Tony Luck | 4ec656b | 2016-08-20 16:27:58 -0700 | [diff] [blame] | 1 | /* |
| 2 | * EDAC driver for Intel(R) Xeon(R) Skylake processors |
| 3 | * Copyright (c) 2016, Intel Corporation. |
| 4 | * |
| 5 | * This program is free software; you can redistribute it and/or modify it |
| 6 | * under the terms and conditions of the GNU General Public License, |
| 7 | * version 2, as published by the Free Software Foundation. |
| 8 | * |
| 9 | * This program is distributed in the hope it will be useful, but WITHOUT |
| 10 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| 11 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for |
| 12 | * more details. |
| 13 | */ |
| 14 | |
| 15 | #include <linux/module.h> |
| 16 | #include <linux/init.h> |
| 17 | #include <linux/pci.h> |
| 18 | #include <linux/pci_ids.h> |
| 19 | #include <linux/slab.h> |
| 20 | #include <linux/delay.h> |
| 21 | #include <linux/edac.h> |
| 22 | #include <linux/mmzone.h> |
| 23 | #include <linux/smp.h> |
| 24 | #include <linux/bitmap.h> |
| 25 | #include <linux/math64.h> |
| 26 | #include <linux/mod_devicetable.h> |
| 27 | #include <asm/cpu_device_id.h> |
| 28 | #include <asm/processor.h> |
| 29 | #include <asm/mce.h> |
| 30 | |
| 31 | #include "edac_core.h" |
| 32 | |
| 33 | #define SKX_REVISION " Ver: 1.0 " |
| 34 | |
| 35 | /* |
| 36 | * Debug macros |
| 37 | */ |
| 38 | #define skx_printk(level, fmt, arg...) \ |
| 39 | edac_printk(level, "skx", fmt, ##arg) |
| 40 | |
| 41 | #define skx_mc_printk(mci, level, fmt, arg...) \ |
| 42 | edac_mc_chipset_printk(mci, level, "skx", fmt, ##arg) |
| 43 | |
| 44 | /* |
| 45 | * Get a bit field at register value <v>, from bit <lo> to bit <hi> |
| 46 | */ |
| 47 | #define GET_BITFIELD(v, lo, hi) \ |
| 48 | (((v) & GENMASK_ULL((hi), (lo))) >> (lo)) |
| 49 | |
| 50 | static LIST_HEAD(skx_edac_list); |
| 51 | |
| 52 | static u64 skx_tolm, skx_tohm; |
| 53 | |
| 54 | #define NUM_IMC 2 /* memory controllers per socket */ |
| 55 | #define NUM_CHANNELS 3 /* channels per memory controller */ |
| 56 | #define NUM_DIMMS 2 /* Max DIMMS per channel */ |
| 57 | |
| 58 | #define MASK26 0x3FFFFFF /* Mask for 2^26 */ |
| 59 | #define MASK29 0x1FFFFFFF /* Mask for 2^29 */ |
| 60 | |
| 61 | /* |
| 62 | * Each cpu socket contains some pci devices that provide global |
| 63 | * information, and also some that are local to each of the two |
| 64 | * memory controllers on the die. |
| 65 | */ |
| 66 | struct skx_dev { |
| 67 | struct list_head list; |
| 68 | u8 bus[4]; |
| 69 | struct pci_dev *sad_all; |
| 70 | struct pci_dev *util_all; |
| 71 | u32 mcroute; |
| 72 | struct skx_imc { |
| 73 | struct mem_ctl_info *mci; |
| 74 | u8 mc; /* system wide mc# */ |
| 75 | u8 lmc; /* socket relative mc# */ |
| 76 | u8 src_id, node_id; |
| 77 | struct skx_channel { |
| 78 | struct pci_dev *cdev; |
| 79 | struct skx_dimm { |
| 80 | u8 close_pg; |
| 81 | u8 bank_xor_enable; |
| 82 | u8 fine_grain_bank; |
| 83 | u8 rowbits; |
| 84 | u8 colbits; |
| 85 | } dimms[NUM_DIMMS]; |
| 86 | } chan[NUM_CHANNELS]; |
| 87 | } imc[NUM_IMC]; |
| 88 | }; |
| 89 | static int skx_num_sockets; |
| 90 | |
| 91 | struct skx_pvt { |
| 92 | struct skx_imc *imc; |
| 93 | }; |
| 94 | |
| 95 | struct decoded_addr { |
| 96 | struct skx_dev *dev; |
| 97 | u64 addr; |
| 98 | int socket; |
| 99 | int imc; |
| 100 | int channel; |
| 101 | u64 chan_addr; |
| 102 | int sktways; |
| 103 | int chanways; |
| 104 | int dimm; |
| 105 | int rank; |
| 106 | int channel_rank; |
| 107 | u64 rank_address; |
| 108 | int row; |
| 109 | int column; |
| 110 | int bank_address; |
| 111 | int bank_group; |
| 112 | }; |
| 113 | |
| 114 | static struct skx_dev *get_skx_dev(u8 bus, u8 idx) |
| 115 | { |
| 116 | struct skx_dev *d; |
| 117 | |
| 118 | list_for_each_entry(d, &skx_edac_list, list) { |
| 119 | if (d->bus[idx] == bus) |
| 120 | return d; |
| 121 | } |
| 122 | |
| 123 | return NULL; |
| 124 | } |
| 125 | |
| 126 | enum munittype { |
| 127 | CHAN0, CHAN1, CHAN2, SAD_ALL, UTIL_ALL, SAD |
| 128 | }; |
| 129 | |
| 130 | struct munit { |
| 131 | u16 did; |
| 132 | u16 devfn[NUM_IMC]; |
| 133 | u8 busidx; |
| 134 | u8 per_socket; |
| 135 | enum munittype mtype; |
| 136 | }; |
| 137 | |
| 138 | /* |
| 139 | * List of PCI device ids that we need together with some device |
| 140 | * number and function numbers to tell which memory controller the |
| 141 | * device belongs to. |
| 142 | */ |
| 143 | static const struct munit skx_all_munits[] = { |
| 144 | { 0x2054, { }, 1, 1, SAD_ALL }, |
| 145 | { 0x2055, { }, 1, 1, UTIL_ALL }, |
| 146 | { 0x2040, { PCI_DEVFN(10, 0), PCI_DEVFN(12, 0) }, 2, 2, CHAN0 }, |
| 147 | { 0x2044, { PCI_DEVFN(10, 4), PCI_DEVFN(12, 4) }, 2, 2, CHAN1 }, |
| 148 | { 0x2048, { PCI_DEVFN(11, 0), PCI_DEVFN(13, 0) }, 2, 2, CHAN2 }, |
| 149 | { 0x208e, { }, 1, 0, SAD }, |
| 150 | { } |
| 151 | }; |
| 152 | |
| 153 | /* |
| 154 | * We use the per-socket device 0x2016 to count how many sockets are present, |
| 155 | * and to detemine which PCI buses are associated with each socket. Allocate |
| 156 | * and build the full list of all the skx_dev structures that we need here. |
| 157 | */ |
| 158 | static int get_all_bus_mappings(void) |
| 159 | { |
| 160 | struct pci_dev *pdev, *prev; |
| 161 | struct skx_dev *d; |
| 162 | u32 reg; |
| 163 | int ndev = 0; |
| 164 | |
| 165 | prev = NULL; |
| 166 | for (;;) { |
| 167 | pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x2016, prev); |
| 168 | if (!pdev) |
| 169 | break; |
| 170 | ndev++; |
| 171 | d = kzalloc(sizeof(*d), GFP_KERNEL); |
| 172 | if (!d) { |
| 173 | pci_dev_put(pdev); |
| 174 | return -ENOMEM; |
| 175 | } |
| 176 | pci_read_config_dword(pdev, 0xCC, ®); |
| 177 | d->bus[0] = GET_BITFIELD(reg, 0, 7); |
| 178 | d->bus[1] = GET_BITFIELD(reg, 8, 15); |
| 179 | d->bus[2] = GET_BITFIELD(reg, 16, 23); |
| 180 | d->bus[3] = GET_BITFIELD(reg, 24, 31); |
| 181 | edac_dbg(2, "busses: %x, %x, %x, %x\n", |
| 182 | d->bus[0], d->bus[1], d->bus[2], d->bus[3]); |
| 183 | list_add_tail(&d->list, &skx_edac_list); |
| 184 | skx_num_sockets++; |
| 185 | prev = pdev; |
| 186 | } |
| 187 | |
| 188 | return ndev; |
| 189 | } |
| 190 | |
| 191 | static int get_all_munits(const struct munit *m) |
| 192 | { |
| 193 | struct pci_dev *pdev, *prev; |
| 194 | struct skx_dev *d; |
| 195 | u32 reg; |
| 196 | int i = 0, ndev = 0; |
| 197 | |
| 198 | prev = NULL; |
| 199 | for (;;) { |
| 200 | pdev = pci_get_device(PCI_VENDOR_ID_INTEL, m->did, prev); |
| 201 | if (!pdev) |
| 202 | break; |
| 203 | ndev++; |
| 204 | if (m->per_socket == NUM_IMC) { |
| 205 | for (i = 0; i < NUM_IMC; i++) |
| 206 | if (m->devfn[i] == pdev->devfn) |
| 207 | break; |
| 208 | if (i == NUM_IMC) |
| 209 | goto fail; |
| 210 | } |
| 211 | d = get_skx_dev(pdev->bus->number, m->busidx); |
| 212 | if (!d) |
| 213 | goto fail; |
| 214 | |
| 215 | /* Be sure that the device is enabled */ |
| 216 | if (unlikely(pci_enable_device(pdev) < 0)) { |
| 217 | skx_printk(KERN_ERR, |
| 218 | "Couldn't enable %04x:%04x\n", PCI_VENDOR_ID_INTEL, m->did); |
| 219 | goto fail; |
| 220 | } |
| 221 | |
| 222 | switch (m->mtype) { |
| 223 | case CHAN0: case CHAN1: case CHAN2: |
| 224 | pci_dev_get(pdev); |
| 225 | d->imc[i].chan[m->mtype].cdev = pdev; |
| 226 | break; |
| 227 | case SAD_ALL: |
| 228 | pci_dev_get(pdev); |
| 229 | d->sad_all = pdev; |
| 230 | break; |
| 231 | case UTIL_ALL: |
| 232 | pci_dev_get(pdev); |
| 233 | d->util_all = pdev; |
| 234 | break; |
| 235 | case SAD: |
| 236 | /* |
| 237 | * one of these devices per core, including cores |
| 238 | * that don't exist on this SKU. Ignore any that |
| 239 | * read a route table of zero, make sure all the |
| 240 | * non-zero values match. |
| 241 | */ |
| 242 | pci_read_config_dword(pdev, 0xB4, ®); |
| 243 | if (reg != 0) { |
| 244 | if (d->mcroute == 0) |
| 245 | d->mcroute = reg; |
| 246 | else if (d->mcroute != reg) { |
| 247 | skx_printk(KERN_ERR, |
| 248 | "mcroute mismatch\n"); |
| 249 | goto fail; |
| 250 | } |
| 251 | } |
| 252 | ndev--; |
| 253 | break; |
| 254 | } |
| 255 | |
| 256 | prev = pdev; |
| 257 | } |
| 258 | |
| 259 | return ndev; |
| 260 | fail: |
| 261 | pci_dev_put(pdev); |
| 262 | return -ENODEV; |
| 263 | } |
| 264 | |
| 265 | const struct x86_cpu_id skx_cpuids[] = { |
| 266 | { X86_VENDOR_INTEL, 6, 0x55, 0, 0 }, /* Skylake */ |
| 267 | { } |
| 268 | }; |
| 269 | MODULE_DEVICE_TABLE(x86cpu, skx_cpuids); |
| 270 | |
| 271 | static u8 get_src_id(struct skx_dev *d) |
| 272 | { |
| 273 | u32 reg; |
| 274 | |
| 275 | pci_read_config_dword(d->util_all, 0xF0, ®); |
| 276 | |
| 277 | return GET_BITFIELD(reg, 12, 14); |
| 278 | } |
| 279 | |
| 280 | static u8 skx_get_node_id(struct skx_dev *d) |
| 281 | { |
| 282 | u32 reg; |
| 283 | |
| 284 | pci_read_config_dword(d->util_all, 0xF4, ®); |
| 285 | |
| 286 | return GET_BITFIELD(reg, 0, 2); |
| 287 | } |
| 288 | |
| 289 | static int get_dimm_attr(u32 reg, int lobit, int hibit, int add, int minval, |
| 290 | int maxval, char *name) |
| 291 | { |
| 292 | u32 val = GET_BITFIELD(reg, lobit, hibit); |
| 293 | |
| 294 | if (val < minval || val > maxval) { |
| 295 | edac_dbg(2, "bad %s = %d (raw=%x)\n", name, val, reg); |
| 296 | return -EINVAL; |
| 297 | } |
| 298 | return val + add; |
| 299 | } |
| 300 | |
| 301 | #define IS_DIMM_PRESENT(mtr) GET_BITFIELD((mtr), 15, 15) |
| 302 | |
| 303 | #define numrank(reg) get_dimm_attr((reg), 12, 13, 0, 1, 2, "ranks") |
| 304 | #define numrow(reg) get_dimm_attr((reg), 2, 4, 12, 1, 6, "rows") |
| 305 | #define numcol(reg) get_dimm_attr((reg), 0, 1, 10, 0, 2, "cols") |
| 306 | |
| 307 | static int get_width(u32 mtr) |
| 308 | { |
| 309 | switch (GET_BITFIELD(mtr, 8, 9)) { |
| 310 | case 0: |
| 311 | return DEV_X4; |
| 312 | case 1: |
| 313 | return DEV_X8; |
| 314 | case 2: |
| 315 | return DEV_X16; |
| 316 | } |
| 317 | return DEV_UNKNOWN; |
| 318 | } |
| 319 | |
| 320 | static int skx_get_hi_lo(void) |
| 321 | { |
| 322 | struct pci_dev *pdev; |
| 323 | u32 reg; |
| 324 | |
| 325 | pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x2034, NULL); |
| 326 | if (!pdev) { |
| 327 | edac_dbg(0, "Can't get tolm/tohm\n"); |
| 328 | return -ENODEV; |
| 329 | } |
| 330 | |
| 331 | pci_read_config_dword(pdev, 0xD0, ®); |
| 332 | skx_tolm = reg; |
| 333 | pci_read_config_dword(pdev, 0xD4, ®); |
| 334 | skx_tohm = reg; |
| 335 | pci_read_config_dword(pdev, 0xD8, ®); |
| 336 | skx_tohm |= (u64)reg << 32; |
| 337 | |
| 338 | pci_dev_put(pdev); |
| 339 | edac_dbg(2, "tolm=%llx tohm=%llx\n", skx_tolm, skx_tohm); |
| 340 | |
| 341 | return 0; |
| 342 | } |
| 343 | |
| 344 | static int get_dimm_info(u32 mtr, u32 amap, struct dimm_info *dimm, |
| 345 | struct skx_imc *imc, int chan, int dimmno) |
| 346 | { |
| 347 | int banks = 16, ranks, rows, cols, npages; |
| 348 | u64 size; |
| 349 | |
| 350 | if (!IS_DIMM_PRESENT(mtr)) |
| 351 | return 0; |
| 352 | ranks = numrank(mtr); |
| 353 | rows = numrow(mtr); |
| 354 | cols = numcol(mtr); |
| 355 | |
| 356 | /* |
| 357 | * Compute size in 8-byte (2^3) words, then shift to MiB (2^20) |
| 358 | */ |
| 359 | size = ((1ull << (rows + cols + ranks)) * banks) >> (20 - 3); |
| 360 | npages = MiB_TO_PAGES(size); |
| 361 | |
| 362 | edac_dbg(0, "mc#%d: channel %d, dimm %d, %lld Mb (%d pages) bank: %d, rank: %d, row: %#x, col: %#x\n", |
| 363 | imc->mc, chan, dimmno, size, npages, |
| 364 | banks, ranks, rows, cols); |
| 365 | |
| 366 | imc->chan[chan].dimms[dimmno].close_pg = GET_BITFIELD(mtr, 0, 0); |
| 367 | imc->chan[chan].dimms[dimmno].bank_xor_enable = GET_BITFIELD(mtr, 9, 9); |
| 368 | imc->chan[chan].dimms[dimmno].fine_grain_bank = GET_BITFIELD(amap, 0, 0); |
| 369 | imc->chan[chan].dimms[dimmno].rowbits = rows; |
| 370 | imc->chan[chan].dimms[dimmno].colbits = cols; |
| 371 | |
| 372 | dimm->nr_pages = npages; |
| 373 | dimm->grain = 32; |
| 374 | dimm->dtype = get_width(mtr); |
| 375 | dimm->mtype = MEM_DDR4; |
| 376 | dimm->edac_mode = EDAC_SECDED; /* likely better than this */ |
| 377 | snprintf(dimm->label, sizeof(dimm->label), "CPU_SrcID#%u_MC#%u_Chan#%u_DIMM#%u", |
| 378 | imc->src_id, imc->lmc, chan, dimmno); |
| 379 | |
| 380 | return 1; |
| 381 | } |
| 382 | |
| 383 | #define SKX_GET_MTMTR(dev, reg) \ |
| 384 | pci_read_config_dword((dev), 0x87c, ®) |
| 385 | |
| 386 | static bool skx_check_ecc(struct pci_dev *pdev) |
| 387 | { |
| 388 | u32 mtmtr; |
| 389 | |
| 390 | SKX_GET_MTMTR(pdev, mtmtr); |
| 391 | |
| 392 | return !!GET_BITFIELD(mtmtr, 2, 2); |
| 393 | } |
| 394 | |
| 395 | static int skx_get_dimm_config(struct mem_ctl_info *mci) |
| 396 | { |
| 397 | struct skx_pvt *pvt = mci->pvt_info; |
| 398 | struct skx_imc *imc = pvt->imc; |
| 399 | struct dimm_info *dimm; |
| 400 | int i, j; |
| 401 | u32 mtr, amap; |
| 402 | int ndimms; |
| 403 | |
| 404 | for (i = 0; i < NUM_CHANNELS; i++) { |
| 405 | ndimms = 0; |
| 406 | pci_read_config_dword(imc->chan[i].cdev, 0x8C, &amap); |
| 407 | for (j = 0; j < NUM_DIMMS; j++) { |
| 408 | dimm = EDAC_DIMM_PTR(mci->layers, mci->dimms, |
| 409 | mci->n_layers, i, j, 0); |
| 410 | pci_read_config_dword(imc->chan[i].cdev, |
| 411 | 0x80 + 4*j, &mtr); |
| 412 | ndimms += get_dimm_info(mtr, amap, dimm, imc, i, j); |
| 413 | } |
| 414 | if (ndimms && !skx_check_ecc(imc->chan[0].cdev)) { |
| 415 | skx_printk(KERN_ERR, "ECC is disabled on imc %d\n", imc->mc); |
| 416 | return -ENODEV; |
| 417 | } |
| 418 | } |
| 419 | |
| 420 | return 0; |
| 421 | } |
| 422 | |
| 423 | static void skx_unregister_mci(struct skx_imc *imc) |
| 424 | { |
| 425 | struct mem_ctl_info *mci = imc->mci; |
| 426 | |
| 427 | if (!mci) |
| 428 | return; |
| 429 | |
| 430 | edac_dbg(0, "MC%d: mci = %p\n", imc->mc, mci); |
| 431 | |
| 432 | /* Remove MC sysfs nodes */ |
| 433 | edac_mc_del_mc(mci->pdev); |
| 434 | |
| 435 | edac_dbg(1, "%s: free mci struct\n", mci->ctl_name); |
| 436 | kfree(mci->ctl_name); |
| 437 | edac_mc_free(mci); |
| 438 | } |
| 439 | |
| 440 | static int skx_register_mci(struct skx_imc *imc) |
| 441 | { |
| 442 | struct mem_ctl_info *mci; |
| 443 | struct edac_mc_layer layers[2]; |
| 444 | struct pci_dev *pdev = imc->chan[0].cdev; |
| 445 | struct skx_pvt *pvt; |
| 446 | int rc; |
| 447 | |
| 448 | /* allocate a new MC control structure */ |
| 449 | layers[0].type = EDAC_MC_LAYER_CHANNEL; |
| 450 | layers[0].size = NUM_CHANNELS; |
| 451 | layers[0].is_virt_csrow = false; |
| 452 | layers[1].type = EDAC_MC_LAYER_SLOT; |
| 453 | layers[1].size = NUM_DIMMS; |
| 454 | layers[1].is_virt_csrow = true; |
| 455 | mci = edac_mc_alloc(imc->mc, ARRAY_SIZE(layers), layers, |
| 456 | sizeof(struct skx_pvt)); |
| 457 | |
| 458 | if (unlikely(!mci)) |
| 459 | return -ENOMEM; |
| 460 | |
| 461 | edac_dbg(0, "MC#%d: mci = %p\n", imc->mc, mci); |
| 462 | |
| 463 | /* Associate skx_dev and mci for future usage */ |
| 464 | imc->mci = mci; |
| 465 | pvt = mci->pvt_info; |
| 466 | pvt->imc = imc; |
| 467 | |
| 468 | mci->ctl_name = kasprintf(GFP_KERNEL, "Skylake Socket#%d IMC#%d", |
| 469 | imc->node_id, imc->lmc); |
| 470 | mci->mtype_cap = MEM_FLAG_DDR4; |
| 471 | mci->edac_ctl_cap = EDAC_FLAG_NONE; |
| 472 | mci->edac_cap = EDAC_FLAG_NONE; |
| 473 | mci->mod_name = "skx_edac.c"; |
| 474 | mci->dev_name = pci_name(imc->chan[0].cdev); |
| 475 | mci->mod_ver = SKX_REVISION; |
| 476 | mci->ctl_page_to_phys = NULL; |
| 477 | |
| 478 | rc = skx_get_dimm_config(mci); |
| 479 | if (rc < 0) |
| 480 | goto fail; |
| 481 | |
| 482 | /* record ptr to the generic device */ |
| 483 | mci->pdev = &pdev->dev; |
| 484 | |
| 485 | /* add this new MC control structure to EDAC's list of MCs */ |
| 486 | if (unlikely(edac_mc_add_mc(mci))) { |
| 487 | edac_dbg(0, "MC: failed edac_mc_add_mc()\n"); |
| 488 | rc = -EINVAL; |
| 489 | goto fail; |
| 490 | } |
| 491 | |
| 492 | return 0; |
| 493 | |
| 494 | fail: |
| 495 | kfree(mci->ctl_name); |
| 496 | edac_mc_free(mci); |
| 497 | imc->mci = NULL; |
| 498 | return rc; |
| 499 | } |
| 500 | |
| 501 | #define SKX_MAX_SAD 24 |
| 502 | |
| 503 | #define SKX_GET_SAD(d, i, reg) \ |
| 504 | pci_read_config_dword((d)->sad_all, 0x60 + 8 * (i), ®) |
| 505 | #define SKX_GET_ILV(d, i, reg) \ |
| 506 | pci_read_config_dword((d)->sad_all, 0x64 + 8 * (i), ®) |
| 507 | |
| 508 | #define SKX_SAD_MOD3MODE(sad) GET_BITFIELD((sad), 30, 31) |
| 509 | #define SKX_SAD_MOD3(sad) GET_BITFIELD((sad), 27, 27) |
| 510 | #define SKX_SAD_LIMIT(sad) (((u64)GET_BITFIELD((sad), 7, 26) << 26) | MASK26) |
| 511 | #define SKX_SAD_MOD3ASMOD2(sad) GET_BITFIELD((sad), 5, 6) |
| 512 | #define SKX_SAD_ATTR(sad) GET_BITFIELD((sad), 3, 4) |
| 513 | #define SKX_SAD_INTERLEAVE(sad) GET_BITFIELD((sad), 1, 2) |
| 514 | #define SKX_SAD_ENABLE(sad) GET_BITFIELD((sad), 0, 0) |
| 515 | |
| 516 | #define SKX_ILV_REMOTE(tgt) (((tgt) & 8) == 0) |
| 517 | #define SKX_ILV_TARGET(tgt) ((tgt) & 7) |
| 518 | |
| 519 | static bool skx_sad_decode(struct decoded_addr *res) |
| 520 | { |
| 521 | struct skx_dev *d = list_first_entry(&skx_edac_list, typeof(*d), list); |
| 522 | u64 addr = res->addr; |
| 523 | int i, idx, tgt, lchan, shift; |
| 524 | u32 sad, ilv; |
| 525 | u64 limit, prev_limit; |
| 526 | int remote = 0; |
| 527 | |
| 528 | /* Simple sanity check for I/O space or out of range */ |
| 529 | if (addr >= skx_tohm || (addr >= skx_tolm && addr < BIT_ULL(32))) { |
| 530 | edac_dbg(0, "Address %llx out of range\n", addr); |
| 531 | return false; |
| 532 | } |
| 533 | |
| 534 | restart: |
| 535 | prev_limit = 0; |
| 536 | for (i = 0; i < SKX_MAX_SAD; i++) { |
| 537 | SKX_GET_SAD(d, i, sad); |
| 538 | limit = SKX_SAD_LIMIT(sad); |
| 539 | if (SKX_SAD_ENABLE(sad)) { |
| 540 | if (addr >= prev_limit && addr <= limit) |
| 541 | goto sad_found; |
| 542 | } |
| 543 | prev_limit = limit + 1; |
| 544 | } |
| 545 | edac_dbg(0, "No SAD entry for %llx\n", addr); |
| 546 | return false; |
| 547 | |
| 548 | sad_found: |
| 549 | SKX_GET_ILV(d, i, ilv); |
| 550 | |
| 551 | switch (SKX_SAD_INTERLEAVE(sad)) { |
| 552 | case 0: |
| 553 | idx = GET_BITFIELD(addr, 6, 8); |
| 554 | break; |
| 555 | case 1: |
| 556 | idx = GET_BITFIELD(addr, 8, 10); |
| 557 | break; |
| 558 | case 2: |
| 559 | idx = GET_BITFIELD(addr, 12, 14); |
| 560 | break; |
| 561 | case 3: |
| 562 | idx = GET_BITFIELD(addr, 30, 32); |
| 563 | break; |
| 564 | } |
| 565 | |
| 566 | tgt = GET_BITFIELD(ilv, 4 * idx, 4 * idx + 3); |
| 567 | |
| 568 | /* If point to another node, find it and start over */ |
| 569 | if (SKX_ILV_REMOTE(tgt)) { |
| 570 | if (remote) { |
| 571 | edac_dbg(0, "Double remote!\n"); |
| 572 | return false; |
| 573 | } |
| 574 | remote = 1; |
| 575 | list_for_each_entry(d, &skx_edac_list, list) { |
| 576 | if (d->imc[0].src_id == SKX_ILV_TARGET(tgt)) |
| 577 | goto restart; |
| 578 | } |
| 579 | edac_dbg(0, "Can't find node %d\n", SKX_ILV_TARGET(tgt)); |
| 580 | return false; |
| 581 | } |
| 582 | |
| 583 | if (SKX_SAD_MOD3(sad) == 0) |
| 584 | lchan = SKX_ILV_TARGET(tgt); |
| 585 | else { |
| 586 | switch (SKX_SAD_MOD3MODE(sad)) { |
| 587 | case 0: |
| 588 | shift = 6; |
| 589 | break; |
| 590 | case 1: |
| 591 | shift = 8; |
| 592 | break; |
| 593 | case 2: |
| 594 | shift = 12; |
| 595 | break; |
| 596 | default: |
| 597 | edac_dbg(0, "illegal mod3mode\n"); |
| 598 | return false; |
| 599 | } |
| 600 | switch (SKX_SAD_MOD3ASMOD2(sad)) { |
| 601 | case 0: |
| 602 | lchan = (addr >> shift) % 3; |
| 603 | break; |
| 604 | case 1: |
| 605 | lchan = (addr >> shift) % 2; |
| 606 | break; |
| 607 | case 2: |
| 608 | lchan = (addr >> shift) % 2; |
| 609 | lchan = (lchan << 1) | ~lchan; |
| 610 | break; |
| 611 | case 3: |
| 612 | lchan = ((addr >> shift) % 2) << 1; |
| 613 | break; |
| 614 | } |
| 615 | lchan = (lchan << 1) | (SKX_ILV_TARGET(tgt) & 1); |
| 616 | } |
| 617 | |
| 618 | res->dev = d; |
| 619 | res->socket = d->imc[0].src_id; |
| 620 | res->imc = GET_BITFIELD(d->mcroute, lchan * 3, lchan * 3 + 2); |
| 621 | res->channel = GET_BITFIELD(d->mcroute, lchan * 2 + 18, lchan * 2 + 19); |
| 622 | |
| 623 | edac_dbg(2, "%llx: socket=%d imc=%d channel=%d\n", |
| 624 | res->addr, res->socket, res->imc, res->channel); |
| 625 | return true; |
| 626 | } |
| 627 | |
| 628 | #define SKX_MAX_TAD 8 |
| 629 | |
| 630 | #define SKX_GET_TADBASE(d, mc, i, reg) \ |
| 631 | pci_read_config_dword((d)->imc[mc].chan[0].cdev, 0x850 + 4 * (i), ®) |
| 632 | #define SKX_GET_TADWAYNESS(d, mc, i, reg) \ |
| 633 | pci_read_config_dword((d)->imc[mc].chan[0].cdev, 0x880 + 4 * (i), ®) |
| 634 | #define SKX_GET_TADCHNILVOFFSET(d, mc, ch, i, reg) \ |
| 635 | pci_read_config_dword((d)->imc[mc].chan[ch].cdev, 0x90 + 4 * (i), ®) |
| 636 | |
| 637 | #define SKX_TAD_BASE(b) ((u64)GET_BITFIELD((b), 12, 31) << 26) |
| 638 | #define SKX_TAD_SKT_GRAN(b) GET_BITFIELD((b), 4, 5) |
| 639 | #define SKX_TAD_CHN_GRAN(b) GET_BITFIELD((b), 6, 7) |
| 640 | #define SKX_TAD_LIMIT(b) (((u64)GET_BITFIELD((b), 12, 31) << 26) | MASK26) |
| 641 | #define SKX_TAD_OFFSET(b) ((u64)GET_BITFIELD((b), 4, 23) << 26) |
| 642 | #define SKX_TAD_SKTWAYS(b) (1 << GET_BITFIELD((b), 10, 11)) |
| 643 | #define SKX_TAD_CHNWAYS(b) (GET_BITFIELD((b), 8, 9) + 1) |
| 644 | |
| 645 | /* which bit used for both socket and channel interleave */ |
| 646 | static int skx_granularity[] = { 6, 8, 12, 30 }; |
| 647 | |
| 648 | static u64 skx_do_interleave(u64 addr, int shift, int ways, u64 lowbits) |
| 649 | { |
| 650 | addr >>= shift; |
| 651 | addr /= ways; |
| 652 | addr <<= shift; |
| 653 | |
| 654 | return addr | (lowbits & ((1ull << shift) - 1)); |
| 655 | } |
| 656 | |
| 657 | static bool skx_tad_decode(struct decoded_addr *res) |
| 658 | { |
| 659 | int i; |
| 660 | u32 base, wayness, chnilvoffset; |
| 661 | int skt_interleave_bit, chn_interleave_bit; |
| 662 | u64 channel_addr; |
| 663 | |
| 664 | for (i = 0; i < SKX_MAX_TAD; i++) { |
| 665 | SKX_GET_TADBASE(res->dev, res->imc, i, base); |
| 666 | SKX_GET_TADWAYNESS(res->dev, res->imc, i, wayness); |
| 667 | if (SKX_TAD_BASE(base) <= res->addr && res->addr <= SKX_TAD_LIMIT(wayness)) |
| 668 | goto tad_found; |
| 669 | } |
| 670 | edac_dbg(0, "No TAD entry for %llx\n", res->addr); |
| 671 | return false; |
| 672 | |
| 673 | tad_found: |
| 674 | res->sktways = SKX_TAD_SKTWAYS(wayness); |
| 675 | res->chanways = SKX_TAD_CHNWAYS(wayness); |
| 676 | skt_interleave_bit = skx_granularity[SKX_TAD_SKT_GRAN(base)]; |
| 677 | chn_interleave_bit = skx_granularity[SKX_TAD_CHN_GRAN(base)]; |
| 678 | |
| 679 | SKX_GET_TADCHNILVOFFSET(res->dev, res->imc, res->channel, i, chnilvoffset); |
| 680 | channel_addr = res->addr - SKX_TAD_OFFSET(chnilvoffset); |
| 681 | |
| 682 | if (res->chanways == 3 && skt_interleave_bit > chn_interleave_bit) { |
| 683 | /* Must handle channel first, then socket */ |
| 684 | channel_addr = skx_do_interleave(channel_addr, chn_interleave_bit, |
| 685 | res->chanways, channel_addr); |
| 686 | channel_addr = skx_do_interleave(channel_addr, skt_interleave_bit, |
| 687 | res->sktways, channel_addr); |
| 688 | } else { |
| 689 | /* Handle socket then channel. Preserve low bits from original address */ |
| 690 | channel_addr = skx_do_interleave(channel_addr, skt_interleave_bit, |
| 691 | res->sktways, res->addr); |
| 692 | channel_addr = skx_do_interleave(channel_addr, chn_interleave_bit, |
| 693 | res->chanways, res->addr); |
| 694 | } |
| 695 | |
| 696 | res->chan_addr = channel_addr; |
| 697 | |
| 698 | edac_dbg(2, "%llx: chan_addr=%llx sktways=%d chanways=%d\n", |
| 699 | res->addr, res->chan_addr, res->sktways, res->chanways); |
| 700 | return true; |
| 701 | } |
| 702 | |
| 703 | #define SKX_MAX_RIR 4 |
| 704 | |
| 705 | #define SKX_GET_RIRWAYNESS(d, mc, ch, i, reg) \ |
| 706 | pci_read_config_dword((d)->imc[mc].chan[ch].cdev, \ |
| 707 | 0x108 + 4 * (i), ®) |
| 708 | #define SKX_GET_RIRILV(d, mc, ch, idx, i, reg) \ |
| 709 | pci_read_config_dword((d)->imc[mc].chan[ch].cdev, \ |
| 710 | 0x120 + 16 * idx + 4 * (i), ®) |
| 711 | |
| 712 | #define SKX_RIR_VALID(b) GET_BITFIELD((b), 31, 31) |
| 713 | #define SKX_RIR_LIMIT(b) (((u64)GET_BITFIELD((b), 1, 11) << 29) | MASK29) |
| 714 | #define SKX_RIR_WAYS(b) (1 << GET_BITFIELD((b), 28, 29)) |
| 715 | #define SKX_RIR_CHAN_RANK(b) GET_BITFIELD((b), 16, 19) |
| 716 | #define SKX_RIR_OFFSET(b) ((u64)(GET_BITFIELD((b), 2, 15) << 26)) |
| 717 | |
| 718 | static bool skx_rir_decode(struct decoded_addr *res) |
| 719 | { |
| 720 | int i, idx, chan_rank; |
| 721 | int shift; |
| 722 | u32 rirway, rirlv; |
| 723 | u64 rank_addr, prev_limit = 0, limit; |
| 724 | |
| 725 | if (res->dev->imc[res->imc].chan[res->channel].dimms[0].close_pg) |
| 726 | shift = 6; |
| 727 | else |
| 728 | shift = 13; |
| 729 | |
| 730 | for (i = 0; i < SKX_MAX_RIR; i++) { |
| 731 | SKX_GET_RIRWAYNESS(res->dev, res->imc, res->channel, i, rirway); |
| 732 | limit = SKX_RIR_LIMIT(rirway); |
| 733 | if (SKX_RIR_VALID(rirway)) { |
| 734 | if (prev_limit <= res->chan_addr && |
| 735 | res->chan_addr <= limit) |
| 736 | goto rir_found; |
| 737 | } |
| 738 | prev_limit = limit; |
| 739 | } |
| 740 | edac_dbg(0, "No RIR entry for %llx\n", res->addr); |
| 741 | return false; |
| 742 | |
| 743 | rir_found: |
| 744 | rank_addr = res->chan_addr >> shift; |
| 745 | rank_addr /= SKX_RIR_WAYS(rirway); |
| 746 | rank_addr <<= shift; |
| 747 | rank_addr |= res->chan_addr & GENMASK_ULL(shift - 1, 0); |
| 748 | |
| 749 | res->rank_address = rank_addr; |
| 750 | idx = (res->chan_addr >> shift) % SKX_RIR_WAYS(rirway); |
| 751 | |
| 752 | SKX_GET_RIRILV(res->dev, res->imc, res->channel, idx, i, rirlv); |
| 753 | res->rank_address = rank_addr - SKX_RIR_OFFSET(rirlv); |
| 754 | chan_rank = SKX_RIR_CHAN_RANK(rirlv); |
| 755 | res->channel_rank = chan_rank; |
| 756 | res->dimm = chan_rank / 4; |
| 757 | res->rank = chan_rank % 4; |
| 758 | |
| 759 | edac_dbg(2, "%llx: dimm=%d rank=%d chan_rank=%d rank_addr=%llx\n", |
| 760 | res->addr, res->dimm, res->rank, |
| 761 | res->channel_rank, res->rank_address); |
| 762 | return true; |
| 763 | } |
| 764 | |
| 765 | static u8 skx_close_row[] = { |
| 766 | 15, 16, 17, 18, 20, 21, 22, 28, 10, 11, 12, 13, 29, 30, 31, 32, 33 |
| 767 | }; |
| 768 | static u8 skx_close_column[] = { |
| 769 | 3, 4, 5, 14, 19, 23, 24, 25, 26, 27 |
| 770 | }; |
| 771 | static u8 skx_open_row[] = { |
| 772 | 14, 15, 16, 20, 28, 21, 22, 23, 24, 25, 26, 27, 29, 30, 31, 32, 33 |
| 773 | }; |
| 774 | static u8 skx_open_column[] = { |
| 775 | 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 |
| 776 | }; |
| 777 | static u8 skx_open_fine_column[] = { |
| 778 | 3, 4, 5, 7, 8, 9, 10, 11, 12, 13 |
| 779 | }; |
| 780 | |
| 781 | static int skx_bits(u64 addr, int nbits, u8 *bits) |
| 782 | { |
| 783 | int i, res = 0; |
| 784 | |
| 785 | for (i = 0; i < nbits; i++) |
| 786 | res |= ((addr >> bits[i]) & 1) << i; |
| 787 | return res; |
| 788 | } |
| 789 | |
| 790 | static int skx_bank_bits(u64 addr, int b0, int b1, int do_xor, int x0, int x1) |
| 791 | { |
| 792 | int ret = GET_BITFIELD(addr, b0, b0) | (GET_BITFIELD(addr, b1, b1) << 1); |
| 793 | |
| 794 | if (do_xor) |
| 795 | ret ^= GET_BITFIELD(addr, x0, x0) | (GET_BITFIELD(addr, x1, x1) << 1); |
| 796 | |
| 797 | return ret; |
| 798 | } |
| 799 | |
| 800 | static bool skx_mad_decode(struct decoded_addr *r) |
| 801 | { |
| 802 | struct skx_dimm *dimm = &r->dev->imc[r->imc].chan[r->channel].dimms[r->dimm]; |
| 803 | int bg0 = dimm->fine_grain_bank ? 6 : 13; |
| 804 | |
| 805 | if (dimm->close_pg) { |
| 806 | r->row = skx_bits(r->rank_address, dimm->rowbits, skx_close_row); |
| 807 | r->column = skx_bits(r->rank_address, dimm->colbits, skx_close_column); |
| 808 | r->column |= 0x400; /* C10 is autoprecharge, always set */ |
| 809 | r->bank_address = skx_bank_bits(r->rank_address, 8, 9, dimm->bank_xor_enable, 22, 28); |
| 810 | r->bank_group = skx_bank_bits(r->rank_address, 6, 7, dimm->bank_xor_enable, 20, 21); |
| 811 | } else { |
| 812 | r->row = skx_bits(r->rank_address, dimm->rowbits, skx_open_row); |
| 813 | if (dimm->fine_grain_bank) |
| 814 | r->column = skx_bits(r->rank_address, dimm->colbits, skx_open_fine_column); |
| 815 | else |
| 816 | r->column = skx_bits(r->rank_address, dimm->colbits, skx_open_column); |
| 817 | r->bank_address = skx_bank_bits(r->rank_address, 18, 19, dimm->bank_xor_enable, 22, 23); |
| 818 | r->bank_group = skx_bank_bits(r->rank_address, bg0, 17, dimm->bank_xor_enable, 20, 21); |
| 819 | } |
| 820 | r->row &= (1u << dimm->rowbits) - 1; |
| 821 | |
| 822 | edac_dbg(2, "%llx: row=%x col=%x bank_addr=%d bank_group=%d\n", |
| 823 | r->addr, r->row, r->column, r->bank_address, |
| 824 | r->bank_group); |
| 825 | return true; |
| 826 | } |
| 827 | |
| 828 | static bool skx_decode(struct decoded_addr *res) |
| 829 | { |
| 830 | |
| 831 | return skx_sad_decode(res) && skx_tad_decode(res) && |
| 832 | skx_rir_decode(res) && skx_mad_decode(res); |
| 833 | } |
| 834 | |
| 835 | #ifdef CONFIG_EDAC_DEBUG |
| 836 | /* |
| 837 | * Debug feature. Make /sys/kernel/debug/skx_edac_test/addr. |
| 838 | * Write an address to this file to exercise the address decode |
| 839 | * logic in this driver. |
| 840 | */ |
| 841 | static struct dentry *skx_test; |
| 842 | static u64 skx_fake_addr; |
| 843 | |
| 844 | static int debugfs_u64_set(void *data, u64 val) |
| 845 | { |
| 846 | struct decoded_addr res; |
| 847 | |
| 848 | res.addr = val; |
| 849 | skx_decode(&res); |
| 850 | |
| 851 | return 0; |
| 852 | } |
| 853 | |
| 854 | DEFINE_SIMPLE_ATTRIBUTE(fops_u64_wo, NULL, debugfs_u64_set, "%llu\n"); |
| 855 | |
| 856 | static struct dentry *mydebugfs_create(const char *name, umode_t mode, |
| 857 | struct dentry *parent, u64 *value) |
| 858 | { |
| 859 | return debugfs_create_file(name, mode, parent, value, &fops_u64_wo); |
| 860 | } |
| 861 | |
| 862 | static void setup_skx_debug(void) |
| 863 | { |
| 864 | skx_test = debugfs_create_dir("skx_edac_test", NULL); |
| 865 | mydebugfs_create("addr", S_IWUSR, skx_test, &skx_fake_addr); |
| 866 | } |
| 867 | |
| 868 | static void teardown_skx_debug(void) |
| 869 | { |
| 870 | debugfs_remove_recursive(skx_test); |
| 871 | } |
| 872 | #else |
| 873 | static void setup_skx_debug(void) |
| 874 | { |
| 875 | } |
| 876 | |
| 877 | static void teardown_skx_debug(void) |
| 878 | { |
| 879 | } |
| 880 | #endif /*CONFIG_EDAC_DEBUG*/ |
| 881 | |
| 882 | static void skx_mce_output_error(struct mem_ctl_info *mci, |
| 883 | const struct mce *m, |
| 884 | struct decoded_addr *res) |
| 885 | { |
| 886 | enum hw_event_mc_err_type tp_event; |
| 887 | char *type, *optype, msg[256]; |
| 888 | bool ripv = GET_BITFIELD(m->mcgstatus, 0, 0); |
| 889 | bool overflow = GET_BITFIELD(m->status, 62, 62); |
| 890 | bool uncorrected_error = GET_BITFIELD(m->status, 61, 61); |
| 891 | bool recoverable; |
| 892 | u32 core_err_cnt = GET_BITFIELD(m->status, 38, 52); |
| 893 | u32 mscod = GET_BITFIELD(m->status, 16, 31); |
| 894 | u32 errcode = GET_BITFIELD(m->status, 0, 15); |
| 895 | u32 optypenum = GET_BITFIELD(m->status, 4, 6); |
| 896 | |
| 897 | recoverable = GET_BITFIELD(m->status, 56, 56); |
| 898 | |
| 899 | if (uncorrected_error) { |
| 900 | if (ripv) { |
| 901 | type = "FATAL"; |
| 902 | tp_event = HW_EVENT_ERR_FATAL; |
| 903 | } else { |
| 904 | type = "NON_FATAL"; |
| 905 | tp_event = HW_EVENT_ERR_UNCORRECTED; |
| 906 | } |
| 907 | } else { |
| 908 | type = "CORRECTED"; |
| 909 | tp_event = HW_EVENT_ERR_CORRECTED; |
| 910 | } |
| 911 | |
| 912 | /* |
| 913 | * According with Table 15-9 of the Intel Architecture spec vol 3A, |
| 914 | * memory errors should fit in this mask: |
| 915 | * 000f 0000 1mmm cccc (binary) |
| 916 | * where: |
| 917 | * f = Correction Report Filtering Bit. If 1, subsequent errors |
| 918 | * won't be shown |
| 919 | * mmm = error type |
| 920 | * cccc = channel |
| 921 | * If the mask doesn't match, report an error to the parsing logic |
| 922 | */ |
| 923 | if (!((errcode & 0xef80) == 0x80)) { |
| 924 | optype = "Can't parse: it is not a mem"; |
| 925 | } else { |
| 926 | switch (optypenum) { |
| 927 | case 0: |
| 928 | optype = "generic undef request error"; |
| 929 | break; |
| 930 | case 1: |
| 931 | optype = "memory read error"; |
| 932 | break; |
| 933 | case 2: |
| 934 | optype = "memory write error"; |
| 935 | break; |
| 936 | case 3: |
| 937 | optype = "addr/cmd error"; |
| 938 | break; |
| 939 | case 4: |
| 940 | optype = "memory scrubbing error"; |
| 941 | break; |
| 942 | default: |
| 943 | optype = "reserved"; |
| 944 | break; |
| 945 | } |
| 946 | } |
| 947 | |
| 948 | snprintf(msg, sizeof(msg), |
| 949 | "%s%s err_code:%04x:%04x socket:%d imc:%d rank:%d bg:%d ba:%d row:%x col:%x", |
| 950 | overflow ? " OVERFLOW" : "", |
| 951 | (uncorrected_error && recoverable) ? " recoverable" : "", |
| 952 | mscod, errcode, |
| 953 | res->socket, res->imc, res->rank, |
| 954 | res->bank_group, res->bank_address, res->row, res->column); |
| 955 | |
| 956 | edac_dbg(0, "%s\n", msg); |
| 957 | |
| 958 | /* Call the helper to output message */ |
| 959 | edac_mc_handle_error(tp_event, mci, core_err_cnt, |
| 960 | m->addr >> PAGE_SHIFT, m->addr & ~PAGE_MASK, 0, |
| 961 | res->channel, res->dimm, -1, |
| 962 | optype, msg); |
| 963 | } |
| 964 | |
| 965 | static int skx_mce_check_error(struct notifier_block *nb, unsigned long val, |
| 966 | void *data) |
| 967 | { |
| 968 | struct mce *mce = (struct mce *)data; |
| 969 | struct decoded_addr res; |
| 970 | struct mem_ctl_info *mci; |
| 971 | char *type; |
| 972 | |
| 973 | if (get_edac_report_status() == EDAC_REPORTING_DISABLED) |
| 974 | return NOTIFY_DONE; |
| 975 | |
| 976 | /* ignore unless this is memory related with an address */ |
| 977 | if ((mce->status & 0xefff) >> 7 != 1 || !(mce->status & MCI_STATUS_ADDRV)) |
| 978 | return NOTIFY_DONE; |
| 979 | |
| 980 | res.addr = mce->addr; |
| 981 | if (!skx_decode(&res)) |
| 982 | return NOTIFY_DONE; |
| 983 | mci = res.dev->imc[res.imc].mci; |
| 984 | |
| 985 | if (mce->mcgstatus & MCG_STATUS_MCIP) |
| 986 | type = "Exception"; |
| 987 | else |
| 988 | type = "Event"; |
| 989 | |
| 990 | skx_mc_printk(mci, KERN_DEBUG, "HANDLING MCE MEMORY ERROR\n"); |
| 991 | |
| 992 | skx_mc_printk(mci, KERN_DEBUG, "CPU %d: Machine Check %s: %Lx " |
| 993 | "Bank %d: %016Lx\n", mce->extcpu, type, |
| 994 | mce->mcgstatus, mce->bank, mce->status); |
| 995 | skx_mc_printk(mci, KERN_DEBUG, "TSC %llx ", mce->tsc); |
| 996 | skx_mc_printk(mci, KERN_DEBUG, "ADDR %llx ", mce->addr); |
| 997 | skx_mc_printk(mci, KERN_DEBUG, "MISC %llx ", mce->misc); |
| 998 | |
| 999 | skx_mc_printk(mci, KERN_DEBUG, "PROCESSOR %u:%x TIME %llu SOCKET " |
| 1000 | "%u APIC %x\n", mce->cpuvendor, mce->cpuid, |
| 1001 | mce->time, mce->socketid, mce->apicid); |
| 1002 | |
| 1003 | skx_mce_output_error(mci, mce, &res); |
| 1004 | |
| 1005 | return NOTIFY_DONE; |
| 1006 | } |
| 1007 | |
| 1008 | static struct notifier_block skx_mce_dec = { |
| 1009 | .notifier_call = skx_mce_check_error, |
| 1010 | }; |
| 1011 | |
| 1012 | static void skx_remove(void) |
| 1013 | { |
| 1014 | int i, j; |
| 1015 | struct skx_dev *d, *tmp; |
| 1016 | |
| 1017 | edac_dbg(0, "\n"); |
| 1018 | |
| 1019 | list_for_each_entry_safe(d, tmp, &skx_edac_list, list) { |
| 1020 | list_del(&d->list); |
| 1021 | for (i = 0; i < NUM_IMC; i++) { |
| 1022 | skx_unregister_mci(&d->imc[i]); |
| 1023 | for (j = 0; j < NUM_CHANNELS; j++) |
| 1024 | pci_dev_put(d->imc[i].chan[j].cdev); |
| 1025 | } |
| 1026 | pci_dev_put(d->util_all); |
| 1027 | pci_dev_put(d->sad_all); |
| 1028 | |
| 1029 | kfree(d); |
| 1030 | } |
| 1031 | } |
| 1032 | |
| 1033 | /* |
| 1034 | * skx_init: |
| 1035 | * make sure we are running on the correct cpu model |
| 1036 | * search for all the devices we need |
| 1037 | * check which DIMMs are present. |
| 1038 | */ |
| 1039 | int __init skx_init(void) |
| 1040 | { |
| 1041 | const struct x86_cpu_id *id; |
| 1042 | const struct munit *m; |
| 1043 | int rc = 0, i; |
| 1044 | u8 mc = 0, src_id, node_id; |
| 1045 | struct skx_dev *d; |
| 1046 | |
| 1047 | edac_dbg(2, "\n"); |
| 1048 | |
| 1049 | id = x86_match_cpu(skx_cpuids); |
| 1050 | if (!id) |
| 1051 | return -ENODEV; |
| 1052 | |
| 1053 | rc = skx_get_hi_lo(); |
| 1054 | if (rc) |
| 1055 | return rc; |
| 1056 | |
| 1057 | rc = get_all_bus_mappings(); |
| 1058 | if (rc < 0) |
| 1059 | goto fail; |
| 1060 | if (rc == 0) { |
| 1061 | edac_dbg(2, "No memory controllers found\n"); |
| 1062 | return -ENODEV; |
| 1063 | } |
| 1064 | |
| 1065 | for (m = skx_all_munits; m->did; m++) { |
| 1066 | rc = get_all_munits(m); |
| 1067 | if (rc < 0) |
| 1068 | goto fail; |
| 1069 | if (rc != m->per_socket * skx_num_sockets) { |
| 1070 | edac_dbg(2, "Expected %d, got %d of %x\n", |
| 1071 | m->per_socket * skx_num_sockets, rc, m->did); |
| 1072 | rc = -ENODEV; |
| 1073 | goto fail; |
| 1074 | } |
| 1075 | } |
| 1076 | |
| 1077 | list_for_each_entry(d, &skx_edac_list, list) { |
| 1078 | src_id = get_src_id(d); |
| 1079 | node_id = skx_get_node_id(d); |
| 1080 | edac_dbg(2, "src_id=%d node_id=%d\n", src_id, node_id); |
| 1081 | for (i = 0; i < NUM_IMC; i++) { |
| 1082 | d->imc[i].mc = mc++; |
| 1083 | d->imc[i].lmc = i; |
| 1084 | d->imc[i].src_id = src_id; |
| 1085 | d->imc[i].node_id = node_id; |
| 1086 | rc = skx_register_mci(&d->imc[i]); |
| 1087 | if (rc < 0) |
| 1088 | goto fail; |
| 1089 | } |
| 1090 | } |
| 1091 | |
| 1092 | /* Ensure that the OPSTATE is set correctly for POLL or NMI */ |
| 1093 | opstate_init(); |
| 1094 | |
| 1095 | setup_skx_debug(); |
| 1096 | |
| 1097 | mce_register_decode_chain(&skx_mce_dec); |
| 1098 | |
| 1099 | return 0; |
| 1100 | fail: |
| 1101 | skx_remove(); |
| 1102 | return rc; |
| 1103 | } |
| 1104 | |
| 1105 | static void __exit skx_exit(void) |
| 1106 | { |
| 1107 | edac_dbg(2, "\n"); |
| 1108 | mce_unregister_decode_chain(&skx_mce_dec); |
| 1109 | skx_remove(); |
| 1110 | teardown_skx_debug(); |
| 1111 | } |
| 1112 | |
| 1113 | module_init(skx_init); |
| 1114 | module_exit(skx_exit); |
| 1115 | |
| 1116 | module_param(edac_op_state, int, 0444); |
| 1117 | MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI"); |
| 1118 | |
| 1119 | MODULE_LICENSE("GPL v2"); |
| 1120 | MODULE_AUTHOR("Tony Luck"); |
| 1121 | MODULE_DESCRIPTION("MC Driver for Intel Skylake server processors"); |