blob: ab650765a64747bc6c1c777c1d7a3ac288b589d1 [file] [log] [blame]
Alan Cox89c78132011-11-03 18:22:15 +00001/*
2 * Copyright © 2006-2011 Intel Corporation
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, write to the Free Software Foundation, Inc.,
15 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
16 *
17 * Authors:
18 * Eric Anholt <eric@anholt.net>
19 */
20
21#include <linux/i2c.h>
22#include <linux/pm_runtime.h>
23
24#include <drm/drmP.h>
25#include "framebuffer.h"
26#include "psb_drv.h"
27#include "psb_intel_drv.h"
28#include "psb_intel_reg.h"
29#include "psb_intel_display.h"
30#include "power.h"
31
32struct psb_intel_clock_t {
33 /* given values */
34 int n;
35 int m1, m2;
36 int p1, p2;
37 /* derived values */
38 int dot;
39 int vco;
40 int m;
41 int p;
42};
43
44struct psb_intel_range_t {
45 int min, max;
46};
47
48struct psb_intel_p2_t {
49 int dot_limit;
50 int p2_slow, p2_fast;
51};
52
53#define INTEL_P2_NUM 2
54
55struct psb_intel_limit_t {
56 struct psb_intel_range_t dot, vco, n, m, m1, m2, p, p1;
57 struct psb_intel_p2_t p2;
58};
59
60#define I8XX_DOT_MIN 25000
61#define I8XX_DOT_MAX 350000
62#define I8XX_VCO_MIN 930000
63#define I8XX_VCO_MAX 1400000
64#define I8XX_N_MIN 3
65#define I8XX_N_MAX 16
66#define I8XX_M_MIN 96
67#define I8XX_M_MAX 140
68#define I8XX_M1_MIN 18
69#define I8XX_M1_MAX 26
70#define I8XX_M2_MIN 6
71#define I8XX_M2_MAX 16
72#define I8XX_P_MIN 4
73#define I8XX_P_MAX 128
74#define I8XX_P1_MIN 2
75#define I8XX_P1_MAX 33
76#define I8XX_P1_LVDS_MIN 1
77#define I8XX_P1_LVDS_MAX 6
78#define I8XX_P2_SLOW 4
79#define I8XX_P2_FAST 2
80#define I8XX_P2_LVDS_SLOW 14
81#define I8XX_P2_LVDS_FAST 14 /* No fast option */
82#define I8XX_P2_SLOW_LIMIT 165000
83
84#define I9XX_DOT_MIN 20000
85#define I9XX_DOT_MAX 400000
86#define I9XX_VCO_MIN 1400000
87#define I9XX_VCO_MAX 2800000
88#define I9XX_N_MIN 3
89#define I9XX_N_MAX 8
90#define I9XX_M_MIN 70
91#define I9XX_M_MAX 120
92#define I9XX_M1_MIN 10
93#define I9XX_M1_MAX 20
94#define I9XX_M2_MIN 5
95#define I9XX_M2_MAX 9
96#define I9XX_P_SDVO_DAC_MIN 5
97#define I9XX_P_SDVO_DAC_MAX 80
98#define I9XX_P_LVDS_MIN 7
99#define I9XX_P_LVDS_MAX 98
100#define I9XX_P1_MIN 1
101#define I9XX_P1_MAX 8
102#define I9XX_P2_SDVO_DAC_SLOW 10
103#define I9XX_P2_SDVO_DAC_FAST 5
104#define I9XX_P2_SDVO_DAC_SLOW_LIMIT 200000
105#define I9XX_P2_LVDS_SLOW 14
106#define I9XX_P2_LVDS_FAST 7
107#define I9XX_P2_LVDS_SLOW_LIMIT 112000
108
109#define INTEL_LIMIT_I8XX_DVO_DAC 0
110#define INTEL_LIMIT_I8XX_LVDS 1
111#define INTEL_LIMIT_I9XX_SDVO_DAC 2
112#define INTEL_LIMIT_I9XX_LVDS 3
113
114static const struct psb_intel_limit_t psb_intel_limits[] = {
115 { /* INTEL_LIMIT_I8XX_DVO_DAC */
116 .dot = {.min = I8XX_DOT_MIN, .max = I8XX_DOT_MAX},
117 .vco = {.min = I8XX_VCO_MIN, .max = I8XX_VCO_MAX},
118 .n = {.min = I8XX_N_MIN, .max = I8XX_N_MAX},
119 .m = {.min = I8XX_M_MIN, .max = I8XX_M_MAX},
120 .m1 = {.min = I8XX_M1_MIN, .max = I8XX_M1_MAX},
121 .m2 = {.min = I8XX_M2_MIN, .max = I8XX_M2_MAX},
122 .p = {.min = I8XX_P_MIN, .max = I8XX_P_MAX},
123 .p1 = {.min = I8XX_P1_MIN, .max = I8XX_P1_MAX},
124 .p2 = {.dot_limit = I8XX_P2_SLOW_LIMIT,
125 .p2_slow = I8XX_P2_SLOW, .p2_fast = I8XX_P2_FAST},
126 },
127 { /* INTEL_LIMIT_I8XX_LVDS */
128 .dot = {.min = I8XX_DOT_MIN, .max = I8XX_DOT_MAX},
129 .vco = {.min = I8XX_VCO_MIN, .max = I8XX_VCO_MAX},
130 .n = {.min = I8XX_N_MIN, .max = I8XX_N_MAX},
131 .m = {.min = I8XX_M_MIN, .max = I8XX_M_MAX},
132 .m1 = {.min = I8XX_M1_MIN, .max = I8XX_M1_MAX},
133 .m2 = {.min = I8XX_M2_MIN, .max = I8XX_M2_MAX},
134 .p = {.min = I8XX_P_MIN, .max = I8XX_P_MAX},
135 .p1 = {.min = I8XX_P1_LVDS_MIN, .max = I8XX_P1_LVDS_MAX},
136 .p2 = {.dot_limit = I8XX_P2_SLOW_LIMIT,
137 .p2_slow = I8XX_P2_LVDS_SLOW, .p2_fast = I8XX_P2_LVDS_FAST},
138 },
139 { /* INTEL_LIMIT_I9XX_SDVO_DAC */
140 .dot = {.min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX},
141 .vco = {.min = I9XX_VCO_MIN, .max = I9XX_VCO_MAX},
142 .n = {.min = I9XX_N_MIN, .max = I9XX_N_MAX},
143 .m = {.min = I9XX_M_MIN, .max = I9XX_M_MAX},
144 .m1 = {.min = I9XX_M1_MIN, .max = I9XX_M1_MAX},
145 .m2 = {.min = I9XX_M2_MIN, .max = I9XX_M2_MAX},
146 .p = {.min = I9XX_P_SDVO_DAC_MIN, .max = I9XX_P_SDVO_DAC_MAX},
147 .p1 = {.min = I9XX_P1_MIN, .max = I9XX_P1_MAX},
148 .p2 = {.dot_limit = I9XX_P2_SDVO_DAC_SLOW_LIMIT,
149 .p2_slow = I9XX_P2_SDVO_DAC_SLOW, .p2_fast =
150 I9XX_P2_SDVO_DAC_FAST},
151 },
152 { /* INTEL_LIMIT_I9XX_LVDS */
153 .dot = {.min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX},
154 .vco = {.min = I9XX_VCO_MIN, .max = I9XX_VCO_MAX},
155 .n = {.min = I9XX_N_MIN, .max = I9XX_N_MAX},
156 .m = {.min = I9XX_M_MIN, .max = I9XX_M_MAX},
157 .m1 = {.min = I9XX_M1_MIN, .max = I9XX_M1_MAX},
158 .m2 = {.min = I9XX_M2_MIN, .max = I9XX_M2_MAX},
159 .p = {.min = I9XX_P_LVDS_MIN, .max = I9XX_P_LVDS_MAX},
160 .p1 = {.min = I9XX_P1_MIN, .max = I9XX_P1_MAX},
161 /* The single-channel range is 25-112Mhz, and dual-channel
162 * is 80-224Mhz. Prefer single channel as much as possible.
163 */
164 .p2 = {.dot_limit = I9XX_P2_LVDS_SLOW_LIMIT,
165 .p2_slow = I9XX_P2_LVDS_SLOW, .p2_fast = I9XX_P2_LVDS_FAST},
166 },
167};
168
169static const struct psb_intel_limit_t *psb_intel_limit(struct drm_crtc *crtc)
170{
171 const struct psb_intel_limit_t *limit;
172
173 if (psb_intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
174 limit = &psb_intel_limits[INTEL_LIMIT_I9XX_LVDS];
175 else
176 limit = &psb_intel_limits[INTEL_LIMIT_I9XX_SDVO_DAC];
177 return limit;
178}
179
180/** Derive the pixel clock for the given refclk and divisors for 8xx chips. */
181
182static void i8xx_clock(int refclk, struct psb_intel_clock_t *clock)
183{
184 clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
185 clock->p = clock->p1 * clock->p2;
186 clock->vco = refclk * clock->m / (clock->n + 2);
187 clock->dot = clock->vco / clock->p;
188}
189
190/** Derive the pixel clock for the given refclk and divisors for 9xx chips. */
191
192static void i9xx_clock(int refclk, struct psb_intel_clock_t *clock)
193{
194 clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
195 clock->p = clock->p1 * clock->p2;
196 clock->vco = refclk * clock->m / (clock->n + 2);
197 clock->dot = clock->vco / clock->p;
198}
199
200static void psb_intel_clock(struct drm_device *dev, int refclk,
201 struct psb_intel_clock_t *clock)
202{
203 return i9xx_clock(refclk, clock);
204}
205
206/**
207 * Returns whether any output on the specified pipe is of the specified type
208 */
209bool psb_intel_pipe_has_type(struct drm_crtc *crtc, int type)
210{
211 struct drm_device *dev = crtc->dev;
212 struct drm_mode_config *mode_config = &dev->mode_config;
213 struct drm_connector *l_entry;
214
215 list_for_each_entry(l_entry, &mode_config->connector_list, head) {
216 if (l_entry->encoder && l_entry->encoder->crtc == crtc) {
217 struct psb_intel_output *psb_intel_output =
218 to_psb_intel_output(l_entry);
219 if (psb_intel_output->type == type)
220 return true;
221 }
222 }
223 return false;
224}
225
226#define INTELPllInvalid(s) { /* ErrorF (s) */; return false; }
227/**
228 * Returns whether the given set of divisors are valid for a given refclk with
229 * the given connectors.
230 */
231
232static bool psb_intel_PLL_is_valid(struct drm_crtc *crtc,
233 struct psb_intel_clock_t *clock)
234{
235 const struct psb_intel_limit_t *limit = psb_intel_limit(crtc);
236
237 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
238 INTELPllInvalid("p1 out of range\n");
239 if (clock->p < limit->p.min || limit->p.max < clock->p)
240 INTELPllInvalid("p out of range\n");
241 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
242 INTELPllInvalid("m2 out of range\n");
243 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
244 INTELPllInvalid("m1 out of range\n");
245 if (clock->m1 <= clock->m2)
246 INTELPllInvalid("m1 <= m2\n");
247 if (clock->m < limit->m.min || limit->m.max < clock->m)
248 INTELPllInvalid("m out of range\n");
249 if (clock->n < limit->n.min || limit->n.max < clock->n)
250 INTELPllInvalid("n out of range\n");
251 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
252 INTELPllInvalid("vco out of range\n");
253 /* XXX: We may need to be checking "Dot clock"
254 * depending on the multiplier, connector, etc.,
255 * rather than just a single range.
256 */
257 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
258 INTELPllInvalid("dot out of range\n");
259
260 return true;
261}
262
263/**
264 * Returns a set of divisors for the desired target clock with the given
265 * refclk, or FALSE. The returned values represent the clock equation:
266 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
267 */
268static bool psb_intel_find_best_PLL(struct drm_crtc *crtc, int target,
269 int refclk,
270 struct psb_intel_clock_t *best_clock)
271{
272 struct drm_device *dev = crtc->dev;
273 struct psb_intel_clock_t clock;
274 const struct psb_intel_limit_t *limit = psb_intel_limit(crtc);
275 int err = target;
276
277 if (psb_intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
278 (REG_READ(LVDS) & LVDS_PORT_EN) != 0) {
279 /*
280 * For LVDS, if the panel is on, just rely on its current
281 * settings for dual-channel. We haven't figured out how to
282 * reliably set up different single/dual channel state, if we
283 * even can.
284 */
285 if ((REG_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
286 LVDS_CLKB_POWER_UP)
287 clock.p2 = limit->p2.p2_fast;
288 else
289 clock.p2 = limit->p2.p2_slow;
290 } else {
291 if (target < limit->p2.dot_limit)
292 clock.p2 = limit->p2.p2_slow;
293 else
294 clock.p2 = limit->p2.p2_fast;
295 }
296
297 memset(best_clock, 0, sizeof(*best_clock));
298
299 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
300 clock.m1++) {
301 for (clock.m2 = limit->m2.min;
302 clock.m2 < clock.m1 && clock.m2 <= limit->m2.max;
303 clock.m2++) {
304 for (clock.n = limit->n.min;
305 clock.n <= limit->n.max; clock.n++) {
306 for (clock.p1 = limit->p1.min;
307 clock.p1 <= limit->p1.max;
308 clock.p1++) {
309 int this_err;
310
311 psb_intel_clock(dev, refclk, &clock);
312
313 if (!psb_intel_PLL_is_valid
314 (crtc, &clock))
315 continue;
316
317 this_err = abs(clock.dot - target);
318 if (this_err < err) {
319 *best_clock = clock;
320 err = this_err;
321 }
322 }
323 }
324 }
325 }
326
327 return err != target;
328}
329
330void psb_intel_wait_for_vblank(struct drm_device *dev)
331{
332 /* Wait for 20ms, i.e. one cycle at 50hz. */
333 mdelay(20);
334}
335
336int psb_intel_pipe_set_base(struct drm_crtc *crtc,
337 int x, int y, struct drm_framebuffer *old_fb)
338{
339 struct drm_device *dev = crtc->dev;
340 /* struct drm_i915_master_private *master_priv; */
341 struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
342 struct psb_framebuffer *psbfb = to_psb_fb(crtc->fb);
343 int pipe = psb_intel_crtc->pipe;
344 unsigned long start, offset;
345 int dspbase = (pipe == 0 ? DSPABASE : DSPBBASE);
346 int dspsurf = (pipe == 0 ? DSPASURF : DSPBSURF);
347 int dspstride = (pipe == 0) ? DSPASTRIDE : DSPBSTRIDE;
348 int dspcntr_reg = (pipe == 0) ? DSPACNTR : DSPBCNTR;
349 u32 dspcntr;
350 int ret = 0;
351
352 if (!gma_power_begin(dev, true))
353 return 0;
354
355 /* no fb bound */
356 if (!crtc->fb) {
357 dev_dbg(dev->dev, "No FB bound\n");
358 goto psb_intel_pipe_cleaner;
359 }
360
361 /* We are displaying this buffer, make sure it is actually loaded
362 into the GTT */
363 ret = psb_gtt_pin(psbfb->gtt);
364 if (ret < 0)
365 goto psb_intel_pipe_set_base_exit;
366 start = psbfb->gtt->offset;
367
368 offset = y * crtc->fb->pitch + x * (crtc->fb->bits_per_pixel / 8);
369
370 REG_WRITE(dspstride, crtc->fb->pitch);
371
372 dspcntr = REG_READ(dspcntr_reg);
373 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
374
375 switch (crtc->fb->bits_per_pixel) {
376 case 8:
377 dspcntr |= DISPPLANE_8BPP;
378 break;
379 case 16:
380 if (crtc->fb->depth == 15)
381 dspcntr |= DISPPLANE_15_16BPP;
382 else
383 dspcntr |= DISPPLANE_16BPP;
384 break;
385 case 24:
386 case 32:
387 dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
388 break;
389 default:
390 dev_err(dev->dev, "Unknown color depth\n");
391 ret = -EINVAL;
392 psb_gtt_unpin(psbfb->gtt);
393 goto psb_intel_pipe_set_base_exit;
394 }
395 REG_WRITE(dspcntr_reg, dspcntr);
396
397
398 if (0 /* FIXMEAC - check what PSB needs */) {
399 REG_WRITE(dspbase, offset);
400 REG_READ(dspbase);
401 REG_WRITE(dspsurf, start);
402 REG_READ(dspsurf);
403 } else {
404 REG_WRITE(dspbase, start + offset);
405 REG_READ(dspbase);
406 }
407
408psb_intel_pipe_cleaner:
409 /* If there was a previous display we can now unpin it */
410 if (old_fb)
411 psb_gtt_unpin(to_psb_fb(old_fb)->gtt);
412
413psb_intel_pipe_set_base_exit:
414 gma_power_end(dev);
415 return ret;
416}
417
418/**
419 * Sets the power management mode of the pipe and plane.
420 *
421 * This code should probably grow support for turning the cursor off and back
422 * on appropriately at the same time as we're turning the pipe off/on.
423 */
424static void psb_intel_crtc_dpms(struct drm_crtc *crtc, int mode)
425{
426 struct drm_device *dev = crtc->dev;
427 /* struct drm_i915_master_private *master_priv; */
428 /* struct drm_i915_private *dev_priv = dev->dev_private; */
429 struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
430 int pipe = psb_intel_crtc->pipe;
431 int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
432 int dspcntr_reg = (pipe == 0) ? DSPACNTR : DSPBCNTR;
433 int dspbase_reg = (pipe == 0) ? DSPABASE : DSPBBASE;
434 int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
435 u32 temp;
436 bool enabled;
437
438 /* XXX: When our outputs are all unaware of DPMS modes other than off
439 * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
440 */
441 switch (mode) {
442 case DRM_MODE_DPMS_ON:
443 case DRM_MODE_DPMS_STANDBY:
444 case DRM_MODE_DPMS_SUSPEND:
445 /* Enable the DPLL */
446 temp = REG_READ(dpll_reg);
447 if ((temp & DPLL_VCO_ENABLE) == 0) {
448 REG_WRITE(dpll_reg, temp);
449 REG_READ(dpll_reg);
450 /* Wait for the clocks to stabilize. */
451 udelay(150);
452 REG_WRITE(dpll_reg, temp | DPLL_VCO_ENABLE);
453 REG_READ(dpll_reg);
454 /* Wait for the clocks to stabilize. */
455 udelay(150);
456 REG_WRITE(dpll_reg, temp | DPLL_VCO_ENABLE);
457 REG_READ(dpll_reg);
458 /* Wait for the clocks to stabilize. */
459 udelay(150);
460 }
461
462 /* Enable the pipe */
463 temp = REG_READ(pipeconf_reg);
464 if ((temp & PIPEACONF_ENABLE) == 0)
465 REG_WRITE(pipeconf_reg, temp | PIPEACONF_ENABLE);
466
467 /* Enable the plane */
468 temp = REG_READ(dspcntr_reg);
469 if ((temp & DISPLAY_PLANE_ENABLE) == 0) {
470 REG_WRITE(dspcntr_reg,
471 temp | DISPLAY_PLANE_ENABLE);
472 /* Flush the plane changes */
473 REG_WRITE(dspbase_reg, REG_READ(dspbase_reg));
474 }
475
476 psb_intel_crtc_load_lut(crtc);
477
478 /* Give the overlay scaler a chance to enable
479 * if it's on this pipe */
480 /* psb_intel_crtc_dpms_video(crtc, true); TODO */
481 break;
482 case DRM_MODE_DPMS_OFF:
483 /* Give the overlay scaler a chance to disable
484 * if it's on this pipe */
485 /* psb_intel_crtc_dpms_video(crtc, FALSE); TODO */
486
487 /* Disable the VGA plane that we never use */
488 REG_WRITE(VGACNTRL, VGA_DISP_DISABLE);
489
490 /* Disable display plane */
491 temp = REG_READ(dspcntr_reg);
492 if ((temp & DISPLAY_PLANE_ENABLE) != 0) {
493 REG_WRITE(dspcntr_reg,
494 temp & ~DISPLAY_PLANE_ENABLE);
495 /* Flush the plane changes */
496 REG_WRITE(dspbase_reg, REG_READ(dspbase_reg));
497 REG_READ(dspbase_reg);
498 }
499
500 /* Next, disable display pipes */
501 temp = REG_READ(pipeconf_reg);
502 if ((temp & PIPEACONF_ENABLE) != 0) {
503 REG_WRITE(pipeconf_reg, temp & ~PIPEACONF_ENABLE);
504 REG_READ(pipeconf_reg);
505 }
506
507 /* Wait for vblank for the disable to take effect. */
508 psb_intel_wait_for_vblank(dev);
509
510 temp = REG_READ(dpll_reg);
511 if ((temp & DPLL_VCO_ENABLE) != 0) {
512 REG_WRITE(dpll_reg, temp & ~DPLL_VCO_ENABLE);
513 REG_READ(dpll_reg);
514 }
515
516 /* Wait for the clocks to turn off. */
517 udelay(150);
518 break;
519 }
520
521 enabled = crtc->enabled && mode != DRM_MODE_DPMS_OFF;
522
523 /*Set FIFO Watermarks*/
524 REG_WRITE(DSPARB, 0x3F3E);
525}
526
527static void psb_intel_crtc_prepare(struct drm_crtc *crtc)
528{
529 struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
530 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_OFF);
531}
532
533static void psb_intel_crtc_commit(struct drm_crtc *crtc)
534{
535 struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
536 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
537}
538
539void psb_intel_encoder_prepare(struct drm_encoder *encoder)
540{
541 struct drm_encoder_helper_funcs *encoder_funcs =
542 encoder->helper_private;
543 /* lvds has its own version of prepare see psb_intel_lvds_prepare */
544 encoder_funcs->dpms(encoder, DRM_MODE_DPMS_OFF);
545}
546
547void psb_intel_encoder_commit(struct drm_encoder *encoder)
548{
549 struct drm_encoder_helper_funcs *encoder_funcs =
550 encoder->helper_private;
551 /* lvds has its own version of commit see psb_intel_lvds_commit */
552 encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
553}
554
555static bool psb_intel_crtc_mode_fixup(struct drm_crtc *crtc,
556 struct drm_display_mode *mode,
557 struct drm_display_mode *adjusted_mode)
558{
559 return true;
560}
561
562
563/**
564 * Return the pipe currently connected to the panel fitter,
565 * or -1 if the panel fitter is not present or not in use
566 */
567static int psb_intel_panel_fitter_pipe(struct drm_device *dev)
568{
569 u32 pfit_control;
570
571 pfit_control = REG_READ(PFIT_CONTROL);
572
573 /* See if the panel fitter is in use */
574 if ((pfit_control & PFIT_ENABLE) == 0)
575 return -1;
576 /* Must be on PIPE 1 for PSB */
577 return 1;
578}
579
580static int psb_intel_crtc_mode_set(struct drm_crtc *crtc,
581 struct drm_display_mode *mode,
582 struct drm_display_mode *adjusted_mode,
583 int x, int y,
584 struct drm_framebuffer *old_fb)
585{
586 struct drm_device *dev = crtc->dev;
587 struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
588 struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
589 int pipe = psb_intel_crtc->pipe;
590 int fp_reg = (pipe == 0) ? FPA0 : FPB0;
591 int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
592 int dspcntr_reg = (pipe == 0) ? DSPACNTR : DSPBCNTR;
593 int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
594 int htot_reg = (pipe == 0) ? HTOTAL_A : HTOTAL_B;
595 int hblank_reg = (pipe == 0) ? HBLANK_A : HBLANK_B;
596 int hsync_reg = (pipe == 0) ? HSYNC_A : HSYNC_B;
597 int vtot_reg = (pipe == 0) ? VTOTAL_A : VTOTAL_B;
598 int vblank_reg = (pipe == 0) ? VBLANK_A : VBLANK_B;
599 int vsync_reg = (pipe == 0) ? VSYNC_A : VSYNC_B;
600 int dspsize_reg = (pipe == 0) ? DSPASIZE : DSPBSIZE;
601 int dsppos_reg = (pipe == 0) ? DSPAPOS : DSPBPOS;
602 int pipesrc_reg = (pipe == 0) ? PIPEASRC : PIPEBSRC;
603 int refclk;
604 struct psb_intel_clock_t clock;
605 u32 dpll = 0, fp = 0, dspcntr, pipeconf;
606 bool ok, is_sdvo = false, is_dvo = false;
607 bool is_crt = false, is_lvds = false, is_tv = false;
608 struct drm_mode_config *mode_config = &dev->mode_config;
609 struct drm_connector *connector;
610
611 /* No scan out no play */
612 if (crtc->fb == NULL) {
613 crtc_funcs->mode_set_base(crtc, x, y, old_fb);
614 return 0;
615 }
616
617 list_for_each_entry(connector, &mode_config->connector_list, head) {
618 struct psb_intel_output *psb_intel_output =
619 to_psb_intel_output(connector);
620
621 if (!connector->encoder
622 || connector->encoder->crtc != crtc)
623 continue;
624
625 switch (psb_intel_output->type) {
626 case INTEL_OUTPUT_LVDS:
627 is_lvds = true;
628 break;
629 case INTEL_OUTPUT_SDVO:
630 is_sdvo = true;
631 break;
632 case INTEL_OUTPUT_DVO:
633 is_dvo = true;
634 break;
635 case INTEL_OUTPUT_TVOUT:
636 is_tv = true;
637 break;
638 case INTEL_OUTPUT_ANALOG:
639 is_crt = true;
640 break;
641 }
642 }
643
644 refclk = 96000;
645
646 ok = psb_intel_find_best_PLL(crtc, adjusted_mode->clock, refclk,
647 &clock);
648 if (!ok) {
649 dev_err(dev->dev, "Couldn't find PLL settings for mode!\n");
650 return 0;
651 }
652
653 fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
654
655 dpll = DPLL_VGA_MODE_DIS;
656 if (is_lvds) {
657 dpll |= DPLLB_MODE_LVDS;
658 dpll |= DPLL_DVO_HIGH_SPEED;
659 } else
660 dpll |= DPLLB_MODE_DAC_SERIAL;
661 if (is_sdvo) {
662 int sdvo_pixel_multiply =
663 adjusted_mode->clock / mode->clock;
664 dpll |= DPLL_DVO_HIGH_SPEED;
665 dpll |=
666 (sdvo_pixel_multiply - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
667 }
668
669 /* compute bitmask from p1 value */
670 dpll |= (1 << (clock.p1 - 1)) << 16;
671 switch (clock.p2) {
672 case 5:
673 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
674 break;
675 case 7:
676 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
677 break;
678 case 10:
679 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
680 break;
681 case 14:
682 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
683 break;
684 }
685
686 if (is_tv) {
687 /* XXX: just matching BIOS for now */
688/* dpll |= PLL_REF_INPUT_TVCLKINBC; */
689 dpll |= 3;
690 }
691 dpll |= PLL_REF_INPUT_DREFCLK;
692
693 /* setup pipeconf */
694 pipeconf = REG_READ(pipeconf_reg);
695
696 /* Set up the display plane register */
697 dspcntr = DISPPLANE_GAMMA_ENABLE;
698
699 if (pipe == 0)
700 dspcntr |= DISPPLANE_SEL_PIPE_A;
701 else
702 dspcntr |= DISPPLANE_SEL_PIPE_B;
703
704 dspcntr |= DISPLAY_PLANE_ENABLE;
705 pipeconf |= PIPEACONF_ENABLE;
706 dpll |= DPLL_VCO_ENABLE;
707
708
709 /* Disable the panel fitter if it was on our pipe */
710 if (psb_intel_panel_fitter_pipe(dev) == pipe)
711 REG_WRITE(PFIT_CONTROL, 0);
712
713 drm_mode_debug_printmodeline(mode);
714
715 if (dpll & DPLL_VCO_ENABLE) {
716 REG_WRITE(fp_reg, fp);
717 REG_WRITE(dpll_reg, dpll & ~DPLL_VCO_ENABLE);
718 REG_READ(dpll_reg);
719 udelay(150);
720 }
721
722 /* The LVDS pin pair needs to be on before the DPLLs are enabled.
723 * This is an exception to the general rule that mode_set doesn't turn
724 * things on.
725 */
726 if (is_lvds) {
727 u32 lvds = REG_READ(LVDS);
728
729 lvds &= ~LVDS_PIPEB_SELECT;
730 if (pipe == 1)
731 lvds |= LVDS_PIPEB_SELECT;
732
733 lvds |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
734 /* Set the B0-B3 data pairs corresponding to
735 * whether we're going to
736 * set the DPLLs for dual-channel mode or not.
737 */
738 lvds &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
739 if (clock.p2 == 7)
740 lvds |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
741
742 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
743 * appropriately here, but we need to look more
744 * thoroughly into how panels behave in the two modes.
745 */
746
747 REG_WRITE(LVDS, lvds);
748 REG_READ(LVDS);
749 }
750
751 REG_WRITE(fp_reg, fp);
752 REG_WRITE(dpll_reg, dpll);
753 REG_READ(dpll_reg);
754 /* Wait for the clocks to stabilize. */
755 udelay(150);
756
757 /* write it again -- the BIOS does, after all */
758 REG_WRITE(dpll_reg, dpll);
759
760 REG_READ(dpll_reg);
761 /* Wait for the clocks to stabilize. */
762 udelay(150);
763
764 REG_WRITE(htot_reg, (adjusted_mode->crtc_hdisplay - 1) |
765 ((adjusted_mode->crtc_htotal - 1) << 16));
766 REG_WRITE(hblank_reg, (adjusted_mode->crtc_hblank_start - 1) |
767 ((adjusted_mode->crtc_hblank_end - 1) << 16));
768 REG_WRITE(hsync_reg, (adjusted_mode->crtc_hsync_start - 1) |
769 ((adjusted_mode->crtc_hsync_end - 1) << 16));
770 REG_WRITE(vtot_reg, (adjusted_mode->crtc_vdisplay - 1) |
771 ((adjusted_mode->crtc_vtotal - 1) << 16));
772 REG_WRITE(vblank_reg, (adjusted_mode->crtc_vblank_start - 1) |
773 ((adjusted_mode->crtc_vblank_end - 1) << 16));
774 REG_WRITE(vsync_reg, (adjusted_mode->crtc_vsync_start - 1) |
775 ((adjusted_mode->crtc_vsync_end - 1) << 16));
776 /* pipesrc and dspsize control the size that is scaled from,
777 * which should always be the user's requested size.
778 */
779 REG_WRITE(dspsize_reg,
780 ((mode->vdisplay - 1) << 16) | (mode->hdisplay - 1));
781 REG_WRITE(dsppos_reg, 0);
782 REG_WRITE(pipesrc_reg,
783 ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
784 REG_WRITE(pipeconf_reg, pipeconf);
785 REG_READ(pipeconf_reg);
786
787 psb_intel_wait_for_vblank(dev);
788
789 REG_WRITE(dspcntr_reg, dspcntr);
790
791 /* Flush the plane changes */
792 crtc_funcs->mode_set_base(crtc, x, y, old_fb);
793
794 psb_intel_wait_for_vblank(dev);
795
796 return 0;
797}
798
799/** Loads the palette/gamma unit for the CRTC with the prepared values */
800void psb_intel_crtc_load_lut(struct drm_crtc *crtc)
801{
802 struct drm_device *dev = crtc->dev;
803 struct drm_psb_private *dev_priv =
804 (struct drm_psb_private *)dev->dev_private;
805 struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
806 int palreg = PALETTE_A;
807 int i;
808
809 /* The clocks have to be on to load the palette. */
810 if (!crtc->enabled)
811 return;
812
813 switch (psb_intel_crtc->pipe) {
814 case 0:
815 break;
816 case 1:
817 palreg = PALETTE_B;
818 break;
819 case 2:
820 palreg = PALETTE_C;
821 break;
822 default:
823 dev_err(dev->dev, "Illegal Pipe Number.\n");
824 return;
825 }
826
827 if (gma_power_begin(dev, false)) {
828 for (i = 0; i < 256; i++) {
829 REG_WRITE(palreg + 4 * i,
830 ((psb_intel_crtc->lut_r[i] +
831 psb_intel_crtc->lut_adj[i]) << 16) |
832 ((psb_intel_crtc->lut_g[i] +
833 psb_intel_crtc->lut_adj[i]) << 8) |
834 (psb_intel_crtc->lut_b[i] +
835 psb_intel_crtc->lut_adj[i]));
836 }
837 gma_power_end(dev);
838 } else {
839 for (i = 0; i < 256; i++) {
840 dev_priv->save_palette_a[i] =
841 ((psb_intel_crtc->lut_r[i] +
842 psb_intel_crtc->lut_adj[i]) << 16) |
843 ((psb_intel_crtc->lut_g[i] +
844 psb_intel_crtc->lut_adj[i]) << 8) |
845 (psb_intel_crtc->lut_b[i] +
846 psb_intel_crtc->lut_adj[i]);
847 }
848
849 }
850}
851
852/**
853 * Save HW states of giving crtc
854 */
855static void psb_intel_crtc_save(struct drm_crtc *crtc)
856{
857 struct drm_device *dev = crtc->dev;
858 /* struct drm_psb_private *dev_priv =
859 (struct drm_psb_private *)dev->dev_private; */
860 struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
861 struct psb_intel_crtc_state *crtc_state = psb_intel_crtc->crtc_state;
862 int pipeA = (psb_intel_crtc->pipe == 0);
863 uint32_t paletteReg;
864 int i;
865
866 if (!crtc_state) {
867 dev_err(dev->dev, "No CRTC state found\n");
868 return;
869 }
870
871 crtc_state->saveDSPCNTR = REG_READ(pipeA ? DSPACNTR : DSPBCNTR);
872 crtc_state->savePIPECONF = REG_READ(pipeA ? PIPEACONF : PIPEBCONF);
873 crtc_state->savePIPESRC = REG_READ(pipeA ? PIPEASRC : PIPEBSRC);
874 crtc_state->saveFP0 = REG_READ(pipeA ? FPA0 : FPB0);
875 crtc_state->saveFP1 = REG_READ(pipeA ? FPA1 : FPB1);
876 crtc_state->saveDPLL = REG_READ(pipeA ? DPLL_A : DPLL_B);
877 crtc_state->saveHTOTAL = REG_READ(pipeA ? HTOTAL_A : HTOTAL_B);
878 crtc_state->saveHBLANK = REG_READ(pipeA ? HBLANK_A : HBLANK_B);
879 crtc_state->saveHSYNC = REG_READ(pipeA ? HSYNC_A : HSYNC_B);
880 crtc_state->saveVTOTAL = REG_READ(pipeA ? VTOTAL_A : VTOTAL_B);
881 crtc_state->saveVBLANK = REG_READ(pipeA ? VBLANK_A : VBLANK_B);
882 crtc_state->saveVSYNC = REG_READ(pipeA ? VSYNC_A : VSYNC_B);
883 crtc_state->saveDSPSTRIDE = REG_READ(pipeA ? DSPASTRIDE : DSPBSTRIDE);
884
885 /*NOTE: DSPSIZE DSPPOS only for psb*/
886 crtc_state->saveDSPSIZE = REG_READ(pipeA ? DSPASIZE : DSPBSIZE);
887 crtc_state->saveDSPPOS = REG_READ(pipeA ? DSPAPOS : DSPBPOS);
888
889 crtc_state->saveDSPBASE = REG_READ(pipeA ? DSPABASE : DSPBBASE);
890
891 paletteReg = pipeA ? PALETTE_A : PALETTE_B;
892 for (i = 0; i < 256; ++i)
893 crtc_state->savePalette[i] = REG_READ(paletteReg + (i << 2));
894}
895
896/**
897 * Restore HW states of giving crtc
898 */
899static void psb_intel_crtc_restore(struct drm_crtc *crtc)
900{
901 struct drm_device *dev = crtc->dev;
902 /* struct drm_psb_private * dev_priv =
903 (struct drm_psb_private *)dev->dev_private; */
904 struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
905 struct psb_intel_crtc_state *crtc_state = psb_intel_crtc->crtc_state;
906 /* struct drm_crtc_helper_funcs * crtc_funcs = crtc->helper_private; */
907 int pipeA = (psb_intel_crtc->pipe == 0);
908 uint32_t paletteReg;
909 int i;
910
911 if (!crtc_state) {
912 dev_err(dev->dev, "No crtc state\n");
913 return;
914 }
915
916 if (crtc_state->saveDPLL & DPLL_VCO_ENABLE) {
917 REG_WRITE(pipeA ? DPLL_A : DPLL_B,
918 crtc_state->saveDPLL & ~DPLL_VCO_ENABLE);
919 REG_READ(pipeA ? DPLL_A : DPLL_B);
920 udelay(150);
921 }
922
923 REG_WRITE(pipeA ? FPA0 : FPB0, crtc_state->saveFP0);
924 REG_READ(pipeA ? FPA0 : FPB0);
925
926 REG_WRITE(pipeA ? FPA1 : FPB1, crtc_state->saveFP1);
927 REG_READ(pipeA ? FPA1 : FPB1);
928
929 REG_WRITE(pipeA ? DPLL_A : DPLL_B, crtc_state->saveDPLL);
930 REG_READ(pipeA ? DPLL_A : DPLL_B);
931 udelay(150);
932
933 REG_WRITE(pipeA ? HTOTAL_A : HTOTAL_B, crtc_state->saveHTOTAL);
934 REG_WRITE(pipeA ? HBLANK_A : HBLANK_B, crtc_state->saveHBLANK);
935 REG_WRITE(pipeA ? HSYNC_A : HSYNC_B, crtc_state->saveHSYNC);
936 REG_WRITE(pipeA ? VTOTAL_A : VTOTAL_B, crtc_state->saveVTOTAL);
937 REG_WRITE(pipeA ? VBLANK_A : VBLANK_B, crtc_state->saveVBLANK);
938 REG_WRITE(pipeA ? VSYNC_A : VSYNC_B, crtc_state->saveVSYNC);
939 REG_WRITE(pipeA ? DSPASTRIDE : DSPBSTRIDE, crtc_state->saveDSPSTRIDE);
940
941 REG_WRITE(pipeA ? DSPASIZE : DSPBSIZE, crtc_state->saveDSPSIZE);
942 REG_WRITE(pipeA ? DSPAPOS : DSPBPOS, crtc_state->saveDSPPOS);
943
944 REG_WRITE(pipeA ? PIPEASRC : PIPEBSRC, crtc_state->savePIPESRC);
945 REG_WRITE(pipeA ? DSPABASE : DSPBBASE, crtc_state->saveDSPBASE);
946 REG_WRITE(pipeA ? PIPEACONF : PIPEBCONF, crtc_state->savePIPECONF);
947
948 psb_intel_wait_for_vblank(dev);
949
950 REG_WRITE(pipeA ? DSPACNTR : DSPBCNTR, crtc_state->saveDSPCNTR);
951 REG_WRITE(pipeA ? DSPABASE : DSPBBASE, crtc_state->saveDSPBASE);
952
953 psb_intel_wait_for_vblank(dev);
954
955 paletteReg = pipeA ? PALETTE_A : PALETTE_B;
956 for (i = 0; i < 256; ++i)
957 REG_WRITE(paletteReg + (i << 2), crtc_state->savePalette[i]);
958}
959
960static int psb_intel_crtc_cursor_set(struct drm_crtc *crtc,
961 struct drm_file *file_priv,
962 uint32_t handle,
963 uint32_t width, uint32_t height)
964{
965 struct drm_device *dev = crtc->dev;
966 struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
967 int pipe = psb_intel_crtc->pipe;
968 uint32_t control = (pipe == 0) ? CURACNTR : CURBCNTR;
969 uint32_t base = (pipe == 0) ? CURABASE : CURBBASE;
970 uint32_t temp;
971 size_t addr = 0;
972 struct gtt_range *gt;
973 struct drm_gem_object *obj;
974 int ret;
975
976 /* if we want to turn of the cursor ignore width and height */
977 if (!handle) {
978 /* turn off the cursor */
979 temp = CURSOR_MODE_DISABLE;
980
981 if (gma_power_begin(dev, false)) {
982 REG_WRITE(control, temp);
983 REG_WRITE(base, 0);
984 gma_power_end(dev);
985 }
986
987 /* Unpin the old GEM object */
988 if (psb_intel_crtc->cursor_obj) {
989 gt = container_of(psb_intel_crtc->cursor_obj,
990 struct gtt_range, gem);
991 psb_gtt_unpin(gt);
992 drm_gem_object_unreference(psb_intel_crtc->cursor_obj);
993 psb_intel_crtc->cursor_obj = NULL;
994 }
995
996 return 0;
997 }
998
999 /* Currently we only support 64x64 cursors */
1000 if (width != 64 || height != 64) {
1001 dev_dbg(dev->dev, "we currently only support 64x64 cursors\n");
1002 return -EINVAL;
1003 }
1004
1005 obj = drm_gem_object_lookup(dev, file_priv, handle);
1006 if (!obj)
1007 return -ENOENT;
1008
1009 if (obj->size < width * height * 4) {
1010 dev_dbg(dev->dev, "buffer is to small\n");
1011 return -ENOMEM;
1012 }
1013
1014 gt = container_of(obj, struct gtt_range, gem);
1015
1016 /* Pin the memory into the GTT */
1017 ret = psb_gtt_pin(gt);
1018 if (ret) {
1019 dev_err(dev->dev, "Can not pin down handle 0x%x\n", handle);
1020 return ret;
1021 }
1022
1023
1024 addr = gt->offset; /* Or resource.start ??? */
1025
1026 psb_intel_crtc->cursor_addr = addr;
1027
1028 temp = 0;
1029 /* set the pipe for the cursor */
1030 temp |= (pipe << 28);
1031 temp |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
1032
1033 if (gma_power_begin(dev, false)) {
1034 REG_WRITE(control, temp);
1035 REG_WRITE(base, addr);
1036 gma_power_end(dev);
1037 }
1038
1039 /* unpin the old bo */
1040 if (psb_intel_crtc->cursor_obj) {
1041 gt = container_of(psb_intel_crtc->cursor_obj,
1042 struct gtt_range, gem);
1043 psb_gtt_unpin(gt);
1044 drm_gem_object_unreference(psb_intel_crtc->cursor_obj);
1045 psb_intel_crtc->cursor_obj = obj;
1046 }
1047 return 0;
1048}
1049
1050static int psb_intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
1051{
1052 struct drm_device *dev = crtc->dev;
1053 struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
1054 int pipe = psb_intel_crtc->pipe;
1055 uint32_t temp = 0;
1056 uint32_t addr;
1057
1058
1059 if (x < 0) {
1060 temp |= (CURSOR_POS_SIGN << CURSOR_X_SHIFT);
1061 x = -x;
1062 }
1063 if (y < 0) {
1064 temp |= (CURSOR_POS_SIGN << CURSOR_Y_SHIFT);
1065 y = -y;
1066 }
1067
1068 temp |= ((x & CURSOR_POS_MASK) << CURSOR_X_SHIFT);
1069 temp |= ((y & CURSOR_POS_MASK) << CURSOR_Y_SHIFT);
1070
1071 addr = psb_intel_crtc->cursor_addr;
1072
1073 if (gma_power_begin(dev, false)) {
1074 REG_WRITE((pipe == 0) ? CURAPOS : CURBPOS, temp);
1075 REG_WRITE((pipe == 0) ? CURABASE : CURBBASE, addr);
1076 gma_power_end(dev);
1077 }
1078 return 0;
1079}
1080
1081void psb_intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red,
1082 u16 *green, u16 *blue, uint32_t type, uint32_t size)
1083{
1084 struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
1085 int i;
1086
1087 if (size != 256)
1088 return;
1089
1090 for (i = 0; i < 256; i++) {
1091 psb_intel_crtc->lut_r[i] = red[i] >> 8;
1092 psb_intel_crtc->lut_g[i] = green[i] >> 8;
1093 psb_intel_crtc->lut_b[i] = blue[i] >> 8;
1094 }
1095
1096 psb_intel_crtc_load_lut(crtc);
1097}
1098
1099static int psb_crtc_set_config(struct drm_mode_set *set)
1100{
1101 int ret;
1102 struct drm_device *dev = set->crtc->dev;
1103 struct drm_psb_private *dev_priv = dev->dev_private;
1104
1105 if (!dev_priv->rpm_enabled)
1106 return drm_crtc_helper_set_config(set);
1107
1108 pm_runtime_forbid(&dev->pdev->dev);
1109 ret = drm_crtc_helper_set_config(set);
1110 pm_runtime_allow(&dev->pdev->dev);
1111 return ret;
1112}
1113
1114/* Returns the clock of the currently programmed mode of the given pipe. */
1115static int psb_intel_crtc_clock_get(struct drm_device *dev,
1116 struct drm_crtc *crtc)
1117{
1118 struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
1119 int pipe = psb_intel_crtc->pipe;
1120 u32 dpll;
1121 u32 fp;
1122 struct psb_intel_clock_t clock;
1123 bool is_lvds;
1124 struct drm_psb_private *dev_priv = dev->dev_private;
1125
1126 if (gma_power_begin(dev, false)) {
1127 dpll = REG_READ((pipe == 0) ? DPLL_A : DPLL_B);
1128 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
1129 fp = REG_READ((pipe == 0) ? FPA0 : FPB0);
1130 else
1131 fp = REG_READ((pipe == 0) ? FPA1 : FPB1);
1132 is_lvds = (pipe == 1) && (REG_READ(LVDS) & LVDS_PORT_EN);
1133 gma_power_end(dev);
1134 } else {
1135 dpll = (pipe == 0) ?
1136 dev_priv->saveDPLL_A : dev_priv->saveDPLL_B;
1137
1138 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
1139 fp = (pipe == 0) ?
1140 dev_priv->saveFPA0 :
1141 dev_priv->saveFPB0;
1142 else
1143 fp = (pipe == 0) ?
1144 dev_priv->saveFPA1 :
1145 dev_priv->saveFPB1;
1146
1147 is_lvds = (pipe == 1) && (dev_priv->saveLVDS & LVDS_PORT_EN);
1148 }
1149
1150 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
1151 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
1152 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
1153
1154 if (is_lvds) {
1155 clock.p1 =
1156 ffs((dpll &
1157 DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
1158 DPLL_FPA01_P1_POST_DIV_SHIFT);
1159 clock.p2 = 14;
1160
1161 if ((dpll & PLL_REF_INPUT_MASK) ==
1162 PLLB_REF_INPUT_SPREADSPECTRUMIN) {
1163 /* XXX: might not be 66MHz */
1164 i8xx_clock(66000, &clock);
1165 } else
1166 i8xx_clock(48000, &clock);
1167 } else {
1168 if (dpll & PLL_P1_DIVIDE_BY_TWO)
1169 clock.p1 = 2;
1170 else {
1171 clock.p1 =
1172 ((dpll &
1173 DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
1174 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
1175 }
1176 if (dpll & PLL_P2_DIVIDE_BY_4)
1177 clock.p2 = 4;
1178 else
1179 clock.p2 = 2;
1180
1181 i8xx_clock(48000, &clock);
1182 }
1183
1184 /* XXX: It would be nice to validate the clocks, but we can't reuse
1185 * i830PllIsValid() because it relies on the xf86_config connector
1186 * configuration being accurate, which it isn't necessarily.
1187 */
1188
1189 return clock.dot;
1190}
1191
1192/** Returns the currently programmed mode of the given pipe. */
1193struct drm_display_mode *psb_intel_crtc_mode_get(struct drm_device *dev,
1194 struct drm_crtc *crtc)
1195{
1196 struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
1197 int pipe = psb_intel_crtc->pipe;
1198 struct drm_display_mode *mode;
1199 int htot;
1200 int hsync;
1201 int vtot;
1202 int vsync;
1203 struct drm_psb_private *dev_priv = dev->dev_private;
1204
1205 if (gma_power_begin(dev, false)) {
1206 htot = REG_READ((pipe == 0) ? HTOTAL_A : HTOTAL_B);
1207 hsync = REG_READ((pipe == 0) ? HSYNC_A : HSYNC_B);
1208 vtot = REG_READ((pipe == 0) ? VTOTAL_A : VTOTAL_B);
1209 vsync = REG_READ((pipe == 0) ? VSYNC_A : VSYNC_B);
1210 gma_power_end(dev);
1211 } else {
1212 htot = (pipe == 0) ?
1213 dev_priv->saveHTOTAL_A : dev_priv->saveHTOTAL_B;
1214 hsync = (pipe == 0) ?
1215 dev_priv->saveHSYNC_A : dev_priv->saveHSYNC_B;
1216 vtot = (pipe == 0) ?
1217 dev_priv->saveVTOTAL_A : dev_priv->saveVTOTAL_B;
1218 vsync = (pipe == 0) ?
1219 dev_priv->saveVSYNC_A : dev_priv->saveVSYNC_B;
1220 }
1221
1222 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
1223 if (!mode)
1224 return NULL;
1225
1226 mode->clock = psb_intel_crtc_clock_get(dev, crtc);
1227 mode->hdisplay = (htot & 0xffff) + 1;
1228 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
1229 mode->hsync_start = (hsync & 0xffff) + 1;
1230 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
1231 mode->vdisplay = (vtot & 0xffff) + 1;
1232 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
1233 mode->vsync_start = (vsync & 0xffff) + 1;
1234 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
1235
1236 drm_mode_set_name(mode);
1237 drm_mode_set_crtcinfo(mode, 0);
1238
1239 return mode;
1240}
1241
1242void psb_intel_crtc_destroy(struct drm_crtc *crtc)
1243{
1244 struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
1245 struct gtt_range *gt;
1246
1247 /* Unpin the old GEM object */
1248 if (psb_intel_crtc->cursor_obj) {
1249 gt = container_of(psb_intel_crtc->cursor_obj,
1250 struct gtt_range, gem);
1251 psb_gtt_unpin(gt);
1252 drm_gem_object_unreference(psb_intel_crtc->cursor_obj);
1253 psb_intel_crtc->cursor_obj = NULL;
1254 }
1255 kfree(psb_intel_crtc->crtc_state);
1256 drm_crtc_cleanup(crtc);
1257 kfree(psb_intel_crtc);
1258}
1259
1260const struct drm_crtc_helper_funcs psb_intel_helper_funcs = {
1261 .dpms = psb_intel_crtc_dpms,
1262 .mode_fixup = psb_intel_crtc_mode_fixup,
1263 .mode_set = psb_intel_crtc_mode_set,
1264 .mode_set_base = psb_intel_pipe_set_base,
1265 .prepare = psb_intel_crtc_prepare,
1266 .commit = psb_intel_crtc_commit,
1267};
1268
1269const struct drm_crtc_funcs psb_intel_crtc_funcs = {
1270 .save = psb_intel_crtc_save,
1271 .restore = psb_intel_crtc_restore,
1272 .cursor_set = psb_intel_crtc_cursor_set,
1273 .cursor_move = psb_intel_crtc_cursor_move,
1274 .gamma_set = psb_intel_crtc_gamma_set,
1275 .set_config = psb_crtc_set_config,
1276 .destroy = psb_intel_crtc_destroy,
1277};
1278
1279/*
1280 * Set the default value of cursor control and base register
1281 * to zero. This is a workaround for h/w defect on Oaktrail
1282 */
1283static void psb_intel_cursor_init(struct drm_device *dev, int pipe)
1284{
1285 u32 control[3] = { CURACNTR, CURBCNTR, CURCCNTR };
1286 u32 base[3] = { CURABASE, CURBBASE, CURCBASE };
1287
1288 REG_WRITE(control[pipe], 0);
1289 REG_WRITE(base[pipe], 0);
1290}
1291
1292void psb_intel_crtc_init(struct drm_device *dev, int pipe,
1293 struct psb_intel_mode_device *mode_dev)
1294{
1295 struct drm_psb_private *dev_priv = dev->dev_private;
1296 struct psb_intel_crtc *psb_intel_crtc;
1297 int i;
1298 uint16_t *r_base, *g_base, *b_base;
1299
1300 /* We allocate a extra array of drm_connector pointers
1301 * for fbdev after the crtc */
1302 psb_intel_crtc =
1303 kzalloc(sizeof(struct psb_intel_crtc) +
1304 (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)),
1305 GFP_KERNEL);
1306 if (psb_intel_crtc == NULL)
1307 return;
1308
1309 psb_intel_crtc->crtc_state =
1310 kzalloc(sizeof(struct psb_intel_crtc_state), GFP_KERNEL);
1311 if (!psb_intel_crtc->crtc_state) {
1312 dev_err(dev->dev, "Crtc state error: No memory\n");
1313 kfree(psb_intel_crtc);
1314 return;
1315 }
1316
1317 /* Set the CRTC operations from the chip specific data */
1318 drm_crtc_init(dev, &psb_intel_crtc->base, dev_priv->ops->crtc_funcs);
1319
1320 drm_mode_crtc_set_gamma_size(&psb_intel_crtc->base, 256);
1321 psb_intel_crtc->pipe = pipe;
1322 psb_intel_crtc->plane = pipe;
1323
1324 r_base = psb_intel_crtc->base.gamma_store;
1325 g_base = r_base + 256;
1326 b_base = g_base + 256;
1327 for (i = 0; i < 256; i++) {
1328 psb_intel_crtc->lut_r[i] = i;
1329 psb_intel_crtc->lut_g[i] = i;
1330 psb_intel_crtc->lut_b[i] = i;
1331 r_base[i] = i << 8;
1332 g_base[i] = i << 8;
1333 b_base[i] = i << 8;
1334
1335 psb_intel_crtc->lut_adj[i] = 0;
1336 }
1337
1338 psb_intel_crtc->mode_dev = mode_dev;
1339 psb_intel_crtc->cursor_addr = 0;
1340
1341 drm_crtc_helper_add(&psb_intel_crtc->base,
1342 dev_priv->ops->crtc_helper);
1343
1344 /* Setup the array of drm_connector pointer array */
1345 psb_intel_crtc->mode_set.crtc = &psb_intel_crtc->base;
1346 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
1347 dev_priv->plane_to_crtc_mapping[psb_intel_crtc->plane] != NULL);
1348 dev_priv->plane_to_crtc_mapping[psb_intel_crtc->plane] =
1349 &psb_intel_crtc->base;
1350 dev_priv->pipe_to_crtc_mapping[psb_intel_crtc->pipe] =
1351 &psb_intel_crtc->base;
1352 psb_intel_crtc->mode_set.connectors =
1353 (struct drm_connector **) (psb_intel_crtc + 1);
1354 psb_intel_crtc->mode_set.num_connectors = 0;
1355 psb_intel_cursor_init(dev, pipe);
1356}
1357
1358int psb_intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
1359 struct drm_file *file_priv)
1360{
1361 struct drm_psb_private *dev_priv = dev->dev_private;
1362 struct drm_psb_get_pipe_from_crtc_id_arg *pipe_from_crtc_id = data;
1363 struct drm_mode_object *drmmode_obj;
1364 struct psb_intel_crtc *crtc;
1365
1366 if (!dev_priv) {
1367 dev_err(dev->dev, "called with no initialization\n");
1368 return -EINVAL;
1369 }
1370
1371 drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
1372 DRM_MODE_OBJECT_CRTC);
1373
1374 if (!drmmode_obj) {
1375 dev_err(dev->dev, "no such CRTC id\n");
1376 return -EINVAL;
1377 }
1378
1379 crtc = to_psb_intel_crtc(obj_to_crtc(drmmode_obj));
1380 pipe_from_crtc_id->pipe = crtc->pipe;
1381
1382 return 0;
1383}
1384
1385struct drm_crtc *psb_intel_get_crtc_from_pipe(struct drm_device *dev, int pipe)
1386{
1387 struct drm_crtc *crtc = NULL;
1388
1389 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
1390 struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
1391 if (psb_intel_crtc->pipe == pipe)
1392 break;
1393 }
1394 return crtc;
1395}
1396
1397int psb_intel_connector_clones(struct drm_device *dev, int type_mask)
1398{
1399 int index_mask = 0;
1400 struct drm_connector *connector;
1401 int entry = 0;
1402
1403 list_for_each_entry(connector, &dev->mode_config.connector_list,
1404 head) {
1405 struct psb_intel_output *psb_intel_output =
1406 to_psb_intel_output(connector);
1407 if (type_mask & (1 << psb_intel_output->type))
1408 index_mask |= (1 << entry);
1409 entry++;
1410 }
1411 return index_mask;
1412}
1413
1414
1415void psb_intel_modeset_cleanup(struct drm_device *dev)
1416{
1417 drm_mode_config_cleanup(dev);
1418}
1419
1420
1421/* current intel driver doesn't take advantage of encoders
1422 always give back the encoder for the connector
1423*/
1424struct drm_encoder *psb_intel_best_encoder(struct drm_connector *connector)
1425{
1426 struct psb_intel_output *psb_intel_output =
1427 to_psb_intel_output(connector);
1428
1429 return &psb_intel_output->enc;
1430}
1431