blob: 8b6295bbb564626ff5fab4466b0536bc94ec618a [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
2 * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
3 * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
4 *
5 * This version of the driver is specific to the FADS implementation,
6 * since the board contains control registers external to the processor
7 * for the control of the LevelOne LXT970 transceiver. The MPC860T manual
8 * describes connections using the internal parallel port I/O, which
9 * is basically all of Port D.
10 *
11 * Includes support for the following PHYs: QS6612, LXT970, LXT971/2.
12 *
13 * Right now, I am very wasteful with the buffers. I allocate memory
14 * pages and then divide them into 2K frame buffers. This way I know I
15 * have buffers large enough to hold one frame within one buffer descriptor.
16 * Once I get this working, I will use 64 or 128 byte CPM buffers, which
17 * will be much more memory efficient and will easily handle lots of
18 * small packets.
19 *
20 * Much better multiple PHY support by Magnus Damm.
21 * Copyright (c) 2000 Ericsson Radio Systems AB.
22 *
23 * Make use of MII for PHY control configurable.
24 * Some fixes.
25 * Copyright (c) 2000-2002 Wolfgang Denk, DENX Software Engineering.
26 *
27 * Support for AMD AM79C874 added.
28 * Thomas Lange, thomas@corelatus.com
29 */
30
Linus Torvalds1da177e2005-04-16 15:20:36 -070031#include <linux/kernel.h>
32#include <linux/sched.h>
33#include <linux/string.h>
34#include <linux/ptrace.h>
35#include <linux/errno.h>
36#include <linux/ioport.h>
37#include <linux/slab.h>
38#include <linux/interrupt.h>
39#include <linux/pci.h>
40#include <linux/init.h>
41#include <linux/delay.h>
42#include <linux/netdevice.h>
43#include <linux/etherdevice.h>
44#include <linux/skbuff.h>
45#include <linux/spinlock.h>
46#include <linux/bitops.h>
47#ifdef CONFIG_FEC_PACKETHOOK
48#include <linux/pkthook.h>
49#endif
50
51#include <asm/8xx_immap.h>
52#include <asm/pgtable.h>
53#include <asm/mpc8xx.h>
54#include <asm/irq.h>
55#include <asm/uaccess.h>
56#include <asm/commproc.h>
57
58#ifdef CONFIG_USE_MDIO
59/* Forward declarations of some structures to support different PHYs
60*/
61
62typedef struct {
63 uint mii_data;
64 void (*funct)(uint mii_reg, struct net_device *dev);
65} phy_cmd_t;
66
67typedef struct {
68 uint id;
69 char *name;
70
71 const phy_cmd_t *config;
72 const phy_cmd_t *startup;
73 const phy_cmd_t *ack_int;
74 const phy_cmd_t *shutdown;
75} phy_info_t;
76#endif /* CONFIG_USE_MDIO */
77
78/* The number of Tx and Rx buffers. These are allocated from the page
79 * pool. The code may assume these are power of two, so it is best
80 * to keep them that size.
81 * We don't need to allocate pages for the transmitter. We just use
82 * the skbuffer directly.
83 */
84#ifdef CONFIG_ENET_BIG_BUFFERS
85#define FEC_ENET_RX_PAGES 16
86#define FEC_ENET_RX_FRSIZE 2048
87#define FEC_ENET_RX_FRPPG (PAGE_SIZE / FEC_ENET_RX_FRSIZE)
88#define RX_RING_SIZE (FEC_ENET_RX_FRPPG * FEC_ENET_RX_PAGES)
89#define TX_RING_SIZE 16 /* Must be power of two */
90#define TX_RING_MOD_MASK 15 /* for this to work */
91#else
92#define FEC_ENET_RX_PAGES 4
93#define FEC_ENET_RX_FRSIZE 2048
94#define FEC_ENET_RX_FRPPG (PAGE_SIZE / FEC_ENET_RX_FRSIZE)
95#define RX_RING_SIZE (FEC_ENET_RX_FRPPG * FEC_ENET_RX_PAGES)
96#define TX_RING_SIZE 8 /* Must be power of two */
97#define TX_RING_MOD_MASK 7 /* for this to work */
98#endif
99
100/* Interrupt events/masks.
101*/
102#define FEC_ENET_HBERR ((uint)0x80000000) /* Heartbeat error */
103#define FEC_ENET_BABR ((uint)0x40000000) /* Babbling receiver */
104#define FEC_ENET_BABT ((uint)0x20000000) /* Babbling transmitter */
105#define FEC_ENET_GRA ((uint)0x10000000) /* Graceful stop complete */
106#define FEC_ENET_TXF ((uint)0x08000000) /* Full frame transmitted */
107#define FEC_ENET_TXB ((uint)0x04000000) /* A buffer was transmitted */
108#define FEC_ENET_RXF ((uint)0x02000000) /* Full frame received */
109#define FEC_ENET_RXB ((uint)0x01000000) /* A buffer was received */
110#define FEC_ENET_MII ((uint)0x00800000) /* MII interrupt */
111#define FEC_ENET_EBERR ((uint)0x00400000) /* SDMA bus error */
112
113/*
114*/
115#define FEC_ECNTRL_PINMUX 0x00000004
116#define FEC_ECNTRL_ETHER_EN 0x00000002
117#define FEC_ECNTRL_RESET 0x00000001
118
119#define FEC_RCNTRL_BC_REJ 0x00000010
120#define FEC_RCNTRL_PROM 0x00000008
121#define FEC_RCNTRL_MII_MODE 0x00000004
122#define FEC_RCNTRL_DRT 0x00000002
123#define FEC_RCNTRL_LOOP 0x00000001
124
125#define FEC_TCNTRL_FDEN 0x00000004
126#define FEC_TCNTRL_HBC 0x00000002
127#define FEC_TCNTRL_GTS 0x00000001
128
129/* Delay to wait for FEC reset command to complete (in us)
130*/
131#define FEC_RESET_DELAY 50
132
133/* The FEC stores dest/src/type, data, and checksum for receive packets.
134 */
135#define PKT_MAXBUF_SIZE 1518
136#define PKT_MINBUF_SIZE 64
137#define PKT_MAXBLR_SIZE 1520
138
139/* The FEC buffer descriptors track the ring buffers. The rx_bd_base and
140 * tx_bd_base always point to the base of the buffer descriptors. The
141 * cur_rx and cur_tx point to the currently available buffer.
142 * The dirty_tx tracks the current buffer that is being sent by the
143 * controller. The cur_tx and dirty_tx are equal under both completely
144 * empty and completely full conditions. The empty/ready indicator in
145 * the buffer descriptor determines the actual condition.
146 */
147struct fec_enet_private {
148 /* The saved address of a sent-in-place packet/buffer, for skfree(). */
149 struct sk_buff* tx_skbuff[TX_RING_SIZE];
150 ushort skb_cur;
151 ushort skb_dirty;
152
153 /* CPM dual port RAM relative addresses.
154 */
155 cbd_t *rx_bd_base; /* Address of Rx and Tx buffers. */
156 cbd_t *tx_bd_base;
157 cbd_t *cur_rx, *cur_tx; /* The next free ring entry */
158 cbd_t *dirty_tx; /* The ring entries to be free()ed. */
159
160 /* Virtual addresses for the receive buffers because we can't
161 * do a __va() on them anymore.
162 */
163 unsigned char *rx_vaddr[RX_RING_SIZE];
164
165 struct net_device_stats stats;
166 uint tx_full;
167 spinlock_t lock;
168
169#ifdef CONFIG_USE_MDIO
170 uint phy_id;
171 uint phy_id_done;
172 uint phy_status;
173 uint phy_speed;
174 phy_info_t *phy;
Aristeu Sergio Rozanski Filho8b0ed2f2005-08-07 09:42:28 -0700175 struct work_struct phy_task;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700176
177 uint sequence_done;
178
179 uint phy_addr;
180#endif /* CONFIG_USE_MDIO */
181
182 int link;
183 int old_link;
184 int full_duplex;
185
186#ifdef CONFIG_FEC_PACKETHOOK
187 unsigned long ph_lock;
188 fec_ph_func *ph_rxhandler;
189 fec_ph_func *ph_txhandler;
190 __u16 ph_proto;
191 volatile __u32 *ph_regaddr;
192 void *ph_priv;
193#endif
194};
195
196static int fec_enet_open(struct net_device *dev);
197static int fec_enet_start_xmit(struct sk_buff *skb, struct net_device *dev);
198#ifdef CONFIG_USE_MDIO
199static void fec_enet_mii(struct net_device *dev);
200#endif /* CONFIG_USE_MDIO */
Aristeu Sergio Rozanski Filhofbccb3d2005-08-07 09:42:36 -0700201static irqreturn_t fec_enet_interrupt(int irq, void * dev_id,
202 struct pt_regs * regs);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700203#ifdef CONFIG_FEC_PACKETHOOK
204static void fec_enet_tx(struct net_device *dev, __u32 regval);
205static void fec_enet_rx(struct net_device *dev, __u32 regval);
206#else
207static void fec_enet_tx(struct net_device *dev);
208static void fec_enet_rx(struct net_device *dev);
209#endif
210static int fec_enet_close(struct net_device *dev);
211static struct net_device_stats *fec_enet_get_stats(struct net_device *dev);
212static void set_multicast_list(struct net_device *dev);
213static void fec_restart(struct net_device *dev, int duplex);
214static void fec_stop(struct net_device *dev);
215static ushort my_enet_addr[3];
216
217#ifdef CONFIG_USE_MDIO
218/* MII processing. We keep this as simple as possible. Requests are
219 * placed on the list (if there is room). When the request is finished
220 * by the MII, an optional function may be called.
221 */
222typedef struct mii_list {
223 uint mii_regval;
224 void (*mii_func)(uint val, struct net_device *dev);
225 struct mii_list *mii_next;
226} mii_list_t;
227
228#define NMII 20
229mii_list_t mii_cmds[NMII];
230mii_list_t *mii_free;
231mii_list_t *mii_head;
232mii_list_t *mii_tail;
233
234static int mii_queue(struct net_device *dev, int request,
235 void (*func)(uint, struct net_device *));
236
237/* Make MII read/write commands for the FEC.
238*/
239#define mk_mii_read(REG) (0x60020000 | ((REG & 0x1f) << 18))
240#define mk_mii_write(REG, VAL) (0x50020000 | ((REG & 0x1f) << 18) | \
241 (VAL & 0xffff))
242#define mk_mii_end 0
243#endif /* CONFIG_USE_MDIO */
244
245/* Transmitter timeout.
246*/
247#define TX_TIMEOUT (2*HZ)
248
249#ifdef CONFIG_USE_MDIO
250/* Register definitions for the PHY.
251*/
252
253#define MII_REG_CR 0 /* Control Register */
254#define MII_REG_SR 1 /* Status Register */
255#define MII_REG_PHYIR1 2 /* PHY Identification Register 1 */
256#define MII_REG_PHYIR2 3 /* PHY Identification Register 2 */
257#define MII_REG_ANAR 4 /* A-N Advertisement Register */
258#define MII_REG_ANLPAR 5 /* A-N Link Partner Ability Register */
259#define MII_REG_ANER 6 /* A-N Expansion Register */
260#define MII_REG_ANNPTR 7 /* A-N Next Page Transmit Register */
261#define MII_REG_ANLPRNPR 8 /* A-N Link Partner Received Next Page Reg. */
262
263/* values for phy_status */
264
265#define PHY_CONF_ANE 0x0001 /* 1 auto-negotiation enabled */
266#define PHY_CONF_LOOP 0x0002 /* 1 loopback mode enabled */
267#define PHY_CONF_SPMASK 0x00f0 /* mask for speed */
268#define PHY_CONF_10HDX 0x0010 /* 10 Mbit half duplex supported */
269#define PHY_CONF_10FDX 0x0020 /* 10 Mbit full duplex supported */
270#define PHY_CONF_100HDX 0x0040 /* 100 Mbit half duplex supported */
271#define PHY_CONF_100FDX 0x0080 /* 100 Mbit full duplex supported */
272
273#define PHY_STAT_LINK 0x0100 /* 1 up - 0 down */
274#define PHY_STAT_FAULT 0x0200 /* 1 remote fault */
275#define PHY_STAT_ANC 0x0400 /* 1 auto-negotiation complete */
276#define PHY_STAT_SPMASK 0xf000 /* mask for speed */
277#define PHY_STAT_10HDX 0x1000 /* 10 Mbit half duplex selected */
278#define PHY_STAT_10FDX 0x2000 /* 10 Mbit full duplex selected */
279#define PHY_STAT_100HDX 0x4000 /* 100 Mbit half duplex selected */
280#define PHY_STAT_100FDX 0x8000 /* 100 Mbit full duplex selected */
281#endif /* CONFIG_USE_MDIO */
282
283#ifdef CONFIG_FEC_PACKETHOOK
284int
285fec_register_ph(struct net_device *dev, fec_ph_func *rxfun, fec_ph_func *txfun,
286 __u16 proto, volatile __u32 *regaddr, void *priv)
287{
288 struct fec_enet_private *fep;
289 int retval = 0;
290
291 fep = dev->priv;
292
293 if (test_and_set_bit(0, (void*)&fep->ph_lock) != 0) {
294 /* Someone is messing with the packet hook */
295 return -EAGAIN;
296 }
297 if (fep->ph_rxhandler != NULL || fep->ph_txhandler != NULL) {
298 retval = -EBUSY;
299 goto out;
300 }
301 fep->ph_rxhandler = rxfun;
302 fep->ph_txhandler = txfun;
303 fep->ph_proto = proto;
304 fep->ph_regaddr = regaddr;
305 fep->ph_priv = priv;
306
307 out:
308 fep->ph_lock = 0;
309
310 return retval;
311}
312
313
314int
315fec_unregister_ph(struct net_device *dev)
316{
317 struct fec_enet_private *fep;
318 int retval = 0;
319
320 fep = dev->priv;
321
322 if (test_and_set_bit(0, (void*)&fep->ph_lock) != 0) {
323 /* Someone is messing with the packet hook */
324 return -EAGAIN;
325 }
326
327 fep->ph_rxhandler = fep->ph_txhandler = NULL;
328 fep->ph_proto = 0;
329 fep->ph_regaddr = NULL;
330 fep->ph_priv = NULL;
331
332 fep->ph_lock = 0;
333
334 return retval;
335}
336
337EXPORT_SYMBOL(fec_register_ph);
338EXPORT_SYMBOL(fec_unregister_ph);
339
340#endif /* CONFIG_FEC_PACKETHOOK */
341
342static int
343fec_enet_start_xmit(struct sk_buff *skb, struct net_device *dev)
344{
345 struct fec_enet_private *fep;
346 volatile fec_t *fecp;
347 volatile cbd_t *bdp;
348
349 fep = dev->priv;
350 fecp = (volatile fec_t*)dev->base_addr;
351
352 if (!fep->link) {
353 /* Link is down or autonegotiation is in progress. */
354 return 1;
355 }
356
357 /* Fill in a Tx ring entry */
358 bdp = fep->cur_tx;
359
360#ifndef final_version
361 if (bdp->cbd_sc & BD_ENET_TX_READY) {
362 /* Ooops. All transmit buffers are full. Bail out.
363 * This should not happen, since dev->tbusy should be set.
364 */
365 printk("%s: tx queue full!.\n", dev->name);
366 return 1;
367 }
368#endif
369
370 /* Clear all of the status flags.
371 */
372 bdp->cbd_sc &= ~BD_ENET_TX_STATS;
373
374 /* Set buffer length and buffer pointer.
375 */
376 bdp->cbd_bufaddr = __pa(skb->data);
377 bdp->cbd_datlen = skb->len;
378
379 /* Save skb pointer.
380 */
381 fep->tx_skbuff[fep->skb_cur] = skb;
382
383 fep->stats.tx_bytes += skb->len;
384 fep->skb_cur = (fep->skb_cur+1) & TX_RING_MOD_MASK;
385
386 /* Push the data cache so the CPM does not get stale memory
387 * data.
388 */
389 flush_dcache_range((unsigned long)skb->data,
390 (unsigned long)skb->data + skb->len);
391
392 /* disable interrupts while triggering transmit */
393 spin_lock_irq(&fep->lock);
394
395 /* Send it on its way. Tell FEC its ready, interrupt when done,
396 * its the last BD of the frame, and to put the CRC on the end.
397 */
398
399 bdp->cbd_sc |= (BD_ENET_TX_READY | BD_ENET_TX_INTR
400 | BD_ENET_TX_LAST | BD_ENET_TX_TC);
401
402 dev->trans_start = jiffies;
403
404 /* Trigger transmission start */
405 fecp->fec_x_des_active = 0x01000000;
406
407 /* If this was the last BD in the ring, start at the beginning again.
408 */
409 if (bdp->cbd_sc & BD_ENET_TX_WRAP) {
410 bdp = fep->tx_bd_base;
411 } else {
412 bdp++;
413 }
414
415 if (bdp->cbd_sc & BD_ENET_TX_READY) {
416 netif_stop_queue(dev);
417 fep->tx_full = 1;
418 }
419
420 fep->cur_tx = (cbd_t *)bdp;
421
422 spin_unlock_irq(&fep->lock);
423
424 return 0;
425}
426
427static void
428fec_timeout(struct net_device *dev)
429{
430 struct fec_enet_private *fep = dev->priv;
431
432 printk("%s: transmit timed out.\n", dev->name);
433 fep->stats.tx_errors++;
434#ifndef final_version
435 {
436 int i;
437 cbd_t *bdp;
438
439 printk("Ring data dump: cur_tx %lx%s, dirty_tx %lx cur_rx: %lx\n",
440 (unsigned long)fep->cur_tx, fep->tx_full ? " (full)" : "",
441 (unsigned long)fep->dirty_tx,
442 (unsigned long)fep->cur_rx);
443
444 bdp = fep->tx_bd_base;
445 printk(" tx: %u buffers\n", TX_RING_SIZE);
446 for (i = 0 ; i < TX_RING_SIZE; i++) {
447 printk(" %08x: %04x %04x %08x\n",
448 (uint) bdp,
449 bdp->cbd_sc,
450 bdp->cbd_datlen,
451 bdp->cbd_bufaddr);
452 bdp++;
453 }
454
455 bdp = fep->rx_bd_base;
456 printk(" rx: %lu buffers\n", RX_RING_SIZE);
457 for (i = 0 ; i < RX_RING_SIZE; i++) {
458 printk(" %08x: %04x %04x %08x\n",
459 (uint) bdp,
460 bdp->cbd_sc,
461 bdp->cbd_datlen,
462 bdp->cbd_bufaddr);
463 bdp++;
464 }
465 }
466#endif
467 if (!fep->tx_full)
468 netif_wake_queue(dev);
469}
470
471/* The interrupt handler.
472 * This is called from the MPC core interrupt.
473 */
Aristeu Sergio Rozanski Filhofbccb3d2005-08-07 09:42:36 -0700474static irqreturn_t
Linus Torvalds1da177e2005-04-16 15:20:36 -0700475fec_enet_interrupt(int irq, void * dev_id, struct pt_regs * regs)
476{
477 struct net_device *dev = dev_id;
478 volatile fec_t *fecp;
479 uint int_events;
480#ifdef CONFIG_FEC_PACKETHOOK
481 struct fec_enet_private *fep = dev->priv;
482 __u32 regval;
483
484 if (fep->ph_regaddr) regval = *fep->ph_regaddr;
485#endif
486 fecp = (volatile fec_t*)dev->base_addr;
487
488 /* Get the interrupt events that caused us to be here.
489 */
490 while ((int_events = fecp->fec_ievent) != 0) {
491 fecp->fec_ievent = int_events;
492 if ((int_events & (FEC_ENET_HBERR | FEC_ENET_BABR |
493 FEC_ENET_BABT | FEC_ENET_EBERR)) != 0) {
494 printk("FEC ERROR %x\n", int_events);
495 }
496
497 /* Handle receive event in its own function.
498 */
499 if (int_events & FEC_ENET_RXF) {
500#ifdef CONFIG_FEC_PACKETHOOK
501 fec_enet_rx(dev, regval);
502#else
503 fec_enet_rx(dev);
504#endif
505 }
506
507 /* Transmit OK, or non-fatal error. Update the buffer
508 descriptors. FEC handles all errors, we just discover
509 them as part of the transmit process.
510 */
511 if (int_events & FEC_ENET_TXF) {
512#ifdef CONFIG_FEC_PACKETHOOK
513 fec_enet_tx(dev, regval);
514#else
515 fec_enet_tx(dev);
516#endif
517 }
518
519 if (int_events & FEC_ENET_MII) {
520#ifdef CONFIG_USE_MDIO
521 fec_enet_mii(dev);
522#else
523printk("%s[%d] %s: unexpected FEC_ENET_MII event\n", __FILE__,__LINE__,__FUNCTION__);
524#endif /* CONFIG_USE_MDIO */
525 }
526
527 }
Aristeu Sergio Rozanski Filhofbccb3d2005-08-07 09:42:36 -0700528 return IRQ_RETVAL(IRQ_HANDLED);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700529}
530
531
532static void
533#ifdef CONFIG_FEC_PACKETHOOK
534fec_enet_tx(struct net_device *dev, __u32 regval)
535#else
536fec_enet_tx(struct net_device *dev)
537#endif
538{
539 struct fec_enet_private *fep;
540 volatile cbd_t *bdp;
541 struct sk_buff *skb;
542
543 fep = dev->priv;
544 /* lock while transmitting */
545 spin_lock(&fep->lock);
546 bdp = fep->dirty_tx;
547
548 while ((bdp->cbd_sc&BD_ENET_TX_READY) == 0) {
549 if (bdp == fep->cur_tx && fep->tx_full == 0) break;
550
551 skb = fep->tx_skbuff[fep->skb_dirty];
552 /* Check for errors. */
553 if (bdp->cbd_sc & (BD_ENET_TX_HB | BD_ENET_TX_LC |
554 BD_ENET_TX_RL | BD_ENET_TX_UN |
555 BD_ENET_TX_CSL)) {
556 fep->stats.tx_errors++;
557 if (bdp->cbd_sc & BD_ENET_TX_HB) /* No heartbeat */
558 fep->stats.tx_heartbeat_errors++;
559 if (bdp->cbd_sc & BD_ENET_TX_LC) /* Late collision */
560 fep->stats.tx_window_errors++;
561 if (bdp->cbd_sc & BD_ENET_TX_RL) /* Retrans limit */
562 fep->stats.tx_aborted_errors++;
563 if (bdp->cbd_sc & BD_ENET_TX_UN) /* Underrun */
564 fep->stats.tx_fifo_errors++;
565 if (bdp->cbd_sc & BD_ENET_TX_CSL) /* Carrier lost */
566 fep->stats.tx_carrier_errors++;
567 } else {
568#ifdef CONFIG_FEC_PACKETHOOK
569 /* Packet hook ... */
570 if (fep->ph_txhandler &&
571 ((struct ethhdr *)skb->data)->h_proto
572 == fep->ph_proto) {
573 fep->ph_txhandler((__u8*)skb->data, skb->len,
574 regval, fep->ph_priv);
575 }
576#endif
577 fep->stats.tx_packets++;
578 }
579
580#ifndef final_version
581 if (bdp->cbd_sc & BD_ENET_TX_READY)
582 printk("HEY! Enet xmit interrupt and TX_READY.\n");
583#endif
584 /* Deferred means some collisions occurred during transmit,
585 * but we eventually sent the packet OK.
586 */
587 if (bdp->cbd_sc & BD_ENET_TX_DEF)
588 fep->stats.collisions++;
589
590 /* Free the sk buffer associated with this last transmit.
591 */
592#if 0
593printk("TXI: %x %x %x\n", bdp, skb, fep->skb_dirty);
594#endif
595 dev_kfree_skb_irq (skb/*, FREE_WRITE*/);
596 fep->tx_skbuff[fep->skb_dirty] = NULL;
597 fep->skb_dirty = (fep->skb_dirty + 1) & TX_RING_MOD_MASK;
598
599 /* Update pointer to next buffer descriptor to be transmitted.
600 */
601 if (bdp->cbd_sc & BD_ENET_TX_WRAP)
602 bdp = fep->tx_bd_base;
603 else
604 bdp++;
605
606 /* Since we have freed up a buffer, the ring is no longer
607 * full.
608 */
609 if (fep->tx_full) {
610 fep->tx_full = 0;
611 if (netif_queue_stopped(dev))
612 netif_wake_queue(dev);
613 }
614#ifdef CONFIG_FEC_PACKETHOOK
615 /* Re-read register. Not exactly guaranteed to be correct,
616 but... */
617 if (fep->ph_regaddr) regval = *fep->ph_regaddr;
618#endif
619 }
620 fep->dirty_tx = (cbd_t *)bdp;
621 spin_unlock(&fep->lock);
622}
623
624
625/* During a receive, the cur_rx points to the current incoming buffer.
626 * When we update through the ring, if the next incoming buffer has
627 * not been given to the system, we just set the empty indicator,
628 * effectively tossing the packet.
629 */
630static void
631#ifdef CONFIG_FEC_PACKETHOOK
632fec_enet_rx(struct net_device *dev, __u32 regval)
633#else
634fec_enet_rx(struct net_device *dev)
635#endif
636{
637 struct fec_enet_private *fep;
638 volatile fec_t *fecp;
639 volatile cbd_t *bdp;
640 struct sk_buff *skb;
641 ushort pkt_len;
642 __u8 *data;
643
644 fep = dev->priv;
645 fecp = (volatile fec_t*)dev->base_addr;
646
647 /* First, grab all of the stats for the incoming packet.
648 * These get messed up if we get called due to a busy condition.
649 */
650 bdp = fep->cur_rx;
651
652while (!(bdp->cbd_sc & BD_ENET_RX_EMPTY)) {
653
654#ifndef final_version
655 /* Since we have allocated space to hold a complete frame,
656 * the last indicator should be set.
657 */
658 if ((bdp->cbd_sc & BD_ENET_RX_LAST) == 0)
659 printk("FEC ENET: rcv is not +last\n");
660#endif
661
662 /* Check for errors. */
663 if (bdp->cbd_sc & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
664 BD_ENET_RX_CR | BD_ENET_RX_OV)) {
665 fep->stats.rx_errors++;
666 if (bdp->cbd_sc & (BD_ENET_RX_LG | BD_ENET_RX_SH)) {
667 /* Frame too long or too short. */
668 fep->stats.rx_length_errors++;
669 }
670 if (bdp->cbd_sc & BD_ENET_RX_NO) /* Frame alignment */
671 fep->stats.rx_frame_errors++;
672 if (bdp->cbd_sc & BD_ENET_RX_CR) /* CRC Error */
673 fep->stats.rx_crc_errors++;
674 if (bdp->cbd_sc & BD_ENET_RX_OV) /* FIFO overrun */
675 fep->stats.rx_crc_errors++;
676 }
677
678 /* Report late collisions as a frame error.
679 * On this error, the BD is closed, but we don't know what we
680 * have in the buffer. So, just drop this frame on the floor.
681 */
682 if (bdp->cbd_sc & BD_ENET_RX_CL) {
683 fep->stats.rx_errors++;
684 fep->stats.rx_frame_errors++;
685 goto rx_processing_done;
686 }
687
688 /* Process the incoming frame.
689 */
690 fep->stats.rx_packets++;
691 pkt_len = bdp->cbd_datlen;
692 fep->stats.rx_bytes += pkt_len;
693 data = fep->rx_vaddr[bdp - fep->rx_bd_base];
694
695#ifdef CONFIG_FEC_PACKETHOOK
696 /* Packet hook ... */
697 if (fep->ph_rxhandler) {
698 if (((struct ethhdr *)data)->h_proto == fep->ph_proto) {
699 switch (fep->ph_rxhandler(data, pkt_len, regval,
700 fep->ph_priv)) {
701 case 1:
702 goto rx_processing_done;
703 break;
704 case 0:
705 break;
706 default:
707 fep->stats.rx_errors++;
708 goto rx_processing_done;
709 }
710 }
711 }
712
713 /* If it wasn't filtered - copy it to an sk buffer. */
714#endif
715
716 /* This does 16 byte alignment, exactly what we need.
717 * The packet length includes FCS, but we don't want to
718 * include that when passing upstream as it messes up
719 * bridging applications.
720 */
721 skb = dev_alloc_skb(pkt_len-4);
722
723 if (skb == NULL) {
724 printk("%s: Memory squeeze, dropping packet.\n", dev->name);
725 fep->stats.rx_dropped++;
726 } else {
727 skb->dev = dev;
728 skb_put(skb,pkt_len-4); /* Make room */
729 eth_copy_and_sum(skb, data, pkt_len-4, 0);
730 skb->protocol=eth_type_trans(skb,dev);
731 netif_rx(skb);
732 }
733 rx_processing_done:
734
735 /* Clear the status flags for this buffer.
736 */
737 bdp->cbd_sc &= ~BD_ENET_RX_STATS;
738
739 /* Mark the buffer empty.
740 */
741 bdp->cbd_sc |= BD_ENET_RX_EMPTY;
742
743 /* Update BD pointer to next entry.
744 */
745 if (bdp->cbd_sc & BD_ENET_RX_WRAP)
746 bdp = fep->rx_bd_base;
747 else
748 bdp++;
749
750#if 1
751 /* Doing this here will keep the FEC running while we process
752 * incoming frames. On a heavily loaded network, we should be
753 * able to keep up at the expense of system resources.
754 */
755 fecp->fec_r_des_active = 0x01000000;
756#endif
757#ifdef CONFIG_FEC_PACKETHOOK
758 /* Re-read register. Not exactly guaranteed to be correct,
759 but... */
760 if (fep->ph_regaddr) regval = *fep->ph_regaddr;
761#endif
762 } /* while (!(bdp->cbd_sc & BD_ENET_RX_EMPTY)) */
763 fep->cur_rx = (cbd_t *)bdp;
764
765#if 0
766 /* Doing this here will allow us to process all frames in the
767 * ring before the FEC is allowed to put more there. On a heavily
768 * loaded network, some frames may be lost. Unfortunately, this
769 * increases the interrupt overhead since we can potentially work
770 * our way back to the interrupt return only to come right back
771 * here.
772 */
773 fecp->fec_r_des_active = 0x01000000;
774#endif
775}
776
777
778#ifdef CONFIG_USE_MDIO
779static void
780fec_enet_mii(struct net_device *dev)
781{
782 struct fec_enet_private *fep;
783 volatile fec_t *ep;
784 mii_list_t *mip;
785 uint mii_reg;
786
787 fep = (struct fec_enet_private *)dev->priv;
788 ep = &(((immap_t *)IMAP_ADDR)->im_cpm.cp_fec);
789 mii_reg = ep->fec_mii_data;
790
791 if ((mip = mii_head) == NULL) {
792 printk("MII and no head!\n");
793 return;
794 }
795
796 if (mip->mii_func != NULL)
797 (*(mip->mii_func))(mii_reg, dev);
798
799 mii_head = mip->mii_next;
800 mip->mii_next = mii_free;
801 mii_free = mip;
802
803 if ((mip = mii_head) != NULL) {
804 ep->fec_mii_data = mip->mii_regval;
805
806 }
807}
808
809static int
810mii_queue(struct net_device *dev, int regval, void (*func)(uint, struct net_device *))
811{
812 struct fec_enet_private *fep;
813 unsigned long flags;
814 mii_list_t *mip;
815 int retval;
816
817 /* Add PHY address to register command.
818 */
819 fep = dev->priv;
820 regval |= fep->phy_addr << 23;
821
822 retval = 0;
823
824 /* lock while modifying mii_list */
825 spin_lock_irqsave(&fep->lock, flags);
826
827 if ((mip = mii_free) != NULL) {
828 mii_free = mip->mii_next;
829 mip->mii_regval = regval;
830 mip->mii_func = func;
831 mip->mii_next = NULL;
832 if (mii_head) {
833 mii_tail->mii_next = mip;
834 mii_tail = mip;
835 } else {
836 mii_head = mii_tail = mip;
837 (&(((immap_t *)IMAP_ADDR)->im_cpm.cp_fec))->fec_mii_data = regval;
838 }
839 } else {
840 retval = 1;
841 }
842
843 spin_unlock_irqrestore(&fep->lock, flags);
844
845 return(retval);
846}
847
848static void mii_do_cmd(struct net_device *dev, const phy_cmd_t *c)
849{
850 int k;
851
852 if(!c)
853 return;
854
855 for(k = 0; (c+k)->mii_data != mk_mii_end; k++)
856 mii_queue(dev, (c+k)->mii_data, (c+k)->funct);
857}
858
859static void mii_parse_sr(uint mii_reg, struct net_device *dev)
860{
861 struct fec_enet_private *fep = dev->priv;
862 volatile uint *s = &(fep->phy_status);
863
864 *s &= ~(PHY_STAT_LINK | PHY_STAT_FAULT | PHY_STAT_ANC);
865
866 if (mii_reg & 0x0004)
867 *s |= PHY_STAT_LINK;
868 if (mii_reg & 0x0010)
869 *s |= PHY_STAT_FAULT;
870 if (mii_reg & 0x0020)
871 *s |= PHY_STAT_ANC;
872
873 fep->link = (*s & PHY_STAT_LINK) ? 1 : 0;
874}
875
876static void mii_parse_cr(uint mii_reg, struct net_device *dev)
877{
878 struct fec_enet_private *fep = dev->priv;
879 volatile uint *s = &(fep->phy_status);
880
881 *s &= ~(PHY_CONF_ANE | PHY_CONF_LOOP);
882
883 if (mii_reg & 0x1000)
884 *s |= PHY_CONF_ANE;
885 if (mii_reg & 0x4000)
886 *s |= PHY_CONF_LOOP;
887}
888
889static void mii_parse_anar(uint mii_reg, struct net_device *dev)
890{
891 struct fec_enet_private *fep = dev->priv;
892 volatile uint *s = &(fep->phy_status);
893
894 *s &= ~(PHY_CONF_SPMASK);
895
896 if (mii_reg & 0x0020)
897 *s |= PHY_CONF_10HDX;
898 if (mii_reg & 0x0040)
899 *s |= PHY_CONF_10FDX;
900 if (mii_reg & 0x0080)
901 *s |= PHY_CONF_100HDX;
902 if (mii_reg & 0x00100)
903 *s |= PHY_CONF_100FDX;
904}
905#if 0
906static void mii_disp_reg(uint mii_reg, struct net_device *dev)
907{
908 printk("reg %u = 0x%04x\n", (mii_reg >> 18) & 0x1f, mii_reg & 0xffff);
909}
910#endif
911
912/* ------------------------------------------------------------------------- */
913/* The Level one LXT970 is used by many boards */
914
915#ifdef CONFIG_FEC_LXT970
916
917#define MII_LXT970_MIRROR 16 /* Mirror register */
918#define MII_LXT970_IER 17 /* Interrupt Enable Register */
919#define MII_LXT970_ISR 18 /* Interrupt Status Register */
920#define MII_LXT970_CONFIG 19 /* Configuration Register */
921#define MII_LXT970_CSR 20 /* Chip Status Register */
922
923static void mii_parse_lxt970_csr(uint mii_reg, struct net_device *dev)
924{
925 struct fec_enet_private *fep = dev->priv;
926 volatile uint *s = &(fep->phy_status);
927
928 *s &= ~(PHY_STAT_SPMASK);
929
930 if (mii_reg & 0x0800) {
931 if (mii_reg & 0x1000)
932 *s |= PHY_STAT_100FDX;
933 else
934 *s |= PHY_STAT_100HDX;
935 }
936 else {
937 if (mii_reg & 0x1000)
938 *s |= PHY_STAT_10FDX;
939 else
940 *s |= PHY_STAT_10HDX;
941 }
942}
943
944static phy_info_t phy_info_lxt970 = {
945 0x07810000,
946 "LXT970",
947
948 (const phy_cmd_t []) { /* config */
949#if 0
950// { mk_mii_write(MII_REG_ANAR, 0x0021), NULL },
951
952 /* Set default operation of 100-TX....for some reason
953 * some of these bits are set on power up, which is wrong.
954 */
955 { mk_mii_write(MII_LXT970_CONFIG, 0), NULL },
956#endif
957 { mk_mii_read(MII_REG_CR), mii_parse_cr },
958 { mk_mii_read(MII_REG_ANAR), mii_parse_anar },
959 { mk_mii_end, }
960 },
961 (const phy_cmd_t []) { /* startup - enable interrupts */
962 { mk_mii_write(MII_LXT970_IER, 0x0002), NULL },
963 { mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
964 { mk_mii_end, }
965 },
966 (const phy_cmd_t []) { /* ack_int */
967 /* read SR and ISR to acknowledge */
968
969 { mk_mii_read(MII_REG_SR), mii_parse_sr },
970 { mk_mii_read(MII_LXT970_ISR), NULL },
971
972 /* find out the current status */
973
974 { mk_mii_read(MII_LXT970_CSR), mii_parse_lxt970_csr },
975 { mk_mii_end, }
976 },
977 (const phy_cmd_t []) { /* shutdown - disable interrupts */
978 { mk_mii_write(MII_LXT970_IER, 0x0000), NULL },
979 { mk_mii_end, }
980 },
981};
982
983#endif /* CONFIG_FEC_LXT970 */
984
985/* ------------------------------------------------------------------------- */
986/* The Level one LXT971 is used on some of my custom boards */
987
988#ifdef CONFIG_FEC_LXT971
989
990/* register definitions for the 971 */
991
992#define MII_LXT971_PCR 16 /* Port Control Register */
993#define MII_LXT971_SR2 17 /* Status Register 2 */
994#define MII_LXT971_IER 18 /* Interrupt Enable Register */
995#define MII_LXT971_ISR 19 /* Interrupt Status Register */
996#define MII_LXT971_LCR 20 /* LED Control Register */
997#define MII_LXT971_TCR 30 /* Transmit Control Register */
998
999/*
1000 * I had some nice ideas of running the MDIO faster...
1001 * The 971 should support 8MHz and I tried it, but things acted really
1002 * weird, so 2.5 MHz ought to be enough for anyone...
1003 */
1004
1005static void mii_parse_lxt971_sr2(uint mii_reg, struct net_device *dev)
1006{
1007 struct fec_enet_private *fep = dev->priv;
1008 volatile uint *s = &(fep->phy_status);
1009
1010 *s &= ~(PHY_STAT_SPMASK);
1011
1012 if (mii_reg & 0x4000) {
1013 if (mii_reg & 0x0200)
1014 *s |= PHY_STAT_100FDX;
1015 else
1016 *s |= PHY_STAT_100HDX;
1017 }
1018 else {
1019 if (mii_reg & 0x0200)
1020 *s |= PHY_STAT_10FDX;
1021 else
1022 *s |= PHY_STAT_10HDX;
1023 }
1024 if (mii_reg & 0x0008)
1025 *s |= PHY_STAT_FAULT;
1026}
1027
1028static phy_info_t phy_info_lxt971 = {
1029 0x0001378e,
1030 "LXT971",
1031
1032 (const phy_cmd_t []) { /* config */
1033// { mk_mii_write(MII_REG_ANAR, 0x021), NULL }, /* 10 Mbps, HD */
1034 { mk_mii_read(MII_REG_CR), mii_parse_cr },
1035 { mk_mii_read(MII_REG_ANAR), mii_parse_anar },
1036 { mk_mii_end, }
1037 },
1038 (const phy_cmd_t []) { /* startup - enable interrupts */
1039 { mk_mii_write(MII_LXT971_IER, 0x00f2), NULL },
1040 { mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
1041
1042 /* Somehow does the 971 tell me that the link is down
1043 * the first read after power-up.
1044 * read here to get a valid value in ack_int */
1045
1046 { mk_mii_read(MII_REG_SR), mii_parse_sr },
1047 { mk_mii_end, }
1048 },
1049 (const phy_cmd_t []) { /* ack_int */
1050 /* find out the current status */
1051
1052 { mk_mii_read(MII_REG_SR), mii_parse_sr },
1053 { mk_mii_read(MII_LXT971_SR2), mii_parse_lxt971_sr2 },
1054
1055 /* we only need to read ISR to acknowledge */
1056
1057 { mk_mii_read(MII_LXT971_ISR), NULL },
1058 { mk_mii_end, }
1059 },
1060 (const phy_cmd_t []) { /* shutdown - disable interrupts */
1061 { mk_mii_write(MII_LXT971_IER, 0x0000), NULL },
1062 { mk_mii_end, }
1063 },
1064};
1065
1066#endif /* CONFIG_FEC_LXT970 */
1067
1068
1069/* ------------------------------------------------------------------------- */
1070/* The Quality Semiconductor QS6612 is used on the RPX CLLF */
1071
1072#ifdef CONFIG_FEC_QS6612
1073
1074/* register definitions */
1075
1076#define MII_QS6612_MCR 17 /* Mode Control Register */
1077#define MII_QS6612_FTR 27 /* Factory Test Register */
1078#define MII_QS6612_MCO 28 /* Misc. Control Register */
1079#define MII_QS6612_ISR 29 /* Interrupt Source Register */
1080#define MII_QS6612_IMR 30 /* Interrupt Mask Register */
1081#define MII_QS6612_PCR 31 /* 100BaseTx PHY Control Reg. */
1082
1083static void mii_parse_qs6612_pcr(uint mii_reg, struct net_device *dev)
1084{
1085 struct fec_enet_private *fep = dev->priv;
1086 volatile uint *s = &(fep->phy_status);
1087
1088 *s &= ~(PHY_STAT_SPMASK);
1089
1090 switch((mii_reg >> 2) & 7) {
1091 case 1: *s |= PHY_STAT_10HDX; break;
1092 case 2: *s |= PHY_STAT_100HDX; break;
1093 case 5: *s |= PHY_STAT_10FDX; break;
1094 case 6: *s |= PHY_STAT_100FDX; break;
1095 }
1096}
1097
1098static phy_info_t phy_info_qs6612 = {
1099 0x00181440,
1100 "QS6612",
1101
1102 (const phy_cmd_t []) { /* config */
1103// { mk_mii_write(MII_REG_ANAR, 0x061), NULL }, /* 10 Mbps */
1104
1105 /* The PHY powers up isolated on the RPX,
1106 * so send a command to allow operation.
1107 */
1108
1109 { mk_mii_write(MII_QS6612_PCR, 0x0dc0), NULL },
1110
1111 /* parse cr and anar to get some info */
1112
1113 { mk_mii_read(MII_REG_CR), mii_parse_cr },
1114 { mk_mii_read(MII_REG_ANAR), mii_parse_anar },
1115 { mk_mii_end, }
1116 },
1117 (const phy_cmd_t []) { /* startup - enable interrupts */
1118 { mk_mii_write(MII_QS6612_IMR, 0x003a), NULL },
1119 { mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
1120 { mk_mii_end, }
1121 },
1122 (const phy_cmd_t []) { /* ack_int */
1123
1124 /* we need to read ISR, SR and ANER to acknowledge */
1125
1126 { mk_mii_read(MII_QS6612_ISR), NULL },
1127 { mk_mii_read(MII_REG_SR), mii_parse_sr },
1128 { mk_mii_read(MII_REG_ANER), NULL },
1129
1130 /* read pcr to get info */
1131
1132 { mk_mii_read(MII_QS6612_PCR), mii_parse_qs6612_pcr },
1133 { mk_mii_end, }
1134 },
1135 (const phy_cmd_t []) { /* shutdown - disable interrupts */
1136 { mk_mii_write(MII_QS6612_IMR, 0x0000), NULL },
1137 { mk_mii_end, }
1138 },
1139};
1140
1141#endif /* CONFIG_FEC_QS6612 */
1142
1143/* ------------------------------------------------------------------------- */
1144/* The Advanced Micro Devices AM79C874 is used on the ICU862 */
1145
1146#ifdef CONFIG_FEC_AM79C874
1147
1148/* register definitions for the 79C874 */
1149
1150#define MII_AM79C874_MFR 16 /* Miscellaneous Features Register */
1151#define MII_AM79C874_ICSR 17 /* Interrupt Control/Status Register */
1152#define MII_AM79C874_DR 18 /* Diagnostic Register */
1153#define MII_AM79C874_PMLR 19 /* Power Management & Loopback Register */
1154#define MII_AM79C874_MCR 21 /* Mode Control Register */
1155#define MII_AM79C874_DC 23 /* Disconnect Counter */
1156#define MII_AM79C874_REC 24 /* Receiver Error Counter */
1157
1158static void mii_parse_amd79c874_dr(uint mii_reg, struct net_device *dev, uint data)
1159{
1160 volatile struct fec_enet_private *fep = dev->priv;
1161 uint s = fep->phy_status;
1162
1163 s &= ~(PHY_STAT_SPMASK);
1164
1165 /* Register 18: Bit 10 is data rate, 11 is Duplex */
1166 switch ((mii_reg >> 10) & 3) {
1167 case 0: s |= PHY_STAT_10HDX; break;
1168 case 1: s |= PHY_STAT_100HDX; break;
1169 case 2: s |= PHY_STAT_10FDX; break;
1170 case 3: s |= PHY_STAT_100FDX; break;
1171 }
1172
1173 fep->phy_status = s;
1174}
1175
1176static phy_info_t phy_info_amd79c874 = {
1177 0x00022561,
1178 "AM79C874",
1179
1180 (const phy_cmd_t []) { /* config */
1181// { mk_mii_write(MII_REG_ANAR, 0x021), NULL }, /* 10 Mbps, HD */
1182 { mk_mii_read(MII_REG_CR), mii_parse_cr },
1183 { mk_mii_read(MII_REG_ANAR), mii_parse_anar },
1184 { mk_mii_end, }
1185 },
1186 (const phy_cmd_t []) { /* startup - enable interrupts */
1187 { mk_mii_write(MII_AM79C874_ICSR, 0xff00), NULL },
1188 { mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
1189 { mk_mii_end, }
1190 },
1191 (const phy_cmd_t []) { /* ack_int */
1192 /* find out the current status */
1193
1194 { mk_mii_read(MII_REG_SR), mii_parse_sr },
1195 { mk_mii_read(MII_AM79C874_DR), mii_parse_amd79c874_dr },
1196
1197 /* we only need to read ICSR to acknowledge */
1198
1199 { mk_mii_read(MII_AM79C874_ICSR), NULL },
1200 { mk_mii_end, }
1201 },
1202 (const phy_cmd_t []) { /* shutdown - disable interrupts */
1203 { mk_mii_write(MII_AM79C874_ICSR, 0x0000), NULL },
1204 { mk_mii_end, }
1205 },
1206};
1207
1208#endif /* CONFIG_FEC_AM79C874 */
1209
1210static phy_info_t *phy_info[] = {
1211
1212#ifdef CONFIG_FEC_LXT970
1213 &phy_info_lxt970,
1214#endif /* CONFIG_FEC_LXT970 */
1215
1216#ifdef CONFIG_FEC_LXT971
1217 &phy_info_lxt971,
1218#endif /* CONFIG_FEC_LXT971 */
1219
1220#ifdef CONFIG_FEC_QS6612
1221 &phy_info_qs6612,
1222#endif /* CONFIG_FEC_QS6612 */
1223
1224#ifdef CONFIG_FEC_AM79C874
1225 &phy_info_amd79c874,
1226#endif /* CONFIG_FEC_AM79C874 */
1227
1228 NULL
1229};
1230
1231static void mii_display_status(struct net_device *dev)
1232{
1233 struct fec_enet_private *fep = dev->priv;
1234 volatile uint *s = &(fep->phy_status);
1235
1236 if (!fep->link && !fep->old_link) {
1237 /* Link is still down - don't print anything */
1238 return;
1239 }
1240
1241 printk("%s: status: ", dev->name);
1242
1243 if (!fep->link) {
1244 printk("link down");
1245 } else {
1246 printk("link up");
1247
1248 switch(*s & PHY_STAT_SPMASK) {
1249 case PHY_STAT_100FDX: printk(", 100 Mbps Full Duplex"); break;
1250 case PHY_STAT_100HDX: printk(", 100 Mbps Half Duplex"); break;
1251 case PHY_STAT_10FDX: printk(", 10 Mbps Full Duplex"); break;
1252 case PHY_STAT_10HDX: printk(", 10 Mbps Half Duplex"); break;
1253 default:
1254 printk(", Unknown speed/duplex");
1255 }
1256
1257 if (*s & PHY_STAT_ANC)
1258 printk(", auto-negotiation complete");
1259 }
1260
1261 if (*s & PHY_STAT_FAULT)
1262 printk(", remote fault");
1263
1264 printk(".\n");
1265}
1266
Aristeu Sergio Rozanski Filho8b0ed2f2005-08-07 09:42:28 -07001267static void mii_display_config(void *priv)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001268{
Aristeu Sergio Rozanski Filho8b0ed2f2005-08-07 09:42:28 -07001269 struct net_device *dev = (struct net_device *)priv;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001270 struct fec_enet_private *fep = dev->priv;
1271 volatile uint *s = &(fep->phy_status);
1272
1273 printk("%s: config: auto-negotiation ", dev->name);
1274
1275 if (*s & PHY_CONF_ANE)
1276 printk("on");
1277 else
1278 printk("off");
1279
1280 if (*s & PHY_CONF_100FDX)
1281 printk(", 100FDX");
1282 if (*s & PHY_CONF_100HDX)
1283 printk(", 100HDX");
1284 if (*s & PHY_CONF_10FDX)
1285 printk(", 10FDX");
1286 if (*s & PHY_CONF_10HDX)
1287 printk(", 10HDX");
1288 if (!(*s & PHY_CONF_SPMASK))
1289 printk(", No speed/duplex selected?");
1290
1291 if (*s & PHY_CONF_LOOP)
1292 printk(", loopback enabled");
1293
1294 printk(".\n");
1295
1296 fep->sequence_done = 1;
1297}
1298
Aristeu Sergio Rozanski Filho8b0ed2f2005-08-07 09:42:28 -07001299static void mii_relink(void *priv)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001300{
Aristeu Sergio Rozanski Filho8b0ed2f2005-08-07 09:42:28 -07001301 struct net_device *dev = (struct net_device *)priv;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001302 struct fec_enet_private *fep = dev->priv;
1303 int duplex;
1304
1305 fep->link = (fep->phy_status & PHY_STAT_LINK) ? 1 : 0;
1306 mii_display_status(dev);
1307 fep->old_link = fep->link;
1308
1309 if (fep->link) {
1310 duplex = 0;
1311 if (fep->phy_status
1312 & (PHY_STAT_100FDX | PHY_STAT_10FDX))
1313 duplex = 1;
1314 fec_restart(dev, duplex);
1315 }
1316 else
1317 fec_stop(dev);
1318
1319#if 0
1320 enable_irq(fep->mii_irq);
1321#endif
1322
1323}
1324
1325static void mii_queue_relink(uint mii_reg, struct net_device *dev)
1326{
1327 struct fec_enet_private *fep = dev->priv;
1328
Aristeu Sergio Rozanski Filho8b0ed2f2005-08-07 09:42:28 -07001329 INIT_WORK(&fep->phy_task, mii_relink, (void *)dev);
1330 schedule_work(&fep->phy_task);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001331}
1332
1333static void mii_queue_config(uint mii_reg, struct net_device *dev)
1334{
1335 struct fec_enet_private *fep = dev->priv;
1336
Aristeu Sergio Rozanski Filho8b0ed2f2005-08-07 09:42:28 -07001337 INIT_WORK(&fep->phy_task, mii_display_config, (void *)dev);
1338 schedule_work(&fep->phy_task);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001339}
1340
1341
1342
1343phy_cmd_t phy_cmd_relink[] = { { mk_mii_read(MII_REG_CR), mii_queue_relink },
1344 { mk_mii_end, } };
1345phy_cmd_t phy_cmd_config[] = { { mk_mii_read(MII_REG_CR), mii_queue_config },
1346 { mk_mii_end, } };
1347
1348
1349
1350/* Read remainder of PHY ID.
1351*/
1352static void
1353mii_discover_phy3(uint mii_reg, struct net_device *dev)
1354{
1355 struct fec_enet_private *fep;
1356 int i;
1357
1358 fep = dev->priv;
1359 fep->phy_id |= (mii_reg & 0xffff);
1360
1361 for(i = 0; phy_info[i]; i++)
1362 if(phy_info[i]->id == (fep->phy_id >> 4))
1363 break;
1364
1365 if(!phy_info[i])
1366 panic("%s: PHY id 0x%08x is not supported!\n",
1367 dev->name, fep->phy_id);
1368
1369 fep->phy = phy_info[i];
1370 fep->phy_id_done = 1;
1371
1372 printk("%s: Phy @ 0x%x, type %s (0x%08x)\n",
1373 dev->name, fep->phy_addr, fep->phy->name, fep->phy_id);
1374}
1375
1376/* Scan all of the MII PHY addresses looking for someone to respond
1377 * with a valid ID. This usually happens quickly.
1378 */
1379static void
1380mii_discover_phy(uint mii_reg, struct net_device *dev)
1381{
1382 struct fec_enet_private *fep;
1383 uint phytype;
1384
1385 fep = dev->priv;
1386
1387 if ((phytype = (mii_reg & 0xffff)) != 0xffff) {
1388
1389 /* Got first part of ID, now get remainder.
1390 */
1391 fep->phy_id = phytype << 16;
1392 mii_queue(dev, mk_mii_read(MII_REG_PHYIR2), mii_discover_phy3);
1393 } else {
1394 fep->phy_addr++;
1395 if (fep->phy_addr < 32) {
1396 mii_queue(dev, mk_mii_read(MII_REG_PHYIR1),
1397 mii_discover_phy);
1398 } else {
1399 printk("fec: No PHY device found.\n");
1400 }
1401 }
1402}
1403#endif /* CONFIG_USE_MDIO */
1404
1405/* This interrupt occurs when the PHY detects a link change.
1406*/
Aristeu Sergio Rozanski Filhofbccb3d2005-08-07 09:42:36 -07001407static
Linus Torvalds1da177e2005-04-16 15:20:36 -07001408#ifdef CONFIG_RPXCLASSIC
Aristeu Sergio Rozanski Filhofbccb3d2005-08-07 09:42:36 -07001409void mii_link_interrupt(void *dev_id)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001410#else
Aristeu Sergio Rozanski Filhofbccb3d2005-08-07 09:42:36 -07001411irqreturn_t mii_link_interrupt(int irq, void * dev_id, struct pt_regs * regs)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001412#endif
1413{
1414#ifdef CONFIG_USE_MDIO
1415 struct net_device *dev = dev_id;
1416 struct fec_enet_private *fep = dev->priv;
1417 volatile immap_t *immap = (immap_t *)IMAP_ADDR;
1418 volatile fec_t *fecp = &(immap->im_cpm.cp_fec);
1419 unsigned int ecntrl = fecp->fec_ecntrl;
1420
1421 /* We need the FEC enabled to access the MII
1422 */
1423 if ((ecntrl & FEC_ECNTRL_ETHER_EN) == 0) {
1424 fecp->fec_ecntrl |= FEC_ECNTRL_ETHER_EN;
1425 }
1426#endif /* CONFIG_USE_MDIO */
1427
1428#if 0
1429 disable_irq(fep->mii_irq); /* disable now, enable later */
1430#endif
1431
1432
1433#ifdef CONFIG_USE_MDIO
1434 mii_do_cmd(dev, fep->phy->ack_int);
1435 mii_do_cmd(dev, phy_cmd_relink); /* restart and display status */
1436
1437 if ((ecntrl & FEC_ECNTRL_ETHER_EN) == 0) {
1438 fecp->fec_ecntrl = ecntrl; /* restore old settings */
1439 }
1440#else
1441printk("%s[%d] %s: unexpected Link interrupt\n", __FILE__,__LINE__,__FUNCTION__);
1442#endif /* CONFIG_USE_MDIO */
1443
Aristeu Sergio Rozanski Filhofbccb3d2005-08-07 09:42:36 -07001444#ifndef CONFIG_RPXCLASSIC
1445 return IRQ_RETVAL(IRQ_HANDLED);
1446#endif /* CONFIG_RPXCLASSIC */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001447}
1448
1449static int
1450fec_enet_open(struct net_device *dev)
1451{
1452 struct fec_enet_private *fep = dev->priv;
1453
1454 /* I should reset the ring buffers here, but I don't yet know
1455 * a simple way to do that.
1456 */
1457
1458#ifdef CONFIG_USE_MDIO
1459 fep->sequence_done = 0;
1460 fep->link = 0;
1461
1462 if (fep->phy) {
1463 mii_do_cmd(dev, fep->phy->ack_int);
1464 mii_do_cmd(dev, fep->phy->config);
1465 mii_do_cmd(dev, phy_cmd_config); /* display configuration */
1466 while(!fep->sequence_done)
1467 schedule();
1468
1469 mii_do_cmd(dev, fep->phy->startup);
1470 netif_start_queue(dev);
1471 return 0; /* Success */
1472 }
1473 return -ENODEV; /* No PHY we understand */
1474#else
1475 fep->link = 1;
1476 netif_start_queue(dev);
1477 return 0; /* Success */
1478#endif /* CONFIG_USE_MDIO */
1479
1480}
1481
1482static int
1483fec_enet_close(struct net_device *dev)
1484{
1485 /* Don't know what to do yet.
1486 */
1487 netif_stop_queue(dev);
1488 fec_stop(dev);
1489
1490 return 0;
1491}
1492
1493static struct net_device_stats *fec_enet_get_stats(struct net_device *dev)
1494{
1495 struct fec_enet_private *fep = (struct fec_enet_private *)dev->priv;
1496
1497 return &fep->stats;
1498}
1499
1500/* Set or clear the multicast filter for this adaptor.
1501 * Skeleton taken from sunlance driver.
1502 * The CPM Ethernet implementation allows Multicast as well as individual
1503 * MAC address filtering. Some of the drivers check to make sure it is
1504 * a group multicast address, and discard those that are not. I guess I
1505 * will do the same for now, but just remove the test if you want
1506 * individual filtering as well (do the upper net layers want or support
1507 * this kind of feature?).
1508 */
1509
1510static void set_multicast_list(struct net_device *dev)
1511{
1512 struct fec_enet_private *fep;
1513 volatile fec_t *ep;
1514
1515 fep = (struct fec_enet_private *)dev->priv;
1516 ep = &(((immap_t *)IMAP_ADDR)->im_cpm.cp_fec);
1517
1518 if (dev->flags&IFF_PROMISC) {
1519
1520 /* Log any net taps. */
1521 printk("%s: Promiscuous mode enabled.\n", dev->name);
1522 ep->fec_r_cntrl |= FEC_RCNTRL_PROM;
1523 } else {
1524
1525 ep->fec_r_cntrl &= ~FEC_RCNTRL_PROM;
1526
1527 if (dev->flags & IFF_ALLMULTI) {
1528 /* Catch all multicast addresses, so set the
1529 * filter to all 1's.
1530 */
1531 ep->fec_hash_table_high = 0xffffffff;
1532 ep->fec_hash_table_low = 0xffffffff;
1533 }
1534#if 0
1535 else {
1536 /* Clear filter and add the addresses in the list.
1537 */
1538 ep->sen_gaddr1 = 0;
1539 ep->sen_gaddr2 = 0;
1540 ep->sen_gaddr3 = 0;
1541 ep->sen_gaddr4 = 0;
1542
1543 dmi = dev->mc_list;
1544
1545 for (i=0; i<dev->mc_count; i++) {
1546
1547 /* Only support group multicast for now.
1548 */
1549 if (!(dmi->dmi_addr[0] & 1))
1550 continue;
1551
1552 /* The address in dmi_addr is LSB first,
1553 * and taddr is MSB first. We have to
1554 * copy bytes MSB first from dmi_addr.
1555 */
1556 mcptr = (u_char *)dmi->dmi_addr + 5;
1557 tdptr = (u_char *)&ep->sen_taddrh;
1558 for (j=0; j<6; j++)
1559 *tdptr++ = *mcptr--;
1560
1561 /* Ask CPM to run CRC and set bit in
1562 * filter mask.
1563 */
1564 cpmp->cp_cpcr = mk_cr_cmd(CPM_CR_CH_SCC1, CPM_CR_SET_GADDR) | CPM_CR_FLG;
1565 /* this delay is necessary here -- Cort */
1566 udelay(10);
1567 while (cpmp->cp_cpcr & CPM_CR_FLG);
1568 }
1569 }
1570#endif
1571 }
1572}
1573
1574/* Initialize the FEC Ethernet on 860T.
1575 */
1576static int __init fec_enet_init(void)
1577{
1578 struct net_device *dev;
1579 struct fec_enet_private *fep;
1580 int i, j, k, err;
1581 unsigned char *eap, *iap, *ba;
Aristeu Sergio Rozanski Filhofc007dd2005-08-07 09:42:33 -07001582 dma_addr_t mem_addr;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001583 volatile cbd_t *bdp;
1584 cbd_t *cbd_base;
1585 volatile immap_t *immap;
1586 volatile fec_t *fecp;
1587 bd_t *bd;
1588#ifdef CONFIG_SCC_ENET
1589 unsigned char tmpaddr[6];
1590#endif
1591
1592 immap = (immap_t *)IMAP_ADDR; /* pointer to internal registers */
1593
1594 bd = (bd_t *)__res;
1595
1596 dev = alloc_etherdev(sizeof(*fep));
1597 if (!dev)
1598 return -ENOMEM;
1599
1600 fep = dev->priv;
1601
1602 fecp = &(immap->im_cpm.cp_fec);
1603
1604 /* Whack a reset. We should wait for this.
1605 */
1606 fecp->fec_ecntrl = FEC_ECNTRL_PINMUX | FEC_ECNTRL_RESET;
1607 for (i = 0;
1608 (fecp->fec_ecntrl & FEC_ECNTRL_RESET) && (i < FEC_RESET_DELAY);
1609 ++i) {
1610 udelay(1);
1611 }
1612 if (i == FEC_RESET_DELAY) {
1613 printk ("FEC Reset timeout!\n");
1614 }
1615
1616 /* Set the Ethernet address. If using multiple Enets on the 8xx,
1617 * this needs some work to get unique addresses.
1618 */
1619 eap = (unsigned char *)my_enet_addr;
1620 iap = bd->bi_enetaddr;
1621
1622#ifdef CONFIG_SCC_ENET
1623 /*
1624 * If a board has Ethernet configured both on a SCC and the
1625 * FEC, it needs (at least) 2 MAC addresses (we know that Sun
1626 * disagrees, but anyway). For the FEC port, we create
1627 * another address by setting one of the address bits above
1628 * something that would have (up to now) been allocated.
1629 */
1630 for (i=0; i<6; i++)
1631 tmpaddr[i] = *iap++;
1632 tmpaddr[3] |= 0x80;
1633 iap = tmpaddr;
1634#endif
1635
1636 for (i=0; i<6; i++) {
1637 dev->dev_addr[i] = *eap++ = *iap++;
1638 }
1639
1640 /* Allocate memory for buffer descriptors.
1641 */
1642 if (((RX_RING_SIZE + TX_RING_SIZE) * sizeof(cbd_t)) > PAGE_SIZE) {
1643 printk("FEC init error. Need more space.\n");
1644 printk("FEC initialization failed.\n");
1645 return 1;
1646 }
Aristeu Sergio Rozanski Filhofc007dd2005-08-07 09:42:33 -07001647 cbd_base = (cbd_t *)dma_alloc_coherent(dev->class_dev.dev, PAGE_SIZE,
1648 &mem_addr, GFP_KERNEL);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001649
1650 /* Set receive and transmit descriptor base.
1651 */
1652 fep->rx_bd_base = cbd_base;
1653 fep->tx_bd_base = cbd_base + RX_RING_SIZE;
1654
1655 fep->skb_cur = fep->skb_dirty = 0;
1656
1657 /* Initialize the receive buffer descriptors.
1658 */
1659 bdp = fep->rx_bd_base;
1660 k = 0;
1661 for (i=0; i<FEC_ENET_RX_PAGES; i++) {
1662
1663 /* Allocate a page.
1664 */
Aristeu Sergio Rozanski Filhofc007dd2005-08-07 09:42:33 -07001665 ba = (unsigned char *)dma_alloc_coherent(dev->class_dev.dev,
1666 PAGE_SIZE,
1667 &mem_addr,
1668 GFP_KERNEL);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001669 /* BUG: no check for failure */
1670
1671 /* Initialize the BD for every fragment in the page.
1672 */
1673 for (j=0; j<FEC_ENET_RX_FRPPG; j++) {
1674 bdp->cbd_sc = BD_ENET_RX_EMPTY;
1675 bdp->cbd_bufaddr = mem_addr;
1676 fep->rx_vaddr[k++] = ba;
1677 mem_addr += FEC_ENET_RX_FRSIZE;
1678 ba += FEC_ENET_RX_FRSIZE;
1679 bdp++;
1680 }
1681 }
1682
1683 /* Set the last buffer to wrap.
1684 */
1685 bdp--;
1686 bdp->cbd_sc |= BD_SC_WRAP;
1687
1688#ifdef CONFIG_FEC_PACKETHOOK
1689 fep->ph_lock = 0;
1690 fep->ph_rxhandler = fep->ph_txhandler = NULL;
1691 fep->ph_proto = 0;
1692 fep->ph_regaddr = NULL;
1693 fep->ph_priv = NULL;
1694#endif
1695
1696 /* Install our interrupt handler.
1697 */
1698 if (request_irq(FEC_INTERRUPT, fec_enet_interrupt, 0, "fec", dev) != 0)
1699 panic("Could not allocate FEC IRQ!");
1700
1701#ifdef CONFIG_RPXCLASSIC
1702 /* Make Port C, bit 15 an input that causes interrupts.
1703 */
1704 immap->im_ioport.iop_pcpar &= ~0x0001;
1705 immap->im_ioport.iop_pcdir &= ~0x0001;
1706 immap->im_ioport.iop_pcso &= ~0x0001;
1707 immap->im_ioport.iop_pcint |= 0x0001;
1708 cpm_install_handler(CPMVEC_PIO_PC15, mii_link_interrupt, dev);
1709
1710 /* Make LEDS reflect Link status.
1711 */
1712 *((uint *) RPX_CSR_ADDR) &= ~BCSR2_FETHLEDMODE;
1713#endif
1714
1715#ifdef PHY_INTERRUPT
1716 ((immap_t *)IMAP_ADDR)->im_siu_conf.sc_siel |=
1717 (0x80000000 >> PHY_INTERRUPT);
1718
1719 if (request_irq(PHY_INTERRUPT, mii_link_interrupt, 0, "mii", dev) != 0)
1720 panic("Could not allocate MII IRQ!");
1721#endif
1722
1723 dev->base_addr = (unsigned long)fecp;
1724
1725 /* The FEC Ethernet specific entries in the device structure. */
1726 dev->open = fec_enet_open;
1727 dev->hard_start_xmit = fec_enet_start_xmit;
1728 dev->tx_timeout = fec_timeout;
1729 dev->watchdog_timeo = TX_TIMEOUT;
1730 dev->stop = fec_enet_close;
1731 dev->get_stats = fec_enet_get_stats;
1732 dev->set_multicast_list = set_multicast_list;
1733
1734#ifdef CONFIG_USE_MDIO
1735 for (i=0; i<NMII-1; i++)
1736 mii_cmds[i].mii_next = &mii_cmds[i+1];
1737 mii_free = mii_cmds;
1738#endif /* CONFIG_USE_MDIO */
1739
1740 /* Configure all of port D for MII.
1741 */
1742 immap->im_ioport.iop_pdpar = 0x1fff;
1743
1744 /* Bits moved from Rev. D onward.
1745 */
1746 if ((mfspr(SPRN_IMMR) & 0xffff) < 0x0501)
1747 immap->im_ioport.iop_pddir = 0x1c58; /* Pre rev. D */
1748 else
1749 immap->im_ioport.iop_pddir = 0x1fff; /* Rev. D and later */
1750
1751#ifdef CONFIG_USE_MDIO
1752 /* Set MII speed to 2.5 MHz
1753 */
1754 fecp->fec_mii_speed = fep->phy_speed =
1755 (( (bd->bi_intfreq + 500000) / 2500000 / 2 ) & 0x3F ) << 1;
1756#else
1757 fecp->fec_mii_speed = 0; /* turn off MDIO */
1758#endif /* CONFIG_USE_MDIO */
1759
1760 err = register_netdev(dev);
1761 if (err) {
1762 free_netdev(dev);
1763 return err;
1764 }
1765
1766 printk ("%s: FEC ENET Version 0.2, FEC irq %d"
1767#ifdef PHY_INTERRUPT
1768 ", MII irq %d"
1769#endif
1770 ", addr ",
1771 dev->name, FEC_INTERRUPT
1772#ifdef PHY_INTERRUPT
1773 , PHY_INTERRUPT
1774#endif
1775 );
1776 for (i=0; i<6; i++)
1777 printk("%02x%c", dev->dev_addr[i], (i==5) ? '\n' : ':');
1778
1779#ifdef CONFIG_USE_MDIO /* start in full duplex mode, and negotiate speed */
1780 fec_restart (dev, 1);
1781#else /* always use half duplex mode only */
1782 fec_restart (dev, 0);
1783#endif
1784
1785#ifdef CONFIG_USE_MDIO
1786 /* Queue up command to detect the PHY and initialize the
1787 * remainder of the interface.
1788 */
1789 fep->phy_id_done = 0;
1790 fep->phy_addr = 0;
1791 mii_queue(dev, mk_mii_read(MII_REG_PHYIR1), mii_discover_phy);
1792#endif /* CONFIG_USE_MDIO */
1793
1794 return 0;
1795}
1796module_init(fec_enet_init);
1797
1798/* This function is called to start or restart the FEC during a link
1799 * change. This only happens when switching between half and full
1800 * duplex.
1801 */
1802static void
1803fec_restart(struct net_device *dev, int duplex)
1804{
1805 struct fec_enet_private *fep;
1806 int i;
1807 volatile cbd_t *bdp;
1808 volatile immap_t *immap;
1809 volatile fec_t *fecp;
1810
1811 immap = (immap_t *)IMAP_ADDR; /* pointer to internal registers */
1812
1813 fecp = &(immap->im_cpm.cp_fec);
1814
1815 fep = dev->priv;
1816
1817 /* Whack a reset. We should wait for this.
1818 */
1819 fecp->fec_ecntrl = FEC_ECNTRL_PINMUX | FEC_ECNTRL_RESET;
1820 for (i = 0;
1821 (fecp->fec_ecntrl & FEC_ECNTRL_RESET) && (i < FEC_RESET_DELAY);
1822 ++i) {
1823 udelay(1);
1824 }
1825 if (i == FEC_RESET_DELAY) {
1826 printk ("FEC Reset timeout!\n");
1827 }
1828
1829 /* Set station address.
1830 */
1831 fecp->fec_addr_low = (my_enet_addr[0] << 16) | my_enet_addr[1];
1832 fecp->fec_addr_high = my_enet_addr[2];
1833
1834 /* Reset all multicast.
1835 */
1836 fecp->fec_hash_table_high = 0;
1837 fecp->fec_hash_table_low = 0;
1838
1839 /* Set maximum receive buffer size.
1840 */
1841 fecp->fec_r_buff_size = PKT_MAXBLR_SIZE;
1842 fecp->fec_r_hash = PKT_MAXBUF_SIZE;
1843
1844 /* Set receive and transmit descriptor base.
1845 */
1846 fecp->fec_r_des_start = iopa((uint)(fep->rx_bd_base));
1847 fecp->fec_x_des_start = iopa((uint)(fep->tx_bd_base));
1848
1849 fep->dirty_tx = fep->cur_tx = fep->tx_bd_base;
1850 fep->cur_rx = fep->rx_bd_base;
1851
1852 /* Reset SKB transmit buffers.
1853 */
1854 fep->skb_cur = fep->skb_dirty = 0;
1855 for (i=0; i<=TX_RING_MOD_MASK; i++) {
1856 if (fep->tx_skbuff[i] != NULL) {
1857 dev_kfree_skb(fep->tx_skbuff[i]);
1858 fep->tx_skbuff[i] = NULL;
1859 }
1860 }
1861
1862 /* Initialize the receive buffer descriptors.
1863 */
1864 bdp = fep->rx_bd_base;
1865 for (i=0; i<RX_RING_SIZE; i++) {
1866
1867 /* Initialize the BD for every fragment in the page.
1868 */
1869 bdp->cbd_sc = BD_ENET_RX_EMPTY;
1870 bdp++;
1871 }
1872
1873 /* Set the last buffer to wrap.
1874 */
1875 bdp--;
1876 bdp->cbd_sc |= BD_SC_WRAP;
1877
1878 /* ...and the same for transmmit.
1879 */
1880 bdp = fep->tx_bd_base;
1881 for (i=0; i<TX_RING_SIZE; i++) {
1882
1883 /* Initialize the BD for every fragment in the page.
1884 */
1885 bdp->cbd_sc = 0;
1886 bdp->cbd_bufaddr = 0;
1887 bdp++;
1888 }
1889
1890 /* Set the last buffer to wrap.
1891 */
1892 bdp--;
1893 bdp->cbd_sc |= BD_SC_WRAP;
1894
1895 /* Enable MII mode.
1896 */
1897 if (duplex) {
1898 fecp->fec_r_cntrl = FEC_RCNTRL_MII_MODE; /* MII enable */
1899 fecp->fec_x_cntrl = FEC_TCNTRL_FDEN; /* FD enable */
1900 }
1901 else {
1902 fecp->fec_r_cntrl = FEC_RCNTRL_MII_MODE | FEC_RCNTRL_DRT;
1903 fecp->fec_x_cntrl = 0;
1904 }
1905 fep->full_duplex = duplex;
1906
1907 /* Enable big endian and don't care about SDMA FC.
1908 */
1909 fecp->fec_fun_code = 0x78000000;
1910
1911#ifdef CONFIG_USE_MDIO
1912 /* Set MII speed.
1913 */
1914 fecp->fec_mii_speed = fep->phy_speed;
1915#endif /* CONFIG_USE_MDIO */
1916
1917 /* Clear any outstanding interrupt.
1918 */
1919 fecp->fec_ievent = 0xffc0;
1920
1921 fecp->fec_ivec = (FEC_INTERRUPT/2) << 29;
1922
1923 /* Enable interrupts we wish to service.
1924 */
1925 fecp->fec_imask = ( FEC_ENET_TXF | FEC_ENET_TXB |
1926 FEC_ENET_RXF | FEC_ENET_RXB | FEC_ENET_MII );
1927
1928 /* And last, enable the transmit and receive processing.
1929 */
1930 fecp->fec_ecntrl = FEC_ECNTRL_PINMUX | FEC_ECNTRL_ETHER_EN;
1931 fecp->fec_r_des_active = 0x01000000;
1932}
1933
1934static void
1935fec_stop(struct net_device *dev)
1936{
1937 volatile immap_t *immap;
1938 volatile fec_t *fecp;
1939 struct fec_enet_private *fep;
1940 int i;
1941
1942 immap = (immap_t *)IMAP_ADDR; /* pointer to internal registers */
1943
1944 fecp = &(immap->im_cpm.cp_fec);
1945
1946 if ((fecp->fec_ecntrl & FEC_ECNTRL_ETHER_EN) == 0)
1947 return; /* already down */
1948
1949 fep = dev->priv;
1950
1951
1952 fecp->fec_x_cntrl = 0x01; /* Graceful transmit stop */
1953
1954 for (i = 0;
1955 ((fecp->fec_ievent & 0x10000000) == 0) && (i < FEC_RESET_DELAY);
1956 ++i) {
1957 udelay(1);
1958 }
1959 if (i == FEC_RESET_DELAY) {
1960 printk ("FEC timeout on graceful transmit stop\n");
1961 }
1962
1963 /* Clear outstanding MII command interrupts.
1964 */
1965 fecp->fec_ievent = FEC_ENET_MII;
1966
1967 /* Enable MII command finished interrupt
1968 */
1969 fecp->fec_ivec = (FEC_INTERRUPT/2) << 29;
1970 fecp->fec_imask = FEC_ENET_MII;
1971
1972#ifdef CONFIG_USE_MDIO
1973 /* Set MII speed.
1974 */
1975 fecp->fec_mii_speed = fep->phy_speed;
1976#endif /* CONFIG_USE_MDIO */
1977
1978 /* Disable FEC
1979 */
1980 fecp->fec_ecntrl &= ~(FEC_ECNTRL_ETHER_EN);
1981}