blob: d2cc67dac8b1445b47fad8ebf120fafba62ccfdc [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
2 * kernel/cpuset.c
3 *
4 * Processor and Memory placement constraints for sets of tasks.
5 *
6 * Copyright (C) 2003 BULL SA.
Paul Jackson029190c2007-10-18 23:40:20 -07007 * Copyright (C) 2004-2007 Silicon Graphics, Inc.
Paul Menage8793d852007-10-18 23:39:39 -07008 * Copyright (C) 2006 Google, Inc
Linus Torvalds1da177e2005-04-16 15:20:36 -07009 *
10 * Portions derived from Patrick Mochel's sysfs code.
11 * sysfs is Copyright (c) 2001-3 Patrick Mochel
Linus Torvalds1da177e2005-04-16 15:20:36 -070012 *
Paul Jackson825a46a2006-03-24 03:16:03 -080013 * 2003-10-10 Written by Simon Derr.
Linus Torvalds1da177e2005-04-16 15:20:36 -070014 * 2003-10-22 Updates by Stephen Hemminger.
Paul Jackson825a46a2006-03-24 03:16:03 -080015 * 2004 May-July Rework by Paul Jackson.
Paul Menage8793d852007-10-18 23:39:39 -070016 * 2006 Rework by Paul Menage to use generic cgroups
Linus Torvalds1da177e2005-04-16 15:20:36 -070017 *
18 * This file is subject to the terms and conditions of the GNU General Public
19 * License. See the file COPYING in the main directory of the Linux
20 * distribution for more details.
21 */
22
Linus Torvalds1da177e2005-04-16 15:20:36 -070023#include <linux/cpu.h>
24#include <linux/cpumask.h>
25#include <linux/cpuset.h>
26#include <linux/err.h>
27#include <linux/errno.h>
28#include <linux/file.h>
29#include <linux/fs.h>
30#include <linux/init.h>
31#include <linux/interrupt.h>
32#include <linux/kernel.h>
33#include <linux/kmod.h>
34#include <linux/list.h>
Paul Jackson68860ec2005-10-30 15:02:36 -080035#include <linux/mempolicy.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070036#include <linux/mm.h>
37#include <linux/module.h>
38#include <linux/mount.h>
39#include <linux/namei.h>
40#include <linux/pagemap.h>
41#include <linux/proc_fs.h>
Paul Jackson6b9c2602006-01-08 01:02:02 -080042#include <linux/rcupdate.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070043#include <linux/sched.h>
44#include <linux/seq_file.h>
David Quigley22fb52d2006-06-23 02:04:00 -070045#include <linux/security.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070046#include <linux/slab.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070047#include <linux/spinlock.h>
48#include <linux/stat.h>
49#include <linux/string.h>
50#include <linux/time.h>
51#include <linux/backing-dev.h>
52#include <linux/sort.h>
53
54#include <asm/uaccess.h>
55#include <asm/atomic.h>
Ingo Molnar3d3f26a2006-03-23 03:00:18 -080056#include <linux/mutex.h>
Paul Jackson029190c2007-10-18 23:40:20 -070057#include <linux/kfifo.h>
Cliff Wickman956db3c2008-02-07 00:14:43 -080058#include <linux/workqueue.h>
59#include <linux/cgroup.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070060
Paul Jackson202f72d2006-01-08 01:01:57 -080061/*
62 * Tracks how many cpusets are currently defined in system.
63 * When there is only one cpuset (the root cpuset) we can
64 * short circuit some hooks.
65 */
Paul Jackson7edc5962006-01-08 01:02:03 -080066int number_of_cpusets __read_mostly;
Paul Jackson202f72d2006-01-08 01:01:57 -080067
Paul Menage2df167a2008-02-07 00:14:45 -080068/* Forward declare cgroup structures */
Paul Menage8793d852007-10-18 23:39:39 -070069struct cgroup_subsys cpuset_subsys;
70struct cpuset;
71
Paul Jackson3e0d98b2006-01-08 01:01:49 -080072/* See "Frequency meter" comments, below. */
73
74struct fmeter {
75 int cnt; /* unprocessed events count */
76 int val; /* most recent output value */
77 time_t time; /* clock (secs) when val computed */
78 spinlock_t lock; /* guards read or write of above */
79};
80
Linus Torvalds1da177e2005-04-16 15:20:36 -070081struct cpuset {
Paul Menage8793d852007-10-18 23:39:39 -070082 struct cgroup_subsys_state css;
83
Linus Torvalds1da177e2005-04-16 15:20:36 -070084 unsigned long flags; /* "unsigned long" so bitops work */
85 cpumask_t cpus_allowed; /* CPUs allowed to tasks in cpuset */
86 nodemask_t mems_allowed; /* Memory Nodes allowed to tasks */
87
Linus Torvalds1da177e2005-04-16 15:20:36 -070088 struct cpuset *parent; /* my parent */
Linus Torvalds1da177e2005-04-16 15:20:36 -070089
90 /*
91 * Copy of global cpuset_mems_generation as of the most
92 * recent time this cpuset changed its mems_allowed.
93 */
Paul Jackson3e0d98b2006-01-08 01:01:49 -080094 int mems_generation;
95
96 struct fmeter fmeter; /* memory_pressure filter */
Paul Jackson029190c2007-10-18 23:40:20 -070097
98 /* partition number for rebuild_sched_domains() */
99 int pn;
Cliff Wickman956db3c2008-02-07 00:14:43 -0800100
Hidetoshi Seto1d3504f2008-04-15 14:04:23 +0900101 /* for custom sched domain */
102 int relax_domain_level;
103
Cliff Wickman956db3c2008-02-07 00:14:43 -0800104 /* used for walking a cpuset heirarchy */
105 struct list_head stack_list;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700106};
107
Paul Menage8793d852007-10-18 23:39:39 -0700108/* Retrieve the cpuset for a cgroup */
109static inline struct cpuset *cgroup_cs(struct cgroup *cont)
110{
111 return container_of(cgroup_subsys_state(cont, cpuset_subsys_id),
112 struct cpuset, css);
113}
114
115/* Retrieve the cpuset for a task */
116static inline struct cpuset *task_cs(struct task_struct *task)
117{
118 return container_of(task_subsys_state(task, cpuset_subsys_id),
119 struct cpuset, css);
120}
Cliff Wickman956db3c2008-02-07 00:14:43 -0800121struct cpuset_hotplug_scanner {
122 struct cgroup_scanner scan;
123 struct cgroup *to;
124};
Paul Menage8793d852007-10-18 23:39:39 -0700125
Linus Torvalds1da177e2005-04-16 15:20:36 -0700126/* bits in struct cpuset flags field */
127typedef enum {
128 CS_CPU_EXCLUSIVE,
129 CS_MEM_EXCLUSIVE,
Paul Menage78608362008-04-29 01:00:26 -0700130 CS_MEM_HARDWALL,
Paul Jackson45b07ef2006-01-08 01:00:56 -0800131 CS_MEMORY_MIGRATE,
Paul Jackson029190c2007-10-18 23:40:20 -0700132 CS_SCHED_LOAD_BALANCE,
Paul Jackson825a46a2006-03-24 03:16:03 -0800133 CS_SPREAD_PAGE,
134 CS_SPREAD_SLAB,
Linus Torvalds1da177e2005-04-16 15:20:36 -0700135} cpuset_flagbits_t;
136
137/* convenient tests for these bits */
138static inline int is_cpu_exclusive(const struct cpuset *cs)
139{
Paul Jackson7b5b9ef2006-03-24 03:16:00 -0800140 return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700141}
142
143static inline int is_mem_exclusive(const struct cpuset *cs)
144{
Paul Jackson7b5b9ef2006-03-24 03:16:00 -0800145 return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700146}
147
Paul Menage78608362008-04-29 01:00:26 -0700148static inline int is_mem_hardwall(const struct cpuset *cs)
149{
150 return test_bit(CS_MEM_HARDWALL, &cs->flags);
151}
152
Paul Jackson029190c2007-10-18 23:40:20 -0700153static inline int is_sched_load_balance(const struct cpuset *cs)
154{
155 return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
156}
157
Paul Jackson45b07ef2006-01-08 01:00:56 -0800158static inline int is_memory_migrate(const struct cpuset *cs)
159{
Paul Jackson7b5b9ef2006-03-24 03:16:00 -0800160 return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
Paul Jackson45b07ef2006-01-08 01:00:56 -0800161}
162
Paul Jackson825a46a2006-03-24 03:16:03 -0800163static inline int is_spread_page(const struct cpuset *cs)
164{
165 return test_bit(CS_SPREAD_PAGE, &cs->flags);
166}
167
168static inline int is_spread_slab(const struct cpuset *cs)
169{
170 return test_bit(CS_SPREAD_SLAB, &cs->flags);
171}
172
Linus Torvalds1da177e2005-04-16 15:20:36 -0700173/*
Paul Jackson151a4422006-03-24 03:16:11 -0800174 * Increment this integer everytime any cpuset changes its
Linus Torvalds1da177e2005-04-16 15:20:36 -0700175 * mems_allowed value. Users of cpusets can track this generation
176 * number, and avoid having to lock and reload mems_allowed unless
177 * the cpuset they're using changes generation.
178 *
Paul Menage2df167a2008-02-07 00:14:45 -0800179 * A single, global generation is needed because cpuset_attach_task() could
Linus Torvalds1da177e2005-04-16 15:20:36 -0700180 * reattach a task to a different cpuset, which must not have its
181 * generation numbers aliased with those of that tasks previous cpuset.
182 *
183 * Generations are needed for mems_allowed because one task cannot
Paul Menage2df167a2008-02-07 00:14:45 -0800184 * modify another's memory placement. So we must enable every task,
Linus Torvalds1da177e2005-04-16 15:20:36 -0700185 * on every visit to __alloc_pages(), to efficiently check whether
186 * its current->cpuset->mems_allowed has changed, requiring an update
187 * of its current->mems_allowed.
Paul Jackson151a4422006-03-24 03:16:11 -0800188 *
Paul Menage2df167a2008-02-07 00:14:45 -0800189 * Since writes to cpuset_mems_generation are guarded by the cgroup lock
Paul Jackson151a4422006-03-24 03:16:11 -0800190 * there is no need to mark it atomic.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700191 */
Paul Jackson151a4422006-03-24 03:16:11 -0800192static int cpuset_mems_generation;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700193
194static struct cpuset top_cpuset = {
195 .flags = ((1 << CS_CPU_EXCLUSIVE) | (1 << CS_MEM_EXCLUSIVE)),
196 .cpus_allowed = CPU_MASK_ALL,
197 .mems_allowed = NODE_MASK_ALL,
Linus Torvalds1da177e2005-04-16 15:20:36 -0700198};
199
Linus Torvalds1da177e2005-04-16 15:20:36 -0700200/*
Paul Menage2df167a2008-02-07 00:14:45 -0800201 * There are two global mutexes guarding cpuset structures. The first
202 * is the main control groups cgroup_mutex, accessed via
203 * cgroup_lock()/cgroup_unlock(). The second is the cpuset-specific
204 * callback_mutex, below. They can nest. It is ok to first take
205 * cgroup_mutex, then nest callback_mutex. We also require taking
206 * task_lock() when dereferencing a task's cpuset pointer. See "The
207 * task_lock() exception", at the end of this comment.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700208 *
Ingo Molnar3d3f26a2006-03-23 03:00:18 -0800209 * A task must hold both mutexes to modify cpusets. If a task
Paul Menage2df167a2008-02-07 00:14:45 -0800210 * holds cgroup_mutex, then it blocks others wanting that mutex,
Ingo Molnar3d3f26a2006-03-23 03:00:18 -0800211 * ensuring that it is the only task able to also acquire callback_mutex
Paul Jackson053199e2005-10-30 15:02:30 -0800212 * and be able to modify cpusets. It can perform various checks on
213 * the cpuset structure first, knowing nothing will change. It can
Paul Menage2df167a2008-02-07 00:14:45 -0800214 * also allocate memory while just holding cgroup_mutex. While it is
Paul Jackson053199e2005-10-30 15:02:30 -0800215 * performing these checks, various callback routines can briefly
Ingo Molnar3d3f26a2006-03-23 03:00:18 -0800216 * acquire callback_mutex to query cpusets. Once it is ready to make
217 * the changes, it takes callback_mutex, blocking everyone else.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700218 *
Paul Jackson053199e2005-10-30 15:02:30 -0800219 * Calls to the kernel memory allocator can not be made while holding
Ingo Molnar3d3f26a2006-03-23 03:00:18 -0800220 * callback_mutex, as that would risk double tripping on callback_mutex
Paul Jackson053199e2005-10-30 15:02:30 -0800221 * from one of the callbacks into the cpuset code from within
222 * __alloc_pages().
Linus Torvalds1da177e2005-04-16 15:20:36 -0700223 *
Ingo Molnar3d3f26a2006-03-23 03:00:18 -0800224 * If a task is only holding callback_mutex, then it has read-only
Paul Jackson053199e2005-10-30 15:02:30 -0800225 * access to cpusets.
226 *
227 * The task_struct fields mems_allowed and mems_generation may only
228 * be accessed in the context of that task, so require no locks.
229 *
Paul Jackson053199e2005-10-30 15:02:30 -0800230 * The cpuset_common_file_write handler for operations that modify
Paul Menage2df167a2008-02-07 00:14:45 -0800231 * the cpuset hierarchy holds cgroup_mutex across the entire operation,
Paul Jackson053199e2005-10-30 15:02:30 -0800232 * single threading all such cpuset modifications across the system.
233 *
Ingo Molnar3d3f26a2006-03-23 03:00:18 -0800234 * The cpuset_common_file_read() handlers only hold callback_mutex across
Paul Jackson053199e2005-10-30 15:02:30 -0800235 * small pieces of code, such as when reading out possibly multi-word
236 * cpumasks and nodemasks.
237 *
Paul Menage2df167a2008-02-07 00:14:45 -0800238 * Accessing a task's cpuset should be done in accordance with the
239 * guidelines for accessing subsystem state in kernel/cgroup.c
Linus Torvalds1da177e2005-04-16 15:20:36 -0700240 */
241
Ingo Molnar3d3f26a2006-03-23 03:00:18 -0800242static DEFINE_MUTEX(callback_mutex);
Paul Jackson4247bdc2005-09-10 00:26:06 -0700243
Paul Menage8793d852007-10-18 23:39:39 -0700244/* This is ugly, but preserves the userspace API for existing cpuset
245 * users. If someone tries to mount the "cpuset" filesystem, we
246 * silently switch it to mount "cgroup" instead */
David Howells454e2392006-06-23 02:02:57 -0700247static int cpuset_get_sb(struct file_system_type *fs_type,
248 int flags, const char *unused_dev_name,
249 void *data, struct vfsmount *mnt)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700250{
Paul Menage8793d852007-10-18 23:39:39 -0700251 struct file_system_type *cgroup_fs = get_fs_type("cgroup");
252 int ret = -ENODEV;
253 if (cgroup_fs) {
254 char mountopts[] =
255 "cpuset,noprefix,"
256 "release_agent=/sbin/cpuset_release_agent";
257 ret = cgroup_fs->get_sb(cgroup_fs, flags,
258 unused_dev_name, mountopts, mnt);
259 put_filesystem(cgroup_fs);
260 }
261 return ret;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700262}
263
264static struct file_system_type cpuset_fs_type = {
265 .name = "cpuset",
266 .get_sb = cpuset_get_sb,
Linus Torvalds1da177e2005-04-16 15:20:36 -0700267};
268
Linus Torvalds1da177e2005-04-16 15:20:36 -0700269/*
270 * Return in *pmask the portion of a cpusets's cpus_allowed that
271 * are online. If none are online, walk up the cpuset hierarchy
272 * until we find one that does have some online cpus. If we get
273 * all the way to the top and still haven't found any online cpus,
274 * return cpu_online_map. Or if passed a NULL cs from an exit'ing
275 * task, return cpu_online_map.
276 *
277 * One way or another, we guarantee to return some non-empty subset
278 * of cpu_online_map.
279 *
Ingo Molnar3d3f26a2006-03-23 03:00:18 -0800280 * Call with callback_mutex held.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700281 */
282
283static void guarantee_online_cpus(const struct cpuset *cs, cpumask_t *pmask)
284{
285 while (cs && !cpus_intersects(cs->cpus_allowed, cpu_online_map))
286 cs = cs->parent;
287 if (cs)
288 cpus_and(*pmask, cs->cpus_allowed, cpu_online_map);
289 else
290 *pmask = cpu_online_map;
291 BUG_ON(!cpus_intersects(*pmask, cpu_online_map));
292}
293
294/*
295 * Return in *pmask the portion of a cpusets's mems_allowed that
Christoph Lameter0e1e7c72007-10-16 01:25:38 -0700296 * are online, with memory. If none are online with memory, walk
297 * up the cpuset hierarchy until we find one that does have some
298 * online mems. If we get all the way to the top and still haven't
299 * found any online mems, return node_states[N_HIGH_MEMORY].
Linus Torvalds1da177e2005-04-16 15:20:36 -0700300 *
301 * One way or another, we guarantee to return some non-empty subset
Christoph Lameter0e1e7c72007-10-16 01:25:38 -0700302 * of node_states[N_HIGH_MEMORY].
Linus Torvalds1da177e2005-04-16 15:20:36 -0700303 *
Ingo Molnar3d3f26a2006-03-23 03:00:18 -0800304 * Call with callback_mutex held.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700305 */
306
307static void guarantee_online_mems(const struct cpuset *cs, nodemask_t *pmask)
308{
Christoph Lameter0e1e7c72007-10-16 01:25:38 -0700309 while (cs && !nodes_intersects(cs->mems_allowed,
310 node_states[N_HIGH_MEMORY]))
Linus Torvalds1da177e2005-04-16 15:20:36 -0700311 cs = cs->parent;
312 if (cs)
Christoph Lameter0e1e7c72007-10-16 01:25:38 -0700313 nodes_and(*pmask, cs->mems_allowed,
314 node_states[N_HIGH_MEMORY]);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700315 else
Christoph Lameter0e1e7c72007-10-16 01:25:38 -0700316 *pmask = node_states[N_HIGH_MEMORY];
317 BUG_ON(!nodes_intersects(*pmask, node_states[N_HIGH_MEMORY]));
Linus Torvalds1da177e2005-04-16 15:20:36 -0700318}
319
Paul Jacksoncf2a473c2006-01-08 01:01:54 -0800320/**
321 * cpuset_update_task_memory_state - update task memory placement
Linus Torvalds1da177e2005-04-16 15:20:36 -0700322 *
Paul Jacksoncf2a473c2006-01-08 01:01:54 -0800323 * If the current tasks cpusets mems_allowed changed behind our
324 * backs, update current->mems_allowed, mems_generation and task NUMA
325 * mempolicy to the new value.
326 *
327 * Task mempolicy is updated by rebinding it relative to the
328 * current->cpuset if a task has its memory placement changed.
329 * Do not call this routine if in_interrupt().
330 *
Paul Jackson4a01c8d2006-03-31 02:30:50 -0800331 * Call without callback_mutex or task_lock() held. May be
Paul Menage2df167a2008-02-07 00:14:45 -0800332 * called with or without cgroup_mutex held. Thanks in part to
333 * 'the_top_cpuset_hack', the task's cpuset pointer will never
David Rientjes41f7f602008-03-04 23:32:38 -0800334 * be NULL. This routine also might acquire callback_mutex during
335 * call.
Paul Jackson5aa15b52005-10-30 15:02:28 -0800336 *
Paul Jackson6b9c2602006-01-08 01:02:02 -0800337 * Reading current->cpuset->mems_generation doesn't need task_lock
338 * to guard the current->cpuset derefence, because it is guarded
Paul Menage2df167a2008-02-07 00:14:45 -0800339 * from concurrent freeing of current->cpuset using RCU.
Paul Jackson6b9c2602006-01-08 01:02:02 -0800340 *
341 * The rcu_dereference() is technically probably not needed,
342 * as I don't actually mind if I see a new cpuset pointer but
343 * an old value of mems_generation. However this really only
344 * matters on alpha systems using cpusets heavily. If I dropped
345 * that rcu_dereference(), it would save them a memory barrier.
346 * For all other arch's, rcu_dereference is a no-op anyway, and for
347 * alpha systems not using cpusets, another planned optimization,
348 * avoiding the rcu critical section for tasks in the root cpuset
349 * which is statically allocated, so can't vanish, will make this
350 * irrelevant. Better to use RCU as intended, than to engage in
351 * some cute trick to save a memory barrier that is impossible to
352 * test, for alpha systems using cpusets heavily, which might not
353 * even exist.
Paul Jackson053199e2005-10-30 15:02:30 -0800354 *
355 * This routine is needed to update the per-task mems_allowed data,
356 * within the tasks context, when it is trying to allocate memory
357 * (in various mm/mempolicy.c routines) and notices that some other
358 * task has been modifying its cpuset.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700359 */
360
Randy Dunlapfe85a992006-02-03 03:04:23 -0800361void cpuset_update_task_memory_state(void)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700362{
Paul Jackson053199e2005-10-30 15:02:30 -0800363 int my_cpusets_mem_gen;
Paul Jacksoncf2a473c2006-01-08 01:01:54 -0800364 struct task_struct *tsk = current;
Paul Jackson6b9c2602006-01-08 01:02:02 -0800365 struct cpuset *cs;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700366
Paul Menage8793d852007-10-18 23:39:39 -0700367 if (task_cs(tsk) == &top_cpuset) {
Paul Jackson03a285f2006-01-08 01:02:04 -0800368 /* Don't need rcu for top_cpuset. It's never freed. */
369 my_cpusets_mem_gen = top_cpuset.mems_generation;
370 } else {
371 rcu_read_lock();
Paul Menage8793d852007-10-18 23:39:39 -0700372 my_cpusets_mem_gen = task_cs(current)->mems_generation;
Paul Jackson03a285f2006-01-08 01:02:04 -0800373 rcu_read_unlock();
374 }
Paul Jacksoncf2a473c2006-01-08 01:01:54 -0800375
376 if (my_cpusets_mem_gen != tsk->cpuset_mems_generation) {
Ingo Molnar3d3f26a2006-03-23 03:00:18 -0800377 mutex_lock(&callback_mutex);
Paul Jacksoncf2a473c2006-01-08 01:01:54 -0800378 task_lock(tsk);
Paul Menage8793d852007-10-18 23:39:39 -0700379 cs = task_cs(tsk); /* Maybe changed when task not locked */
Paul Jacksoncf2a473c2006-01-08 01:01:54 -0800380 guarantee_online_mems(cs, &tsk->mems_allowed);
381 tsk->cpuset_mems_generation = cs->mems_generation;
Paul Jackson825a46a2006-03-24 03:16:03 -0800382 if (is_spread_page(cs))
383 tsk->flags |= PF_SPREAD_PAGE;
384 else
385 tsk->flags &= ~PF_SPREAD_PAGE;
386 if (is_spread_slab(cs))
387 tsk->flags |= PF_SPREAD_SLAB;
388 else
389 tsk->flags &= ~PF_SPREAD_SLAB;
Paul Jacksoncf2a473c2006-01-08 01:01:54 -0800390 task_unlock(tsk);
Ingo Molnar3d3f26a2006-03-23 03:00:18 -0800391 mutex_unlock(&callback_mutex);
Paul Jackson74cb2152006-01-08 01:01:56 -0800392 mpol_rebind_task(tsk, &tsk->mems_allowed);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700393 }
394}
395
396/*
397 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
398 *
399 * One cpuset is a subset of another if all its allowed CPUs and
400 * Memory Nodes are a subset of the other, and its exclusive flags
Paul Menage2df167a2008-02-07 00:14:45 -0800401 * are only set if the other's are set. Call holding cgroup_mutex.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700402 */
403
404static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
405{
406 return cpus_subset(p->cpus_allowed, q->cpus_allowed) &&
407 nodes_subset(p->mems_allowed, q->mems_allowed) &&
408 is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
409 is_mem_exclusive(p) <= is_mem_exclusive(q);
410}
411
412/*
413 * validate_change() - Used to validate that any proposed cpuset change
414 * follows the structural rules for cpusets.
415 *
416 * If we replaced the flag and mask values of the current cpuset
417 * (cur) with those values in the trial cpuset (trial), would
418 * our various subset and exclusive rules still be valid? Presumes
Paul Menage2df167a2008-02-07 00:14:45 -0800419 * cgroup_mutex held.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700420 *
421 * 'cur' is the address of an actual, in-use cpuset. Operations
422 * such as list traversal that depend on the actual address of the
423 * cpuset in the list must use cur below, not trial.
424 *
425 * 'trial' is the address of bulk structure copy of cur, with
426 * perhaps one or more of the fields cpus_allowed, mems_allowed,
427 * or flags changed to new, trial values.
428 *
429 * Return 0 if valid, -errno if not.
430 */
431
432static int validate_change(const struct cpuset *cur, const struct cpuset *trial)
433{
Paul Menage8793d852007-10-18 23:39:39 -0700434 struct cgroup *cont;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700435 struct cpuset *c, *par;
436
437 /* Each of our child cpusets must be a subset of us */
Paul Menage8793d852007-10-18 23:39:39 -0700438 list_for_each_entry(cont, &cur->css.cgroup->children, sibling) {
439 if (!is_cpuset_subset(cgroup_cs(cont), trial))
Linus Torvalds1da177e2005-04-16 15:20:36 -0700440 return -EBUSY;
441 }
442
443 /* Remaining checks don't apply to root cpuset */
Paul Jackson69604062006-12-06 20:36:15 -0800444 if (cur == &top_cpuset)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700445 return 0;
446
Paul Jackson69604062006-12-06 20:36:15 -0800447 par = cur->parent;
448
Linus Torvalds1da177e2005-04-16 15:20:36 -0700449 /* We must be a subset of our parent cpuset */
450 if (!is_cpuset_subset(trial, par))
451 return -EACCES;
452
Paul Menage2df167a2008-02-07 00:14:45 -0800453 /*
454 * If either I or some sibling (!= me) is exclusive, we can't
455 * overlap
456 */
Paul Menage8793d852007-10-18 23:39:39 -0700457 list_for_each_entry(cont, &par->css.cgroup->children, sibling) {
458 c = cgroup_cs(cont);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700459 if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
460 c != cur &&
461 cpus_intersects(trial->cpus_allowed, c->cpus_allowed))
462 return -EINVAL;
463 if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
464 c != cur &&
465 nodes_intersects(trial->mems_allowed, c->mems_allowed))
466 return -EINVAL;
467 }
468
Paul Jackson020958b2007-10-18 23:40:21 -0700469 /* Cpusets with tasks can't have empty cpus_allowed or mems_allowed */
470 if (cgroup_task_count(cur->css.cgroup)) {
471 if (cpus_empty(trial->cpus_allowed) ||
472 nodes_empty(trial->mems_allowed)) {
473 return -ENOSPC;
474 }
475 }
476
Linus Torvalds1da177e2005-04-16 15:20:36 -0700477 return 0;
478}
479
Dinakar Guniguntala85d7b942005-06-25 14:57:34 -0700480/*
Paul Jackson029190c2007-10-18 23:40:20 -0700481 * Helper routine for rebuild_sched_domains().
482 * Do cpusets a, b have overlapping cpus_allowed masks?
483 */
484
485static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
486{
487 return cpus_intersects(a->cpus_allowed, b->cpus_allowed);
488}
489
Hidetoshi Seto1d3504f2008-04-15 14:04:23 +0900490static void
491update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
492{
493 if (!dattr)
494 return;
495 if (dattr->relax_domain_level < c->relax_domain_level)
496 dattr->relax_domain_level = c->relax_domain_level;
497 return;
498}
499
Paul Jackson029190c2007-10-18 23:40:20 -0700500/*
501 * rebuild_sched_domains()
502 *
503 * If the flag 'sched_load_balance' of any cpuset with non-empty
504 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
505 * which has that flag enabled, or if any cpuset with a non-empty
506 * 'cpus' is removed, then call this routine to rebuild the
507 * scheduler's dynamic sched domains.
508 *
509 * This routine builds a partial partition of the systems CPUs
510 * (the set of non-overlappping cpumask_t's in the array 'part'
511 * below), and passes that partial partition to the kernel/sched.c
512 * partition_sched_domains() routine, which will rebuild the
513 * schedulers load balancing domains (sched domains) as specified
514 * by that partial partition. A 'partial partition' is a set of
515 * non-overlapping subsets whose union is a subset of that set.
516 *
517 * See "What is sched_load_balance" in Documentation/cpusets.txt
518 * for a background explanation of this.
519 *
520 * Does not return errors, on the theory that the callers of this
521 * routine would rather not worry about failures to rebuild sched
522 * domains when operating in the severe memory shortage situations
523 * that could cause allocation failures below.
524 *
525 * Call with cgroup_mutex held. May take callback_mutex during
526 * call due to the kfifo_alloc() and kmalloc() calls. May nest
Gautham R Shenoy86ef5c92008-01-25 21:08:02 +0100527 * a call to the get_online_cpus()/put_online_cpus() pair.
Paul Jackson029190c2007-10-18 23:40:20 -0700528 * Must not be called holding callback_mutex, because we must not
Gautham R Shenoy86ef5c92008-01-25 21:08:02 +0100529 * call get_online_cpus() while holding callback_mutex. Elsewhere
530 * the kernel nests callback_mutex inside get_online_cpus() calls.
Paul Jackson029190c2007-10-18 23:40:20 -0700531 * So the reverse nesting would risk an ABBA deadlock.
532 *
533 * The three key local variables below are:
534 * q - a kfifo queue of cpuset pointers, used to implement a
535 * top-down scan of all cpusets. This scan loads a pointer
536 * to each cpuset marked is_sched_load_balance into the
537 * array 'csa'. For our purposes, rebuilding the schedulers
538 * sched domains, we can ignore !is_sched_load_balance cpusets.
539 * csa - (for CpuSet Array) Array of pointers to all the cpusets
540 * that need to be load balanced, for convenient iterative
541 * access by the subsequent code that finds the best partition,
542 * i.e the set of domains (subsets) of CPUs such that the
543 * cpus_allowed of every cpuset marked is_sched_load_balance
544 * is a subset of one of these domains, while there are as
545 * many such domains as possible, each as small as possible.
546 * doms - Conversion of 'csa' to an array of cpumasks, for passing to
547 * the kernel/sched.c routine partition_sched_domains() in a
548 * convenient format, that can be easily compared to the prior
549 * value to determine what partition elements (sched domains)
550 * were changed (added or removed.)
551 *
552 * Finding the best partition (set of domains):
553 * The triple nested loops below over i, j, k scan over the
554 * load balanced cpusets (using the array of cpuset pointers in
555 * csa[]) looking for pairs of cpusets that have overlapping
556 * cpus_allowed, but which don't have the same 'pn' partition
557 * number and gives them in the same partition number. It keeps
558 * looping on the 'restart' label until it can no longer find
559 * any such pairs.
560 *
561 * The union of the cpus_allowed masks from the set of
562 * all cpusets having the same 'pn' value then form the one
563 * element of the partition (one sched domain) to be passed to
564 * partition_sched_domains().
565 */
566
567static void rebuild_sched_domains(void)
568{
569 struct kfifo *q; /* queue of cpusets to be scanned */
570 struct cpuset *cp; /* scans q */
571 struct cpuset **csa; /* array of all cpuset ptrs */
572 int csn; /* how many cpuset ptrs in csa so far */
573 int i, j, k; /* indices for partition finding loops */
574 cpumask_t *doms; /* resulting partition; i.e. sched domains */
Hidetoshi Seto1d3504f2008-04-15 14:04:23 +0900575 struct sched_domain_attr *dattr; /* attributes for custom domains */
Paul Jackson029190c2007-10-18 23:40:20 -0700576 int ndoms; /* number of sched domains in result */
577 int nslot; /* next empty doms[] cpumask_t slot */
578
579 q = NULL;
580 csa = NULL;
581 doms = NULL;
Hidetoshi Seto1d3504f2008-04-15 14:04:23 +0900582 dattr = NULL;
Paul Jackson029190c2007-10-18 23:40:20 -0700583
584 /* Special case for the 99% of systems with one, full, sched domain */
585 if (is_sched_load_balance(&top_cpuset)) {
586 ndoms = 1;
587 doms = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
588 if (!doms)
589 goto rebuild;
Hidetoshi Seto1d3504f2008-04-15 14:04:23 +0900590 dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
591 if (dattr) {
592 *dattr = SD_ATTR_INIT;
593 update_domain_attr(dattr, &top_cpuset);
594 }
Paul Jackson029190c2007-10-18 23:40:20 -0700595 *doms = top_cpuset.cpus_allowed;
596 goto rebuild;
597 }
598
599 q = kfifo_alloc(number_of_cpusets * sizeof(cp), GFP_KERNEL, NULL);
600 if (IS_ERR(q))
601 goto done;
602 csa = kmalloc(number_of_cpusets * sizeof(cp), GFP_KERNEL);
603 if (!csa)
604 goto done;
605 csn = 0;
606
607 cp = &top_cpuset;
608 __kfifo_put(q, (void *)&cp, sizeof(cp));
609 while (__kfifo_get(q, (void *)&cp, sizeof(cp))) {
610 struct cgroup *cont;
611 struct cpuset *child; /* scans child cpusets of cp */
612 if (is_sched_load_balance(cp))
613 csa[csn++] = cp;
614 list_for_each_entry(cont, &cp->css.cgroup->children, sibling) {
615 child = cgroup_cs(cont);
616 __kfifo_put(q, (void *)&child, sizeof(cp));
617 }
618 }
619
620 for (i = 0; i < csn; i++)
621 csa[i]->pn = i;
622 ndoms = csn;
623
624restart:
625 /* Find the best partition (set of sched domains) */
626 for (i = 0; i < csn; i++) {
627 struct cpuset *a = csa[i];
628 int apn = a->pn;
629
630 for (j = 0; j < csn; j++) {
631 struct cpuset *b = csa[j];
632 int bpn = b->pn;
633
634 if (apn != bpn && cpusets_overlap(a, b)) {
635 for (k = 0; k < csn; k++) {
636 struct cpuset *c = csa[k];
637
638 if (c->pn == bpn)
639 c->pn = apn;
640 }
641 ndoms--; /* one less element */
642 goto restart;
643 }
644 }
645 }
646
647 /* Convert <csn, csa> to <ndoms, doms> */
648 doms = kmalloc(ndoms * sizeof(cpumask_t), GFP_KERNEL);
649 if (!doms)
650 goto rebuild;
Hidetoshi Seto1d3504f2008-04-15 14:04:23 +0900651 dattr = kmalloc(ndoms * sizeof(struct sched_domain_attr), GFP_KERNEL);
Paul Jackson029190c2007-10-18 23:40:20 -0700652
653 for (nslot = 0, i = 0; i < csn; i++) {
654 struct cpuset *a = csa[i];
655 int apn = a->pn;
656
657 if (apn >= 0) {
658 cpumask_t *dp = doms + nslot;
659
660 if (nslot == ndoms) {
661 static int warnings = 10;
662 if (warnings) {
663 printk(KERN_WARNING
664 "rebuild_sched_domains confused:"
665 " nslot %d, ndoms %d, csn %d, i %d,"
666 " apn %d\n",
667 nslot, ndoms, csn, i, apn);
668 warnings--;
669 }
670 continue;
671 }
672
673 cpus_clear(*dp);
Hidetoshi Seto1d3504f2008-04-15 14:04:23 +0900674 if (dattr)
675 *(dattr + nslot) = SD_ATTR_INIT;
Paul Jackson029190c2007-10-18 23:40:20 -0700676 for (j = i; j < csn; j++) {
677 struct cpuset *b = csa[j];
678
679 if (apn == b->pn) {
680 cpus_or(*dp, *dp, b->cpus_allowed);
681 b->pn = -1;
Miao Xie91cd4d62008-07-21 14:21:35 -0700682 if (dattr)
683 update_domain_attr(dattr
684 + nslot, b);
Paul Jackson029190c2007-10-18 23:40:20 -0700685 }
686 }
687 nslot++;
688 }
689 }
690 BUG_ON(nslot != ndoms);
691
692rebuild:
693 /* Have scheduler rebuild sched domains */
Gautham R Shenoy86ef5c92008-01-25 21:08:02 +0100694 get_online_cpus();
Hidetoshi Seto1d3504f2008-04-15 14:04:23 +0900695 partition_sched_domains(ndoms, doms, dattr);
Gautham R Shenoy86ef5c92008-01-25 21:08:02 +0100696 put_online_cpus();
Paul Jackson029190c2007-10-18 23:40:20 -0700697
698done:
699 if (q && !IS_ERR(q))
700 kfifo_free(q);
701 kfree(csa);
702 /* Don't kfree(doms) -- partition_sched_domains() does that. */
Hidetoshi Seto1d3504f2008-04-15 14:04:23 +0900703 /* Don't kfree(dattr) -- partition_sched_domains() does that. */
Paul Jackson029190c2007-10-18 23:40:20 -0700704}
705
Paul Menage8707d8b2007-10-18 23:40:22 -0700706static inline int started_after_time(struct task_struct *t1,
707 struct timespec *time,
708 struct task_struct *t2)
709{
710 int start_diff = timespec_compare(&t1->start_time, time);
711 if (start_diff > 0) {
712 return 1;
713 } else if (start_diff < 0) {
714 return 0;
715 } else {
716 /*
717 * Arbitrarily, if two processes started at the same
718 * time, we'll say that the lower pointer value
719 * started first. Note that t2 may have exited by now
720 * so this may not be a valid pointer any longer, but
721 * that's fine - it still serves to distinguish
722 * between two tasks started (effectively)
723 * simultaneously.
724 */
725 return t1 > t2;
726 }
727}
728
729static inline int started_after(void *p1, void *p2)
730{
731 struct task_struct *t1 = p1;
732 struct task_struct *t2 = p2;
733 return started_after_time(t1, &t2->start_time, t2);
734}
735
Cliff Wickman58f47902008-02-07 00:14:44 -0800736/**
737 * cpuset_test_cpumask - test a task's cpus_allowed versus its cpuset's
738 * @tsk: task to test
739 * @scan: struct cgroup_scanner contained in its struct cpuset_hotplug_scanner
740 *
Paul Menage2df167a2008-02-07 00:14:45 -0800741 * Call with cgroup_mutex held. May take callback_mutex during call.
Cliff Wickman58f47902008-02-07 00:14:44 -0800742 * Called for each task in a cgroup by cgroup_scan_tasks().
743 * Return nonzero if this tasks's cpus_allowed mask should be changed (in other
744 * words, if its mask is not equal to its cpuset's mask).
Paul Jackson053199e2005-10-30 15:02:30 -0800745 */
Adrian Bunk9e0c9142008-04-29 01:00:25 -0700746static int cpuset_test_cpumask(struct task_struct *tsk,
747 struct cgroup_scanner *scan)
Cliff Wickman58f47902008-02-07 00:14:44 -0800748{
749 return !cpus_equal(tsk->cpus_allowed,
750 (cgroup_cs(scan->cg))->cpus_allowed);
751}
Paul Jackson053199e2005-10-30 15:02:30 -0800752
Cliff Wickman58f47902008-02-07 00:14:44 -0800753/**
754 * cpuset_change_cpumask - make a task's cpus_allowed the same as its cpuset's
755 * @tsk: task to test
756 * @scan: struct cgroup_scanner containing the cgroup of the task
757 *
758 * Called by cgroup_scan_tasks() for each task in a cgroup whose
759 * cpus_allowed mask needs to be changed.
760 *
761 * We don't need to re-check for the cgroup/cpuset membership, since we're
762 * holding cgroup_lock() at this point.
763 */
Adrian Bunk9e0c9142008-04-29 01:00:25 -0700764static void cpuset_change_cpumask(struct task_struct *tsk,
765 struct cgroup_scanner *scan)
Cliff Wickman58f47902008-02-07 00:14:44 -0800766{
Mike Travisf9a86fc2008-04-04 18:11:07 -0700767 set_cpus_allowed_ptr(tsk, &((cgroup_cs(scan->cg))->cpus_allowed));
Cliff Wickman58f47902008-02-07 00:14:44 -0800768}
769
770/**
771 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
772 * @cs: the cpuset to consider
773 * @buf: buffer of cpu numbers written to this cpuset
774 */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700775static int update_cpumask(struct cpuset *cs, char *buf)
776{
777 struct cpuset trialcs;
Cliff Wickman58f47902008-02-07 00:14:44 -0800778 struct cgroup_scanner scan;
Paul Menage8707d8b2007-10-18 23:40:22 -0700779 struct ptr_heap heap;
Cliff Wickman58f47902008-02-07 00:14:44 -0800780 int retval;
781 int is_load_balanced;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700782
Paul Jackson4c4d50f2006-08-27 01:23:51 -0700783 /* top_cpuset.cpus_allowed tracks cpu_online_map; it's read-only */
784 if (cs == &top_cpuset)
785 return -EACCES;
786
Linus Torvalds1da177e2005-04-16 15:20:36 -0700787 trialcs = *cs;
David Rientjes6f7f02e2007-05-08 00:31:43 -0700788
789 /*
Paul Jacksonc8d9c902008-02-07 00:14:46 -0800790 * An empty cpus_allowed is ok only if the cpuset has no tasks.
Paul Jackson020958b2007-10-18 23:40:21 -0700791 * Since cpulist_parse() fails on an empty mask, we special case
792 * that parsing. The validate_change() call ensures that cpusets
793 * with tasks have cpus.
David Rientjes6f7f02e2007-05-08 00:31:43 -0700794 */
Paul Jackson020958b2007-10-18 23:40:21 -0700795 buf = strstrip(buf);
796 if (!*buf) {
David Rientjes6f7f02e2007-05-08 00:31:43 -0700797 cpus_clear(trialcs.cpus_allowed);
798 } else {
799 retval = cpulist_parse(buf, trialcs.cpus_allowed);
800 if (retval < 0)
801 return retval;
Lai Jiangshan37340742008-06-05 22:46:32 -0700802
803 if (!cpus_subset(trialcs.cpus_allowed, cpu_online_map))
804 return -EINVAL;
David Rientjes6f7f02e2007-05-08 00:31:43 -0700805 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700806 retval = validate_change(cs, &trialcs);
Dinakar Guniguntala85d7b942005-06-25 14:57:34 -0700807 if (retval < 0)
808 return retval;
Paul Jackson029190c2007-10-18 23:40:20 -0700809
Paul Menage8707d8b2007-10-18 23:40:22 -0700810 /* Nothing to do if the cpus didn't change */
811 if (cpus_equal(cs->cpus_allowed, trialcs.cpus_allowed))
812 return 0;
Cliff Wickman58f47902008-02-07 00:14:44 -0800813
Paul Menage8707d8b2007-10-18 23:40:22 -0700814 retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, &started_after);
815 if (retval)
816 return retval;
817
Paul Jackson029190c2007-10-18 23:40:20 -0700818 is_load_balanced = is_sched_load_balance(&trialcs);
819
Ingo Molnar3d3f26a2006-03-23 03:00:18 -0800820 mutex_lock(&callback_mutex);
Dinakar Guniguntala85d7b942005-06-25 14:57:34 -0700821 cs->cpus_allowed = trialcs.cpus_allowed;
Ingo Molnar3d3f26a2006-03-23 03:00:18 -0800822 mutex_unlock(&callback_mutex);
Paul Jackson029190c2007-10-18 23:40:20 -0700823
Paul Menage8707d8b2007-10-18 23:40:22 -0700824 /*
825 * Scan tasks in the cpuset, and update the cpumasks of any
Cliff Wickman58f47902008-02-07 00:14:44 -0800826 * that need an update.
Paul Menage8707d8b2007-10-18 23:40:22 -0700827 */
Cliff Wickman58f47902008-02-07 00:14:44 -0800828 scan.cg = cs->css.cgroup;
829 scan.test_task = cpuset_test_cpumask;
830 scan.process_task = cpuset_change_cpumask;
831 scan.heap = &heap;
832 cgroup_scan_tasks(&scan);
Paul Menage8707d8b2007-10-18 23:40:22 -0700833 heap_free(&heap);
Cliff Wickman58f47902008-02-07 00:14:44 -0800834
Paul Menage8707d8b2007-10-18 23:40:22 -0700835 if (is_load_balanced)
Paul Jackson029190c2007-10-18 23:40:20 -0700836 rebuild_sched_domains();
Dinakar Guniguntala85d7b942005-06-25 14:57:34 -0700837 return 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700838}
839
Paul Jackson053199e2005-10-30 15:02:30 -0800840/*
Paul Jacksone4e364e2006-03-31 02:30:52 -0800841 * cpuset_migrate_mm
842 *
843 * Migrate memory region from one set of nodes to another.
844 *
845 * Temporarilly set tasks mems_allowed to target nodes of migration,
846 * so that the migration code can allocate pages on these nodes.
847 *
Paul Menage2df167a2008-02-07 00:14:45 -0800848 * Call holding cgroup_mutex, so current's cpuset won't change
Paul Jacksonc8d9c902008-02-07 00:14:46 -0800849 * during this call, as manage_mutex holds off any cpuset_attach()
Paul Jacksone4e364e2006-03-31 02:30:52 -0800850 * calls. Therefore we don't need to take task_lock around the
851 * call to guarantee_online_mems(), as we know no one is changing
Paul Menage2df167a2008-02-07 00:14:45 -0800852 * our task's cpuset.
Paul Jacksone4e364e2006-03-31 02:30:52 -0800853 *
854 * Hold callback_mutex around the two modifications of our tasks
855 * mems_allowed to synchronize with cpuset_mems_allowed().
856 *
857 * While the mm_struct we are migrating is typically from some
858 * other task, the task_struct mems_allowed that we are hacking
859 * is for our current task, which must allocate new pages for that
860 * migrating memory region.
861 *
862 * We call cpuset_update_task_memory_state() before hacking
863 * our tasks mems_allowed, so that we are assured of being in
864 * sync with our tasks cpuset, and in particular, callbacks to
865 * cpuset_update_task_memory_state() from nested page allocations
866 * won't see any mismatch of our cpuset and task mems_generation
867 * values, so won't overwrite our hacked tasks mems_allowed
868 * nodemask.
869 */
870
871static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
872 const nodemask_t *to)
873{
874 struct task_struct *tsk = current;
875
876 cpuset_update_task_memory_state();
877
878 mutex_lock(&callback_mutex);
879 tsk->mems_allowed = *to;
880 mutex_unlock(&callback_mutex);
881
882 do_migrate_pages(mm, from, to, MPOL_MF_MOVE_ALL);
883
884 mutex_lock(&callback_mutex);
Paul Menage8793d852007-10-18 23:39:39 -0700885 guarantee_online_mems(task_cs(tsk),&tsk->mems_allowed);
Paul Jacksone4e364e2006-03-31 02:30:52 -0800886 mutex_unlock(&callback_mutex);
887}
888
889/*
Paul Jackson42253992006-01-08 01:01:59 -0800890 * Handle user request to change the 'mems' memory placement
891 * of a cpuset. Needs to validate the request, update the
892 * cpusets mems_allowed and mems_generation, and for each
Paul Jackson04c19fa2006-01-08 01:02:00 -0800893 * task in the cpuset, rebind any vma mempolicies and if
894 * the cpuset is marked 'memory_migrate', migrate the tasks
895 * pages to the new memory.
Paul Jackson42253992006-01-08 01:01:59 -0800896 *
Paul Menage2df167a2008-02-07 00:14:45 -0800897 * Call with cgroup_mutex held. May take callback_mutex during call.
Paul Jackson42253992006-01-08 01:01:59 -0800898 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
899 * lock each such tasks mm->mmap_sem, scan its vma's and rebind
900 * their mempolicies to the cpusets new mems_allowed.
Paul Jackson053199e2005-10-30 15:02:30 -0800901 */
902
Paul Menage8793d852007-10-18 23:39:39 -0700903static void *cpuset_being_rebound;
904
Linus Torvalds1da177e2005-04-16 15:20:36 -0700905static int update_nodemask(struct cpuset *cs, char *buf)
906{
907 struct cpuset trialcs;
Paul Jackson04c19fa2006-01-08 01:02:00 -0800908 nodemask_t oldmem;
Paul Menage8793d852007-10-18 23:39:39 -0700909 struct task_struct *p;
Paul Jackson42253992006-01-08 01:01:59 -0800910 struct mm_struct **mmarray;
911 int i, n, ntasks;
Paul Jackson04c19fa2006-01-08 01:02:00 -0800912 int migrate;
Paul Jackson42253992006-01-08 01:01:59 -0800913 int fudge;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700914 int retval;
Paul Menage8793d852007-10-18 23:39:39 -0700915 struct cgroup_iter it;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700916
Christoph Lameter0e1e7c72007-10-16 01:25:38 -0700917 /*
918 * top_cpuset.mems_allowed tracks node_stats[N_HIGH_MEMORY];
919 * it's read-only
920 */
Paul Jackson38837fc2006-09-29 02:01:16 -0700921 if (cs == &top_cpuset)
922 return -EACCES;
923
Linus Torvalds1da177e2005-04-16 15:20:36 -0700924 trialcs = *cs;
David Rientjes6f7f02e2007-05-08 00:31:43 -0700925
926 /*
Paul Jackson020958b2007-10-18 23:40:21 -0700927 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
928 * Since nodelist_parse() fails on an empty mask, we special case
929 * that parsing. The validate_change() call ensures that cpusets
930 * with tasks have memory.
David Rientjes6f7f02e2007-05-08 00:31:43 -0700931 */
Paul Jackson020958b2007-10-18 23:40:21 -0700932 buf = strstrip(buf);
933 if (!*buf) {
David Rientjes6f7f02e2007-05-08 00:31:43 -0700934 nodes_clear(trialcs.mems_allowed);
935 } else {
936 retval = nodelist_parse(buf, trialcs.mems_allowed);
937 if (retval < 0)
938 goto done;
Lai Jiangshan37340742008-06-05 22:46:32 -0700939
940 if (!nodes_subset(trialcs.mems_allowed,
941 node_states[N_HIGH_MEMORY]))
942 return -EINVAL;
David Rientjes6f7f02e2007-05-08 00:31:43 -0700943 }
Paul Jackson04c19fa2006-01-08 01:02:00 -0800944 oldmem = cs->mems_allowed;
945 if (nodes_equal(oldmem, trialcs.mems_allowed)) {
946 retval = 0; /* Too easy - nothing to do */
947 goto done;
948 }
Paul Jackson59dac162006-01-08 01:01:52 -0800949 retval = validate_change(cs, &trialcs);
950 if (retval < 0)
951 goto done;
952
Ingo Molnar3d3f26a2006-03-23 03:00:18 -0800953 mutex_lock(&callback_mutex);
Paul Jackson59dac162006-01-08 01:01:52 -0800954 cs->mems_allowed = trialcs.mems_allowed;
Paul Jackson151a4422006-03-24 03:16:11 -0800955 cs->mems_generation = cpuset_mems_generation++;
Ingo Molnar3d3f26a2006-03-23 03:00:18 -0800956 mutex_unlock(&callback_mutex);
Paul Jackson59dac162006-01-08 01:01:52 -0800957
Lee Schermerhorn846a16b2008-04-28 02:13:09 -0700958 cpuset_being_rebound = cs; /* causes mpol_dup() rebind */
Paul Jackson42253992006-01-08 01:01:59 -0800959
960 fudge = 10; /* spare mmarray[] slots */
961 fudge += cpus_weight(cs->cpus_allowed); /* imagine one fork-bomb/cpu */
962 retval = -ENOMEM;
963
964 /*
965 * Allocate mmarray[] to hold mm reference for each task
966 * in cpuset cs. Can't kmalloc GFP_KERNEL while holding
967 * tasklist_lock. We could use GFP_ATOMIC, but with a
968 * few more lines of code, we can retry until we get a big
969 * enough mmarray[] w/o using GFP_ATOMIC.
970 */
971 while (1) {
Paul Menage8793d852007-10-18 23:39:39 -0700972 ntasks = cgroup_task_count(cs->css.cgroup); /* guess */
Paul Jackson42253992006-01-08 01:01:59 -0800973 ntasks += fudge;
974 mmarray = kmalloc(ntasks * sizeof(*mmarray), GFP_KERNEL);
975 if (!mmarray)
976 goto done;
Paul Menagec2aef332007-07-15 23:40:11 -0700977 read_lock(&tasklist_lock); /* block fork */
Paul Menage8793d852007-10-18 23:39:39 -0700978 if (cgroup_task_count(cs->css.cgroup) <= ntasks)
Paul Jackson42253992006-01-08 01:01:59 -0800979 break; /* got enough */
Paul Menagec2aef332007-07-15 23:40:11 -0700980 read_unlock(&tasklist_lock); /* try again */
Paul Jackson42253992006-01-08 01:01:59 -0800981 kfree(mmarray);
982 }
983
984 n = 0;
985
986 /* Load up mmarray[] with mm reference for each task in cpuset. */
Paul Menage8793d852007-10-18 23:39:39 -0700987 cgroup_iter_start(cs->css.cgroup, &it);
988 while ((p = cgroup_iter_next(cs->css.cgroup, &it))) {
Paul Jackson42253992006-01-08 01:01:59 -0800989 struct mm_struct *mm;
990
991 if (n >= ntasks) {
992 printk(KERN_WARNING
993 "Cpuset mempolicy rebind incomplete.\n");
Paul Menage8793d852007-10-18 23:39:39 -0700994 break;
Paul Jackson42253992006-01-08 01:01:59 -0800995 }
Paul Jackson42253992006-01-08 01:01:59 -0800996 mm = get_task_mm(p);
997 if (!mm)
998 continue;
999 mmarray[n++] = mm;
Paul Menage8793d852007-10-18 23:39:39 -07001000 }
1001 cgroup_iter_end(cs->css.cgroup, &it);
Paul Menagec2aef332007-07-15 23:40:11 -07001002 read_unlock(&tasklist_lock);
Paul Jackson42253992006-01-08 01:01:59 -08001003
1004 /*
1005 * Now that we've dropped the tasklist spinlock, we can
1006 * rebind the vma mempolicies of each mm in mmarray[] to their
1007 * new cpuset, and release that mm. The mpol_rebind_mm()
1008 * call takes mmap_sem, which we couldn't take while holding
Lee Schermerhorn846a16b2008-04-28 02:13:09 -07001009 * tasklist_lock. Forks can happen again now - the mpol_dup()
Paul Jackson42253992006-01-08 01:01:59 -08001010 * cpuset_being_rebound check will catch such forks, and rebind
1011 * their vma mempolicies too. Because we still hold the global
Paul Menage2df167a2008-02-07 00:14:45 -08001012 * cgroup_mutex, we know that no other rebind effort will
Paul Jackson42253992006-01-08 01:01:59 -08001013 * be contending for the global variable cpuset_being_rebound.
1014 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
Paul Jackson04c19fa2006-01-08 01:02:00 -08001015 * is idempotent. Also migrate pages in each mm to new nodes.
Paul Jackson42253992006-01-08 01:01:59 -08001016 */
Paul Jackson04c19fa2006-01-08 01:02:00 -08001017 migrate = is_memory_migrate(cs);
Paul Jackson42253992006-01-08 01:01:59 -08001018 for (i = 0; i < n; i++) {
1019 struct mm_struct *mm = mmarray[i];
1020
1021 mpol_rebind_mm(mm, &cs->mems_allowed);
Paul Jacksone4e364e2006-03-31 02:30:52 -08001022 if (migrate)
1023 cpuset_migrate_mm(mm, &oldmem, &cs->mems_allowed);
Paul Jackson42253992006-01-08 01:01:59 -08001024 mmput(mm);
1025 }
1026
Paul Menage2df167a2008-02-07 00:14:45 -08001027 /* We're done rebinding vmas to this cpuset's new mems_allowed. */
Paul Jackson42253992006-01-08 01:01:59 -08001028 kfree(mmarray);
Paul Menage8793d852007-10-18 23:39:39 -07001029 cpuset_being_rebound = NULL;
Paul Jackson42253992006-01-08 01:01:59 -08001030 retval = 0;
Paul Jackson59dac162006-01-08 01:01:52 -08001031done:
Linus Torvalds1da177e2005-04-16 15:20:36 -07001032 return retval;
1033}
1034
Paul Menage8793d852007-10-18 23:39:39 -07001035int current_cpuset_is_being_rebound(void)
1036{
1037 return task_cs(current) == cpuset_being_rebound;
1038}
1039
Paul Menage5be7a472008-05-06 20:42:41 -07001040static int update_relax_domain_level(struct cpuset *cs, s64 val)
Hidetoshi Seto1d3504f2008-04-15 14:04:23 +09001041{
Li Zefan30e0e172008-05-13 10:27:17 +08001042 if (val < -1 || val >= SD_LV_MAX)
1043 return -EINVAL;
Hidetoshi Seto1d3504f2008-04-15 14:04:23 +09001044
1045 if (val != cs->relax_domain_level) {
1046 cs->relax_domain_level = val;
1047 rebuild_sched_domains();
1048 }
1049
1050 return 0;
1051}
1052
Paul Jackson3e0d98b2006-01-08 01:01:49 -08001053/*
Linus Torvalds1da177e2005-04-16 15:20:36 -07001054 * update_flag - read a 0 or a 1 in a file and update associated flag
Paul Menage78608362008-04-29 01:00:26 -07001055 * bit: the bit to update (see cpuset_flagbits_t)
1056 * cs: the cpuset to update
1057 * turning_on: whether the flag is being set or cleared
Paul Jackson053199e2005-10-30 15:02:30 -08001058 *
Paul Menage2df167a2008-02-07 00:14:45 -08001059 * Call with cgroup_mutex held.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001060 */
1061
Paul Menage700fe1a2008-04-29 01:00:00 -07001062static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
1063 int turning_on)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001064{
Linus Torvalds1da177e2005-04-16 15:20:36 -07001065 struct cpuset trialcs;
Paul Jackson607717a2007-10-16 01:27:43 -07001066 int err;
Paul Jackson029190c2007-10-18 23:40:20 -07001067 int cpus_nonempty, balance_flag_changed;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001068
Linus Torvalds1da177e2005-04-16 15:20:36 -07001069 trialcs = *cs;
1070 if (turning_on)
1071 set_bit(bit, &trialcs.flags);
1072 else
1073 clear_bit(bit, &trialcs.flags);
1074
1075 err = validate_change(cs, &trialcs);
Dinakar Guniguntala85d7b942005-06-25 14:57:34 -07001076 if (err < 0)
1077 return err;
Paul Jackson029190c2007-10-18 23:40:20 -07001078
1079 cpus_nonempty = !cpus_empty(trialcs.cpus_allowed);
1080 balance_flag_changed = (is_sched_load_balance(cs) !=
1081 is_sched_load_balance(&trialcs));
1082
Ingo Molnar3d3f26a2006-03-23 03:00:18 -08001083 mutex_lock(&callback_mutex);
Paul Jackson69604062006-12-06 20:36:15 -08001084 cs->flags = trialcs.flags;
Ingo Molnar3d3f26a2006-03-23 03:00:18 -08001085 mutex_unlock(&callback_mutex);
Dinakar Guniguntala85d7b942005-06-25 14:57:34 -07001086
Paul Jackson029190c2007-10-18 23:40:20 -07001087 if (cpus_nonempty && balance_flag_changed)
1088 rebuild_sched_domains();
1089
Dinakar Guniguntala85d7b942005-06-25 14:57:34 -07001090 return 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001091}
1092
Paul Jackson053199e2005-10-30 15:02:30 -08001093/*
Adrian Bunk80f72282006-06-30 18:27:16 +02001094 * Frequency meter - How fast is some event occurring?
Paul Jackson3e0d98b2006-01-08 01:01:49 -08001095 *
1096 * These routines manage a digitally filtered, constant time based,
1097 * event frequency meter. There are four routines:
1098 * fmeter_init() - initialize a frequency meter.
1099 * fmeter_markevent() - called each time the event happens.
1100 * fmeter_getrate() - returns the recent rate of such events.
1101 * fmeter_update() - internal routine used to update fmeter.
1102 *
1103 * A common data structure is passed to each of these routines,
1104 * which is used to keep track of the state required to manage the
1105 * frequency meter and its digital filter.
1106 *
1107 * The filter works on the number of events marked per unit time.
1108 * The filter is single-pole low-pass recursive (IIR). The time unit
1109 * is 1 second. Arithmetic is done using 32-bit integers scaled to
1110 * simulate 3 decimal digits of precision (multiplied by 1000).
1111 *
1112 * With an FM_COEF of 933, and a time base of 1 second, the filter
1113 * has a half-life of 10 seconds, meaning that if the events quit
1114 * happening, then the rate returned from the fmeter_getrate()
1115 * will be cut in half each 10 seconds, until it converges to zero.
1116 *
1117 * It is not worth doing a real infinitely recursive filter. If more
1118 * than FM_MAXTICKS ticks have elapsed since the last filter event,
1119 * just compute FM_MAXTICKS ticks worth, by which point the level
1120 * will be stable.
1121 *
1122 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
1123 * arithmetic overflow in the fmeter_update() routine.
1124 *
1125 * Given the simple 32 bit integer arithmetic used, this meter works
1126 * best for reporting rates between one per millisecond (msec) and
1127 * one per 32 (approx) seconds. At constant rates faster than one
1128 * per msec it maxes out at values just under 1,000,000. At constant
1129 * rates between one per msec, and one per second it will stabilize
1130 * to a value N*1000, where N is the rate of events per second.
1131 * At constant rates between one per second and one per 32 seconds,
1132 * it will be choppy, moving up on the seconds that have an event,
1133 * and then decaying until the next event. At rates slower than
1134 * about one in 32 seconds, it decays all the way back to zero between
1135 * each event.
1136 */
1137
1138#define FM_COEF 933 /* coefficient for half-life of 10 secs */
1139#define FM_MAXTICKS ((time_t)99) /* useless computing more ticks than this */
1140#define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */
1141#define FM_SCALE 1000 /* faux fixed point scale */
1142
1143/* Initialize a frequency meter */
1144static void fmeter_init(struct fmeter *fmp)
1145{
1146 fmp->cnt = 0;
1147 fmp->val = 0;
1148 fmp->time = 0;
1149 spin_lock_init(&fmp->lock);
1150}
1151
1152/* Internal meter update - process cnt events and update value */
1153static void fmeter_update(struct fmeter *fmp)
1154{
1155 time_t now = get_seconds();
1156 time_t ticks = now - fmp->time;
1157
1158 if (ticks == 0)
1159 return;
1160
1161 ticks = min(FM_MAXTICKS, ticks);
1162 while (ticks-- > 0)
1163 fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
1164 fmp->time = now;
1165
1166 fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
1167 fmp->cnt = 0;
1168}
1169
1170/* Process any previous ticks, then bump cnt by one (times scale). */
1171static void fmeter_markevent(struct fmeter *fmp)
1172{
1173 spin_lock(&fmp->lock);
1174 fmeter_update(fmp);
1175 fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
1176 spin_unlock(&fmp->lock);
1177}
1178
1179/* Process any previous ticks, then return current value. */
1180static int fmeter_getrate(struct fmeter *fmp)
1181{
1182 int val;
1183
1184 spin_lock(&fmp->lock);
1185 fmeter_update(fmp);
1186 val = fmp->val;
1187 spin_unlock(&fmp->lock);
1188 return val;
1189}
1190
Paul Menage2df167a2008-02-07 00:14:45 -08001191/* Called by cgroups to determine if a cpuset is usable; cgroup_mutex held */
Paul Menage8793d852007-10-18 23:39:39 -07001192static int cpuset_can_attach(struct cgroup_subsys *ss,
1193 struct cgroup *cont, struct task_struct *tsk)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001194{
Paul Menage8793d852007-10-18 23:39:39 -07001195 struct cpuset *cs = cgroup_cs(cont);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001196
Linus Torvalds1da177e2005-04-16 15:20:36 -07001197 if (cpus_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed))
1198 return -ENOSPC;
David Rientjes9985b0b2008-06-05 12:57:11 -07001199 if (tsk->flags & PF_THREAD_BOUND) {
1200 cpumask_t mask;
1201
1202 mutex_lock(&callback_mutex);
1203 mask = cs->cpus_allowed;
1204 mutex_unlock(&callback_mutex);
1205 if (!cpus_equal(tsk->cpus_allowed, mask))
1206 return -EINVAL;
1207 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001208
Paul Menage8793d852007-10-18 23:39:39 -07001209 return security_task_setscheduler(tsk, 0, NULL);
1210}
Linus Torvalds1da177e2005-04-16 15:20:36 -07001211
Paul Menage8793d852007-10-18 23:39:39 -07001212static void cpuset_attach(struct cgroup_subsys *ss,
1213 struct cgroup *cont, struct cgroup *oldcont,
1214 struct task_struct *tsk)
1215{
1216 cpumask_t cpus;
1217 nodemask_t from, to;
1218 struct mm_struct *mm;
1219 struct cpuset *cs = cgroup_cs(cont);
1220 struct cpuset *oldcs = cgroup_cs(oldcont);
David Rientjes9985b0b2008-06-05 12:57:11 -07001221 int err;
David Quigley22fb52d2006-06-23 02:04:00 -07001222
Ingo Molnar3d3f26a2006-03-23 03:00:18 -08001223 mutex_lock(&callback_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001224 guarantee_online_cpus(cs, &cpus);
David Rientjes9985b0b2008-06-05 12:57:11 -07001225 err = set_cpus_allowed_ptr(tsk, &cpus);
Paul Menage8793d852007-10-18 23:39:39 -07001226 mutex_unlock(&callback_mutex);
David Rientjes9985b0b2008-06-05 12:57:11 -07001227 if (err)
1228 return;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001229
Paul Jackson45b07ef2006-01-08 01:00:56 -08001230 from = oldcs->mems_allowed;
1231 to = cs->mems_allowed;
Paul Jackson42253992006-01-08 01:01:59 -08001232 mm = get_task_mm(tsk);
1233 if (mm) {
1234 mpol_rebind_mm(mm, &to);
Paul Jackson2741a552006-03-31 02:30:51 -08001235 if (is_memory_migrate(cs))
Paul Jacksone4e364e2006-03-31 02:30:52 -08001236 cpuset_migrate_mm(mm, &from, &to);
Paul Jackson42253992006-01-08 01:01:59 -08001237 mmput(mm);
1238 }
1239
Linus Torvalds1da177e2005-04-16 15:20:36 -07001240}
1241
1242/* The various types of files and directories in a cpuset file system */
1243
1244typedef enum {
Paul Jackson45b07ef2006-01-08 01:00:56 -08001245 FILE_MEMORY_MIGRATE,
Linus Torvalds1da177e2005-04-16 15:20:36 -07001246 FILE_CPULIST,
1247 FILE_MEMLIST,
1248 FILE_CPU_EXCLUSIVE,
1249 FILE_MEM_EXCLUSIVE,
Paul Menage78608362008-04-29 01:00:26 -07001250 FILE_MEM_HARDWALL,
Paul Jackson029190c2007-10-18 23:40:20 -07001251 FILE_SCHED_LOAD_BALANCE,
Hidetoshi Seto1d3504f2008-04-15 14:04:23 +09001252 FILE_SCHED_RELAX_DOMAIN_LEVEL,
Paul Jackson3e0d98b2006-01-08 01:01:49 -08001253 FILE_MEMORY_PRESSURE_ENABLED,
1254 FILE_MEMORY_PRESSURE,
Paul Jackson825a46a2006-03-24 03:16:03 -08001255 FILE_SPREAD_PAGE,
1256 FILE_SPREAD_SLAB,
Linus Torvalds1da177e2005-04-16 15:20:36 -07001257} cpuset_filetype_t;
1258
Paul Menage8793d852007-10-18 23:39:39 -07001259static ssize_t cpuset_common_file_write(struct cgroup *cont,
1260 struct cftype *cft,
1261 struct file *file,
Paul Menaged3ed11c2006-12-06 20:41:37 -08001262 const char __user *userbuf,
Linus Torvalds1da177e2005-04-16 15:20:36 -07001263 size_t nbytes, loff_t *unused_ppos)
1264{
Paul Menage8793d852007-10-18 23:39:39 -07001265 struct cpuset *cs = cgroup_cs(cont);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001266 cpuset_filetype_t type = cft->private;
1267 char *buffer;
1268 int retval = 0;
1269
1270 /* Crude upper limit on largest legitimate cpulist user might write. */
Paul Jackson029190c2007-10-18 23:40:20 -07001271 if (nbytes > 100U + 6 * max(NR_CPUS, MAX_NUMNODES))
Linus Torvalds1da177e2005-04-16 15:20:36 -07001272 return -E2BIG;
1273
1274 /* +1 for nul-terminator */
Harvey Harrisonb331d252008-04-28 14:13:19 -07001275 buffer = kmalloc(nbytes + 1, GFP_KERNEL);
1276 if (!buffer)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001277 return -ENOMEM;
1278
1279 if (copy_from_user(buffer, userbuf, nbytes)) {
1280 retval = -EFAULT;
1281 goto out1;
1282 }
1283 buffer[nbytes] = 0; /* nul-terminate */
1284
Paul Menage8793d852007-10-18 23:39:39 -07001285 cgroup_lock();
Linus Torvalds1da177e2005-04-16 15:20:36 -07001286
Paul Menage8793d852007-10-18 23:39:39 -07001287 if (cgroup_is_removed(cont)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001288 retval = -ENODEV;
1289 goto out2;
1290 }
1291
1292 switch (type) {
1293 case FILE_CPULIST:
1294 retval = update_cpumask(cs, buffer);
1295 break;
1296 case FILE_MEMLIST:
1297 retval = update_nodemask(cs, buffer);
1298 break;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001299 default:
1300 retval = -EINVAL;
1301 goto out2;
1302 }
1303
1304 if (retval == 0)
1305 retval = nbytes;
1306out2:
Paul Menage8793d852007-10-18 23:39:39 -07001307 cgroup_unlock();
Linus Torvalds1da177e2005-04-16 15:20:36 -07001308out1:
1309 kfree(buffer);
1310 return retval;
1311}
1312
Paul Menage700fe1a2008-04-29 01:00:00 -07001313static int cpuset_write_u64(struct cgroup *cgrp, struct cftype *cft, u64 val)
1314{
1315 int retval = 0;
1316 struct cpuset *cs = cgroup_cs(cgrp);
1317 cpuset_filetype_t type = cft->private;
1318
1319 cgroup_lock();
1320
1321 if (cgroup_is_removed(cgrp)) {
1322 cgroup_unlock();
1323 return -ENODEV;
1324 }
1325
1326 switch (type) {
1327 case FILE_CPU_EXCLUSIVE:
1328 retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
1329 break;
1330 case FILE_MEM_EXCLUSIVE:
1331 retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
1332 break;
Paul Menage78608362008-04-29 01:00:26 -07001333 case FILE_MEM_HARDWALL:
1334 retval = update_flag(CS_MEM_HARDWALL, cs, val);
1335 break;
Paul Menage700fe1a2008-04-29 01:00:00 -07001336 case FILE_SCHED_LOAD_BALANCE:
1337 retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
1338 break;
1339 case FILE_MEMORY_MIGRATE:
1340 retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
1341 break;
1342 case FILE_MEMORY_PRESSURE_ENABLED:
1343 cpuset_memory_pressure_enabled = !!val;
1344 break;
1345 case FILE_MEMORY_PRESSURE:
1346 retval = -EACCES;
1347 break;
1348 case FILE_SPREAD_PAGE:
1349 retval = update_flag(CS_SPREAD_PAGE, cs, val);
1350 cs->mems_generation = cpuset_mems_generation++;
1351 break;
1352 case FILE_SPREAD_SLAB:
1353 retval = update_flag(CS_SPREAD_SLAB, cs, val);
1354 cs->mems_generation = cpuset_mems_generation++;
1355 break;
1356 default:
1357 retval = -EINVAL;
1358 break;
1359 }
1360 cgroup_unlock();
1361 return retval;
1362}
1363
Paul Menage5be7a472008-05-06 20:42:41 -07001364static int cpuset_write_s64(struct cgroup *cgrp, struct cftype *cft, s64 val)
1365{
1366 int retval = 0;
1367 struct cpuset *cs = cgroup_cs(cgrp);
1368 cpuset_filetype_t type = cft->private;
1369
1370 cgroup_lock();
1371
1372 if (cgroup_is_removed(cgrp)) {
1373 cgroup_unlock();
1374 return -ENODEV;
1375 }
1376 switch (type) {
1377 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1378 retval = update_relax_domain_level(cs, val);
1379 break;
1380 default:
1381 retval = -EINVAL;
1382 break;
1383 }
1384 cgroup_unlock();
1385 return retval;
1386}
1387
Linus Torvalds1da177e2005-04-16 15:20:36 -07001388/*
1389 * These ascii lists should be read in a single call, by using a user
1390 * buffer large enough to hold the entire map. If read in smaller
1391 * chunks, there is no guarantee of atomicity. Since the display format
1392 * used, list of ranges of sequential numbers, is variable length,
1393 * and since these maps can change value dynamically, one could read
1394 * gibberish by doing partial reads while a list was changing.
1395 * A single large read to a buffer that crosses a page boundary is
1396 * ok, because the result being copied to user land is not recomputed
1397 * across a page fault.
1398 */
1399
1400static int cpuset_sprintf_cpulist(char *page, struct cpuset *cs)
1401{
1402 cpumask_t mask;
1403
Ingo Molnar3d3f26a2006-03-23 03:00:18 -08001404 mutex_lock(&callback_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001405 mask = cs->cpus_allowed;
Ingo Molnar3d3f26a2006-03-23 03:00:18 -08001406 mutex_unlock(&callback_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001407
1408 return cpulist_scnprintf(page, PAGE_SIZE, mask);
1409}
1410
1411static int cpuset_sprintf_memlist(char *page, struct cpuset *cs)
1412{
1413 nodemask_t mask;
1414
Ingo Molnar3d3f26a2006-03-23 03:00:18 -08001415 mutex_lock(&callback_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001416 mask = cs->mems_allowed;
Ingo Molnar3d3f26a2006-03-23 03:00:18 -08001417 mutex_unlock(&callback_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001418
1419 return nodelist_scnprintf(page, PAGE_SIZE, mask);
1420}
1421
Paul Menage8793d852007-10-18 23:39:39 -07001422static ssize_t cpuset_common_file_read(struct cgroup *cont,
1423 struct cftype *cft,
1424 struct file *file,
1425 char __user *buf,
1426 size_t nbytes, loff_t *ppos)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001427{
Paul Menage8793d852007-10-18 23:39:39 -07001428 struct cpuset *cs = cgroup_cs(cont);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001429 cpuset_filetype_t type = cft->private;
1430 char *page;
1431 ssize_t retval = 0;
1432 char *s;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001433
Mel Gormane12ba742007-10-16 01:25:52 -07001434 if (!(page = (char *)__get_free_page(GFP_TEMPORARY)))
Linus Torvalds1da177e2005-04-16 15:20:36 -07001435 return -ENOMEM;
1436
1437 s = page;
1438
1439 switch (type) {
1440 case FILE_CPULIST:
1441 s += cpuset_sprintf_cpulist(s, cs);
1442 break;
1443 case FILE_MEMLIST:
1444 s += cpuset_sprintf_memlist(s, cs);
1445 break;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001446 default:
1447 retval = -EINVAL;
1448 goto out;
1449 }
1450 *s++ = '\n';
Linus Torvalds1da177e2005-04-16 15:20:36 -07001451
Al Viroeacaa1f2005-09-30 03:26:43 +01001452 retval = simple_read_from_buffer(buf, nbytes, ppos, page, s - page);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001453out:
1454 free_page((unsigned long)page);
1455 return retval;
1456}
1457
Paul Menage700fe1a2008-04-29 01:00:00 -07001458static u64 cpuset_read_u64(struct cgroup *cont, struct cftype *cft)
1459{
1460 struct cpuset *cs = cgroup_cs(cont);
1461 cpuset_filetype_t type = cft->private;
1462 switch (type) {
1463 case FILE_CPU_EXCLUSIVE:
1464 return is_cpu_exclusive(cs);
1465 case FILE_MEM_EXCLUSIVE:
1466 return is_mem_exclusive(cs);
Paul Menage78608362008-04-29 01:00:26 -07001467 case FILE_MEM_HARDWALL:
1468 return is_mem_hardwall(cs);
Paul Menage700fe1a2008-04-29 01:00:00 -07001469 case FILE_SCHED_LOAD_BALANCE:
1470 return is_sched_load_balance(cs);
1471 case FILE_MEMORY_MIGRATE:
1472 return is_memory_migrate(cs);
1473 case FILE_MEMORY_PRESSURE_ENABLED:
1474 return cpuset_memory_pressure_enabled;
1475 case FILE_MEMORY_PRESSURE:
1476 return fmeter_getrate(&cs->fmeter);
1477 case FILE_SPREAD_PAGE:
1478 return is_spread_page(cs);
1479 case FILE_SPREAD_SLAB:
1480 return is_spread_slab(cs);
1481 default:
1482 BUG();
1483 }
1484}
Linus Torvalds1da177e2005-04-16 15:20:36 -07001485
Paul Menage5be7a472008-05-06 20:42:41 -07001486static s64 cpuset_read_s64(struct cgroup *cont, struct cftype *cft)
1487{
1488 struct cpuset *cs = cgroup_cs(cont);
1489 cpuset_filetype_t type = cft->private;
1490 switch (type) {
1491 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1492 return cs->relax_domain_level;
1493 default:
1494 BUG();
1495 }
1496}
1497
Linus Torvalds1da177e2005-04-16 15:20:36 -07001498
1499/*
1500 * for the common functions, 'private' gives the type of file
1501 */
1502
Paul Menageaddf2c72008-04-29 01:00:26 -07001503static struct cftype files[] = {
1504 {
1505 .name = "cpus",
1506 .read = cpuset_common_file_read,
1507 .write = cpuset_common_file_write,
1508 .private = FILE_CPULIST,
1509 },
Linus Torvalds1da177e2005-04-16 15:20:36 -07001510
Paul Menageaddf2c72008-04-29 01:00:26 -07001511 {
1512 .name = "mems",
1513 .read = cpuset_common_file_read,
1514 .write = cpuset_common_file_write,
1515 .private = FILE_MEMLIST,
1516 },
Linus Torvalds1da177e2005-04-16 15:20:36 -07001517
Paul Menageaddf2c72008-04-29 01:00:26 -07001518 {
1519 .name = "cpu_exclusive",
1520 .read_u64 = cpuset_read_u64,
1521 .write_u64 = cpuset_write_u64,
1522 .private = FILE_CPU_EXCLUSIVE,
1523 },
Linus Torvalds1da177e2005-04-16 15:20:36 -07001524
Paul Menageaddf2c72008-04-29 01:00:26 -07001525 {
1526 .name = "mem_exclusive",
1527 .read_u64 = cpuset_read_u64,
1528 .write_u64 = cpuset_write_u64,
1529 .private = FILE_MEM_EXCLUSIVE,
1530 },
Linus Torvalds1da177e2005-04-16 15:20:36 -07001531
Paul Menageaddf2c72008-04-29 01:00:26 -07001532 {
Paul Menage78608362008-04-29 01:00:26 -07001533 .name = "mem_hardwall",
1534 .read_u64 = cpuset_read_u64,
1535 .write_u64 = cpuset_write_u64,
1536 .private = FILE_MEM_HARDWALL,
1537 },
1538
1539 {
Paul Menageaddf2c72008-04-29 01:00:26 -07001540 .name = "sched_load_balance",
1541 .read_u64 = cpuset_read_u64,
1542 .write_u64 = cpuset_write_u64,
1543 .private = FILE_SCHED_LOAD_BALANCE,
1544 },
Paul Jackson029190c2007-10-18 23:40:20 -07001545
Paul Menageaddf2c72008-04-29 01:00:26 -07001546 {
1547 .name = "sched_relax_domain_level",
Paul Menage5be7a472008-05-06 20:42:41 -07001548 .read_s64 = cpuset_read_s64,
1549 .write_s64 = cpuset_write_s64,
Paul Menageaddf2c72008-04-29 01:00:26 -07001550 .private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
1551 },
Hidetoshi Seto1d3504f2008-04-15 14:04:23 +09001552
Paul Menageaddf2c72008-04-29 01:00:26 -07001553 {
1554 .name = "memory_migrate",
1555 .read_u64 = cpuset_read_u64,
1556 .write_u64 = cpuset_write_u64,
1557 .private = FILE_MEMORY_MIGRATE,
1558 },
1559
1560 {
1561 .name = "memory_pressure",
1562 .read_u64 = cpuset_read_u64,
1563 .write_u64 = cpuset_write_u64,
1564 .private = FILE_MEMORY_PRESSURE,
1565 },
1566
1567 {
1568 .name = "memory_spread_page",
1569 .read_u64 = cpuset_read_u64,
1570 .write_u64 = cpuset_write_u64,
1571 .private = FILE_SPREAD_PAGE,
1572 },
1573
1574 {
1575 .name = "memory_spread_slab",
1576 .read_u64 = cpuset_read_u64,
1577 .write_u64 = cpuset_write_u64,
1578 .private = FILE_SPREAD_SLAB,
1579 },
Paul Jackson45b07ef2006-01-08 01:00:56 -08001580};
1581
Paul Jackson3e0d98b2006-01-08 01:01:49 -08001582static struct cftype cft_memory_pressure_enabled = {
1583 .name = "memory_pressure_enabled",
Paul Menage700fe1a2008-04-29 01:00:00 -07001584 .read_u64 = cpuset_read_u64,
1585 .write_u64 = cpuset_write_u64,
Paul Jackson3e0d98b2006-01-08 01:01:49 -08001586 .private = FILE_MEMORY_PRESSURE_ENABLED,
1587};
1588
Paul Menage8793d852007-10-18 23:39:39 -07001589static int cpuset_populate(struct cgroup_subsys *ss, struct cgroup *cont)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001590{
1591 int err;
1592
Paul Menageaddf2c72008-04-29 01:00:26 -07001593 err = cgroup_add_files(cont, ss, files, ARRAY_SIZE(files));
1594 if (err)
Paul Jackson825a46a2006-03-24 03:16:03 -08001595 return err;
Paul Menage8793d852007-10-18 23:39:39 -07001596 /* memory_pressure_enabled is in root cpuset only */
Paul Menageaddf2c72008-04-29 01:00:26 -07001597 if (!cont->parent)
Paul Menage8793d852007-10-18 23:39:39 -07001598 err = cgroup_add_file(cont, ss,
Paul Menageaddf2c72008-04-29 01:00:26 -07001599 &cft_memory_pressure_enabled);
1600 return err;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001601}
1602
1603/*
Paul Menage8793d852007-10-18 23:39:39 -07001604 * post_clone() is called at the end of cgroup_clone().
1605 * 'cgroup' was just created automatically as a result of
1606 * a cgroup_clone(), and the current task is about to
1607 * be moved into 'cgroup'.
1608 *
1609 * Currently we refuse to set up the cgroup - thereby
1610 * refusing the task to be entered, and as a result refusing
1611 * the sys_unshare() or clone() which initiated it - if any
1612 * sibling cpusets have exclusive cpus or mem.
1613 *
1614 * If this becomes a problem for some users who wish to
1615 * allow that scenario, then cpuset_post_clone() could be
1616 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
Paul Menage2df167a2008-02-07 00:14:45 -08001617 * (and likewise for mems) to the new cgroup. Called with cgroup_mutex
1618 * held.
Paul Menage8793d852007-10-18 23:39:39 -07001619 */
1620static void cpuset_post_clone(struct cgroup_subsys *ss,
1621 struct cgroup *cgroup)
1622{
1623 struct cgroup *parent, *child;
1624 struct cpuset *cs, *parent_cs;
1625
1626 parent = cgroup->parent;
1627 list_for_each_entry(child, &parent->children, sibling) {
1628 cs = cgroup_cs(child);
1629 if (is_mem_exclusive(cs) || is_cpu_exclusive(cs))
1630 return;
1631 }
1632 cs = cgroup_cs(cgroup);
1633 parent_cs = cgroup_cs(parent);
1634
1635 cs->mems_allowed = parent_cs->mems_allowed;
1636 cs->cpus_allowed = parent_cs->cpus_allowed;
1637 return;
1638}
1639
1640/*
Linus Torvalds1da177e2005-04-16 15:20:36 -07001641 * cpuset_create - create a cpuset
Paul Menage2df167a2008-02-07 00:14:45 -08001642 * ss: cpuset cgroup subsystem
1643 * cont: control group that the new cpuset will be part of
Linus Torvalds1da177e2005-04-16 15:20:36 -07001644 */
1645
Paul Menage8793d852007-10-18 23:39:39 -07001646static struct cgroup_subsys_state *cpuset_create(
1647 struct cgroup_subsys *ss,
1648 struct cgroup *cont)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001649{
1650 struct cpuset *cs;
Paul Menage8793d852007-10-18 23:39:39 -07001651 struct cpuset *parent;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001652
Paul Menage8793d852007-10-18 23:39:39 -07001653 if (!cont->parent) {
1654 /* This is early initialization for the top cgroup */
1655 top_cpuset.mems_generation = cpuset_mems_generation++;
1656 return &top_cpuset.css;
1657 }
1658 parent = cgroup_cs(cont->parent);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001659 cs = kmalloc(sizeof(*cs), GFP_KERNEL);
1660 if (!cs)
Paul Menage8793d852007-10-18 23:39:39 -07001661 return ERR_PTR(-ENOMEM);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001662
Paul Jacksoncf2a473c2006-01-08 01:01:54 -08001663 cpuset_update_task_memory_state();
Linus Torvalds1da177e2005-04-16 15:20:36 -07001664 cs->flags = 0;
Paul Jackson825a46a2006-03-24 03:16:03 -08001665 if (is_spread_page(parent))
1666 set_bit(CS_SPREAD_PAGE, &cs->flags);
1667 if (is_spread_slab(parent))
1668 set_bit(CS_SPREAD_SLAB, &cs->flags);
Paul Jackson029190c2007-10-18 23:40:20 -07001669 set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
Mike Travisf9a86fc2008-04-04 18:11:07 -07001670 cpus_clear(cs->cpus_allowed);
1671 nodes_clear(cs->mems_allowed);
Paul Jackson151a4422006-03-24 03:16:11 -08001672 cs->mems_generation = cpuset_mems_generation++;
Paul Jackson3e0d98b2006-01-08 01:01:49 -08001673 fmeter_init(&cs->fmeter);
Hidetoshi Seto1d3504f2008-04-15 14:04:23 +09001674 cs->relax_domain_level = -1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001675
1676 cs->parent = parent;
Paul Jackson202f72d2006-01-08 01:01:57 -08001677 number_of_cpusets++;
Paul Menage8793d852007-10-18 23:39:39 -07001678 return &cs->css ;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001679}
1680
Paul Jackson029190c2007-10-18 23:40:20 -07001681/*
1682 * Locking note on the strange update_flag() call below:
1683 *
1684 * If the cpuset being removed has its flag 'sched_load_balance'
1685 * enabled, then simulate turning sched_load_balance off, which
Gautham R Shenoy86ef5c92008-01-25 21:08:02 +01001686 * will call rebuild_sched_domains(). The get_online_cpus()
Paul Jackson029190c2007-10-18 23:40:20 -07001687 * call in rebuild_sched_domains() must not be made while holding
1688 * callback_mutex. Elsewhere the kernel nests callback_mutex inside
Gautham R Shenoy86ef5c92008-01-25 21:08:02 +01001689 * get_online_cpus() calls. So the reverse nesting would risk an
Paul Jackson029190c2007-10-18 23:40:20 -07001690 * ABBA deadlock.
1691 */
1692
Paul Menage8793d852007-10-18 23:39:39 -07001693static void cpuset_destroy(struct cgroup_subsys *ss, struct cgroup *cont)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001694{
Paul Menage8793d852007-10-18 23:39:39 -07001695 struct cpuset *cs = cgroup_cs(cont);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001696
Paul Jacksoncf2a473c2006-01-08 01:01:54 -08001697 cpuset_update_task_memory_state();
Paul Jackson029190c2007-10-18 23:40:20 -07001698
1699 if (is_sched_load_balance(cs))
Paul Menage700fe1a2008-04-29 01:00:00 -07001700 update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
Paul Jackson029190c2007-10-18 23:40:20 -07001701
Paul Jackson202f72d2006-01-08 01:01:57 -08001702 number_of_cpusets--;
Paul Menage8793d852007-10-18 23:39:39 -07001703 kfree(cs);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001704}
1705
Paul Menage8793d852007-10-18 23:39:39 -07001706struct cgroup_subsys cpuset_subsys = {
1707 .name = "cpuset",
1708 .create = cpuset_create,
1709 .destroy = cpuset_destroy,
1710 .can_attach = cpuset_can_attach,
1711 .attach = cpuset_attach,
1712 .populate = cpuset_populate,
1713 .post_clone = cpuset_post_clone,
1714 .subsys_id = cpuset_subsys_id,
1715 .early_init = 1,
1716};
1717
Paul Jacksonc417f022006-01-08 01:02:01 -08001718/*
1719 * cpuset_init_early - just enough so that the calls to
1720 * cpuset_update_task_memory_state() in early init code
1721 * are harmless.
1722 */
1723
1724int __init cpuset_init_early(void)
1725{
Paul Menage8793d852007-10-18 23:39:39 -07001726 top_cpuset.mems_generation = cpuset_mems_generation++;
Paul Jacksonc417f022006-01-08 01:02:01 -08001727 return 0;
1728}
1729
Paul Menage8793d852007-10-18 23:39:39 -07001730
Linus Torvalds1da177e2005-04-16 15:20:36 -07001731/**
1732 * cpuset_init - initialize cpusets at system boot
1733 *
1734 * Description: Initialize top_cpuset and the cpuset internal file system,
1735 **/
1736
1737int __init cpuset_init(void)
1738{
Paul Menage8793d852007-10-18 23:39:39 -07001739 int err = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001740
Mike Travisf9a86fc2008-04-04 18:11:07 -07001741 cpus_setall(top_cpuset.cpus_allowed);
1742 nodes_setall(top_cpuset.mems_allowed);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001743
Paul Jackson3e0d98b2006-01-08 01:01:49 -08001744 fmeter_init(&top_cpuset.fmeter);
Paul Jackson151a4422006-03-24 03:16:11 -08001745 top_cpuset.mems_generation = cpuset_mems_generation++;
Paul Jackson029190c2007-10-18 23:40:20 -07001746 set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
Hidetoshi Seto1d3504f2008-04-15 14:04:23 +09001747 top_cpuset.relax_domain_level = -1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001748
Linus Torvalds1da177e2005-04-16 15:20:36 -07001749 err = register_filesystem(&cpuset_fs_type);
1750 if (err < 0)
Paul Menage8793d852007-10-18 23:39:39 -07001751 return err;
1752
Paul Jackson202f72d2006-01-08 01:01:57 -08001753 number_of_cpusets = 1;
Paul Menage8793d852007-10-18 23:39:39 -07001754 return 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001755}
1756
Cliff Wickman956db3c2008-02-07 00:14:43 -08001757/**
1758 * cpuset_do_move_task - move a given task to another cpuset
1759 * @tsk: pointer to task_struct the task to move
1760 * @scan: struct cgroup_scanner contained in its struct cpuset_hotplug_scanner
1761 *
1762 * Called by cgroup_scan_tasks() for each task in a cgroup.
1763 * Return nonzero to stop the walk through the tasks.
1764 */
Adrian Bunk9e0c9142008-04-29 01:00:25 -07001765static void cpuset_do_move_task(struct task_struct *tsk,
1766 struct cgroup_scanner *scan)
Cliff Wickman956db3c2008-02-07 00:14:43 -08001767{
1768 struct cpuset_hotplug_scanner *chsp;
1769
1770 chsp = container_of(scan, struct cpuset_hotplug_scanner, scan);
1771 cgroup_attach_task(chsp->to, tsk);
1772}
1773
1774/**
1775 * move_member_tasks_to_cpuset - move tasks from one cpuset to another
1776 * @from: cpuset in which the tasks currently reside
1777 * @to: cpuset to which the tasks will be moved
1778 *
Paul Jacksonc8d9c902008-02-07 00:14:46 -08001779 * Called with cgroup_mutex held
1780 * callback_mutex must not be held, as cpuset_attach() will take it.
Cliff Wickman956db3c2008-02-07 00:14:43 -08001781 *
1782 * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
1783 * calling callback functions for each.
1784 */
1785static void move_member_tasks_to_cpuset(struct cpuset *from, struct cpuset *to)
1786{
1787 struct cpuset_hotplug_scanner scan;
1788
1789 scan.scan.cg = from->css.cgroup;
1790 scan.scan.test_task = NULL; /* select all tasks in cgroup */
1791 scan.scan.process_task = cpuset_do_move_task;
1792 scan.scan.heap = NULL;
1793 scan.to = to->css.cgroup;
1794
1795 if (cgroup_scan_tasks((struct cgroup_scanner *)&scan))
1796 printk(KERN_ERR "move_member_tasks_to_cpuset: "
1797 "cgroup_scan_tasks failed\n");
1798}
1799
Paul Jacksonb1aac8b2006-09-29 02:01:17 -07001800/*
1801 * If common_cpu_mem_hotplug_unplug(), below, unplugs any CPUs
1802 * or memory nodes, we need to walk over the cpuset hierarchy,
1803 * removing that CPU or node from all cpusets. If this removes the
Cliff Wickman956db3c2008-02-07 00:14:43 -08001804 * last CPU or node from a cpuset, then move the tasks in the empty
1805 * cpuset to its next-highest non-empty parent.
Paul Jacksonb1aac8b2006-09-29 02:01:17 -07001806 *
Paul Jacksonc8d9c902008-02-07 00:14:46 -08001807 * Called with cgroup_mutex held
1808 * callback_mutex must not be held, as cpuset_attach() will take it.
Paul Jacksonb1aac8b2006-09-29 02:01:17 -07001809 */
Cliff Wickman956db3c2008-02-07 00:14:43 -08001810static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
Paul Jacksonb1aac8b2006-09-29 02:01:17 -07001811{
Cliff Wickman956db3c2008-02-07 00:14:43 -08001812 struct cpuset *parent;
Paul Jacksonb1aac8b2006-09-29 02:01:17 -07001813
Paul Jacksonc8d9c902008-02-07 00:14:46 -08001814 /*
1815 * The cgroup's css_sets list is in use if there are tasks
1816 * in the cpuset; the list is empty if there are none;
1817 * the cs->css.refcnt seems always 0.
1818 */
Cliff Wickman956db3c2008-02-07 00:14:43 -08001819 if (list_empty(&cs->css.cgroup->css_sets))
1820 return;
1821
1822 /*
1823 * Find its next-highest non-empty parent, (top cpuset
1824 * has online cpus, so can't be empty).
1825 */
1826 parent = cs->parent;
Paul Jacksonb4501292008-02-07 00:14:47 -08001827 while (cpus_empty(parent->cpus_allowed) ||
1828 nodes_empty(parent->mems_allowed))
Cliff Wickman956db3c2008-02-07 00:14:43 -08001829 parent = parent->parent;
Cliff Wickman956db3c2008-02-07 00:14:43 -08001830
1831 move_member_tasks_to_cpuset(cs, parent);
1832}
1833
1834/*
1835 * Walk the specified cpuset subtree and look for empty cpusets.
1836 * The tasks of such cpuset must be moved to a parent cpuset.
1837 *
Paul Menage2df167a2008-02-07 00:14:45 -08001838 * Called with cgroup_mutex held. We take callback_mutex to modify
Cliff Wickman956db3c2008-02-07 00:14:43 -08001839 * cpus_allowed and mems_allowed.
1840 *
1841 * This walk processes the tree from top to bottom, completing one layer
1842 * before dropping down to the next. It always processes a node before
1843 * any of its children.
1844 *
1845 * For now, since we lack memory hot unplug, we'll never see a cpuset
1846 * that has tasks along with an empty 'mems'. But if we did see such
1847 * a cpuset, we'd handle it just like we do if its 'cpus' was empty.
1848 */
1849static void scan_for_empty_cpusets(const struct cpuset *root)
1850{
1851 struct cpuset *cp; /* scans cpusets being updated */
1852 struct cpuset *child; /* scans child cpusets of cp */
1853 struct list_head queue;
1854 struct cgroup *cont;
1855
1856 INIT_LIST_HEAD(&queue);
1857
1858 list_add_tail((struct list_head *)&root->stack_list, &queue);
1859
Cliff Wickman956db3c2008-02-07 00:14:43 -08001860 while (!list_empty(&queue)) {
1861 cp = container_of(queue.next, struct cpuset, stack_list);
1862 list_del(queue.next);
1863 list_for_each_entry(cont, &cp->css.cgroup->children, sibling) {
1864 child = cgroup_cs(cont);
1865 list_add_tail(&child->stack_list, &queue);
1866 }
1867 cont = cp->css.cgroup;
Paul Jacksonb4501292008-02-07 00:14:47 -08001868
1869 /* Continue past cpusets with all cpus, mems online */
1870 if (cpus_subset(cp->cpus_allowed, cpu_online_map) &&
1871 nodes_subset(cp->mems_allowed, node_states[N_HIGH_MEMORY]))
1872 continue;
1873
Cliff Wickman956db3c2008-02-07 00:14:43 -08001874 /* Remove offline cpus and mems from this cpuset. */
Paul Jacksonb4501292008-02-07 00:14:47 -08001875 mutex_lock(&callback_mutex);
Cliff Wickman956db3c2008-02-07 00:14:43 -08001876 cpus_and(cp->cpus_allowed, cp->cpus_allowed, cpu_online_map);
1877 nodes_and(cp->mems_allowed, cp->mems_allowed,
1878 node_states[N_HIGH_MEMORY]);
Paul Jacksonb4501292008-02-07 00:14:47 -08001879 mutex_unlock(&callback_mutex);
1880
1881 /* Move tasks from the empty cpuset to a parent */
Paul Jacksonc8d9c902008-02-07 00:14:46 -08001882 if (cpus_empty(cp->cpus_allowed) ||
Paul Jacksonb4501292008-02-07 00:14:47 -08001883 nodes_empty(cp->mems_allowed))
Cliff Wickman956db3c2008-02-07 00:14:43 -08001884 remove_tasks_in_empty_cpuset(cp);
Cliff Wickman956db3c2008-02-07 00:14:43 -08001885 }
Paul Jacksonb1aac8b2006-09-29 02:01:17 -07001886}
1887
1888/*
1889 * The cpus_allowed and mems_allowed nodemasks in the top_cpuset track
Christoph Lameter0e1e7c72007-10-16 01:25:38 -07001890 * cpu_online_map and node_states[N_HIGH_MEMORY]. Force the top cpuset to
Cliff Wickman956db3c2008-02-07 00:14:43 -08001891 * track what's online after any CPU or memory node hotplug or unplug event.
Paul Jacksonb1aac8b2006-09-29 02:01:17 -07001892 *
1893 * Since there are two callers of this routine, one for CPU hotplug
1894 * events and one for memory node hotplug events, we could have coded
1895 * two separate routines here. We code it as a single common routine
1896 * in order to minimize text size.
1897 */
1898
Dmitry Adamushko3e840502008-07-13 02:10:29 +02001899static void common_cpu_mem_hotplug_unplug(int rebuild_sd)
Paul Jacksonb1aac8b2006-09-29 02:01:17 -07001900{
Paul Menage8793d852007-10-18 23:39:39 -07001901 cgroup_lock();
Paul Jacksonb1aac8b2006-09-29 02:01:17 -07001902
Paul Jacksonb1aac8b2006-09-29 02:01:17 -07001903 top_cpuset.cpus_allowed = cpu_online_map;
Christoph Lameter0e1e7c72007-10-16 01:25:38 -07001904 top_cpuset.mems_allowed = node_states[N_HIGH_MEMORY];
Cliff Wickman956db3c2008-02-07 00:14:43 -08001905 scan_for_empty_cpusets(&top_cpuset);
Paul Jacksonb1aac8b2006-09-29 02:01:17 -07001906
Max Krasnyansky5c8e1ed2008-05-29 11:17:01 -07001907 /*
1908 * Scheduler destroys domains on hotplug events.
1909 * Rebuild them based on the current settings.
1910 */
Dmitry Adamushko3e840502008-07-13 02:10:29 +02001911 if (rebuild_sd)
1912 rebuild_sched_domains();
Max Krasnyansky5c8e1ed2008-05-29 11:17:01 -07001913
Paul Menage8793d852007-10-18 23:39:39 -07001914 cgroup_unlock();
Paul Jacksonb1aac8b2006-09-29 02:01:17 -07001915}
Paul Jacksonb1aac8b2006-09-29 02:01:17 -07001916
Paul Jackson4c4d50f2006-08-27 01:23:51 -07001917/*
1918 * The top_cpuset tracks what CPUs and Memory Nodes are online,
1919 * period. This is necessary in order to make cpusets transparent
1920 * (of no affect) on systems that are actively using CPU hotplug
1921 * but making no active use of cpusets.
1922 *
Paul Jackson38837fc2006-09-29 02:01:16 -07001923 * This routine ensures that top_cpuset.cpus_allowed tracks
1924 * cpu_online_map on each CPU hotplug (cpuhp) event.
Paul Jackson4c4d50f2006-08-27 01:23:51 -07001925 */
1926
Paul Jackson029190c2007-10-18 23:40:20 -07001927static int cpuset_handle_cpuhp(struct notifier_block *unused_nb,
1928 unsigned long phase, void *unused_cpu)
Paul Jackson4c4d50f2006-08-27 01:23:51 -07001929{
Dmitry Adamushko3e840502008-07-13 02:10:29 +02001930 switch (phase) {
1931 case CPU_UP_CANCELED:
1932 case CPU_UP_CANCELED_FROZEN:
1933 case CPU_DOWN_FAILED:
1934 case CPU_DOWN_FAILED_FROZEN:
1935 case CPU_ONLINE:
1936 case CPU_ONLINE_FROZEN:
1937 case CPU_DEAD:
1938 case CPU_DEAD_FROZEN:
1939 common_cpu_mem_hotplug_unplug(1);
1940 break;
1941 default:
Avi Kivityac076752007-05-24 12:33:15 +03001942 return NOTIFY_DONE;
Dmitry Adamushko3e840502008-07-13 02:10:29 +02001943 }
Avi Kivityac076752007-05-24 12:33:15 +03001944
Dmitry Adamushko3e840502008-07-13 02:10:29 +02001945 return NOTIFY_OK;
Paul Jackson4c4d50f2006-08-27 01:23:51 -07001946}
Paul Jackson4c4d50f2006-08-27 01:23:51 -07001947
Paul Jacksonb1aac8b2006-09-29 02:01:17 -07001948#ifdef CONFIG_MEMORY_HOTPLUG
Paul Jackson38837fc2006-09-29 02:01:16 -07001949/*
Christoph Lameter0e1e7c72007-10-16 01:25:38 -07001950 * Keep top_cpuset.mems_allowed tracking node_states[N_HIGH_MEMORY].
1951 * Call this routine anytime after you change
1952 * node_states[N_HIGH_MEMORY].
Paul Jackson38837fc2006-09-29 02:01:16 -07001953 * See also the previous routine cpuset_handle_cpuhp().
1954 */
1955
Al Viro1af98922006-10-10 22:48:57 +01001956void cpuset_track_online_nodes(void)
Paul Jackson38837fc2006-09-29 02:01:16 -07001957{
Dmitry Adamushko3e840502008-07-13 02:10:29 +02001958 common_cpu_mem_hotplug_unplug(0);
Paul Jackson38837fc2006-09-29 02:01:16 -07001959}
1960#endif
1961
Linus Torvalds1da177e2005-04-16 15:20:36 -07001962/**
1963 * cpuset_init_smp - initialize cpus_allowed
1964 *
1965 * Description: Finish top cpuset after cpu, node maps are initialized
1966 **/
1967
1968void __init cpuset_init_smp(void)
1969{
1970 top_cpuset.cpus_allowed = cpu_online_map;
Christoph Lameter0e1e7c72007-10-16 01:25:38 -07001971 top_cpuset.mems_allowed = node_states[N_HIGH_MEMORY];
Paul Jackson4c4d50f2006-08-27 01:23:51 -07001972
1973 hotcpu_notifier(cpuset_handle_cpuhp, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001974}
1975
1976/**
Linus Torvalds1da177e2005-04-16 15:20:36 -07001977
Linus Torvalds1da177e2005-04-16 15:20:36 -07001978 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
1979 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
Mike Travisf9a86fc2008-04-04 18:11:07 -07001980 * @pmask: pointer to cpumask_t variable to receive cpus_allowed set.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001981 *
1982 * Description: Returns the cpumask_t cpus_allowed of the cpuset
1983 * attached to the specified @tsk. Guaranteed to return some non-empty
1984 * subset of cpu_online_map, even if this means going outside the
1985 * tasks cpuset.
1986 **/
1987
Mike Travisf9a86fc2008-04-04 18:11:07 -07001988void cpuset_cpus_allowed(struct task_struct *tsk, cpumask_t *pmask)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001989{
Ingo Molnar3d3f26a2006-03-23 03:00:18 -08001990 mutex_lock(&callback_mutex);
Mike Travisf9a86fc2008-04-04 18:11:07 -07001991 cpuset_cpus_allowed_locked(tsk, pmask);
Cliff Wickman470fd642007-10-18 23:40:46 -07001992 mutex_unlock(&callback_mutex);
Cliff Wickman470fd642007-10-18 23:40:46 -07001993}
1994
1995/**
1996 * cpuset_cpus_allowed_locked - return cpus_allowed mask from a tasks cpuset.
Paul Menage2df167a2008-02-07 00:14:45 -08001997 * Must be called with callback_mutex held.
Cliff Wickman470fd642007-10-18 23:40:46 -07001998 **/
Mike Travisf9a86fc2008-04-04 18:11:07 -07001999void cpuset_cpus_allowed_locked(struct task_struct *tsk, cpumask_t *pmask)
Cliff Wickman470fd642007-10-18 23:40:46 -07002000{
Paul Jackson909d75a2006-01-08 01:01:55 -08002001 task_lock(tsk);
Mike Travisf9a86fc2008-04-04 18:11:07 -07002002 guarantee_online_cpus(task_cs(tsk), pmask);
Paul Jackson909d75a2006-01-08 01:01:55 -08002003 task_unlock(tsk);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002004}
2005
2006void cpuset_init_current_mems_allowed(void)
2007{
Mike Travisf9a86fc2008-04-04 18:11:07 -07002008 nodes_setall(current->mems_allowed);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002009}
2010
Randy Dunlapd9fd8a62005-07-27 11:45:11 -07002011/**
Paul Jackson909d75a2006-01-08 01:01:55 -08002012 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
2013 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
2014 *
2015 * Description: Returns the nodemask_t mems_allowed of the cpuset
2016 * attached to the specified @tsk. Guaranteed to return some non-empty
Christoph Lameter0e1e7c72007-10-16 01:25:38 -07002017 * subset of node_states[N_HIGH_MEMORY], even if this means going outside the
Paul Jackson909d75a2006-01-08 01:01:55 -08002018 * tasks cpuset.
2019 **/
2020
2021nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
2022{
2023 nodemask_t mask;
2024
Ingo Molnar3d3f26a2006-03-23 03:00:18 -08002025 mutex_lock(&callback_mutex);
Paul Jackson909d75a2006-01-08 01:01:55 -08002026 task_lock(tsk);
Paul Menage8793d852007-10-18 23:39:39 -07002027 guarantee_online_mems(task_cs(tsk), &mask);
Paul Jackson909d75a2006-01-08 01:01:55 -08002028 task_unlock(tsk);
Ingo Molnar3d3f26a2006-03-23 03:00:18 -08002029 mutex_unlock(&callback_mutex);
Paul Jackson909d75a2006-01-08 01:01:55 -08002030
2031 return mask;
2032}
2033
2034/**
Mel Gorman19770b32008-04-28 02:12:18 -07002035 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
2036 * @nodemask: the nodemask to be checked
Randy Dunlapd9fd8a62005-07-27 11:45:11 -07002037 *
Mel Gorman19770b32008-04-28 02:12:18 -07002038 * Are any of the nodes in the nodemask allowed in current->mems_allowed?
Linus Torvalds1da177e2005-04-16 15:20:36 -07002039 */
Mel Gorman19770b32008-04-28 02:12:18 -07002040int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002041{
Mel Gorman19770b32008-04-28 02:12:18 -07002042 return nodes_intersects(*nodemask, current->mems_allowed);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002043}
2044
Paul Jackson9bf22292005-09-06 15:18:12 -07002045/*
Paul Menage78608362008-04-29 01:00:26 -07002046 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
2047 * mem_hardwall ancestor to the specified cpuset. Call holding
2048 * callback_mutex. If no ancestor is mem_exclusive or mem_hardwall
2049 * (an unusual configuration), then returns the root cpuset.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002050 */
Paul Menage78608362008-04-29 01:00:26 -07002051static const struct cpuset *nearest_hardwall_ancestor(const struct cpuset *cs)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002052{
Paul Menage78608362008-04-29 01:00:26 -07002053 while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && cs->parent)
Paul Jackson9bf22292005-09-06 15:18:12 -07002054 cs = cs->parent;
2055 return cs;
2056}
2057
2058/**
Paul Jackson02a0e532006-12-13 00:34:25 -08002059 * cpuset_zone_allowed_softwall - Can we allocate on zone z's memory node?
Paul Jackson9bf22292005-09-06 15:18:12 -07002060 * @z: is this zone on an allowed node?
Paul Jackson02a0e532006-12-13 00:34:25 -08002061 * @gfp_mask: memory allocation flags
Paul Jackson9bf22292005-09-06 15:18:12 -07002062 *
Paul Jackson02a0e532006-12-13 00:34:25 -08002063 * If we're in interrupt, yes, we can always allocate. If
2064 * __GFP_THISNODE is set, yes, we can always allocate. If zone
Paul Jackson9bf22292005-09-06 15:18:12 -07002065 * z's node is in our tasks mems_allowed, yes. If it's not a
2066 * __GFP_HARDWALL request and this zone's nodes is in the nearest
Paul Menage78608362008-04-29 01:00:26 -07002067 * hardwalled cpuset ancestor to this tasks cpuset, yes.
David Rientjesc596d9f2007-05-06 14:49:32 -07002068 * If the task has been OOM killed and has access to memory reserves
2069 * as specified by the TIF_MEMDIE flag, yes.
Paul Jackson9bf22292005-09-06 15:18:12 -07002070 * Otherwise, no.
2071 *
Paul Jackson02a0e532006-12-13 00:34:25 -08002072 * If __GFP_HARDWALL is set, cpuset_zone_allowed_softwall()
2073 * reduces to cpuset_zone_allowed_hardwall(). Otherwise,
2074 * cpuset_zone_allowed_softwall() might sleep, and might allow a zone
2075 * from an enclosing cpuset.
2076 *
2077 * cpuset_zone_allowed_hardwall() only handles the simpler case of
2078 * hardwall cpusets, and never sleeps.
2079 *
2080 * The __GFP_THISNODE placement logic is really handled elsewhere,
2081 * by forcibly using a zonelist starting at a specified node, and by
2082 * (in get_page_from_freelist()) refusing to consider the zones for
2083 * any node on the zonelist except the first. By the time any such
2084 * calls get to this routine, we should just shut up and say 'yes'.
2085 *
Paul Jackson9bf22292005-09-06 15:18:12 -07002086 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
David Rientjesc596d9f2007-05-06 14:49:32 -07002087 * and do not allow allocations outside the current tasks cpuset
2088 * unless the task has been OOM killed as is marked TIF_MEMDIE.
Paul Jackson9bf22292005-09-06 15:18:12 -07002089 * GFP_KERNEL allocations are not so marked, so can escape to the
Paul Menage78608362008-04-29 01:00:26 -07002090 * nearest enclosing hardwalled ancestor cpuset.
Paul Jackson9bf22292005-09-06 15:18:12 -07002091 *
Paul Jackson02a0e532006-12-13 00:34:25 -08002092 * Scanning up parent cpusets requires callback_mutex. The
2093 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
2094 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
2095 * current tasks mems_allowed came up empty on the first pass over
2096 * the zonelist. So only GFP_KERNEL allocations, if all nodes in the
2097 * cpuset are short of memory, might require taking the callback_mutex
2098 * mutex.
Paul Jackson9bf22292005-09-06 15:18:12 -07002099 *
Paul Jackson36be57f2006-05-20 15:00:10 -07002100 * The first call here from mm/page_alloc:get_page_from_freelist()
Paul Jackson02a0e532006-12-13 00:34:25 -08002101 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
2102 * so no allocation on a node outside the cpuset is allowed (unless
2103 * in interrupt, of course).
Paul Jackson9bf22292005-09-06 15:18:12 -07002104 *
Paul Jackson36be57f2006-05-20 15:00:10 -07002105 * The second pass through get_page_from_freelist() doesn't even call
2106 * here for GFP_ATOMIC calls. For those calls, the __alloc_pages()
2107 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
2108 * in alloc_flags. That logic and the checks below have the combined
2109 * affect that:
Paul Jackson9bf22292005-09-06 15:18:12 -07002110 * in_interrupt - any node ok (current task context irrelevant)
2111 * GFP_ATOMIC - any node ok
David Rientjesc596d9f2007-05-06 14:49:32 -07002112 * TIF_MEMDIE - any node ok
Paul Menage78608362008-04-29 01:00:26 -07002113 * GFP_KERNEL - any node in enclosing hardwalled cpuset ok
Paul Jackson9bf22292005-09-06 15:18:12 -07002114 * GFP_USER - only nodes in current tasks mems allowed ok.
Paul Jackson36be57f2006-05-20 15:00:10 -07002115 *
2116 * Rule:
Paul Jackson02a0e532006-12-13 00:34:25 -08002117 * Don't call cpuset_zone_allowed_softwall if you can't sleep, unless you
Paul Jackson36be57f2006-05-20 15:00:10 -07002118 * pass in the __GFP_HARDWALL flag set in gfp_flag, which disables
2119 * the code that might scan up ancestor cpusets and sleep.
Paul Jackson02a0e532006-12-13 00:34:25 -08002120 */
Paul Jackson9bf22292005-09-06 15:18:12 -07002121
Paul Jackson02a0e532006-12-13 00:34:25 -08002122int __cpuset_zone_allowed_softwall(struct zone *z, gfp_t gfp_mask)
Paul Jackson9bf22292005-09-06 15:18:12 -07002123{
2124 int node; /* node that zone z is on */
2125 const struct cpuset *cs; /* current cpuset ancestors */
Paul Jackson29afd492006-03-24 03:16:12 -08002126 int allowed; /* is allocation in zone z allowed? */
Paul Jackson9bf22292005-09-06 15:18:12 -07002127
Christoph Lameter9b819d22006-09-25 23:31:40 -07002128 if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
Paul Jackson9bf22292005-09-06 15:18:12 -07002129 return 1;
Christoph Lameter89fa3022006-09-25 23:31:55 -07002130 node = zone_to_nid(z);
Paul Jackson92d1dbd2006-05-20 15:00:11 -07002131 might_sleep_if(!(gfp_mask & __GFP_HARDWALL));
Paul Jackson9bf22292005-09-06 15:18:12 -07002132 if (node_isset(node, current->mems_allowed))
2133 return 1;
David Rientjesc596d9f2007-05-06 14:49:32 -07002134 /*
2135 * Allow tasks that have access to memory reserves because they have
2136 * been OOM killed to get memory anywhere.
2137 */
2138 if (unlikely(test_thread_flag(TIF_MEMDIE)))
2139 return 1;
Paul Jackson9bf22292005-09-06 15:18:12 -07002140 if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */
2141 return 0;
2142
Bob Picco5563e772005-11-13 16:06:35 -08002143 if (current->flags & PF_EXITING) /* Let dying task have memory */
2144 return 1;
2145
Paul Jackson9bf22292005-09-06 15:18:12 -07002146 /* Not hardwall and node outside mems_allowed: scan up cpusets */
Ingo Molnar3d3f26a2006-03-23 03:00:18 -08002147 mutex_lock(&callback_mutex);
Paul Jackson053199e2005-10-30 15:02:30 -08002148
Paul Jackson053199e2005-10-30 15:02:30 -08002149 task_lock(current);
Paul Menage78608362008-04-29 01:00:26 -07002150 cs = nearest_hardwall_ancestor(task_cs(current));
Paul Jackson053199e2005-10-30 15:02:30 -08002151 task_unlock(current);
2152
Paul Jackson9bf22292005-09-06 15:18:12 -07002153 allowed = node_isset(node, cs->mems_allowed);
Ingo Molnar3d3f26a2006-03-23 03:00:18 -08002154 mutex_unlock(&callback_mutex);
Paul Jackson9bf22292005-09-06 15:18:12 -07002155 return allowed;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002156}
2157
Paul Jackson02a0e532006-12-13 00:34:25 -08002158/*
2159 * cpuset_zone_allowed_hardwall - Can we allocate on zone z's memory node?
2160 * @z: is this zone on an allowed node?
2161 * @gfp_mask: memory allocation flags
2162 *
2163 * If we're in interrupt, yes, we can always allocate.
2164 * If __GFP_THISNODE is set, yes, we can always allocate. If zone
David Rientjesc596d9f2007-05-06 14:49:32 -07002165 * z's node is in our tasks mems_allowed, yes. If the task has been
2166 * OOM killed and has access to memory reserves as specified by the
2167 * TIF_MEMDIE flag, yes. Otherwise, no.
Paul Jackson02a0e532006-12-13 00:34:25 -08002168 *
2169 * The __GFP_THISNODE placement logic is really handled elsewhere,
2170 * by forcibly using a zonelist starting at a specified node, and by
2171 * (in get_page_from_freelist()) refusing to consider the zones for
2172 * any node on the zonelist except the first. By the time any such
2173 * calls get to this routine, we should just shut up and say 'yes'.
2174 *
2175 * Unlike the cpuset_zone_allowed_softwall() variant, above,
2176 * this variant requires that the zone be in the current tasks
2177 * mems_allowed or that we're in interrupt. It does not scan up the
2178 * cpuset hierarchy for the nearest enclosing mem_exclusive cpuset.
2179 * It never sleeps.
2180 */
2181
2182int __cpuset_zone_allowed_hardwall(struct zone *z, gfp_t gfp_mask)
2183{
2184 int node; /* node that zone z is on */
2185
2186 if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
2187 return 1;
2188 node = zone_to_nid(z);
2189 if (node_isset(node, current->mems_allowed))
2190 return 1;
Daniel Walkerdedf8b72007-10-18 03:06:04 -07002191 /*
2192 * Allow tasks that have access to memory reserves because they have
2193 * been OOM killed to get memory anywhere.
2194 */
2195 if (unlikely(test_thread_flag(TIF_MEMDIE)))
2196 return 1;
Paul Jackson02a0e532006-12-13 00:34:25 -08002197 return 0;
2198}
2199
Paul Jacksonef08e3b2005-09-06 15:18:13 -07002200/**
Paul Jackson505970b2006-01-14 13:21:06 -08002201 * cpuset_lock - lock out any changes to cpuset structures
2202 *
Ingo Molnar3d3f26a2006-03-23 03:00:18 -08002203 * The out of memory (oom) code needs to mutex_lock cpusets
Paul Jackson505970b2006-01-14 13:21:06 -08002204 * from being changed while it scans the tasklist looking for a
Ingo Molnar3d3f26a2006-03-23 03:00:18 -08002205 * task in an overlapping cpuset. Expose callback_mutex via this
Paul Jackson505970b2006-01-14 13:21:06 -08002206 * cpuset_lock() routine, so the oom code can lock it, before
2207 * locking the task list. The tasklist_lock is a spinlock, so
Ingo Molnar3d3f26a2006-03-23 03:00:18 -08002208 * must be taken inside callback_mutex.
Paul Jackson505970b2006-01-14 13:21:06 -08002209 */
2210
2211void cpuset_lock(void)
2212{
Ingo Molnar3d3f26a2006-03-23 03:00:18 -08002213 mutex_lock(&callback_mutex);
Paul Jackson505970b2006-01-14 13:21:06 -08002214}
2215
2216/**
2217 * cpuset_unlock - release lock on cpuset changes
2218 *
2219 * Undo the lock taken in a previous cpuset_lock() call.
2220 */
2221
2222void cpuset_unlock(void)
2223{
Ingo Molnar3d3f26a2006-03-23 03:00:18 -08002224 mutex_unlock(&callback_mutex);
Paul Jackson505970b2006-01-14 13:21:06 -08002225}
2226
2227/**
Paul Jackson825a46a2006-03-24 03:16:03 -08002228 * cpuset_mem_spread_node() - On which node to begin search for a page
2229 *
2230 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
2231 * tasks in a cpuset with is_spread_page or is_spread_slab set),
2232 * and if the memory allocation used cpuset_mem_spread_node()
2233 * to determine on which node to start looking, as it will for
2234 * certain page cache or slab cache pages such as used for file
2235 * system buffers and inode caches, then instead of starting on the
2236 * local node to look for a free page, rather spread the starting
2237 * node around the tasks mems_allowed nodes.
2238 *
2239 * We don't have to worry about the returned node being offline
2240 * because "it can't happen", and even if it did, it would be ok.
2241 *
2242 * The routines calling guarantee_online_mems() are careful to
2243 * only set nodes in task->mems_allowed that are online. So it
2244 * should not be possible for the following code to return an
2245 * offline node. But if it did, that would be ok, as this routine
2246 * is not returning the node where the allocation must be, only
2247 * the node where the search should start. The zonelist passed to
2248 * __alloc_pages() will include all nodes. If the slab allocator
2249 * is passed an offline node, it will fall back to the local node.
2250 * See kmem_cache_alloc_node().
2251 */
2252
2253int cpuset_mem_spread_node(void)
2254{
2255 int node;
2256
2257 node = next_node(current->cpuset_mem_spread_rotor, current->mems_allowed);
2258 if (node == MAX_NUMNODES)
2259 node = first_node(current->mems_allowed);
2260 current->cpuset_mem_spread_rotor = node;
2261 return node;
2262}
2263EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
2264
2265/**
David Rientjesbbe373f2007-10-16 23:25:58 -07002266 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
2267 * @tsk1: pointer to task_struct of some task.
2268 * @tsk2: pointer to task_struct of some other task.
Paul Jacksonef08e3b2005-09-06 15:18:13 -07002269 *
David Rientjesbbe373f2007-10-16 23:25:58 -07002270 * Description: Return true if @tsk1's mems_allowed intersects the
2271 * mems_allowed of @tsk2. Used by the OOM killer to determine if
2272 * one of the task's memory usage might impact the memory available
2273 * to the other.
Paul Jacksonef08e3b2005-09-06 15:18:13 -07002274 **/
2275
David Rientjesbbe373f2007-10-16 23:25:58 -07002276int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
2277 const struct task_struct *tsk2)
Paul Jacksonef08e3b2005-09-06 15:18:13 -07002278{
David Rientjesbbe373f2007-10-16 23:25:58 -07002279 return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
Paul Jacksonef08e3b2005-09-06 15:18:13 -07002280}
2281
Linus Torvalds1da177e2005-04-16 15:20:36 -07002282/*
Paul Jackson3e0d98b2006-01-08 01:01:49 -08002283 * Collection of memory_pressure is suppressed unless
2284 * this flag is enabled by writing "1" to the special
2285 * cpuset file 'memory_pressure_enabled' in the root cpuset.
2286 */
2287
Paul Jacksonc5b2aff2006-01-08 01:01:51 -08002288int cpuset_memory_pressure_enabled __read_mostly;
Paul Jackson3e0d98b2006-01-08 01:01:49 -08002289
2290/**
2291 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
2292 *
2293 * Keep a running average of the rate of synchronous (direct)
2294 * page reclaim efforts initiated by tasks in each cpuset.
2295 *
2296 * This represents the rate at which some task in the cpuset
2297 * ran low on memory on all nodes it was allowed to use, and
2298 * had to enter the kernels page reclaim code in an effort to
2299 * create more free memory by tossing clean pages or swapping
2300 * or writing dirty pages.
2301 *
2302 * Display to user space in the per-cpuset read-only file
2303 * "memory_pressure". Value displayed is an integer
2304 * representing the recent rate of entry into the synchronous
2305 * (direct) page reclaim by any task attached to the cpuset.
2306 **/
2307
2308void __cpuset_memory_pressure_bump(void)
2309{
Paul Jackson3e0d98b2006-01-08 01:01:49 -08002310 task_lock(current);
Paul Menage8793d852007-10-18 23:39:39 -07002311 fmeter_markevent(&task_cs(current)->fmeter);
Paul Jackson3e0d98b2006-01-08 01:01:49 -08002312 task_unlock(current);
2313}
2314
Paul Menage8793d852007-10-18 23:39:39 -07002315#ifdef CONFIG_PROC_PID_CPUSET
Paul Jackson3e0d98b2006-01-08 01:01:49 -08002316/*
Linus Torvalds1da177e2005-04-16 15:20:36 -07002317 * proc_cpuset_show()
2318 * - Print tasks cpuset path into seq_file.
2319 * - Used for /proc/<pid>/cpuset.
Paul Jackson053199e2005-10-30 15:02:30 -08002320 * - No need to task_lock(tsk) on this tsk->cpuset reference, as it
2321 * doesn't really matter if tsk->cpuset changes after we read it,
Paul Jacksonc8d9c902008-02-07 00:14:46 -08002322 * and we take cgroup_mutex, keeping cpuset_attach() from changing it
Paul Menage2df167a2008-02-07 00:14:45 -08002323 * anyway.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002324 */
Paul Jackson029190c2007-10-18 23:40:20 -07002325static int proc_cpuset_show(struct seq_file *m, void *unused_v)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002326{
Eric W. Biederman13b41b02006-06-26 00:25:56 -07002327 struct pid *pid;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002328 struct task_struct *tsk;
2329 char *buf;
Paul Menage8793d852007-10-18 23:39:39 -07002330 struct cgroup_subsys_state *css;
Eric W. Biederman99f89552006-06-26 00:25:55 -07002331 int retval;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002332
Eric W. Biederman99f89552006-06-26 00:25:55 -07002333 retval = -ENOMEM;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002334 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
2335 if (!buf)
Eric W. Biederman99f89552006-06-26 00:25:55 -07002336 goto out;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002337
Eric W. Biederman99f89552006-06-26 00:25:55 -07002338 retval = -ESRCH;
Eric W. Biederman13b41b02006-06-26 00:25:56 -07002339 pid = m->private;
2340 tsk = get_pid_task(pid, PIDTYPE_PID);
Eric W. Biederman99f89552006-06-26 00:25:55 -07002341 if (!tsk)
2342 goto out_free;
2343
2344 retval = -EINVAL;
Paul Menage8793d852007-10-18 23:39:39 -07002345 cgroup_lock();
2346 css = task_subsys_state(tsk, cpuset_subsys_id);
2347 retval = cgroup_path(css->cgroup, buf, PAGE_SIZE);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002348 if (retval < 0)
Eric W. Biederman99f89552006-06-26 00:25:55 -07002349 goto out_unlock;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002350 seq_puts(m, buf);
2351 seq_putc(m, '\n');
Eric W. Biederman99f89552006-06-26 00:25:55 -07002352out_unlock:
Paul Menage8793d852007-10-18 23:39:39 -07002353 cgroup_unlock();
Eric W. Biederman99f89552006-06-26 00:25:55 -07002354 put_task_struct(tsk);
2355out_free:
Linus Torvalds1da177e2005-04-16 15:20:36 -07002356 kfree(buf);
Eric W. Biederman99f89552006-06-26 00:25:55 -07002357out:
Linus Torvalds1da177e2005-04-16 15:20:36 -07002358 return retval;
2359}
2360
2361static int cpuset_open(struct inode *inode, struct file *file)
2362{
Eric W. Biederman13b41b02006-06-26 00:25:56 -07002363 struct pid *pid = PROC_I(inode)->pid;
2364 return single_open(file, proc_cpuset_show, pid);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002365}
2366
Arjan van de Ven9a321442007-02-12 00:55:35 -08002367const struct file_operations proc_cpuset_operations = {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002368 .open = cpuset_open,
2369 .read = seq_read,
2370 .llseek = seq_lseek,
2371 .release = single_release,
2372};
Paul Menage8793d852007-10-18 23:39:39 -07002373#endif /* CONFIG_PROC_PID_CPUSET */
Linus Torvalds1da177e2005-04-16 15:20:36 -07002374
2375/* Display task cpus_allowed, mems_allowed in /proc/<pid>/status file. */
Eric W. Biedermandf5f8312008-02-08 04:18:33 -08002376void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002377{
Eric W. Biedermandf5f8312008-02-08 04:18:33 -08002378 seq_printf(m, "Cpus_allowed:\t");
2379 m->count += cpumask_scnprintf(m->buf + m->count, m->size - m->count,
2380 task->cpus_allowed);
2381 seq_printf(m, "\n");
Mike Travis39106dc2008-04-08 11:43:03 -07002382 seq_printf(m, "Cpus_allowed_list:\t");
2383 m->count += cpulist_scnprintf(m->buf + m->count, m->size - m->count,
2384 task->cpus_allowed);
2385 seq_printf(m, "\n");
Eric W. Biedermandf5f8312008-02-08 04:18:33 -08002386 seq_printf(m, "Mems_allowed:\t");
2387 m->count += nodemask_scnprintf(m->buf + m->count, m->size - m->count,
2388 task->mems_allowed);
2389 seq_printf(m, "\n");
Mike Travis39106dc2008-04-08 11:43:03 -07002390 seq_printf(m, "Mems_allowed_list:\t");
2391 m->count += nodelist_scnprintf(m->buf + m->count, m->size - m->count,
2392 task->mems_allowed);
2393 seq_printf(m, "\n");
Linus Torvalds1da177e2005-04-16 15:20:36 -07002394}