cp_fec); |
| 1945 | |
| 1946 | if ((fecp->fec_ecntrl & FEC_ECNTRL_ETHER_EN) == 0) |
| 1947 | return; /* already down */ |
| 1948 | |
| 1949 | fep = dev->priv; |
| 1950 | |
| 1951 | |
| 1952 | fecp->fec_x_cntrl = 0x01; /* Graceful transmit stop */ |
| 1953 | |
| 1954 | for (i = 0; |
| 1955 | ((fecp->fec_ievent & 0x10000000) == 0) && (i < FEC_RESET_DELAY); |
| 1956 | ++i) { |
| 1957 | udelay(1); |
| 1958 | } |
| 1959 | if (i == FEC_RESET_DELAY) { |
| 1960 | printk ("FEC timeout on graceful transmit stop\n"); |
| 1961 | } |
| 1962 | |
| 1963 | /* Clear outstanding MII command interrupts. |
| 1964 | */ |
| 1965 | fecp->fec_ievent = FEC_ENET_MII; |
| 1966 | |
| 1967 | /* Enable MII command finished interrupt |
| 1968 | */ |
| 1969 | fecp->fec_ivec = (FEC_INTERRUPT/2) << 29; |
| 1970 | fecp->fec_imask = FEC_ENET_MII; |
| 1971 | |
| 1972 | #ifdef CONFIG_USE_MDIO |
| 1973 | /* Set MII speed. |
| 1974 | */ |
| 1975 | fecp->fec_mii_speed = fep->phy_speed; |
| 1976 | #endif /* CONFIG_USE_MDIO */ |
| 1977 | |
| 1978 | /* Disable FEC |
| 1979 | */ |
| 1980 | fecp->fec_ecntrl &= ~(FEC_ECNTRL_ETHER_EN); |
| 1981 | } |