blob: 09caa4f2687e04f9a3ce353dbe96838a8b8f1928 [file] [log] [blame]
Nitin Gupta61989a82012-01-09 16:51:56 -06001/*
2 * zsmalloc memory allocator
3 *
4 * Copyright (C) 2011 Nitin Gupta
5 *
6 * This code is released using a dual license strategy: BSD/GPL
7 * You can choose the license that better fits your requirements.
8 *
9 * Released under the terms of 3-clause BSD License
10 * Released under the terms of GNU General Public License Version 2.0
11 */
12
13#ifdef CONFIG_ZSMALLOC_DEBUG
14#define DEBUG
15#endif
16
17#include <linux/module.h>
18#include <linux/kernel.h>
19#include <linux/bitops.h>
20#include <linux/errno.h>
21#include <linux/highmem.h>
22#include <linux/init.h>
23#include <linux/string.h>
24#include <linux/slab.h>
25#include <asm/tlbflush.h>
26#include <asm/pgtable.h>
27#include <linux/cpumask.h>
28#include <linux/cpu.h>
Seth Jennings0cbb6132012-02-13 08:47:49 -060029#include <linux/vmalloc.h>
Nitin Gupta61989a82012-01-09 16:51:56 -060030
31#include "zsmalloc.h"
32#include "zsmalloc_int.h"
33
34/*
35 * A zspage's class index and fullness group
36 * are encoded in its (first)page->mapping
37 */
38#define CLASS_IDX_BITS 28
39#define FULLNESS_BITS 4
40#define CLASS_IDX_MASK ((1 << CLASS_IDX_BITS) - 1)
41#define FULLNESS_MASK ((1 << FULLNESS_BITS) - 1)
42
Nitin Gupta61989a82012-01-09 16:51:56 -060043/* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
44static DEFINE_PER_CPU(struct mapping_area, zs_map_area);
45
46static int is_first_page(struct page *page)
47{
48 return test_bit(PG_private, &page->flags);
49}
50
51static int is_last_page(struct page *page)
52{
53 return test_bit(PG_private_2, &page->flags);
54}
55
56static void get_zspage_mapping(struct page *page, unsigned int *class_idx,
57 enum fullness_group *fullness)
58{
59 unsigned long m;
60 BUG_ON(!is_first_page(page));
61
62 m = (unsigned long)page->mapping;
63 *fullness = m & FULLNESS_MASK;
64 *class_idx = (m >> FULLNESS_BITS) & CLASS_IDX_MASK;
65}
66
67static void set_zspage_mapping(struct page *page, unsigned int class_idx,
68 enum fullness_group fullness)
69{
70 unsigned long m;
71 BUG_ON(!is_first_page(page));
72
73 m = ((class_idx & CLASS_IDX_MASK) << FULLNESS_BITS) |
74 (fullness & FULLNESS_MASK);
75 page->mapping = (struct address_space *)m;
76}
77
78static int get_size_class_index(int size)
79{
80 int idx = 0;
81
82 if (likely(size > ZS_MIN_ALLOC_SIZE))
83 idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
84 ZS_SIZE_CLASS_DELTA);
85
86 return idx;
87}
88
89static enum fullness_group get_fullness_group(struct page *page)
90{
91 int inuse, max_objects;
92 enum fullness_group fg;
93 BUG_ON(!is_first_page(page));
94
95 inuse = page->inuse;
96 max_objects = page->objects;
97
98 if (inuse == 0)
99 fg = ZS_EMPTY;
100 else if (inuse == max_objects)
101 fg = ZS_FULL;
102 else if (inuse <= max_objects / fullness_threshold_frac)
103 fg = ZS_ALMOST_EMPTY;
104 else
105 fg = ZS_ALMOST_FULL;
106
107 return fg;
108}
109
110static void insert_zspage(struct page *page, struct size_class *class,
111 enum fullness_group fullness)
112{
113 struct page **head;
114
115 BUG_ON(!is_first_page(page));
116
117 if (fullness >= _ZS_NR_FULLNESS_GROUPS)
118 return;
119
120 head = &class->fullness_list[fullness];
121 if (*head)
122 list_add_tail(&page->lru, &(*head)->lru);
123
124 *head = page;
125}
126
127static void remove_zspage(struct page *page, struct size_class *class,
128 enum fullness_group fullness)
129{
130 struct page **head;
131
132 BUG_ON(!is_first_page(page));
133
134 if (fullness >= _ZS_NR_FULLNESS_GROUPS)
135 return;
136
137 head = &class->fullness_list[fullness];
138 BUG_ON(!*head);
139 if (list_empty(&(*head)->lru))
140 *head = NULL;
141 else if (*head == page)
142 *head = (struct page *)list_entry((*head)->lru.next,
143 struct page, lru);
144
145 list_del_init(&page->lru);
146}
147
148static enum fullness_group fix_fullness_group(struct zs_pool *pool,
149 struct page *page)
150{
151 int class_idx;
152 struct size_class *class;
153 enum fullness_group currfg, newfg;
154
155 BUG_ON(!is_first_page(page));
156
157 get_zspage_mapping(page, &class_idx, &currfg);
158 newfg = get_fullness_group(page);
159 if (newfg == currfg)
160 goto out;
161
162 class = &pool->size_class[class_idx];
163 remove_zspage(page, class, currfg);
164 insert_zspage(page, class, newfg);
165 set_zspage_mapping(page, class_idx, newfg);
166
167out:
168 return newfg;
169}
170
171/*
172 * We have to decide on how many pages to link together
173 * to form a zspage for each size class. This is important
174 * to reduce wastage due to unusable space left at end of
175 * each zspage which is given as:
176 * wastage = Zp - Zp % size_class
177 * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ...
178 *
179 * For example, for size class of 3/8 * PAGE_SIZE, we should
180 * link together 3 PAGE_SIZE sized pages to form a zspage
181 * since then we can perfectly fit in 8 such objects.
182 */
183static int get_zspage_order(int class_size)
184{
185 int i, max_usedpc = 0;
186 /* zspage order which gives maximum used size per KB */
187 int max_usedpc_order = 1;
188
Seth Jennings84d4faa2012-03-05 11:33:21 -0600189 for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
Nitin Gupta61989a82012-01-09 16:51:56 -0600190 int zspage_size;
191 int waste, usedpc;
192
193 zspage_size = i * PAGE_SIZE;
194 waste = zspage_size % class_size;
195 usedpc = (zspage_size - waste) * 100 / zspage_size;
196
197 if (usedpc > max_usedpc) {
198 max_usedpc = usedpc;
199 max_usedpc_order = i;
200 }
201 }
202
203 return max_usedpc_order;
204}
205
206/*
207 * A single 'zspage' is composed of many system pages which are
208 * linked together using fields in struct page. This function finds
209 * the first/head page, given any component page of a zspage.
210 */
211static struct page *get_first_page(struct page *page)
212{
213 if (is_first_page(page))
214 return page;
215 else
216 return page->first_page;
217}
218
219static struct page *get_next_page(struct page *page)
220{
221 struct page *next;
222
223 if (is_last_page(page))
224 next = NULL;
225 else if (is_first_page(page))
226 next = (struct page *)page->private;
227 else
228 next = list_entry(page->lru.next, struct page, lru);
229
230 return next;
231}
232
233/* Encode <page, obj_idx> as a single handle value */
234static void *obj_location_to_handle(struct page *page, unsigned long obj_idx)
235{
236 unsigned long handle;
237
238 if (!page) {
239 BUG_ON(obj_idx);
240 return NULL;
241 }
242
243 handle = page_to_pfn(page) << OBJ_INDEX_BITS;
244 handle |= (obj_idx & OBJ_INDEX_MASK);
245
246 return (void *)handle;
247}
248
249/* Decode <page, obj_idx> pair from the given object handle */
250static void obj_handle_to_location(void *handle, struct page **page,
251 unsigned long *obj_idx)
252{
253 unsigned long hval = (unsigned long)handle;
254
255 *page = pfn_to_page(hval >> OBJ_INDEX_BITS);
256 *obj_idx = hval & OBJ_INDEX_MASK;
257}
258
259static unsigned long obj_idx_to_offset(struct page *page,
260 unsigned long obj_idx, int class_size)
261{
262 unsigned long off = 0;
263
264 if (!is_first_page(page))
265 off = page->index;
266
267 return off + obj_idx * class_size;
268}
269
270static void free_zspage(struct page *first_page)
271{
272 struct page *nextp, *tmp;
273
274 BUG_ON(!is_first_page(first_page));
275 BUG_ON(first_page->inuse);
276
277 nextp = (struct page *)page_private(first_page);
278
279 clear_bit(PG_private, &first_page->flags);
280 clear_bit(PG_private_2, &first_page->flags);
281 set_page_private(first_page, 0);
282 first_page->mapping = NULL;
283 first_page->freelist = NULL;
284 reset_page_mapcount(first_page);
285 __free_page(first_page);
286
287 /* zspage with only 1 system page */
288 if (!nextp)
289 return;
290
291 list_for_each_entry_safe(nextp, tmp, &nextp->lru, lru) {
292 list_del(&nextp->lru);
293 clear_bit(PG_private_2, &nextp->flags);
294 nextp->index = 0;
295 __free_page(nextp);
296 }
297}
298
299/* Initialize a newly allocated zspage */
300static void init_zspage(struct page *first_page, struct size_class *class)
301{
302 unsigned long off = 0;
303 struct page *page = first_page;
304
305 BUG_ON(!is_first_page(first_page));
306 while (page) {
307 struct page *next_page;
308 struct link_free *link;
309 unsigned int i, objs_on_page;
310
311 /*
312 * page->index stores offset of first object starting
313 * in the page. For the first page, this is always 0,
314 * so we use first_page->index (aka ->freelist) to store
315 * head of corresponding zspage's freelist.
316 */
317 if (page != first_page)
318 page->index = off;
319
320 link = (struct link_free *)kmap_atomic(page) +
321 off / sizeof(*link);
322 objs_on_page = (PAGE_SIZE - off) / class->size;
323
324 for (i = 1; i <= objs_on_page; i++) {
325 off += class->size;
326 if (off < PAGE_SIZE) {
327 link->next = obj_location_to_handle(page, i);
328 link += class->size / sizeof(*link);
329 }
330 }
331
332 /*
333 * We now come to the last (full or partial) object on this
334 * page, which must point to the first object on the next
335 * page (if present)
336 */
337 next_page = get_next_page(page);
338 link->next = obj_location_to_handle(next_page, 0);
339 kunmap_atomic(link);
340 page = next_page;
341 off = (off + class->size) % PAGE_SIZE;
342 }
343}
344
345/*
346 * Allocate a zspage for the given size class
347 */
348static struct page *alloc_zspage(struct size_class *class, gfp_t flags)
349{
350 int i, error;
351 struct page *first_page = NULL;
352
353 /*
354 * Allocate individual pages and link them together as:
355 * 1. first page->private = first sub-page
356 * 2. all sub-pages are linked together using page->lru
357 * 3. each sub-page is linked to the first page using page->first_page
358 *
359 * For each size class, First/Head pages are linked together using
360 * page->lru. Also, we set PG_private to identify the first page
361 * (i.e. no other sub-page has this flag set) and PG_private_2 to
362 * identify the last page.
363 */
364 error = -ENOMEM;
365 for (i = 0; i < class->zspage_order; i++) {
366 struct page *page, *prev_page;
367
368 page = alloc_page(flags);
369 if (!page)
370 goto cleanup;
371
372 INIT_LIST_HEAD(&page->lru);
373 if (i == 0) { /* first page */
374 set_bit(PG_private, &page->flags);
375 set_page_private(page, 0);
376 first_page = page;
377 first_page->inuse = 0;
378 }
379 if (i == 1)
380 first_page->private = (unsigned long)page;
381 if (i >= 1)
382 page->first_page = first_page;
383 if (i >= 2)
384 list_add(&page->lru, &prev_page->lru);
385 if (i == class->zspage_order - 1) /* last page */
386 set_bit(PG_private_2, &page->flags);
387
388 prev_page = page;
389 }
390
391 init_zspage(first_page, class);
392
393 first_page->freelist = obj_location_to_handle(first_page, 0);
394 /* Maximum number of objects we can store in this zspage */
395 first_page->objects = class->zspage_order * PAGE_SIZE / class->size;
396
397 error = 0; /* Success */
398
399cleanup:
400 if (unlikely(error) && first_page) {
401 free_zspage(first_page);
402 first_page = NULL;
403 }
404
405 return first_page;
406}
407
408static struct page *find_get_zspage(struct size_class *class)
409{
410 int i;
411 struct page *page;
412
413 for (i = 0; i < _ZS_NR_FULLNESS_GROUPS; i++) {
414 page = class->fullness_list[i];
415 if (page)
416 break;
417 }
418
419 return page;
420}
421
422
423/*
424 * If this becomes a separate module, register zs_init() with
425 * module_init(), zs_exit with module_exit(), and remove zs_initialized
426*/
427static int zs_initialized;
428
429static int zs_cpu_notifier(struct notifier_block *nb, unsigned long action,
430 void *pcpu)
431{
432 int cpu = (long)pcpu;
433 struct mapping_area *area;
434
435 switch (action) {
436 case CPU_UP_PREPARE:
437 area = &per_cpu(zs_map_area, cpu);
438 if (area->vm)
439 break;
440 area->vm = alloc_vm_area(2 * PAGE_SIZE, area->vm_ptes);
441 if (!area->vm)
442 return notifier_from_errno(-ENOMEM);
443 break;
444 case CPU_DEAD:
445 case CPU_UP_CANCELED:
446 area = &per_cpu(zs_map_area, cpu);
447 if (area->vm)
448 free_vm_area(area->vm);
449 area->vm = NULL;
450 break;
451 }
452
453 return NOTIFY_OK;
454}
455
456static struct notifier_block zs_cpu_nb = {
457 .notifier_call = zs_cpu_notifier
458};
459
460static void zs_exit(void)
461{
462 int cpu;
463
464 for_each_online_cpu(cpu)
465 zs_cpu_notifier(NULL, CPU_DEAD, (void *)(long)cpu);
466 unregister_cpu_notifier(&zs_cpu_nb);
467}
468
469static int zs_init(void)
470{
471 int cpu, ret;
472
473 register_cpu_notifier(&zs_cpu_nb);
474 for_each_online_cpu(cpu) {
475 ret = zs_cpu_notifier(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
476 if (notifier_to_errno(ret))
477 goto fail;
478 }
479 return 0;
480fail:
481 zs_exit();
482 return notifier_to_errno(ret);
483}
484
485struct zs_pool *zs_create_pool(const char *name, gfp_t flags)
486{
487 int i, error, ovhd_size;
488 struct zs_pool *pool;
489
490 if (!name)
491 return NULL;
492
493 ovhd_size = roundup(sizeof(*pool), PAGE_SIZE);
494 pool = kzalloc(ovhd_size, GFP_KERNEL);
495 if (!pool)
496 return NULL;
497
498 for (i = 0; i < ZS_SIZE_CLASSES; i++) {
499 int size;
500 struct size_class *class;
501
502 size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
503 if (size > ZS_MAX_ALLOC_SIZE)
504 size = ZS_MAX_ALLOC_SIZE;
505
506 class = &pool->size_class[i];
507 class->size = size;
508 class->index = i;
509 spin_lock_init(&class->lock);
510 class->zspage_order = get_zspage_order(size);
511
512 }
513
514 /*
515 * If this becomes a separate module, register zs_init with
516 * module_init, and remove this block
517 */
518 if (!zs_initialized) {
519 error = zs_init();
520 if (error)
521 goto cleanup;
522 zs_initialized = 1;
523 }
524
525 pool->flags = flags;
526 pool->name = name;
527
528 error = 0; /* Success */
529
530cleanup:
531 if (error) {
532 zs_destroy_pool(pool);
533 pool = NULL;
534 }
535
536 return pool;
537}
538EXPORT_SYMBOL_GPL(zs_create_pool);
539
540void zs_destroy_pool(struct zs_pool *pool)
541{
542 int i;
543
544 for (i = 0; i < ZS_SIZE_CLASSES; i++) {
545 int fg;
546 struct size_class *class = &pool->size_class[i];
547
548 for (fg = 0; fg < _ZS_NR_FULLNESS_GROUPS; fg++) {
549 if (class->fullness_list[fg]) {
550 pr_info("Freeing non-empty class with size "
551 "%db, fullness group %d\n",
552 class->size, fg);
553 }
554 }
555 }
556 kfree(pool);
557}
558EXPORT_SYMBOL_GPL(zs_destroy_pool);
559
560/**
561 * zs_malloc - Allocate block of given size from pool.
562 * @pool: pool to allocate from
563 * @size: size of block to allocate
564 * @page: page no. that holds the object
565 * @offset: location of object within page
566 *
567 * On success, <page, offset> identifies block allocated
568 * and 0 is returned. On failure, <page, offset> is set to
569 * 0 and -ENOMEM is returned.
570 *
571 * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
572 */
573void *zs_malloc(struct zs_pool *pool, size_t size)
574{
575 void *obj;
576 struct link_free *link;
577 int class_idx;
578 struct size_class *class;
579
580 struct page *first_page, *m_page;
581 unsigned long m_objidx, m_offset;
582
583 if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE))
584 return NULL;
585
586 class_idx = get_size_class_index(size);
587 class = &pool->size_class[class_idx];
588 BUG_ON(class_idx != class->index);
589
590 spin_lock(&class->lock);
591 first_page = find_get_zspage(class);
592
593 if (!first_page) {
594 spin_unlock(&class->lock);
595 first_page = alloc_zspage(class, pool->flags);
596 if (unlikely(!first_page))
597 return NULL;
598
599 set_zspage_mapping(first_page, class->index, ZS_EMPTY);
600 spin_lock(&class->lock);
601 class->pages_allocated += class->zspage_order;
602 }
603
604 obj = first_page->freelist;
605 obj_handle_to_location(obj, &m_page, &m_objidx);
606 m_offset = obj_idx_to_offset(m_page, m_objidx, class->size);
607
608 link = (struct link_free *)kmap_atomic(m_page) +
609 m_offset / sizeof(*link);
610 first_page->freelist = link->next;
611 memset(link, POISON_INUSE, sizeof(*link));
612 kunmap_atomic(link);
613
614 first_page->inuse++;
615 /* Now move the zspage to another fullness group, if required */
616 fix_fullness_group(pool, first_page);
617 spin_unlock(&class->lock);
618
619 return obj;
620}
621EXPORT_SYMBOL_GPL(zs_malloc);
622
623void zs_free(struct zs_pool *pool, void *obj)
624{
625 struct link_free *link;
626 struct page *first_page, *f_page;
627 unsigned long f_objidx, f_offset;
628
629 int class_idx;
630 struct size_class *class;
631 enum fullness_group fullness;
632
633 if (unlikely(!obj))
634 return;
635
636 obj_handle_to_location(obj, &f_page, &f_objidx);
637 first_page = get_first_page(f_page);
638
639 get_zspage_mapping(first_page, &class_idx, &fullness);
640 class = &pool->size_class[class_idx];
641 f_offset = obj_idx_to_offset(f_page, f_objidx, class->size);
642
643 spin_lock(&class->lock);
644
645 /* Insert this object in containing zspage's freelist */
646 link = (struct link_free *)((unsigned char *)kmap_atomic(f_page)
647 + f_offset);
648 link->next = first_page->freelist;
649 kunmap_atomic(link);
650 first_page->freelist = obj;
651
652 first_page->inuse--;
653 fullness = fix_fullness_group(pool, first_page);
654
655 if (fullness == ZS_EMPTY)
656 class->pages_allocated -= class->zspage_order;
657
658 spin_unlock(&class->lock);
659
660 if (fullness == ZS_EMPTY)
661 free_zspage(first_page);
662}
663EXPORT_SYMBOL_GPL(zs_free);
664
665void *zs_map_object(struct zs_pool *pool, void *handle)
666{
667 struct page *page;
668 unsigned long obj_idx, off;
669
670 unsigned int class_idx;
671 enum fullness_group fg;
672 struct size_class *class;
673 struct mapping_area *area;
674
675 BUG_ON(!handle);
676
677 obj_handle_to_location(handle, &page, &obj_idx);
678 get_zspage_mapping(get_first_page(page), &class_idx, &fg);
679 class = &pool->size_class[class_idx];
680 off = obj_idx_to_offset(page, obj_idx, class->size);
681
682 area = &get_cpu_var(zs_map_area);
683 if (off + class->size <= PAGE_SIZE) {
684 /* this object is contained entirely within a page */
685 area->vm_addr = kmap_atomic(page);
686 } else {
687 /* this object spans two pages */
688 struct page *nextp;
689
690 nextp = get_next_page(page);
691 BUG_ON(!nextp);
692
693
694 set_pte(area->vm_ptes[0], mk_pte(page, PAGE_KERNEL));
695 set_pte(area->vm_ptes[1], mk_pte(nextp, PAGE_KERNEL));
696
697 /* We pre-allocated VM area so mapping can never fail */
698 area->vm_addr = area->vm->addr;
699 }
700
701 return area->vm_addr + off;
702}
703EXPORT_SYMBOL_GPL(zs_map_object);
704
705void zs_unmap_object(struct zs_pool *pool, void *handle)
706{
707 struct page *page;
708 unsigned long obj_idx, off;
709
710 unsigned int class_idx;
711 enum fullness_group fg;
712 struct size_class *class;
713 struct mapping_area *area;
714
715 BUG_ON(!handle);
716
717 obj_handle_to_location(handle, &page, &obj_idx);
718 get_zspage_mapping(get_first_page(page), &class_idx, &fg);
719 class = &pool->size_class[class_idx];
720 off = obj_idx_to_offset(page, obj_idx, class->size);
721
722 area = &__get_cpu_var(zs_map_area);
723 if (off + class->size <= PAGE_SIZE) {
724 kunmap_atomic(area->vm_addr);
725 } else {
726 set_pte(area->vm_ptes[0], __pte(0));
727 set_pte(area->vm_ptes[1], __pte(0));
728 __flush_tlb_one((unsigned long)area->vm_addr);
729 __flush_tlb_one((unsigned long)area->vm_addr + PAGE_SIZE);
730 }
731 put_cpu_var(zs_map_area);
732}
733EXPORT_SYMBOL_GPL(zs_unmap_object);
734
735u64 zs_get_total_size_bytes(struct zs_pool *pool)
736{
737 int i;
738 u64 npages = 0;
739
740 for (i = 0; i < ZS_SIZE_CLASSES; i++)
741 npages += pool->size_class[i].pages_allocated;
742
743 return npages << PAGE_SHIFT;
744}
745EXPORT_SYMBOL_GPL(zs_get_total_size_bytes);