Haavard Skinnemoen | 5f97f7f | 2006-09-25 23:32:13 -0700 | [diff] [blame] | 1 | /* |
| 2 | * Copyright (C) 2004-2006 Atmel Corporation |
| 3 | * |
| 4 | * This program is free software; you can redistribute it and/or modify |
| 5 | * it under the terms of the GNU General Public License version 2 as |
| 6 | * published by the Free Software Foundation. |
| 7 | */ |
| 8 | #ifndef __ASM_AVR32_BITOPS_H |
| 9 | #define __ASM_AVR32_BITOPS_H |
| 10 | |
Jiri Slaby | 0624517 | 2007-10-18 23:40:26 -0700 | [diff] [blame] | 11 | #ifndef _LINUX_BITOPS_H |
| 12 | #error only <linux/bitops.h> can be included directly |
| 13 | #endif |
| 14 | |
Haavard Skinnemoen | 5f97f7f | 2006-09-25 23:32:13 -0700 | [diff] [blame] | 15 | #include <asm/byteorder.h> |
Haavard Skinnemoen | 5f97f7f | 2006-09-25 23:32:13 -0700 | [diff] [blame] | 16 | |
| 17 | /* |
| 18 | * clear_bit() doesn't provide any barrier for the compiler |
| 19 | */ |
| 20 | #define smp_mb__before_clear_bit() barrier() |
| 21 | #define smp_mb__after_clear_bit() barrier() |
| 22 | |
| 23 | /* |
| 24 | * set_bit - Atomically set a bit in memory |
| 25 | * @nr: the bit to set |
| 26 | * @addr: the address to start counting from |
| 27 | * |
| 28 | * This function is atomic and may not be reordered. See __set_bit() |
| 29 | * if you do not require the atomic guarantees. |
| 30 | * |
| 31 | * Note that @nr may be almost arbitrarily large; this function is not |
| 32 | * restricted to acting on a single-word quantity. |
| 33 | */ |
| 34 | static inline void set_bit(int nr, volatile void * addr) |
| 35 | { |
| 36 | unsigned long *p = ((unsigned long *)addr) + nr / BITS_PER_LONG; |
| 37 | unsigned long tmp; |
| 38 | |
| 39 | if (__builtin_constant_p(nr)) { |
| 40 | asm volatile( |
| 41 | "1: ssrf 5\n" |
| 42 | " ld.w %0, %2\n" |
| 43 | " sbr %0, %3\n" |
| 44 | " stcond %1, %0\n" |
| 45 | " brne 1b" |
| 46 | : "=&r"(tmp), "=o"(*p) |
| 47 | : "m"(*p), "i"(nr) |
| 48 | : "cc"); |
| 49 | } else { |
| 50 | unsigned long mask = 1UL << (nr % BITS_PER_LONG); |
| 51 | asm volatile( |
| 52 | "1: ssrf 5\n" |
| 53 | " ld.w %0, %2\n" |
| 54 | " or %0, %3\n" |
| 55 | " stcond %1, %0\n" |
| 56 | " brne 1b" |
| 57 | : "=&r"(tmp), "=o"(*p) |
| 58 | : "m"(*p), "r"(mask) |
| 59 | : "cc"); |
| 60 | } |
| 61 | } |
| 62 | |
| 63 | /* |
| 64 | * clear_bit - Clears a bit in memory |
| 65 | * @nr: Bit to clear |
| 66 | * @addr: Address to start counting from |
| 67 | * |
| 68 | * clear_bit() is atomic and may not be reordered. However, it does |
| 69 | * not contain a memory barrier, so if it is used for locking purposes, |
| 70 | * you should call smp_mb__before_clear_bit() and/or smp_mb__after_clear_bit() |
| 71 | * in order to ensure changes are visible on other processors. |
| 72 | */ |
| 73 | static inline void clear_bit(int nr, volatile void * addr) |
| 74 | { |
| 75 | unsigned long *p = ((unsigned long *)addr) + nr / BITS_PER_LONG; |
| 76 | unsigned long tmp; |
| 77 | |
| 78 | if (__builtin_constant_p(nr)) { |
| 79 | asm volatile( |
| 80 | "1: ssrf 5\n" |
| 81 | " ld.w %0, %2\n" |
| 82 | " cbr %0, %3\n" |
| 83 | " stcond %1, %0\n" |
| 84 | " brne 1b" |
| 85 | : "=&r"(tmp), "=o"(*p) |
| 86 | : "m"(*p), "i"(nr) |
| 87 | : "cc"); |
| 88 | } else { |
| 89 | unsigned long mask = 1UL << (nr % BITS_PER_LONG); |
| 90 | asm volatile( |
| 91 | "1: ssrf 5\n" |
| 92 | " ld.w %0, %2\n" |
| 93 | " andn %0, %3\n" |
| 94 | " stcond %1, %0\n" |
| 95 | " brne 1b" |
| 96 | : "=&r"(tmp), "=o"(*p) |
| 97 | : "m"(*p), "r"(mask) |
| 98 | : "cc"); |
| 99 | } |
| 100 | } |
| 101 | |
| 102 | /* |
| 103 | * change_bit - Toggle a bit in memory |
| 104 | * @nr: Bit to change |
| 105 | * @addr: Address to start counting from |
| 106 | * |
| 107 | * change_bit() is atomic and may not be reordered. |
| 108 | * Note that @nr may be almost arbitrarily large; this function is not |
| 109 | * restricted to acting on a single-word quantity. |
| 110 | */ |
| 111 | static inline void change_bit(int nr, volatile void * addr) |
| 112 | { |
| 113 | unsigned long *p = ((unsigned long *)addr) + nr / BITS_PER_LONG; |
| 114 | unsigned long mask = 1UL << (nr % BITS_PER_LONG); |
| 115 | unsigned long tmp; |
| 116 | |
| 117 | asm volatile( |
| 118 | "1: ssrf 5\n" |
| 119 | " ld.w %0, %2\n" |
| 120 | " eor %0, %3\n" |
| 121 | " stcond %1, %0\n" |
| 122 | " brne 1b" |
| 123 | : "=&r"(tmp), "=o"(*p) |
| 124 | : "m"(*p), "r"(mask) |
| 125 | : "cc"); |
| 126 | } |
| 127 | |
| 128 | /* |
| 129 | * test_and_set_bit - Set a bit and return its old value |
| 130 | * @nr: Bit to set |
| 131 | * @addr: Address to count from |
| 132 | * |
| 133 | * This operation is atomic and cannot be reordered. |
| 134 | * It also implies a memory barrier. |
| 135 | */ |
| 136 | static inline int test_and_set_bit(int nr, volatile void * addr) |
| 137 | { |
| 138 | unsigned long *p = ((unsigned long *)addr) + nr / BITS_PER_LONG; |
| 139 | unsigned long mask = 1UL << (nr % BITS_PER_LONG); |
| 140 | unsigned long tmp, old; |
| 141 | |
| 142 | if (__builtin_constant_p(nr)) { |
| 143 | asm volatile( |
| 144 | "1: ssrf 5\n" |
| 145 | " ld.w %0, %3\n" |
| 146 | " mov %2, %0\n" |
| 147 | " sbr %0, %4\n" |
| 148 | " stcond %1, %0\n" |
| 149 | " brne 1b" |
| 150 | : "=&r"(tmp), "=o"(*p), "=&r"(old) |
| 151 | : "m"(*p), "i"(nr) |
| 152 | : "memory", "cc"); |
| 153 | } else { |
| 154 | asm volatile( |
| 155 | "1: ssrf 5\n" |
| 156 | " ld.w %2, %3\n" |
| 157 | " or %0, %2, %4\n" |
| 158 | " stcond %1, %0\n" |
| 159 | " brne 1b" |
| 160 | : "=&r"(tmp), "=o"(*p), "=&r"(old) |
| 161 | : "m"(*p), "r"(mask) |
| 162 | : "memory", "cc"); |
| 163 | } |
| 164 | |
| 165 | return (old & mask) != 0; |
| 166 | } |
| 167 | |
| 168 | /* |
| 169 | * test_and_clear_bit - Clear a bit and return its old value |
| 170 | * @nr: Bit to clear |
| 171 | * @addr: Address to count from |
| 172 | * |
| 173 | * This operation is atomic and cannot be reordered. |
| 174 | * It also implies a memory barrier. |
| 175 | */ |
| 176 | static inline int test_and_clear_bit(int nr, volatile void * addr) |
| 177 | { |
| 178 | unsigned long *p = ((unsigned long *)addr) + nr / BITS_PER_LONG; |
| 179 | unsigned long mask = 1UL << (nr % BITS_PER_LONG); |
| 180 | unsigned long tmp, old; |
| 181 | |
| 182 | if (__builtin_constant_p(nr)) { |
| 183 | asm volatile( |
| 184 | "1: ssrf 5\n" |
| 185 | " ld.w %0, %3\n" |
| 186 | " mov %2, %0\n" |
| 187 | " cbr %0, %4\n" |
| 188 | " stcond %1, %0\n" |
| 189 | " brne 1b" |
| 190 | : "=&r"(tmp), "=o"(*p), "=&r"(old) |
| 191 | : "m"(*p), "i"(nr) |
| 192 | : "memory", "cc"); |
| 193 | } else { |
| 194 | asm volatile( |
| 195 | "1: ssrf 5\n" |
| 196 | " ld.w %0, %3\n" |
| 197 | " mov %2, %0\n" |
| 198 | " andn %0, %4\n" |
| 199 | " stcond %1, %0\n" |
| 200 | " brne 1b" |
| 201 | : "=&r"(tmp), "=o"(*p), "=&r"(old) |
| 202 | : "m"(*p), "r"(mask) |
| 203 | : "memory", "cc"); |
| 204 | } |
| 205 | |
| 206 | return (old & mask) != 0; |
| 207 | } |
| 208 | |
| 209 | /* |
| 210 | * test_and_change_bit - Change a bit and return its old value |
| 211 | * @nr: Bit to change |
| 212 | * @addr: Address to count from |
| 213 | * |
| 214 | * This operation is atomic and cannot be reordered. |
| 215 | * It also implies a memory barrier. |
| 216 | */ |
| 217 | static inline int test_and_change_bit(int nr, volatile void * addr) |
| 218 | { |
| 219 | unsigned long *p = ((unsigned long *)addr) + nr / BITS_PER_LONG; |
| 220 | unsigned long mask = 1UL << (nr % BITS_PER_LONG); |
| 221 | unsigned long tmp, old; |
| 222 | |
| 223 | asm volatile( |
| 224 | "1: ssrf 5\n" |
| 225 | " ld.w %2, %3\n" |
| 226 | " eor %0, %2, %4\n" |
| 227 | " stcond %1, %0\n" |
| 228 | " brne 1b" |
| 229 | : "=&r"(tmp), "=o"(*p), "=&r"(old) |
| 230 | : "m"(*p), "r"(mask) |
| 231 | : "memory", "cc"); |
| 232 | |
| 233 | return (old & mask) != 0; |
| 234 | } |
| 235 | |
| 236 | #include <asm-generic/bitops/non-atomic.h> |
| 237 | |
| 238 | /* Find First bit Set */ |
| 239 | static inline unsigned long __ffs(unsigned long word) |
| 240 | { |
| 241 | unsigned long result; |
| 242 | |
| 243 | asm("brev %1\n\t" |
| 244 | "clz %0,%1" |
| 245 | : "=r"(result), "=&r"(word) |
| 246 | : "1"(word)); |
| 247 | return result; |
| 248 | } |
| 249 | |
| 250 | /* Find First Zero */ |
| 251 | static inline unsigned long ffz(unsigned long word) |
| 252 | { |
| 253 | return __ffs(~word); |
| 254 | } |
| 255 | |
| 256 | /* Find Last bit Set */ |
| 257 | static inline int fls(unsigned long word) |
| 258 | { |
| 259 | unsigned long result; |
| 260 | |
| 261 | asm("clz %0,%1" : "=r"(result) : "r"(word)); |
| 262 | return 32 - result; |
| 263 | } |
| 264 | |
Rusty Russell | 96b8d4c | 2009-01-01 10:12:16 +1030 | [diff] [blame] | 265 | static inline int __fls(unsigned long word) |
| 266 | { |
| 267 | return fls(word) - 1; |
| 268 | } |
| 269 | |
Haavard Skinnemoen | 5f97f7f | 2006-09-25 23:32:13 -0700 | [diff] [blame] | 270 | unsigned long find_first_zero_bit(const unsigned long *addr, |
| 271 | unsigned long size); |
Akinobu Mita | a2812e1 | 2011-05-26 16:26:06 -0700 | [diff] [blame] | 272 | #define find_first_zero_bit find_first_zero_bit |
| 273 | |
Haavard Skinnemoen | 5f97f7f | 2006-09-25 23:32:13 -0700 | [diff] [blame] | 274 | unsigned long find_next_zero_bit(const unsigned long *addr, |
| 275 | unsigned long size, |
| 276 | unsigned long offset); |
Akinobu Mita | a2812e1 | 2011-05-26 16:26:06 -0700 | [diff] [blame] | 277 | #define find_next_zero_bit find_next_zero_bit |
| 278 | |
Haavard Skinnemoen | 5f97f7f | 2006-09-25 23:32:13 -0700 | [diff] [blame] | 279 | unsigned long find_first_bit(const unsigned long *addr, |
| 280 | unsigned long size); |
Akinobu Mita | a2812e1 | 2011-05-26 16:26:06 -0700 | [diff] [blame] | 281 | #define find_first_bit find_first_bit |
| 282 | |
Haavard Skinnemoen | 5f97f7f | 2006-09-25 23:32:13 -0700 | [diff] [blame] | 283 | unsigned long find_next_bit(const unsigned long *addr, |
| 284 | unsigned long size, |
| 285 | unsigned long offset); |
Akinobu Mita | a2812e1 | 2011-05-26 16:26:06 -0700 | [diff] [blame] | 286 | #define find_next_bit find_next_bit |
Haavard Skinnemoen | 5f97f7f | 2006-09-25 23:32:13 -0700 | [diff] [blame] | 287 | |
| 288 | /* |
| 289 | * ffs: find first bit set. This is defined the same way as |
| 290 | * the libc and compiler builtin ffs routines, therefore |
| 291 | * differs in spirit from the above ffz (man ffs). |
| 292 | * |
| 293 | * The difference is that bit numbering starts at 1, and if no bit is set, |
| 294 | * the function returns 0. |
| 295 | */ |
| 296 | static inline int ffs(unsigned long word) |
| 297 | { |
| 298 | if(word == 0) |
| 299 | return 0; |
| 300 | return __ffs(word) + 1; |
| 301 | } |
| 302 | |
| 303 | #include <asm-generic/bitops/fls64.h> |
| 304 | #include <asm-generic/bitops/sched.h> |
| 305 | #include <asm-generic/bitops/hweight.h> |
Nick Piggin | 2633357 | 2007-10-18 03:06:39 -0700 | [diff] [blame] | 306 | #include <asm-generic/bitops/lock.h> |
Haavard Skinnemoen | 5f97f7f | 2006-09-25 23:32:13 -0700 | [diff] [blame] | 307 | |
Akinobu Mita | a2812e1 | 2011-05-26 16:26:06 -0700 | [diff] [blame] | 308 | extern unsigned long find_next_zero_bit_le(const void *addr, |
| 309 | unsigned long size, unsigned long offset); |
| 310 | #define find_next_zero_bit_le find_next_zero_bit_le |
| 311 | |
| 312 | extern unsigned long find_next_bit_le(const void *addr, |
| 313 | unsigned long size, unsigned long offset); |
| 314 | #define find_next_bit_le find_next_bit_le |
| 315 | |
Akinobu Mita | 861b5ae | 2011-03-23 16:42:02 -0700 | [diff] [blame] | 316 | #include <asm-generic/bitops/le.h> |
Haavard Skinnemoen | 5f97f7f | 2006-09-25 23:32:13 -0700 | [diff] [blame] | 317 | #include <asm-generic/bitops/ext2-atomic.h> |
Haavard Skinnemoen | 5f97f7f | 2006-09-25 23:32:13 -0700 | [diff] [blame] | 318 | |
| 319 | #endif /* __ASM_AVR32_BITOPS_H */ |