blob: e8291c3a0e76e5c36606133b72f2a47aabd5eb9d [file] [log] [blame]
Tony Lindgren163152c2015-01-13 14:51:27 -08001/*
2 * This program is free software; you can redistribute it and/or
3 * modify it under the terms of the GNU General Public License as
4 * published by the Free Software Foundation version 2.
5 *
6 * This program is distributed "as is" WITHOUT ANY WARRANTY of any
7 * kind, whether express or implied; without even the implied warranty
8 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
9 * GNU General Public License for more details.
10 */
11
12#include <linux/clk-provider.h>
13#include <linux/delay.h>
Tony Lindgren163152c2015-01-13 14:51:27 -080014#include <linux/err.h>
Tony Lindgrencafeb002015-03-16 18:04:20 -070015#include <linux/math64.h>
Tony Lindgren163152c2015-01-13 14:51:27 -080016#include <linux/of.h>
17#include <linux/of_address.h>
18#include <linux/clk/ti.h>
Tony Lindgren163152c2015-01-13 14:51:27 -080019
20/* FAPLL Control Register PLL_CTRL */
Tony Lindgren90898482015-03-22 15:35:26 -070021#define FAPLL_MAIN_MULT_N_SHIFT 16
22#define FAPLL_MAIN_DIV_P_SHIFT 8
Tony Lindgren163152c2015-01-13 14:51:27 -080023#define FAPLL_MAIN_LOCK BIT(7)
24#define FAPLL_MAIN_PLLEN BIT(3)
25#define FAPLL_MAIN_BP BIT(2)
26#define FAPLL_MAIN_LOC_CTL BIT(0)
27
Tony Lindgren90898482015-03-22 15:35:26 -070028#define FAPLL_MAIN_MAX_MULT_N 0xffff
29#define FAPLL_MAIN_MAX_DIV_P 0xff
30#define FAPLL_MAIN_CLEAR_MASK \
31 ((FAPLL_MAIN_MAX_MULT_N << FAPLL_MAIN_MULT_N_SHIFT) | \
32 (FAPLL_MAIN_DIV_P_SHIFT << FAPLL_MAIN_DIV_P_SHIFT) | \
33 FAPLL_MAIN_LOC_CTL)
34
Tony Lindgren163152c2015-01-13 14:51:27 -080035/* FAPLL powerdown register PWD */
36#define FAPLL_PWD_OFFSET 4
37
38#define MAX_FAPLL_OUTPUTS 7
39#define FAPLL_MAX_RETRIES 1000
40
41#define to_fapll(_hw) container_of(_hw, struct fapll_data, hw)
42#define to_synth(_hw) container_of(_hw, struct fapll_synth, hw)
43
44/* The bypass bit is inverted on the ddr_pll.. */
45#define fapll_is_ddr_pll(va) (((u32)(va) & 0xffff) == 0x0440)
46
47/*
48 * The audio_pll_clk1 input is hard wired to the 27MHz bypass clock,
49 * and the audio_pll_clk1 synthesizer is hardwared to 32KiHz output.
50 */
51#define is_ddr_pll_clk1(va) (((u32)(va) & 0xffff) == 0x044c)
52#define is_audio_pll_clk1(va) (((u32)(va) & 0xffff) == 0x04a8)
53
54/* Synthesizer divider register */
55#define SYNTH_LDMDIV1 BIT(8)
56
57/* Synthesizer frequency register */
58#define SYNTH_LDFREQ BIT(31)
59
Tony Lindgrencafeb002015-03-16 18:04:20 -070060#define SYNTH_PHASE_K 8
61#define SYNTH_MAX_INT_DIV 0xf
Tony Lindgren33ca29c2015-03-22 15:35:24 -070062#define SYNTH_MAX_DIV_M 0xff
63
Tony Lindgren163152c2015-01-13 14:51:27 -080064struct fapll_data {
65 struct clk_hw hw;
66 void __iomem *base;
67 const char *name;
68 struct clk *clk_ref;
69 struct clk *clk_bypass;
70 struct clk_onecell_data outputs;
71 bool bypass_bit_inverted;
72};
73
74struct fapll_synth {
75 struct clk_hw hw;
76 struct fapll_data *fd;
77 int index;
78 void __iomem *freq;
79 void __iomem *div;
80 const char *name;
81 struct clk *clk_pll;
82};
83
84static bool ti_fapll_clock_is_bypass(struct fapll_data *fd)
85{
86 u32 v = readl_relaxed(fd->base);
87
88 if (fd->bypass_bit_inverted)
89 return !(v & FAPLL_MAIN_BP);
90 else
91 return !!(v & FAPLL_MAIN_BP);
92}
93
Tony Lindgren90898482015-03-22 15:35:26 -070094static void ti_fapll_set_bypass(struct fapll_data *fd)
95{
96 u32 v = readl_relaxed(fd->base);
97
98 if (fd->bypass_bit_inverted)
99 v &= ~FAPLL_MAIN_BP;
100 else
101 v |= FAPLL_MAIN_BP;
102 writel_relaxed(v, fd->base);
103}
104
105static void ti_fapll_clear_bypass(struct fapll_data *fd)
106{
107 u32 v = readl_relaxed(fd->base);
108
109 if (fd->bypass_bit_inverted)
110 v |= FAPLL_MAIN_BP;
111 else
112 v &= ~FAPLL_MAIN_BP;
113 writel_relaxed(v, fd->base);
114}
115
116static int ti_fapll_wait_lock(struct fapll_data *fd)
117{
118 int retries = FAPLL_MAX_RETRIES;
119 u32 v;
120
121 while ((v = readl_relaxed(fd->base))) {
122 if (v & FAPLL_MAIN_LOCK)
123 return 0;
124
125 if (retries-- <= 0)
126 break;
127
128 udelay(1);
129 }
130
131 pr_err("%s failed to lock\n", fd->name);
132
133 return -ETIMEDOUT;
134}
135
Tony Lindgren163152c2015-01-13 14:51:27 -0800136static int ti_fapll_enable(struct clk_hw *hw)
137{
138 struct fapll_data *fd = to_fapll(hw);
139 u32 v = readl_relaxed(fd->base);
140
141 v |= (1 << FAPLL_MAIN_PLLEN);
142 writel_relaxed(v, fd->base);
Tony Lindgren90898482015-03-22 15:35:26 -0700143 ti_fapll_wait_lock(fd);
Tony Lindgren163152c2015-01-13 14:51:27 -0800144
145 return 0;
146}
147
148static void ti_fapll_disable(struct clk_hw *hw)
149{
150 struct fapll_data *fd = to_fapll(hw);
151 u32 v = readl_relaxed(fd->base);
152
153 v &= ~(1 << FAPLL_MAIN_PLLEN);
154 writel_relaxed(v, fd->base);
155}
156
157static int ti_fapll_is_enabled(struct clk_hw *hw)
158{
159 struct fapll_data *fd = to_fapll(hw);
160 u32 v = readl_relaxed(fd->base);
161
162 return v & (1 << FAPLL_MAIN_PLLEN);
163}
164
165static unsigned long ti_fapll_recalc_rate(struct clk_hw *hw,
166 unsigned long parent_rate)
167{
168 struct fapll_data *fd = to_fapll(hw);
169 u32 fapll_n, fapll_p, v;
170 long long rate;
171
172 if (ti_fapll_clock_is_bypass(fd))
173 return parent_rate;
174
175 rate = parent_rate;
176
177 /* PLL pre-divider is P and multiplier is N */
178 v = readl_relaxed(fd->base);
179 fapll_p = (v >> 8) & 0xff;
180 if (fapll_p)
181 do_div(rate, fapll_p);
182 fapll_n = v >> 16;
183 if (fapll_n)
184 rate *= fapll_n;
185
186 return rate;
187}
188
189static u8 ti_fapll_get_parent(struct clk_hw *hw)
190{
191 struct fapll_data *fd = to_fapll(hw);
192
193 if (ti_fapll_clock_is_bypass(fd))
194 return 1;
195
196 return 0;
197}
198
Tony Lindgren90898482015-03-22 15:35:26 -0700199static int ti_fapll_set_div_mult(unsigned long rate,
200 unsigned long parent_rate,
201 u32 *pre_div_p, u32 *mult_n)
202{
203 /*
204 * So far no luck getting decent clock with PLL divider,
205 * PLL does not seem to lock and the signal does not look
206 * right. It seems the divider can only be used together
207 * with the multiplier?
208 */
209 if (rate < parent_rate) {
210 pr_warn("FAPLL main divider rates unsupported\n");
211 return -EINVAL;
212 }
213
214 *mult_n = rate / parent_rate;
215 if (*mult_n > FAPLL_MAIN_MAX_MULT_N)
216 return -EINVAL;
217 *pre_div_p = 1;
218
219 return 0;
220}
221
222static long ti_fapll_round_rate(struct clk_hw *hw, unsigned long rate,
223 unsigned long *parent_rate)
224{
225 u32 pre_div_p, mult_n;
226 int error;
227
228 if (!rate)
229 return -EINVAL;
230
231 error = ti_fapll_set_div_mult(rate, *parent_rate,
232 &pre_div_p, &mult_n);
233 if (error)
234 return error;
235
236 rate = *parent_rate / pre_div_p;
237 rate *= mult_n;
238
239 return rate;
240}
241
242static int ti_fapll_set_rate(struct clk_hw *hw, unsigned long rate,
243 unsigned long parent_rate)
244{
245 struct fapll_data *fd = to_fapll(hw);
246 u32 pre_div_p, mult_n, v;
247 int error;
248
249 if (!rate)
250 return -EINVAL;
251
252 error = ti_fapll_set_div_mult(rate, parent_rate,
253 &pre_div_p, &mult_n);
254 if (error)
255 return error;
256
257 ti_fapll_set_bypass(fd);
258 v = readl_relaxed(fd->base);
259 v &= ~FAPLL_MAIN_CLEAR_MASK;
260 v |= pre_div_p << FAPLL_MAIN_DIV_P_SHIFT;
261 v |= mult_n << FAPLL_MAIN_MULT_N_SHIFT;
262 writel_relaxed(v, fd->base);
263 if (ti_fapll_is_enabled(hw))
264 ti_fapll_wait_lock(fd);
265 ti_fapll_clear_bypass(fd);
266
267 return 0;
268}
269
Tony Lindgren163152c2015-01-13 14:51:27 -0800270static struct clk_ops ti_fapll_ops = {
271 .enable = ti_fapll_enable,
272 .disable = ti_fapll_disable,
273 .is_enabled = ti_fapll_is_enabled,
274 .recalc_rate = ti_fapll_recalc_rate,
275 .get_parent = ti_fapll_get_parent,
Tony Lindgren90898482015-03-22 15:35:26 -0700276 .round_rate = ti_fapll_round_rate,
277 .set_rate = ti_fapll_set_rate,
Tony Lindgren163152c2015-01-13 14:51:27 -0800278};
279
280static int ti_fapll_synth_enable(struct clk_hw *hw)
281{
282 struct fapll_synth *synth = to_synth(hw);
283 u32 v = readl_relaxed(synth->fd->base + FAPLL_PWD_OFFSET);
284
285 v &= ~(1 << synth->index);
286 writel_relaxed(v, synth->fd->base + FAPLL_PWD_OFFSET);
287
288 return 0;
289}
290
291static void ti_fapll_synth_disable(struct clk_hw *hw)
292{
293 struct fapll_synth *synth = to_synth(hw);
294 u32 v = readl_relaxed(synth->fd->base + FAPLL_PWD_OFFSET);
295
296 v |= 1 << synth->index;
297 writel_relaxed(v, synth->fd->base + FAPLL_PWD_OFFSET);
298}
299
300static int ti_fapll_synth_is_enabled(struct clk_hw *hw)
301{
302 struct fapll_synth *synth = to_synth(hw);
303 u32 v = readl_relaxed(synth->fd->base + FAPLL_PWD_OFFSET);
304
305 return !(v & (1 << synth->index));
306}
307
308/*
309 * See dm816x TRM chapter 1.10.3 Flying Adder PLL fore more info
310 */
311static unsigned long ti_fapll_synth_recalc_rate(struct clk_hw *hw,
312 unsigned long parent_rate)
313{
314 struct fapll_synth *synth = to_synth(hw);
315 u32 synth_div_m;
316 long long rate;
317
318 /* The audio_pll_clk1 is hardwired to produce 32.768KiHz clock */
319 if (!synth->div)
320 return 32768;
321
322 /*
323 * PLL in bypass sets the synths in bypass mode too. The PLL rate
324 * can be also be set to 27MHz, so we can't use parent_rate to
325 * check for bypass mode.
326 */
327 if (ti_fapll_clock_is_bypass(synth->fd))
328 return parent_rate;
329
330 rate = parent_rate;
331
332 /*
333 * Synth frequency integer and fractional divider.
334 * Note that the phase output K is 8, so the result needs
Tony Lindgrencafeb002015-03-16 18:04:20 -0700335 * to be multiplied by SYNTH_PHASE_K.
Tony Lindgren163152c2015-01-13 14:51:27 -0800336 */
337 if (synth->freq) {
338 u32 v, synth_int_div, synth_frac_div, synth_div_freq;
339
340 v = readl_relaxed(synth->freq);
341 synth_int_div = (v >> 24) & 0xf;
342 synth_frac_div = v & 0xffffff;
343 synth_div_freq = (synth_int_div * 10000000) + synth_frac_div;
344 rate *= 10000000;
345 do_div(rate, synth_div_freq);
Tony Lindgrencafeb002015-03-16 18:04:20 -0700346 rate *= SYNTH_PHASE_K;
Tony Lindgren163152c2015-01-13 14:51:27 -0800347 }
348
Tony Lindgren33ca29c2015-03-22 15:35:24 -0700349 /* Synth post-divider M */
350 synth_div_m = readl_relaxed(synth->div) & SYNTH_MAX_DIV_M;
Tony Lindgren163152c2015-01-13 14:51:27 -0800351
Tony Lindgren33ca29c2015-03-22 15:35:24 -0700352 return DIV_ROUND_UP_ULL(rate, synth_div_m);
Tony Lindgren163152c2015-01-13 14:51:27 -0800353}
354
Tony Lindgrencafeb002015-03-16 18:04:20 -0700355static unsigned long ti_fapll_synth_get_frac_rate(struct clk_hw *hw,
356 unsigned long parent_rate)
357{
358 struct fapll_synth *synth = to_synth(hw);
359 unsigned long current_rate, frac_rate;
360 u32 post_div_m;
361
362 current_rate = ti_fapll_synth_recalc_rate(hw, parent_rate);
363 post_div_m = readl_relaxed(synth->div) & SYNTH_MAX_DIV_M;
364 frac_rate = current_rate * post_div_m;
365
366 return frac_rate;
367}
368
369static u32 ti_fapll_synth_set_frac_rate(struct fapll_synth *synth,
370 unsigned long rate,
371 unsigned long parent_rate)
372{
373 u32 post_div_m, synth_int_div = 0, synth_frac_div = 0, v;
374
375 post_div_m = DIV_ROUND_UP_ULL((u64)parent_rate * SYNTH_PHASE_K, rate);
376 post_div_m = post_div_m / SYNTH_MAX_INT_DIV;
377 if (post_div_m > SYNTH_MAX_DIV_M)
378 return -EINVAL;
379 if (!post_div_m)
380 post_div_m = 1;
381
382 for (; post_div_m < SYNTH_MAX_DIV_M; post_div_m++) {
383 synth_int_div = DIV_ROUND_UP_ULL((u64)parent_rate *
384 SYNTH_PHASE_K *
385 10000000,
386 rate * post_div_m);
387 synth_frac_div = synth_int_div % 10000000;
388 synth_int_div /= 10000000;
389
390 if (synth_int_div <= SYNTH_MAX_INT_DIV)
391 break;
392 }
393
394 if (synth_int_div > SYNTH_MAX_INT_DIV)
395 return -EINVAL;
396
397 v = readl_relaxed(synth->freq);
398 v &= ~0x1fffffff;
399 v |= (synth_int_div & SYNTH_MAX_INT_DIV) << 24;
400 v |= (synth_frac_div & 0xffffff);
401 v |= SYNTH_LDFREQ;
402 writel_relaxed(v, synth->freq);
403
404 return post_div_m;
405}
406
407static long ti_fapll_synth_round_rate(struct clk_hw *hw, unsigned long rate,
408 unsigned long *parent_rate)
409{
410 struct fapll_synth *synth = to_synth(hw);
411 struct fapll_data *fd = synth->fd;
412 unsigned long r;
413
414 if (ti_fapll_clock_is_bypass(fd) || !synth->div || !rate)
415 return -EINVAL;
416
417 /* Only post divider m available with no fractional divider? */
418 if (!synth->freq) {
419 unsigned long frac_rate;
420 u32 synth_post_div_m;
421
422 frac_rate = ti_fapll_synth_get_frac_rate(hw, *parent_rate);
423 synth_post_div_m = DIV_ROUND_UP(frac_rate, rate);
424 r = DIV_ROUND_UP(frac_rate, synth_post_div_m);
425 goto out;
426 }
427
428 r = *parent_rate * SYNTH_PHASE_K;
429 if (rate > r)
430 goto out;
431
432 r = DIV_ROUND_UP_ULL(r, SYNTH_MAX_INT_DIV * SYNTH_MAX_DIV_M);
433 if (rate < r)
434 goto out;
435
436 r = rate;
437out:
438 return r;
439}
440
441static int ti_fapll_synth_set_rate(struct clk_hw *hw, unsigned long rate,
442 unsigned long parent_rate)
443{
444 struct fapll_synth *synth = to_synth(hw);
445 struct fapll_data *fd = synth->fd;
446 unsigned long frac_rate, post_rate = 0;
447 u32 post_div_m = 0, v;
448
449 if (ti_fapll_clock_is_bypass(fd) || !synth->div || !rate)
450 return -EINVAL;
451
452 /* Produce the rate with just post divider M? */
453 frac_rate = ti_fapll_synth_get_frac_rate(hw, parent_rate);
454 if (frac_rate < rate) {
455 if (!synth->freq)
456 return -EINVAL;
457 } else {
458 post_div_m = DIV_ROUND_UP(frac_rate, rate);
459 if (post_div_m && (post_div_m <= SYNTH_MAX_DIV_M))
460 post_rate = DIV_ROUND_UP(frac_rate, post_div_m);
461 if (!synth->freq && !post_rate)
462 return -EINVAL;
463 }
464
465 /* Need to recalculate the fractional divider? */
466 if ((post_rate != rate) && synth->freq)
467 post_div_m = ti_fapll_synth_set_frac_rate(synth,
468 rate,
469 parent_rate);
470
471 v = readl_relaxed(synth->div);
472 v &= ~SYNTH_MAX_DIV_M;
473 v |= post_div_m;
474 v |= SYNTH_LDMDIV1;
475 writel_relaxed(v, synth->div);
476
477 return 0;
478}
479
Tony Lindgren163152c2015-01-13 14:51:27 -0800480static struct clk_ops ti_fapll_synt_ops = {
481 .enable = ti_fapll_synth_enable,
482 .disable = ti_fapll_synth_disable,
483 .is_enabled = ti_fapll_synth_is_enabled,
484 .recalc_rate = ti_fapll_synth_recalc_rate,
Tony Lindgrencafeb002015-03-16 18:04:20 -0700485 .round_rate = ti_fapll_synth_round_rate,
486 .set_rate = ti_fapll_synth_set_rate,
Tony Lindgren163152c2015-01-13 14:51:27 -0800487};
488
489static struct clk * __init ti_fapll_synth_setup(struct fapll_data *fd,
490 void __iomem *freq,
491 void __iomem *div,
492 int index,
493 const char *name,
494 const char *parent,
495 struct clk *pll_clk)
496{
497 struct clk_init_data *init;
498 struct fapll_synth *synth;
499
500 init = kzalloc(sizeof(*init), GFP_KERNEL);
501 if (!init)
502 return ERR_PTR(-ENOMEM);
503
504 init->ops = &ti_fapll_synt_ops;
505 init->name = name;
506 init->parent_names = &parent;
507 init->num_parents = 1;
508
509 synth = kzalloc(sizeof(*synth), GFP_KERNEL);
510 if (!synth)
511 goto free;
512
513 synth->fd = fd;
514 synth->index = index;
515 synth->freq = freq;
516 synth->div = div;
517 synth->name = name;
518 synth->hw.init = init;
519 synth->clk_pll = pll_clk;
520
521 return clk_register(NULL, &synth->hw);
522
523free:
524 kfree(synth);
525 kfree(init);
526
527 return ERR_PTR(-ENOMEM);
528}
529
530static void __init ti_fapll_setup(struct device_node *node)
531{
532 struct fapll_data *fd;
533 struct clk_init_data *init = NULL;
534 const char *parent_name[2];
535 struct clk *pll_clk;
536 int i;
537
538 fd = kzalloc(sizeof(*fd), GFP_KERNEL);
539 if (!fd)
540 return;
541
542 fd->outputs.clks = kzalloc(sizeof(struct clk *) *
543 MAX_FAPLL_OUTPUTS + 1,
544 GFP_KERNEL);
545 if (!fd->outputs.clks)
546 goto free;
547
548 init = kzalloc(sizeof(*init), GFP_KERNEL);
549 if (!init)
550 goto free;
551
552 init->ops = &ti_fapll_ops;
553 init->name = node->name;
554
555 init->num_parents = of_clk_get_parent_count(node);
556 if (init->num_parents != 2) {
557 pr_err("%s must have two parents\n", node->name);
558 goto free;
559 }
560
561 parent_name[0] = of_clk_get_parent_name(node, 0);
562 parent_name[1] = of_clk_get_parent_name(node, 1);
563 init->parent_names = parent_name;
564
565 fd->clk_ref = of_clk_get(node, 0);
566 if (IS_ERR(fd->clk_ref)) {
567 pr_err("%s could not get clk_ref\n", node->name);
568 goto free;
569 }
570
571 fd->clk_bypass = of_clk_get(node, 1);
572 if (IS_ERR(fd->clk_bypass)) {
573 pr_err("%s could not get clk_bypass\n", node->name);
574 goto free;
575 }
576
577 fd->base = of_iomap(node, 0);
578 if (!fd->base) {
579 pr_err("%s could not get IO base\n", node->name);
580 goto free;
581 }
582
583 if (fapll_is_ddr_pll(fd->base))
584 fd->bypass_bit_inverted = true;
585
586 fd->name = node->name;
587 fd->hw.init = init;
588
589 /* Register the parent PLL */
590 pll_clk = clk_register(NULL, &fd->hw);
591 if (IS_ERR(pll_clk))
592 goto unmap;
593
594 fd->outputs.clks[0] = pll_clk;
595 fd->outputs.clk_num++;
596
597 /*
598 * Set up the child synthesizers starting at index 1 as the
599 * PLL output is at index 0. We need to check the clock-indices
600 * for numbering in case there are holes in the synth mapping,
601 * and then probe the synth register to see if it has a FREQ
602 * register available.
603 */
604 for (i = 0; i < MAX_FAPLL_OUTPUTS; i++) {
605 const char *output_name;
606 void __iomem *freq, *div;
607 struct clk *synth_clk;
608 int output_instance;
609 u32 v;
610
611 if (of_property_read_string_index(node, "clock-output-names",
612 i, &output_name))
613 continue;
614
615 if (of_property_read_u32_index(node, "clock-indices", i,
616 &output_instance))
617 output_instance = i;
618
619 freq = fd->base + (output_instance * 8);
620 div = freq + 4;
621
622 /* Check for hardwired audio_pll_clk1 */
623 if (is_audio_pll_clk1(freq)) {
624 freq = 0;
625 div = 0;
626 } else {
627 /* Does the synthesizer have a FREQ register? */
628 v = readl_relaxed(freq);
629 if (!v)
630 freq = 0;
631 }
632 synth_clk = ti_fapll_synth_setup(fd, freq, div, output_instance,
633 output_name, node->name,
634 pll_clk);
635 if (IS_ERR(synth_clk))
636 continue;
637
638 fd->outputs.clks[output_instance] = synth_clk;
639 fd->outputs.clk_num++;
640
641 clk_register_clkdev(synth_clk, output_name, NULL);
642 }
643
644 /* Register the child synthesizers as the FAPLL outputs */
645 of_clk_add_provider(node, of_clk_src_onecell_get, &fd->outputs);
646 /* Add clock alias for the outputs */
647
648 kfree(init);
649
650 return;
651
652unmap:
653 iounmap(fd->base);
654free:
655 if (fd->clk_bypass)
656 clk_put(fd->clk_bypass);
657 if (fd->clk_ref)
658 clk_put(fd->clk_ref);
659 kfree(fd->outputs.clks);
660 kfree(fd);
661 kfree(init);
662}
663
664CLK_OF_DECLARE(ti_fapll_clock, "ti,dm816-fapll-clock", ti_fapll_setup);