blob: e86a34fd548471289d97ff4db208674f646ae9e9 [file] [log] [blame]
Neal Cardwell0f8782e2016-09-19 23:39:23 -04001/* Bottleneck Bandwidth and RTT (BBR) congestion control
2 *
3 * BBR congestion control computes the sending rate based on the delivery
4 * rate (throughput) estimated from ACKs. In a nutshell:
5 *
6 * On each ACK, update our model of the network path:
7 * bottleneck_bandwidth = windowed_max(delivered / elapsed, 10 round trips)
8 * min_rtt = windowed_min(rtt, 10 seconds)
9 * pacing_rate = pacing_gain * bottleneck_bandwidth
10 * cwnd = max(cwnd_gain * bottleneck_bandwidth * min_rtt, 4)
11 *
12 * The core algorithm does not react directly to packet losses or delays,
13 * although BBR may adjust the size of next send per ACK when loss is
14 * observed, or adjust the sending rate if it estimates there is a
15 * traffic policer, in order to keep the drop rate reasonable.
16 *
17 * BBR is described in detail in:
18 * "BBR: Congestion-Based Congestion Control",
19 * Neal Cardwell, Yuchung Cheng, C. Stephen Gunn, Soheil Hassas Yeganeh,
20 * Van Jacobson. ACM Queue, Vol. 14 No. 5, September-October 2016.
21 *
22 * There is a public e-mail list for discussing BBR development and testing:
23 * https://groups.google.com/forum/#!forum/bbr-dev
24 *
25 * NOTE: BBR *must* be used with the fq qdisc ("man tc-fq") with pacing enabled,
26 * since pacing is integral to the BBR design and implementation.
27 * BBR without pacing would not function properly, and may incur unnecessary
28 * high packet loss rates.
29 */
30#include <linux/module.h>
31#include <net/tcp.h>
32#include <linux/inet_diag.h>
33#include <linux/inet.h>
34#include <linux/random.h>
35#include <linux/win_minmax.h>
36
37/* Scale factor for rate in pkt/uSec unit to avoid truncation in bandwidth
38 * estimation. The rate unit ~= (1500 bytes / 1 usec / 2^24) ~= 715 bps.
39 * This handles bandwidths from 0.06pps (715bps) to 256Mpps (3Tbps) in a u32.
40 * Since the minimum window is >=4 packets, the lower bound isn't
41 * an issue. The upper bound isn't an issue with existing technologies.
42 */
43#define BW_SCALE 24
44#define BW_UNIT (1 << BW_SCALE)
45
46#define BBR_SCALE 8 /* scaling factor for fractions in BBR (e.g. gains) */
47#define BBR_UNIT (1 << BBR_SCALE)
48
49/* BBR has the following modes for deciding how fast to send: */
50enum bbr_mode {
51 BBR_STARTUP, /* ramp up sending rate rapidly to fill pipe */
52 BBR_DRAIN, /* drain any queue created during startup */
53 BBR_PROBE_BW, /* discover, share bw: pace around estimated bw */
54 BBR_PROBE_RTT, /* cut cwnd to min to probe min_rtt */
55};
56
57/* BBR congestion control block */
58struct bbr {
59 u32 min_rtt_us; /* min RTT in min_rtt_win_sec window */
60 u32 min_rtt_stamp; /* timestamp of min_rtt_us */
61 u32 probe_rtt_done_stamp; /* end time for BBR_PROBE_RTT mode */
62 struct minmax bw; /* Max recent delivery rate in pkts/uS << 24 */
63 u32 rtt_cnt; /* count of packet-timed rounds elapsed */
64 u32 next_rtt_delivered; /* scb->tx.delivered at end of round */
65 struct skb_mstamp cycle_mstamp; /* time of this cycle phase start */
66 u32 mode:3, /* current bbr_mode in state machine */
67 prev_ca_state:3, /* CA state on previous ACK */
68 packet_conservation:1, /* use packet conservation? */
69 restore_cwnd:1, /* decided to revert cwnd to old value */
70 round_start:1, /* start of packet-timed tx->ack round? */
71 tso_segs_goal:7, /* segments we want in each skb we send */
72 idle_restart:1, /* restarting after idle? */
73 probe_rtt_round_done:1, /* a BBR_PROBE_RTT round at 4 pkts? */
74 unused:5,
75 lt_is_sampling:1, /* taking long-term ("LT") samples now? */
76 lt_rtt_cnt:7, /* round trips in long-term interval */
77 lt_use_bw:1; /* use lt_bw as our bw estimate? */
78 u32 lt_bw; /* LT est delivery rate in pkts/uS << 24 */
79 u32 lt_last_delivered; /* LT intvl start: tp->delivered */
80 u32 lt_last_stamp; /* LT intvl start: tp->delivered_mstamp */
81 u32 lt_last_lost; /* LT intvl start: tp->lost */
82 u32 pacing_gain:10, /* current gain for setting pacing rate */
83 cwnd_gain:10, /* current gain for setting cwnd */
Neal Cardwella4bf8ef2017-12-07 12:43:30 -050084 full_bw_reached:1, /* reached full bw in Startup? */
85 full_bw_cnt:2, /* number of rounds without large bw gains */
Neal Cardwell0f8782e2016-09-19 23:39:23 -040086 cycle_idx:3, /* current index in pacing_gain cycle array */
Neal Cardwell0cd73c42017-07-14 17:49:25 -040087 has_seen_rtt:1, /* have we seen an RTT sample yet? */
88 unused_b:5;
Neal Cardwell0f8782e2016-09-19 23:39:23 -040089 u32 prior_cwnd; /* prior cwnd upon entering loss recovery */
90 u32 full_bw; /* recent bw, to estimate if pipe is full */
91};
92
93#define CYCLE_LEN 8 /* number of phases in a pacing gain cycle */
94
95/* Window length of bw filter (in rounds): */
96static const int bbr_bw_rtts = CYCLE_LEN + 2;
97/* Window length of min_rtt filter (in sec): */
98static const u32 bbr_min_rtt_win_sec = 10;
99/* Minimum time (in ms) spent at bbr_cwnd_min_target in BBR_PROBE_RTT mode: */
100static const u32 bbr_probe_rtt_mode_ms = 200;
101/* Skip TSO below the following bandwidth (bits/sec): */
102static const int bbr_min_tso_rate = 1200000;
103
104/* We use a high_gain value of 2/ln(2) because it's the smallest pacing gain
105 * that will allow a smoothly increasing pacing rate that will double each RTT
106 * and send the same number of packets per RTT that an un-paced, slow-starting
107 * Reno or CUBIC flow would:
108 */
109static const int bbr_high_gain = BBR_UNIT * 2885 / 1000 + 1;
110/* The pacing gain of 1/high_gain in BBR_DRAIN is calculated to typically drain
111 * the queue created in BBR_STARTUP in a single round:
112 */
113static const int bbr_drain_gain = BBR_UNIT * 1000 / 2885;
114/* The gain for deriving steady-state cwnd tolerates delayed/stretched ACKs: */
115static const int bbr_cwnd_gain = BBR_UNIT * 2;
116/* The pacing_gain values for the PROBE_BW gain cycle, to discover/share bw: */
117static const int bbr_pacing_gain[] = {
118 BBR_UNIT * 5 / 4, /* probe for more available bw */
119 BBR_UNIT * 3 / 4, /* drain queue and/or yield bw to other flows */
120 BBR_UNIT, BBR_UNIT, BBR_UNIT, /* cruise at 1.0*bw to utilize pipe, */
121 BBR_UNIT, BBR_UNIT, BBR_UNIT /* without creating excess queue... */
122};
123/* Randomize the starting gain cycling phase over N phases: */
124static const u32 bbr_cycle_rand = 7;
125
126/* Try to keep at least this many packets in flight, if things go smoothly. For
127 * smooth functioning, a sliding window protocol ACKing every other packet
128 * needs at least 4 packets in flight:
129 */
130static const u32 bbr_cwnd_min_target = 4;
131
132/* To estimate if BBR_STARTUP mode (i.e. high_gain) has filled pipe... */
133/* If bw has increased significantly (1.25x), there may be more bw available: */
134static const u32 bbr_full_bw_thresh = BBR_UNIT * 5 / 4;
135/* But after 3 rounds w/o significant bw growth, estimate pipe is full: */
136static const u32 bbr_full_bw_cnt = 3;
137
138/* "long-term" ("LT") bandwidth estimator parameters... */
139/* The minimum number of rounds in an LT bw sampling interval: */
140static const u32 bbr_lt_intvl_min_rtts = 4;
141/* If lost/delivered ratio > 20%, interval is "lossy" and we may be policed: */
142static const u32 bbr_lt_loss_thresh = 50;
143/* If 2 intervals have a bw ratio <= 1/8, their bw is "consistent": */
144static const u32 bbr_lt_bw_ratio = BBR_UNIT / 8;
145/* If 2 intervals have a bw diff <= 4 Kbit/sec their bw is "consistent": */
146static const u32 bbr_lt_bw_diff = 4000 / 8;
147/* If we estimate we're policed, use lt_bw for this many round trips: */
148static const u32 bbr_lt_bw_max_rtts = 48;
149
150/* Do we estimate that STARTUP filled the pipe? */
151static bool bbr_full_bw_reached(const struct sock *sk)
152{
153 const struct bbr *bbr = inet_csk_ca(sk);
154
Neal Cardwella4bf8ef2017-12-07 12:43:30 -0500155 return bbr->full_bw_reached;
Neal Cardwell0f8782e2016-09-19 23:39:23 -0400156}
157
158/* Return the windowed max recent bandwidth sample, in pkts/uS << BW_SCALE. */
159static u32 bbr_max_bw(const struct sock *sk)
160{
161 struct bbr *bbr = inet_csk_ca(sk);
162
163 return minmax_get(&bbr->bw);
164}
165
166/* Return the estimated bandwidth of the path, in pkts/uS << BW_SCALE. */
167static u32 bbr_bw(const struct sock *sk)
168{
169 struct bbr *bbr = inet_csk_ca(sk);
170
171 return bbr->lt_use_bw ? bbr->lt_bw : bbr_max_bw(sk);
172}
173
174/* Return rate in bytes per second, optionally with a gain.
175 * The order here is chosen carefully to avoid overflow of u64. This should
176 * work for input rates of up to 2.9Tbit/sec and gain of 2.89x.
177 */
178static u64 bbr_rate_bytes_per_sec(struct sock *sk, u64 rate, int gain)
179{
180 rate *= tcp_mss_to_mtu(sk, tcp_sk(sk)->mss_cache);
181 rate *= gain;
182 rate >>= BBR_SCALE;
183 rate *= USEC_PER_SEC;
184 return rate >> BW_SCALE;
185}
186
Neal Cardwellec789682017-07-14 17:49:22 -0400187/* Convert a BBR bw and gain factor to a pacing rate in bytes per second. */
188static u32 bbr_bw_to_pacing_rate(struct sock *sk, u32 bw, int gain)
189{
190 u64 rate = bw;
191
192 rate = bbr_rate_bytes_per_sec(sk, rate, gain);
193 rate = min_t(u64, rate, sk->sk_max_pacing_rate);
194 return rate;
195}
196
Neal Cardwell0c0ede32017-07-14 17:49:23 -0400197/* Initialize pacing rate to: high_gain * init_cwnd / RTT. */
198static void bbr_init_pacing_rate_from_rtt(struct sock *sk)
199{
200 struct tcp_sock *tp = tcp_sk(sk);
Neal Cardwell0cd73c42017-07-14 17:49:25 -0400201 struct bbr *bbr = inet_csk_ca(sk);
Neal Cardwell0c0ede32017-07-14 17:49:23 -0400202 u64 bw;
203 u32 rtt_us;
204
205 if (tp->srtt_us) { /* any RTT sample yet? */
206 rtt_us = max(tp->srtt_us >> 3, 1U);
Neal Cardwell0cd73c42017-07-14 17:49:25 -0400207 bbr->has_seen_rtt = 1;
Neal Cardwell0c0ede32017-07-14 17:49:23 -0400208 } else { /* no RTT sample yet */
209 rtt_us = USEC_PER_MSEC; /* use nominal default RTT */
210 }
211 bw = (u64)tp->snd_cwnd * BW_UNIT;
212 do_div(bw, rtt_us);
213 sk->sk_pacing_rate = bbr_bw_to_pacing_rate(sk, bw, bbr_high_gain);
214}
215
Neal Cardwell0f8782e2016-09-19 23:39:23 -0400216/* Pace using current bw estimate and a gain factor. In order to help drive the
217 * network toward lower queues while maintaining high utilization and low
218 * latency, the average pacing rate aims to be slightly (~1%) lower than the
219 * estimated bandwidth. This is an important aspect of the design. In this
220 * implementation this slightly lower pacing rate is achieved implicitly by not
221 * including link-layer headers in the packet size used for the pacing rate.
222 */
223static void bbr_set_pacing_rate(struct sock *sk, u32 bw, int gain)
224{
Neal Cardwell0cd73c42017-07-14 17:49:25 -0400225 struct tcp_sock *tp = tcp_sk(sk);
226 struct bbr *bbr = inet_csk_ca(sk);
Neal Cardwellec789682017-07-14 17:49:22 -0400227 u32 rate = bbr_bw_to_pacing_rate(sk, bw, gain);
Neal Cardwell0f8782e2016-09-19 23:39:23 -0400228
Neal Cardwell0cd73c42017-07-14 17:49:25 -0400229 if (unlikely(!bbr->has_seen_rtt && tp->srtt_us))
230 bbr_init_pacing_rate_from_rtt(sk);
Neal Cardwell73520d32017-07-14 17:49:21 -0400231 if (bbr_full_bw_reached(sk) || rate > sk->sk_pacing_rate)
Neal Cardwell0f8782e2016-09-19 23:39:23 -0400232 sk->sk_pacing_rate = rate;
233}
234
235/* Return count of segments we want in the skbs we send, or 0 for default. */
236static u32 bbr_tso_segs_goal(struct sock *sk)
237{
238 struct bbr *bbr = inet_csk_ca(sk);
239
240 return bbr->tso_segs_goal;
241}
242
243static void bbr_set_tso_segs_goal(struct sock *sk)
244{
245 struct tcp_sock *tp = tcp_sk(sk);
246 struct bbr *bbr = inet_csk_ca(sk);
247 u32 min_segs;
248
249 min_segs = sk->sk_pacing_rate < (bbr_min_tso_rate >> 3) ? 1 : 2;
250 bbr->tso_segs_goal = min(tcp_tso_autosize(sk, tp->mss_cache, min_segs),
251 0x7FU);
252}
253
254/* Save "last known good" cwnd so we can restore it after losses or PROBE_RTT */
255static void bbr_save_cwnd(struct sock *sk)
256{
257 struct tcp_sock *tp = tcp_sk(sk);
258 struct bbr *bbr = inet_csk_ca(sk);
259
260 if (bbr->prev_ca_state < TCP_CA_Recovery && bbr->mode != BBR_PROBE_RTT)
261 bbr->prior_cwnd = tp->snd_cwnd; /* this cwnd is good enough */
262 else /* loss recovery or BBR_PROBE_RTT have temporarily cut cwnd */
263 bbr->prior_cwnd = max(bbr->prior_cwnd, tp->snd_cwnd);
264}
265
266static void bbr_cwnd_event(struct sock *sk, enum tcp_ca_event event)
267{
268 struct tcp_sock *tp = tcp_sk(sk);
269 struct bbr *bbr = inet_csk_ca(sk);
270
271 if (event == CA_EVENT_TX_START && tp->app_limited) {
272 bbr->idle_restart = 1;
273 /* Avoid pointless buffer overflows: pace at est. bw if we don't
274 * need more speed (we're restarting from idle and app-limited).
275 */
276 if (bbr->mode == BBR_PROBE_BW)
277 bbr_set_pacing_rate(sk, bbr_bw(sk), BBR_UNIT);
278 }
279}
280
281/* Find target cwnd. Right-size the cwnd based on min RTT and the
282 * estimated bottleneck bandwidth:
283 *
284 * cwnd = bw * min_rtt * gain = BDP * gain
285 *
286 * The key factor, gain, controls the amount of queue. While a small gain
287 * builds a smaller queue, it becomes more vulnerable to noise in RTT
288 * measurements (e.g., delayed ACKs or other ACK compression effects). This
289 * noise may cause BBR to under-estimate the rate.
290 *
291 * To achieve full performance in high-speed paths, we budget enough cwnd to
292 * fit full-sized skbs in-flight on both end hosts to fully utilize the path:
293 * - one skb in sending host Qdisc,
294 * - one skb in sending host TSO/GSO engine
295 * - one skb being received by receiver host LRO/GRO/delayed-ACK engine
296 * Don't worry, at low rates (bbr_min_tso_rate) this won't bloat cwnd because
297 * in such cases tso_segs_goal is 1. The minimum cwnd is 4 packets,
298 * which allows 2 outstanding 2-packet sequences, to try to keep pipe
299 * full even with ACK-every-other-packet delayed ACKs.
300 */
301static u32 bbr_target_cwnd(struct sock *sk, u32 bw, int gain)
302{
303 struct bbr *bbr = inet_csk_ca(sk);
304 u32 cwnd;
305 u64 w;
306
307 /* If we've never had a valid RTT sample, cap cwnd at the initial
308 * default. This should only happen when the connection is not using TCP
309 * timestamps and has retransmitted all of the SYN/SYNACK/data packets
310 * ACKed so far. In this case, an RTO can cut cwnd to 1, in which
311 * case we need to slow-start up toward something safe: TCP_INIT_CWND.
312 */
313 if (unlikely(bbr->min_rtt_us == ~0U)) /* no valid RTT samples yet? */
314 return TCP_INIT_CWND; /* be safe: cap at default initial cwnd*/
315
316 w = (u64)bw * bbr->min_rtt_us;
317
318 /* Apply a gain to the given value, then remove the BW_SCALE shift. */
319 cwnd = (((w * gain) >> BBR_SCALE) + BW_UNIT - 1) / BW_UNIT;
320
321 /* Allow enough full-sized skbs in flight to utilize end systems. */
322 cwnd += 3 * bbr->tso_segs_goal;
323
324 /* Reduce delayed ACKs by rounding up cwnd to the next even number. */
325 cwnd = (cwnd + 1) & ~1U;
326
327 return cwnd;
328}
329
330/* An optimization in BBR to reduce losses: On the first round of recovery, we
331 * follow the packet conservation principle: send P packets per P packets acked.
332 * After that, we slow-start and send at most 2*P packets per P packets acked.
333 * After recovery finishes, or upon undo, we restore the cwnd we had when
334 * recovery started (capped by the target cwnd based on estimated BDP).
335 *
336 * TODO(ycheng/ncardwell): implement a rate-based approach.
337 */
338static bool bbr_set_cwnd_to_recover_or_restore(
339 struct sock *sk, const struct rate_sample *rs, u32 acked, u32 *new_cwnd)
340{
341 struct tcp_sock *tp = tcp_sk(sk);
342 struct bbr *bbr = inet_csk_ca(sk);
343 u8 prev_state = bbr->prev_ca_state, state = inet_csk(sk)->icsk_ca_state;
344 u32 cwnd = tp->snd_cwnd;
345
346 /* An ACK for P pkts should release at most 2*P packets. We do this
347 * in two steps. First, here we deduct the number of lost packets.
348 * Then, in bbr_set_cwnd() we slow start up toward the target cwnd.
349 */
350 if (rs->losses > 0)
351 cwnd = max_t(s32, cwnd - rs->losses, 1);
352
353 if (state == TCP_CA_Recovery && prev_state != TCP_CA_Recovery) {
354 /* Starting 1st round of Recovery, so do packet conservation. */
355 bbr->packet_conservation = 1;
356 bbr->next_rtt_delivered = tp->delivered; /* start round now */
357 /* Cut unused cwnd from app behavior, TSQ, or TSO deferral: */
358 cwnd = tcp_packets_in_flight(tp) + acked;
359 } else if (prev_state >= TCP_CA_Recovery && state < TCP_CA_Recovery) {
360 /* Exiting loss recovery; restore cwnd saved before recovery. */
361 bbr->restore_cwnd = 1;
362 bbr->packet_conservation = 0;
363 }
364 bbr->prev_ca_state = state;
365
366 if (bbr->restore_cwnd) {
367 /* Restore cwnd after exiting loss recovery or PROBE_RTT. */
368 cwnd = max(cwnd, bbr->prior_cwnd);
369 bbr->restore_cwnd = 0;
370 }
371
372 if (bbr->packet_conservation) {
373 *new_cwnd = max(cwnd, tcp_packets_in_flight(tp) + acked);
374 return true; /* yes, using packet conservation */
375 }
376 *new_cwnd = cwnd;
377 return false;
378}
379
380/* Slow-start up toward target cwnd (if bw estimate is growing, or packet loss
381 * has drawn us down below target), or snap down to target if we're above it.
382 */
383static void bbr_set_cwnd(struct sock *sk, const struct rate_sample *rs,
384 u32 acked, u32 bw, int gain)
385{
386 struct tcp_sock *tp = tcp_sk(sk);
387 struct bbr *bbr = inet_csk_ca(sk);
388 u32 cwnd = 0, target_cwnd = 0;
389
390 if (!acked)
391 return;
392
393 if (bbr_set_cwnd_to_recover_or_restore(sk, rs, acked, &cwnd))
394 goto done;
395
396 /* If we're below target cwnd, slow start cwnd toward target cwnd. */
397 target_cwnd = bbr_target_cwnd(sk, bw, gain);
398 if (bbr_full_bw_reached(sk)) /* only cut cwnd if we filled the pipe */
399 cwnd = min(cwnd + acked, target_cwnd);
400 else if (cwnd < target_cwnd || tp->delivered < TCP_INIT_CWND)
401 cwnd = cwnd + acked;
402 cwnd = max(cwnd, bbr_cwnd_min_target);
403
404done:
405 tp->snd_cwnd = min(cwnd, tp->snd_cwnd_clamp); /* apply global cap */
406 if (bbr->mode == BBR_PROBE_RTT) /* drain queue, refresh min_rtt */
407 tp->snd_cwnd = min(tp->snd_cwnd, bbr_cwnd_min_target);
408}
409
410/* End cycle phase if it's time and/or we hit the phase's in-flight target. */
411static bool bbr_is_next_cycle_phase(struct sock *sk,
412 const struct rate_sample *rs)
413{
414 struct tcp_sock *tp = tcp_sk(sk);
415 struct bbr *bbr = inet_csk_ca(sk);
416 bool is_full_length =
417 skb_mstamp_us_delta(&tp->delivered_mstamp, &bbr->cycle_mstamp) >
418 bbr->min_rtt_us;
419 u32 inflight, bw;
420
421 /* The pacing_gain of 1.0 paces at the estimated bw to try to fully
422 * use the pipe without increasing the queue.
423 */
424 if (bbr->pacing_gain == BBR_UNIT)
425 return is_full_length; /* just use wall clock time */
426
427 inflight = rs->prior_in_flight; /* what was in-flight before ACK? */
428 bw = bbr_max_bw(sk);
429
430 /* A pacing_gain > 1.0 probes for bw by trying to raise inflight to at
431 * least pacing_gain*BDP; this may take more than min_rtt if min_rtt is
432 * small (e.g. on a LAN). We do not persist if packets are lost, since
433 * a path with small buffers may not hold that much.
434 */
435 if (bbr->pacing_gain > BBR_UNIT)
436 return is_full_length &&
437 (rs->losses || /* perhaps pacing_gain*BDP won't fit */
438 inflight >= bbr_target_cwnd(sk, bw, bbr->pacing_gain));
439
440 /* A pacing_gain < 1.0 tries to drain extra queue we added if bw
441 * probing didn't find more bw. If inflight falls to match BDP then we
442 * estimate queue is drained; persisting would underutilize the pipe.
443 */
444 return is_full_length ||
445 inflight <= bbr_target_cwnd(sk, bw, BBR_UNIT);
446}
447
448static void bbr_advance_cycle_phase(struct sock *sk)
449{
450 struct tcp_sock *tp = tcp_sk(sk);
451 struct bbr *bbr = inet_csk_ca(sk);
452
453 bbr->cycle_idx = (bbr->cycle_idx + 1) & (CYCLE_LEN - 1);
454 bbr->cycle_mstamp = tp->delivered_mstamp;
455 bbr->pacing_gain = bbr_pacing_gain[bbr->cycle_idx];
456}
457
458/* Gain cycling: cycle pacing gain to converge to fair share of available bw. */
459static void bbr_update_cycle_phase(struct sock *sk,
460 const struct rate_sample *rs)
461{
462 struct bbr *bbr = inet_csk_ca(sk);
463
464 if ((bbr->mode == BBR_PROBE_BW) && !bbr->lt_use_bw &&
465 bbr_is_next_cycle_phase(sk, rs))
466 bbr_advance_cycle_phase(sk);
467}
468
469static void bbr_reset_startup_mode(struct sock *sk)
470{
471 struct bbr *bbr = inet_csk_ca(sk);
472
473 bbr->mode = BBR_STARTUP;
474 bbr->pacing_gain = bbr_high_gain;
475 bbr->cwnd_gain = bbr_high_gain;
476}
477
478static void bbr_reset_probe_bw_mode(struct sock *sk)
479{
480 struct bbr *bbr = inet_csk_ca(sk);
481
482 bbr->mode = BBR_PROBE_BW;
483 bbr->pacing_gain = BBR_UNIT;
484 bbr->cwnd_gain = bbr_cwnd_gain;
485 bbr->cycle_idx = CYCLE_LEN - 1 - prandom_u32_max(bbr_cycle_rand);
486 bbr_advance_cycle_phase(sk); /* flip to next phase of gain cycle */
487}
488
489static void bbr_reset_mode(struct sock *sk)
490{
491 if (!bbr_full_bw_reached(sk))
492 bbr_reset_startup_mode(sk);
493 else
494 bbr_reset_probe_bw_mode(sk);
495}
496
497/* Start a new long-term sampling interval. */
498static void bbr_reset_lt_bw_sampling_interval(struct sock *sk)
499{
500 struct tcp_sock *tp = tcp_sk(sk);
501 struct bbr *bbr = inet_csk_ca(sk);
502
503 bbr->lt_last_stamp = tp->delivered_mstamp.stamp_jiffies;
504 bbr->lt_last_delivered = tp->delivered;
505 bbr->lt_last_lost = tp->lost;
506 bbr->lt_rtt_cnt = 0;
507}
508
509/* Completely reset long-term bandwidth sampling. */
510static void bbr_reset_lt_bw_sampling(struct sock *sk)
511{
512 struct bbr *bbr = inet_csk_ca(sk);
513
514 bbr->lt_bw = 0;
515 bbr->lt_use_bw = 0;
516 bbr->lt_is_sampling = false;
517 bbr_reset_lt_bw_sampling_interval(sk);
518}
519
520/* Long-term bw sampling interval is done. Estimate whether we're policed. */
521static void bbr_lt_bw_interval_done(struct sock *sk, u32 bw)
522{
523 struct bbr *bbr = inet_csk_ca(sk);
524 u32 diff;
525
526 if (bbr->lt_bw) { /* do we have bw from a previous interval? */
527 /* Is new bw close to the lt_bw from the previous interval? */
528 diff = abs(bw - bbr->lt_bw);
529 if ((diff * BBR_UNIT <= bbr_lt_bw_ratio * bbr->lt_bw) ||
530 (bbr_rate_bytes_per_sec(sk, diff, BBR_UNIT) <=
531 bbr_lt_bw_diff)) {
532 /* All criteria are met; estimate we're policed. */
533 bbr->lt_bw = (bw + bbr->lt_bw) >> 1; /* avg 2 intvls */
534 bbr->lt_use_bw = 1;
535 bbr->pacing_gain = BBR_UNIT; /* try to avoid drops */
536 bbr->lt_rtt_cnt = 0;
537 return;
538 }
539 }
540 bbr->lt_bw = bw;
541 bbr_reset_lt_bw_sampling_interval(sk);
542}
543
544/* Token-bucket traffic policers are common (see "An Internet-Wide Analysis of
545 * Traffic Policing", SIGCOMM 2016). BBR detects token-bucket policers and
546 * explicitly models their policed rate, to reduce unnecessary losses. We
547 * estimate that we're policed if we see 2 consecutive sampling intervals with
548 * consistent throughput and high packet loss. If we think we're being policed,
549 * set lt_bw to the "long-term" average delivery rate from those 2 intervals.
550 */
551static void bbr_lt_bw_sampling(struct sock *sk, const struct rate_sample *rs)
552{
553 struct tcp_sock *tp = tcp_sk(sk);
554 struct bbr *bbr = inet_csk_ca(sk);
555 u32 lost, delivered;
556 u64 bw;
557 s32 t;
558
559 if (bbr->lt_use_bw) { /* already using long-term rate, lt_bw? */
560 if (bbr->mode == BBR_PROBE_BW && bbr->round_start &&
561 ++bbr->lt_rtt_cnt >= bbr_lt_bw_max_rtts) {
562 bbr_reset_lt_bw_sampling(sk); /* stop using lt_bw */
563 bbr_reset_probe_bw_mode(sk); /* restart gain cycling */
564 }
565 return;
566 }
567
568 /* Wait for the first loss before sampling, to let the policer exhaust
569 * its tokens and estimate the steady-state rate allowed by the policer.
570 * Starting samples earlier includes bursts that over-estimate the bw.
571 */
572 if (!bbr->lt_is_sampling) {
573 if (!rs->losses)
574 return;
575 bbr_reset_lt_bw_sampling_interval(sk);
576 bbr->lt_is_sampling = true;
577 }
578
579 /* To avoid underestimates, reset sampling if we run out of data. */
580 if (rs->is_app_limited) {
581 bbr_reset_lt_bw_sampling(sk);
582 return;
583 }
584
585 if (bbr->round_start)
586 bbr->lt_rtt_cnt++; /* count round trips in this interval */
587 if (bbr->lt_rtt_cnt < bbr_lt_intvl_min_rtts)
588 return; /* sampling interval needs to be longer */
589 if (bbr->lt_rtt_cnt > 4 * bbr_lt_intvl_min_rtts) {
590 bbr_reset_lt_bw_sampling(sk); /* interval is too long */
591 return;
592 }
593
594 /* End sampling interval when a packet is lost, so we estimate the
595 * policer tokens were exhausted. Stopping the sampling before the
596 * tokens are exhausted under-estimates the policed rate.
597 */
598 if (!rs->losses)
599 return;
600
601 /* Calculate packets lost and delivered in sampling interval. */
602 lost = tp->lost - bbr->lt_last_lost;
603 delivered = tp->delivered - bbr->lt_last_delivered;
604 /* Is loss rate (lost/delivered) >= lt_loss_thresh? If not, wait. */
605 if (!delivered || (lost << BBR_SCALE) < bbr_lt_loss_thresh * delivered)
606 return;
607
608 /* Find average delivery rate in this sampling interval. */
609 t = (s32)(tp->delivered_mstamp.stamp_jiffies - bbr->lt_last_stamp);
610 if (t < 1)
611 return; /* interval is less than one jiffy, so wait */
612 t = jiffies_to_usecs(t);
613 /* Interval long enough for jiffies_to_usecs() to return a bogus 0? */
614 if (t < 1) {
615 bbr_reset_lt_bw_sampling(sk); /* interval too long; reset */
616 return;
617 }
618 bw = (u64)delivered * BW_UNIT;
619 do_div(bw, t);
620 bbr_lt_bw_interval_done(sk, bw);
621}
622
623/* Estimate the bandwidth based on how fast packets are delivered */
624static void bbr_update_bw(struct sock *sk, const struct rate_sample *rs)
625{
626 struct tcp_sock *tp = tcp_sk(sk);
627 struct bbr *bbr = inet_csk_ca(sk);
628 u64 bw;
629
630 bbr->round_start = 0;
631 if (rs->delivered < 0 || rs->interval_us <= 0)
632 return; /* Not a valid observation */
633
634 /* See if we've reached the next RTT */
635 if (!before(rs->prior_delivered, bbr->next_rtt_delivered)) {
636 bbr->next_rtt_delivered = tp->delivered;
637 bbr->rtt_cnt++;
638 bbr->round_start = 1;
639 bbr->packet_conservation = 0;
640 }
641
642 bbr_lt_bw_sampling(sk, rs);
643
644 /* Divide delivered by the interval to find a (lower bound) bottleneck
645 * bandwidth sample. Delivered is in packets and interval_us in uS and
646 * ratio will be <<1 for most connections. So delivered is first scaled.
647 */
648 bw = (u64)rs->delivered * BW_UNIT;
649 do_div(bw, rs->interval_us);
650
651 /* If this sample is application-limited, it is likely to have a very
652 * low delivered count that represents application behavior rather than
653 * the available network rate. Such a sample could drag down estimated
654 * bw, causing needless slow-down. Thus, to continue to send at the
655 * last measured network rate, we filter out app-limited samples unless
656 * they describe the path bw at least as well as our bw model.
657 *
658 * So the goal during app-limited phase is to proceed with the best
659 * network rate no matter how long. We automatically leave this
660 * phase when app writes faster than the network can deliver :)
661 */
662 if (!rs->is_app_limited || bw >= bbr_max_bw(sk)) {
663 /* Incorporate new sample into our max bw filter. */
664 minmax_running_max(&bbr->bw, bbr_bw_rtts, bbr->rtt_cnt, bw);
665 }
666}
667
668/* Estimate when the pipe is full, using the change in delivery rate: BBR
669 * estimates that STARTUP filled the pipe if the estimated bw hasn't changed by
670 * at least bbr_full_bw_thresh (25%) after bbr_full_bw_cnt (3) non-app-limited
671 * rounds. Why 3 rounds: 1: rwin autotuning grows the rwin, 2: we fill the
672 * higher rwin, 3: we get higher delivery rate samples. Or transient
673 * cross-traffic or radio noise can go away. CUBIC Hystart shares a similar
674 * design goal, but uses delay and inter-ACK spacing instead of bandwidth.
675 */
676static void bbr_check_full_bw_reached(struct sock *sk,
677 const struct rate_sample *rs)
678{
679 struct bbr *bbr = inet_csk_ca(sk);
680 u32 bw_thresh;
681
682 if (bbr_full_bw_reached(sk) || !bbr->round_start || rs->is_app_limited)
683 return;
684
685 bw_thresh = (u64)bbr->full_bw * bbr_full_bw_thresh >> BBR_SCALE;
686 if (bbr_max_bw(sk) >= bw_thresh) {
687 bbr->full_bw = bbr_max_bw(sk);
688 bbr->full_bw_cnt = 0;
689 return;
690 }
691 ++bbr->full_bw_cnt;
Neal Cardwella4bf8ef2017-12-07 12:43:30 -0500692 bbr->full_bw_reached = bbr->full_bw_cnt >= bbr_full_bw_cnt;
Neal Cardwell0f8782e2016-09-19 23:39:23 -0400693}
694
695/* If pipe is probably full, drain the queue and then enter steady-state. */
696static void bbr_check_drain(struct sock *sk, const struct rate_sample *rs)
697{
698 struct bbr *bbr = inet_csk_ca(sk);
699
700 if (bbr->mode == BBR_STARTUP && bbr_full_bw_reached(sk)) {
701 bbr->mode = BBR_DRAIN; /* drain queue we created */
702 bbr->pacing_gain = bbr_drain_gain; /* pace slow to drain */
703 bbr->cwnd_gain = bbr_high_gain; /* maintain cwnd */
704 } /* fall through to check if in-flight is already small: */
705 if (bbr->mode == BBR_DRAIN &&
706 tcp_packets_in_flight(tcp_sk(sk)) <=
707 bbr_target_cwnd(sk, bbr_max_bw(sk), BBR_UNIT))
708 bbr_reset_probe_bw_mode(sk); /* we estimate queue is drained */
709}
710
711/* The goal of PROBE_RTT mode is to have BBR flows cooperatively and
712 * periodically drain the bottleneck queue, to converge to measure the true
713 * min_rtt (unloaded propagation delay). This allows the flows to keep queues
714 * small (reducing queuing delay and packet loss) and achieve fairness among
715 * BBR flows.
716 *
717 * The min_rtt filter window is 10 seconds. When the min_rtt estimate expires,
718 * we enter PROBE_RTT mode and cap the cwnd at bbr_cwnd_min_target=4 packets.
719 * After at least bbr_probe_rtt_mode_ms=200ms and at least one packet-timed
720 * round trip elapsed with that flight size <= 4, we leave PROBE_RTT mode and
721 * re-enter the previous mode. BBR uses 200ms to approximately bound the
722 * performance penalty of PROBE_RTT's cwnd capping to roughly 2% (200ms/10s).
723 *
724 * Note that flows need only pay 2% if they are busy sending over the last 10
725 * seconds. Interactive applications (e.g., Web, RPCs, video chunks) often have
726 * natural silences or low-rate periods within 10 seconds where the rate is low
727 * enough for long enough to drain its queue in the bottleneck. We pick up
728 * these min RTT measurements opportunistically with our min_rtt filter. :-)
729 */
730static void bbr_update_min_rtt(struct sock *sk, const struct rate_sample *rs)
731{
732 struct tcp_sock *tp = tcp_sk(sk);
733 struct bbr *bbr = inet_csk_ca(sk);
734 bool filter_expired;
735
736 /* Track min RTT seen in the min_rtt_win_sec filter window: */
737 filter_expired = after(tcp_time_stamp,
738 bbr->min_rtt_stamp + bbr_min_rtt_win_sec * HZ);
739 if (rs->rtt_us >= 0 &&
740 (rs->rtt_us <= bbr->min_rtt_us || filter_expired)) {
741 bbr->min_rtt_us = rs->rtt_us;
742 bbr->min_rtt_stamp = tcp_time_stamp;
743 }
744
745 if (bbr_probe_rtt_mode_ms > 0 && filter_expired &&
746 !bbr->idle_restart && bbr->mode != BBR_PROBE_RTT) {
747 bbr->mode = BBR_PROBE_RTT; /* dip, drain queue */
748 bbr->pacing_gain = BBR_UNIT;
749 bbr->cwnd_gain = BBR_UNIT;
750 bbr_save_cwnd(sk); /* note cwnd so we can restore it */
751 bbr->probe_rtt_done_stamp = 0;
752 }
753
754 if (bbr->mode == BBR_PROBE_RTT) {
755 /* Ignore low rate samples during this mode. */
756 tp->app_limited =
757 (tp->delivered + tcp_packets_in_flight(tp)) ? : 1;
758 /* Maintain min packets in flight for max(200 ms, 1 round). */
759 if (!bbr->probe_rtt_done_stamp &&
760 tcp_packets_in_flight(tp) <= bbr_cwnd_min_target) {
761 bbr->probe_rtt_done_stamp = tcp_time_stamp +
762 msecs_to_jiffies(bbr_probe_rtt_mode_ms);
763 bbr->probe_rtt_round_done = 0;
764 bbr->next_rtt_delivered = tp->delivered;
765 } else if (bbr->probe_rtt_done_stamp) {
766 if (bbr->round_start)
767 bbr->probe_rtt_round_done = 1;
768 if (bbr->probe_rtt_round_done &&
769 after(tcp_time_stamp, bbr->probe_rtt_done_stamp)) {
770 bbr->min_rtt_stamp = tcp_time_stamp;
771 bbr->restore_cwnd = 1; /* snap to prior_cwnd */
772 bbr_reset_mode(sk);
773 }
774 }
775 }
776 bbr->idle_restart = 0;
777}
778
779static void bbr_update_model(struct sock *sk, const struct rate_sample *rs)
780{
781 bbr_update_bw(sk, rs);
782 bbr_update_cycle_phase(sk, rs);
783 bbr_check_full_bw_reached(sk, rs);
784 bbr_check_drain(sk, rs);
785 bbr_update_min_rtt(sk, rs);
786}
787
788static void bbr_main(struct sock *sk, const struct rate_sample *rs)
789{
790 struct bbr *bbr = inet_csk_ca(sk);
791 u32 bw;
792
793 bbr_update_model(sk, rs);
794
795 bw = bbr_bw(sk);
796 bbr_set_pacing_rate(sk, bw, bbr->pacing_gain);
797 bbr_set_tso_segs_goal(sk);
798 bbr_set_cwnd(sk, rs, rs->acked_sacked, bw, bbr->cwnd_gain);
799}
800
801static void bbr_init(struct sock *sk)
802{
803 struct tcp_sock *tp = tcp_sk(sk);
804 struct bbr *bbr = inet_csk_ca(sk);
Neal Cardwell0f8782e2016-09-19 23:39:23 -0400805
806 bbr->prior_cwnd = 0;
807 bbr->tso_segs_goal = 0; /* default segs per skb until first ACK */
808 bbr->rtt_cnt = 0;
809 bbr->next_rtt_delivered = 0;
810 bbr->prev_ca_state = TCP_CA_Open;
811 bbr->packet_conservation = 0;
812
813 bbr->probe_rtt_done_stamp = 0;
814 bbr->probe_rtt_round_done = 0;
815 bbr->min_rtt_us = tcp_min_rtt(tp);
816 bbr->min_rtt_stamp = tcp_time_stamp;
817
818 minmax_reset(&bbr->bw, bbr->rtt_cnt, 0); /* init max bw to 0 */
819
Neal Cardwell0cd73c42017-07-14 17:49:25 -0400820 bbr->has_seen_rtt = 0;
Neal Cardwell0c0ede32017-07-14 17:49:23 -0400821 bbr_init_pacing_rate_from_rtt(sk);
Neal Cardwell0f8782e2016-09-19 23:39:23 -0400822
823 bbr->restore_cwnd = 0;
824 bbr->round_start = 0;
825 bbr->idle_restart = 0;
Neal Cardwella4bf8ef2017-12-07 12:43:30 -0500826 bbr->full_bw_reached = 0;
Neal Cardwell0f8782e2016-09-19 23:39:23 -0400827 bbr->full_bw = 0;
828 bbr->full_bw_cnt = 0;
829 bbr->cycle_mstamp.v64 = 0;
830 bbr->cycle_idx = 0;
831 bbr_reset_lt_bw_sampling(sk);
832 bbr_reset_startup_mode(sk);
833}
834
835static u32 bbr_sndbuf_expand(struct sock *sk)
836{
837 /* Provision 3 * cwnd since BBR may slow-start even during recovery. */
838 return 3;
839}
840
841/* In theory BBR does not need to undo the cwnd since it does not
842 * always reduce cwnd on losses (see bbr_main()). Keep it for now.
843 */
844static u32 bbr_undo_cwnd(struct sock *sk)
845{
Neal Cardwell61c51da2017-12-07 12:43:31 -0500846 struct bbr *bbr = inet_csk_ca(sk);
847
848 bbr->full_bw = 0; /* spurious slow-down; reset full pipe detection */
849 bbr->full_bw_cnt = 0;
Neal Cardwell8824b2d2017-12-07 12:43:32 -0500850 bbr_reset_lt_bw_sampling(sk);
Neal Cardwell0f8782e2016-09-19 23:39:23 -0400851 return tcp_sk(sk)->snd_cwnd;
852}
853
854/* Entering loss recovery, so save cwnd for when we exit or undo recovery. */
855static u32 bbr_ssthresh(struct sock *sk)
856{
857 bbr_save_cwnd(sk);
858 return TCP_INFINITE_SSTHRESH; /* BBR does not use ssthresh */
859}
860
861static size_t bbr_get_info(struct sock *sk, u32 ext, int *attr,
862 union tcp_cc_info *info)
863{
864 if (ext & (1 << (INET_DIAG_BBRINFO - 1)) ||
865 ext & (1 << (INET_DIAG_VEGASINFO - 1))) {
866 struct tcp_sock *tp = tcp_sk(sk);
867 struct bbr *bbr = inet_csk_ca(sk);
868 u64 bw = bbr_bw(sk);
869
870 bw = bw * tp->mss_cache * USEC_PER_SEC >> BW_SCALE;
871 memset(&info->bbr, 0, sizeof(info->bbr));
872 info->bbr.bbr_bw_lo = (u32)bw;
873 info->bbr.bbr_bw_hi = (u32)(bw >> 32);
874 info->bbr.bbr_min_rtt = bbr->min_rtt_us;
875 info->bbr.bbr_pacing_gain = bbr->pacing_gain;
876 info->bbr.bbr_cwnd_gain = bbr->cwnd_gain;
877 *attr = INET_DIAG_BBRINFO;
878 return sizeof(info->bbr);
879 }
880 return 0;
881}
882
883static void bbr_set_state(struct sock *sk, u8 new_state)
884{
885 struct bbr *bbr = inet_csk_ca(sk);
886
887 if (new_state == TCP_CA_Loss) {
888 struct rate_sample rs = { .losses = 1 };
889
890 bbr->prev_ca_state = TCP_CA_Loss;
891 bbr->full_bw = 0;
892 bbr->round_start = 1; /* treat RTO like end of a round */
893 bbr_lt_bw_sampling(sk, &rs);
894 }
895}
896
897static struct tcp_congestion_ops tcp_bbr_cong_ops __read_mostly = {
898 .flags = TCP_CONG_NON_RESTRICTED,
899 .name = "bbr",
900 .owner = THIS_MODULE,
901 .init = bbr_init,
902 .cong_control = bbr_main,
903 .sndbuf_expand = bbr_sndbuf_expand,
904 .undo_cwnd = bbr_undo_cwnd,
905 .cwnd_event = bbr_cwnd_event,
906 .ssthresh = bbr_ssthresh,
907 .tso_segs_goal = bbr_tso_segs_goal,
908 .get_info = bbr_get_info,
909 .set_state = bbr_set_state,
910};
911
912static int __init bbr_register(void)
913{
914 BUILD_BUG_ON(sizeof(struct bbr) > ICSK_CA_PRIV_SIZE);
915 return tcp_register_congestion_control(&tcp_bbr_cong_ops);
916}
917
918static void __exit bbr_unregister(void)
919{
920 tcp_unregister_congestion_control(&tcp_bbr_cong_ops);
921}
922
923module_init(bbr_register);
924module_exit(bbr_unregister);
925
926MODULE_AUTHOR("Van Jacobson <vanj@google.com>");
927MODULE_AUTHOR("Neal Cardwell <ncardwell@google.com>");
928MODULE_AUTHOR("Yuchung Cheng <ycheng@google.com>");
929MODULE_AUTHOR("Soheil Hassas Yeganeh <soheil@google.com>");
930MODULE_LICENSE("Dual BSD/GPL");
931MODULE_DESCRIPTION("TCP BBR (Bottleneck Bandwidth and RTT)");