blob: 34da5230faab4617cfe9bba4c43ac83cc083ab12 [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001#ifndef _LINUX_PAGEMAP_H
2#define _LINUX_PAGEMAP_H
3
4/*
5 * Copyright 1995 Linus Torvalds
6 */
7#include <linux/mm.h>
8#include <linux/fs.h>
9#include <linux/list.h>
10#include <linux/highmem.h>
11#include <linux/compiler.h>
12#include <asm/uaccess.h>
13#include <linux/gfp.h>
Guillaume Chazarain3e9f45b2007-05-08 00:23:25 -070014#include <linux/bitops.h>
Nick Piggine2867812008-07-25 19:45:30 -070015#include <linux/hardirq.h> /* for in_interrupt() */
Linus Torvalds1da177e2005-04-16 15:20:36 -070016
17/*
18 * Bits in mapping->flags. The lower __GFP_BITS_SHIFT bits are the page
19 * allocation mode flags.
20 */
Lee Schermerhorn9a896c92009-04-02 16:56:45 -070021enum mapping_flags {
22 AS_EIO = __GFP_BITS_SHIFT + 0, /* IO error on async write */
23 AS_ENOSPC = __GFP_BITS_SHIFT + 1, /* ENOSPC on async write */
24 AS_MM_ALL_LOCKS = __GFP_BITS_SHIFT + 2, /* under mm_take_all_locks() */
25#ifdef CONFIG_UNEVICTABLE_LRU
26 AS_UNEVICTABLE = __GFP_BITS_SHIFT + 3, /* e.g., ramdisk, SHM_LOCK */
27#endif
28};
Linus Torvalds1da177e2005-04-16 15:20:36 -070029
Guillaume Chazarain3e9f45b2007-05-08 00:23:25 -070030static inline void mapping_set_error(struct address_space *mapping, int error)
31{
Andrew Morton2185e692008-07-23 21:27:19 -070032 if (unlikely(error)) {
Guillaume Chazarain3e9f45b2007-05-08 00:23:25 -070033 if (error == -ENOSPC)
34 set_bit(AS_ENOSPC, &mapping->flags);
35 else
36 set_bit(AS_EIO, &mapping->flags);
37 }
38}
39
Lee Schermerhornba9ddf42008-10-18 20:26:42 -070040#ifdef CONFIG_UNEVICTABLE_LRU
Lee Schermerhornba9ddf42008-10-18 20:26:42 -070041
42static inline void mapping_set_unevictable(struct address_space *mapping)
43{
44 set_bit(AS_UNEVICTABLE, &mapping->flags);
45}
46
Lee Schermerhorn89e004ea2008-10-18 20:26:43 -070047static inline void mapping_clear_unevictable(struct address_space *mapping)
48{
49 clear_bit(AS_UNEVICTABLE, &mapping->flags);
50}
51
Lee Schermerhornba9ddf42008-10-18 20:26:42 -070052static inline int mapping_unevictable(struct address_space *mapping)
53{
Lee Schermerhorn89e004ea2008-10-18 20:26:43 -070054 if (likely(mapping))
55 return test_bit(AS_UNEVICTABLE, &mapping->flags);
56 return !!mapping;
Lee Schermerhornba9ddf42008-10-18 20:26:42 -070057}
58#else
59static inline void mapping_set_unevictable(struct address_space *mapping) { }
Lee Schermerhorn89e004ea2008-10-18 20:26:43 -070060static inline void mapping_clear_unevictable(struct address_space *mapping) { }
Lee Schermerhornba9ddf42008-10-18 20:26:42 -070061static inline int mapping_unevictable(struct address_space *mapping)
62{
63 return 0;
64}
65#endif
66
Al Virodd0fc662005-10-07 07:46:04 +010067static inline gfp_t mapping_gfp_mask(struct address_space * mapping)
Linus Torvalds1da177e2005-04-16 15:20:36 -070068{
Al Viro260b2362005-10-21 03:22:44 -040069 return (__force gfp_t)mapping->flags & __GFP_BITS_MASK;
Linus Torvalds1da177e2005-04-16 15:20:36 -070070}
71
72/*
73 * This is non-atomic. Only to be used before the mapping is activated.
74 * Probably needs a barrier...
75 */
Al Viro260b2362005-10-21 03:22:44 -040076static inline void mapping_set_gfp_mask(struct address_space *m, gfp_t mask)
Linus Torvalds1da177e2005-04-16 15:20:36 -070077{
Al Viro260b2362005-10-21 03:22:44 -040078 m->flags = (m->flags & ~(__force unsigned long)__GFP_BITS_MASK) |
79 (__force unsigned long)mask;
Linus Torvalds1da177e2005-04-16 15:20:36 -070080}
81
82/*
83 * The page cache can done in larger chunks than
84 * one page, because it allows for more efficient
85 * throughput (it can then be mapped into user
86 * space in smaller chunks for same flexibility).
87 *
88 * Or rather, it _will_ be done in larger chunks.
89 */
90#define PAGE_CACHE_SHIFT PAGE_SHIFT
91#define PAGE_CACHE_SIZE PAGE_SIZE
92#define PAGE_CACHE_MASK PAGE_MASK
93#define PAGE_CACHE_ALIGN(addr) (((addr)+PAGE_CACHE_SIZE-1)&PAGE_CACHE_MASK)
94
95#define page_cache_get(page) get_page(page)
96#define page_cache_release(page) put_page(page)
97void release_pages(struct page **pages, int nr, int cold);
98
Nick Piggine2867812008-07-25 19:45:30 -070099/*
100 * speculatively take a reference to a page.
101 * If the page is free (_count == 0), then _count is untouched, and 0
102 * is returned. Otherwise, _count is incremented by 1 and 1 is returned.
103 *
104 * This function must be called inside the same rcu_read_lock() section as has
105 * been used to lookup the page in the pagecache radix-tree (or page table):
106 * this allows allocators to use a synchronize_rcu() to stabilize _count.
107 *
108 * Unless an RCU grace period has passed, the count of all pages coming out
109 * of the allocator must be considered unstable. page_count may return higher
110 * than expected, and put_page must be able to do the right thing when the
111 * page has been finished with, no matter what it is subsequently allocated
112 * for (because put_page is what is used here to drop an invalid speculative
113 * reference).
114 *
115 * This is the interesting part of the lockless pagecache (and lockless
116 * get_user_pages) locking protocol, where the lookup-side (eg. find_get_page)
117 * has the following pattern:
118 * 1. find page in radix tree
119 * 2. conditionally increment refcount
120 * 3. check the page is still in pagecache (if no, goto 1)
121 *
122 * Remove-side that cares about stability of _count (eg. reclaim) has the
123 * following (with tree_lock held for write):
124 * A. atomically check refcount is correct and set it to 0 (atomic_cmpxchg)
125 * B. remove page from pagecache
126 * C. free the page
127 *
128 * There are 2 critical interleavings that matter:
129 * - 2 runs before A: in this case, A sees elevated refcount and bails out
130 * - A runs before 2: in this case, 2 sees zero refcount and retries;
131 * subsequently, B will complete and 1 will find no page, causing the
132 * lookup to return NULL.
133 *
134 * It is possible that between 1 and 2, the page is removed then the exact same
135 * page is inserted into the same position in pagecache. That's OK: the
136 * old find_get_page using tree_lock could equally have run before or after
137 * such a re-insertion, depending on order that locks are granted.
138 *
139 * Lookups racing against pagecache insertion isn't a big problem: either 1
140 * will find the page or it will not. Likewise, the old find_get_page could run
141 * either before the insertion or afterwards, depending on timing.
142 */
143static inline int page_cache_get_speculative(struct page *page)
144{
145 VM_BUG_ON(in_interrupt());
146
147#if !defined(CONFIG_SMP) && defined(CONFIG_CLASSIC_RCU)
148# ifdef CONFIG_PREEMPT
149 VM_BUG_ON(!in_atomic());
150# endif
151 /*
152 * Preempt must be disabled here - we rely on rcu_read_lock doing
153 * this for us.
154 *
155 * Pagecache won't be truncated from interrupt context, so if we have
156 * found a page in the radix tree here, we have pinned its refcount by
157 * disabling preempt, and hence no need for the "speculative get" that
158 * SMP requires.
159 */
160 VM_BUG_ON(page_count(page) == 0);
161 atomic_inc(&page->_count);
162
163#else
164 if (unlikely(!get_page_unless_zero(page))) {
165 /*
166 * Either the page has been freed, or will be freed.
167 * In either case, retry here and the caller should
168 * do the right thing (see comments above).
169 */
170 return 0;
171 }
172#endif
173 VM_BUG_ON(PageTail(page));
174
175 return 1;
176}
177
Nick Piggince0ad7f2008-07-30 15:23:13 +1000178/*
179 * Same as above, but add instead of inc (could just be merged)
180 */
181static inline int page_cache_add_speculative(struct page *page, int count)
182{
183 VM_BUG_ON(in_interrupt());
184
185#if !defined(CONFIG_SMP) && defined(CONFIG_CLASSIC_RCU)
186# ifdef CONFIG_PREEMPT
187 VM_BUG_ON(!in_atomic());
188# endif
189 VM_BUG_ON(page_count(page) == 0);
190 atomic_add(count, &page->_count);
191
192#else
193 if (unlikely(!atomic_add_unless(&page->_count, count, 0)))
194 return 0;
195#endif
196 VM_BUG_ON(PageCompound(page) && page != compound_head(page));
197
198 return 1;
199}
200
Nick Piggine2867812008-07-25 19:45:30 -0700201static inline int page_freeze_refs(struct page *page, int count)
202{
203 return likely(atomic_cmpxchg(&page->_count, count, 0) == count);
204}
205
206static inline void page_unfreeze_refs(struct page *page, int count)
207{
208 VM_BUG_ON(page_count(page) != 0);
209 VM_BUG_ON(count == 0);
210
211 atomic_set(&page->_count, count);
212}
213
Paul Jackson44110fe2006-03-24 03:16:04 -0800214#ifdef CONFIG_NUMA
Nick Piggin2ae88142006-10-28 10:38:23 -0700215extern struct page *__page_cache_alloc(gfp_t gfp);
Paul Jackson44110fe2006-03-24 03:16:04 -0800216#else
Nick Piggin2ae88142006-10-28 10:38:23 -0700217static inline struct page *__page_cache_alloc(gfp_t gfp)
218{
219 return alloc_pages(gfp, 0);
220}
221#endif
222
Linus Torvalds1da177e2005-04-16 15:20:36 -0700223static inline struct page *page_cache_alloc(struct address_space *x)
224{
Nick Piggin2ae88142006-10-28 10:38:23 -0700225 return __page_cache_alloc(mapping_gfp_mask(x));
Linus Torvalds1da177e2005-04-16 15:20:36 -0700226}
227
228static inline struct page *page_cache_alloc_cold(struct address_space *x)
229{
Nick Piggin2ae88142006-10-28 10:38:23 -0700230 return __page_cache_alloc(mapping_gfp_mask(x)|__GFP_COLD);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700231}
232
233typedef int filler_t(void *, struct page *);
234
235extern struct page * find_get_page(struct address_space *mapping,
Fengguang Wu57f6b962007-10-16 01:24:37 -0700236 pgoff_t index);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700237extern struct page * find_lock_page(struct address_space *mapping,
Fengguang Wu57f6b962007-10-16 01:24:37 -0700238 pgoff_t index);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700239extern struct page * find_or_create_page(struct address_space *mapping,
Fengguang Wu57f6b962007-10-16 01:24:37 -0700240 pgoff_t index, gfp_t gfp_mask);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700241unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
242 unsigned int nr_pages, struct page **pages);
Jens Axboeebf43502006-04-27 08:46:01 +0200243unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t start,
244 unsigned int nr_pages, struct page **pages);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700245unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
246 int tag, unsigned int nr_pages, struct page **pages);
247
Nick Piggin54566b22009-01-04 12:00:53 -0800248struct page *grab_cache_page_write_begin(struct address_space *mapping,
249 pgoff_t index, unsigned flags);
Nick Pigginafddba42007-10-16 01:25:01 -0700250
Linus Torvalds1da177e2005-04-16 15:20:36 -0700251/*
252 * Returns locked page at given index in given cache, creating it if needed.
253 */
Fengguang Wu57f6b962007-10-16 01:24:37 -0700254static inline struct page *grab_cache_page(struct address_space *mapping,
255 pgoff_t index)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700256{
257 return find_or_create_page(mapping, index, mapping_gfp_mask(mapping));
258}
259
260extern struct page * grab_cache_page_nowait(struct address_space *mapping,
Fengguang Wu57f6b962007-10-16 01:24:37 -0700261 pgoff_t index);
Nick Piggin6fe69002007-05-06 14:49:04 -0700262extern struct page * read_cache_page_async(struct address_space *mapping,
Fengguang Wu57f6b962007-10-16 01:24:37 -0700263 pgoff_t index, filler_t *filler,
Nick Piggin6fe69002007-05-06 14:49:04 -0700264 void *data);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700265extern struct page * read_cache_page(struct address_space *mapping,
Fengguang Wu57f6b962007-10-16 01:24:37 -0700266 pgoff_t index, filler_t *filler,
Linus Torvalds1da177e2005-04-16 15:20:36 -0700267 void *data);
268extern int read_cache_pages(struct address_space *mapping,
269 struct list_head *pages, filler_t *filler, void *data);
270
Nick Piggin6fe69002007-05-06 14:49:04 -0700271static inline struct page *read_mapping_page_async(
272 struct address_space *mapping,
Fengguang Wu57f6b962007-10-16 01:24:37 -0700273 pgoff_t index, void *data)
Nick Piggin6fe69002007-05-06 14:49:04 -0700274{
275 filler_t *filler = (filler_t *)mapping->a_ops->readpage;
276 return read_cache_page_async(mapping, index, filler, data);
277}
278
Pekka Enberg090d2b12006-06-23 02:05:08 -0700279static inline struct page *read_mapping_page(struct address_space *mapping,
Fengguang Wu57f6b962007-10-16 01:24:37 -0700280 pgoff_t index, void *data)
Pekka Enberg090d2b12006-06-23 02:05:08 -0700281{
282 filler_t *filler = (filler_t *)mapping->a_ops->readpage;
283 return read_cache_page(mapping, index, filler, data);
284}
285
Nick Piggine2867812008-07-25 19:45:30 -0700286/*
Linus Torvalds1da177e2005-04-16 15:20:36 -0700287 * Return byte-offset into filesystem object for page.
288 */
289static inline loff_t page_offset(struct page *page)
290{
291 return ((loff_t)page->index) << PAGE_CACHE_SHIFT;
292}
293
294static inline pgoff_t linear_page_index(struct vm_area_struct *vma,
295 unsigned long address)
296{
297 pgoff_t pgoff = (address - vma->vm_start) >> PAGE_SHIFT;
298 pgoff += vma->vm_pgoff;
299 return pgoff >> (PAGE_CACHE_SHIFT - PAGE_SHIFT);
300}
301
Harvey Harrisonb3c97522008-02-13 15:03:15 -0800302extern void __lock_page(struct page *page);
303extern int __lock_page_killable(struct page *page);
304extern void __lock_page_nosync(struct page *page);
305extern void unlock_page(struct page *page);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700306
Nick Pigginf45840b2008-10-18 20:26:57 -0700307static inline void __set_page_locked(struct page *page)
Nick Piggin529ae9a2008-08-02 12:01:03 +0200308{
Nick Pigginf45840b2008-10-18 20:26:57 -0700309 __set_bit(PG_locked, &page->flags);
Nick Piggin529ae9a2008-08-02 12:01:03 +0200310}
311
Nick Pigginf45840b2008-10-18 20:26:57 -0700312static inline void __clear_page_locked(struct page *page)
Nick Piggin529ae9a2008-08-02 12:01:03 +0200313{
Nick Pigginf45840b2008-10-18 20:26:57 -0700314 __clear_bit(PG_locked, &page->flags);
Nick Piggin529ae9a2008-08-02 12:01:03 +0200315}
316
317static inline int trylock_page(struct page *page)
318{
Nick Piggin8413ac92008-10-18 20:26:59 -0700319 return (likely(!test_and_set_bit_lock(PG_locked, &page->flags)));
Nick Piggin529ae9a2008-08-02 12:01:03 +0200320}
321
Nick Piggindb376482006-09-25 23:31:24 -0700322/*
323 * lock_page may only be called if we have the page's inode pinned.
324 */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700325static inline void lock_page(struct page *page)
326{
327 might_sleep();
Nick Piggin529ae9a2008-08-02 12:01:03 +0200328 if (!trylock_page(page))
Linus Torvalds1da177e2005-04-16 15:20:36 -0700329 __lock_page(page);
330}
Nick Piggindb376482006-09-25 23:31:24 -0700331
332/*
Matthew Wilcox2687a352007-12-06 11:18:49 -0500333 * lock_page_killable is like lock_page but can be interrupted by fatal
334 * signals. It returns 0 if it locked the page and -EINTR if it was
335 * killed while waiting.
336 */
337static inline int lock_page_killable(struct page *page)
338{
339 might_sleep();
Nick Piggin529ae9a2008-08-02 12:01:03 +0200340 if (!trylock_page(page))
Matthew Wilcox2687a352007-12-06 11:18:49 -0500341 return __lock_page_killable(page);
342 return 0;
343}
344
345/*
Nick Piggindb376482006-09-25 23:31:24 -0700346 * lock_page_nosync should only be used if we can't pin the page's inode.
347 * Doesn't play quite so well with block device plugging.
348 */
349static inline void lock_page_nosync(struct page *page)
350{
351 might_sleep();
Nick Piggin529ae9a2008-08-02 12:01:03 +0200352 if (!trylock_page(page))
Nick Piggindb376482006-09-25 23:31:24 -0700353 __lock_page_nosync(page);
354}
Linus Torvalds1da177e2005-04-16 15:20:36 -0700355
356/*
357 * This is exported only for wait_on_page_locked/wait_on_page_writeback.
358 * Never use this directly!
359 */
Harvey Harrisonb3c97522008-02-13 15:03:15 -0800360extern void wait_on_page_bit(struct page *page, int bit_nr);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700361
362/*
363 * Wait for a page to be unlocked.
364 *
365 * This must be called with the caller "holding" the page,
366 * ie with increased "page->count" so that the page won't
367 * go away during the wait..
368 */
369static inline void wait_on_page_locked(struct page *page)
370{
371 if (PageLocked(page))
372 wait_on_page_bit(page, PG_locked);
373}
374
375/*
376 * Wait for a page to complete writeback
377 */
378static inline void wait_on_page_writeback(struct page *page)
379{
380 if (PageWriteback(page))
381 wait_on_page_bit(page, PG_writeback);
382}
383
384extern void end_page_writeback(struct page *page);
385
386/*
David Howells385e1ca5f2009-04-03 16:42:39 +0100387 * Add an arbitrary waiter to a page's wait queue
388 */
389extern void add_page_wait_queue(struct page *page, wait_queue_t *waiter);
390
391/*
Linus Torvalds1da177e2005-04-16 15:20:36 -0700392 * Fault a userspace page into pagetables. Return non-zero on a fault.
393 *
394 * This assumes that two userspace pages are always sufficient. That's
395 * not true if PAGE_CACHE_SIZE > PAGE_SIZE.
396 */
397static inline int fault_in_pages_writeable(char __user *uaddr, int size)
398{
399 int ret;
400
Nick Piggin08291422007-10-16 01:24:59 -0700401 if (unlikely(size == 0))
402 return 0;
403
Linus Torvalds1da177e2005-04-16 15:20:36 -0700404 /*
405 * Writing zeroes into userspace here is OK, because we know that if
406 * the zero gets there, we'll be overwriting it.
407 */
408 ret = __put_user(0, uaddr);
409 if (ret == 0) {
410 char __user *end = uaddr + size - 1;
411
412 /*
413 * If the page was already mapped, this will get a cache miss
414 * for sure, so try to avoid doing it.
415 */
416 if (((unsigned long)uaddr & PAGE_MASK) !=
417 ((unsigned long)end & PAGE_MASK))
418 ret = __put_user(0, end);
419 }
420 return ret;
421}
422
Nick Piggin08291422007-10-16 01:24:59 -0700423static inline int fault_in_pages_readable(const char __user *uaddr, int size)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700424{
425 volatile char c;
426 int ret;
427
Nick Piggin08291422007-10-16 01:24:59 -0700428 if (unlikely(size == 0))
429 return 0;
430
Linus Torvalds1da177e2005-04-16 15:20:36 -0700431 ret = __get_user(c, uaddr);
432 if (ret == 0) {
433 const char __user *end = uaddr + size - 1;
434
435 if (((unsigned long)uaddr & PAGE_MASK) !=
436 ((unsigned long)end & PAGE_MASK))
Nick Piggin08291422007-10-16 01:24:59 -0700437 ret = __get_user(c, end);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700438 }
Nick Piggin08291422007-10-16 01:24:59 -0700439 return ret;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700440}
441
Nick Piggin529ae9a2008-08-02 12:01:03 +0200442int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
443 pgoff_t index, gfp_t gfp_mask);
444int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
445 pgoff_t index, gfp_t gfp_mask);
446extern void remove_from_page_cache(struct page *page);
447extern void __remove_from_page_cache(struct page *page);
448
449/*
450 * Like add_to_page_cache_locked, but used to add newly allocated pages:
Nick Pigginf45840b2008-10-18 20:26:57 -0700451 * the page is new, so we can just run __set_page_locked() against it.
Nick Piggin529ae9a2008-08-02 12:01:03 +0200452 */
453static inline int add_to_page_cache(struct page *page,
454 struct address_space *mapping, pgoff_t offset, gfp_t gfp_mask)
455{
456 int error;
457
Nick Pigginf45840b2008-10-18 20:26:57 -0700458 __set_page_locked(page);
Nick Piggin529ae9a2008-08-02 12:01:03 +0200459 error = add_to_page_cache_locked(page, mapping, offset, gfp_mask);
460 if (unlikely(error))
Nick Pigginf45840b2008-10-18 20:26:57 -0700461 __clear_page_locked(page);
Nick Piggin529ae9a2008-08-02 12:01:03 +0200462 return error;
463}
464
Linus Torvalds1da177e2005-04-16 15:20:36 -0700465#endif /* _LINUX_PAGEMAP_H */