blob: ce3bc0d45f1f0c8fb2794257e5971078688045ac [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*****************************************************************************/
2
3/*
4 * istallion.c -- stallion intelligent multiport serial driver.
5 *
6 * Copyright (C) 1996-1999 Stallion Technologies
7 * Copyright (C) 1994-1996 Greg Ungerer.
8 *
9 * This code is loosely based on the Linux serial driver, written by
10 * Linus Torvalds, Theodore T'so and others.
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License, or
15 * (at your option) any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, write to the Free Software
24 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
25 */
26
27/*****************************************************************************/
28
29#include <linux/config.h>
30#include <linux/module.h>
31#include <linux/slab.h>
32#include <linux/interrupt.h>
33#include <linux/tty.h>
34#include <linux/tty_flip.h>
35#include <linux/serial.h>
36#include <linux/cdk.h>
37#include <linux/comstats.h>
38#include <linux/istallion.h>
39#include <linux/ioport.h>
40#include <linux/delay.h>
41#include <linux/init.h>
42#include <linux/devfs_fs_kernel.h>
43#include <linux/device.h>
44#include <linux/wait.h>
45
46#include <asm/io.h>
47#include <asm/uaccess.h>
48
49#ifdef CONFIG_PCI
50#include <linux/pci.h>
51#endif
52
53/*****************************************************************************/
54
55/*
56 * Define different board types. Not all of the following board types
57 * are supported by this driver. But I will use the standard "assigned"
58 * board numbers. Currently supported boards are abbreviated as:
59 * ECP = EasyConnection 8/64, ONB = ONboard, BBY = Brumby and
60 * STAL = Stallion.
61 */
62#define BRD_UNKNOWN 0
63#define BRD_STALLION 1
64#define BRD_BRUMBY4 2
65#define BRD_ONBOARD2 3
66#define BRD_ONBOARD 4
67#define BRD_BRUMBY8 5
68#define BRD_BRUMBY16 6
69#define BRD_ONBOARDE 7
70#define BRD_ONBOARD32 9
71#define BRD_ONBOARD2_32 10
72#define BRD_ONBOARDRS 11
73#define BRD_EASYIO 20
74#define BRD_ECH 21
75#define BRD_ECHMC 22
76#define BRD_ECP 23
77#define BRD_ECPE 24
78#define BRD_ECPMC 25
79#define BRD_ECHPCI 26
80#define BRD_ECH64PCI 27
81#define BRD_EASYIOPCI 28
82#define BRD_ECPPCI 29
83
84#define BRD_BRUMBY BRD_BRUMBY4
85
86/*
87 * Define a configuration structure to hold the board configuration.
88 * Need to set this up in the code (for now) with the boards that are
89 * to be configured into the system. This is what needs to be modified
90 * when adding/removing/modifying boards. Each line entry in the
91 * stli_brdconf[] array is a board. Each line contains io/irq/memory
92 * ranges for that board (as well as what type of board it is).
93 * Some examples:
94 * { BRD_ECP, 0x2a0, 0, 0xcc000, 0, 0 },
95 * This line will configure an EasyConnection 8/64 at io address 2a0,
96 * and shared memory address of cc000. Multiple EasyConnection 8/64
97 * boards can share the same shared memory address space. No interrupt
98 * is required for this board type.
99 * Another example:
100 * { BRD_ECPE, 0x5000, 0, 0x80000000, 0, 0 },
101 * This line will configure an EasyConnection 8/64 EISA in slot 5 and
102 * shared memory address of 0x80000000 (2 GByte). Multiple
103 * EasyConnection 8/64 EISA boards can share the same shared memory
104 * address space. No interrupt is required for this board type.
105 * Another example:
106 * { BRD_ONBOARD, 0x240, 0, 0xd0000, 0, 0 },
107 * This line will configure an ONboard (ISA type) at io address 240,
108 * and shared memory address of d0000. Multiple ONboards can share
109 * the same shared memory address space. No interrupt required.
110 * Another example:
111 * { BRD_BRUMBY4, 0x360, 0, 0xc8000, 0, 0 },
112 * This line will configure a Brumby board (any number of ports!) at
113 * io address 360 and shared memory address of c8000. All Brumby boards
114 * configured into a system must have their own separate io and memory
115 * addresses. No interrupt is required.
116 * Another example:
117 * { BRD_STALLION, 0x330, 0, 0xd0000, 0, 0 },
118 * This line will configure an original Stallion board at io address 330
119 * and shared memory address d0000 (this would only be valid for a "V4.0"
120 * or Rev.O Stallion board). All Stallion boards configured into the
121 * system must have their own separate io and memory addresses. No
122 * interrupt is required.
123 */
124
125typedef struct {
126 int brdtype;
127 int ioaddr1;
128 int ioaddr2;
129 unsigned long memaddr;
130 int irq;
131 int irqtype;
132} stlconf_t;
133
134static stlconf_t stli_brdconf[] = {
135 /*{ BRD_ECP, 0x2a0, 0, 0xcc000, 0, 0 },*/
136};
137
138static int stli_nrbrds = sizeof(stli_brdconf) / sizeof(stlconf_t);
139
140/*
141 * There is some experimental EISA board detection code in this driver.
142 * By default it is disabled, but for those that want to try it out,
143 * then set the define below to be 1.
144 */
145#define STLI_EISAPROBE 0
146
147/*****************************************************************************/
148
149/*
150 * Define some important driver characteristics. Device major numbers
151 * allocated as per Linux Device Registry.
152 */
153#ifndef STL_SIOMEMMAJOR
154#define STL_SIOMEMMAJOR 28
155#endif
156#ifndef STL_SERIALMAJOR
157#define STL_SERIALMAJOR 24
158#endif
159#ifndef STL_CALLOUTMAJOR
160#define STL_CALLOUTMAJOR 25
161#endif
162
163/*****************************************************************************/
164
165/*
166 * Define our local driver identity first. Set up stuff to deal with
167 * all the local structures required by a serial tty driver.
168 */
169static char *stli_drvtitle = "Stallion Intelligent Multiport Serial Driver";
170static char *stli_drvname = "istallion";
171static char *stli_drvversion = "5.6.0";
172static char *stli_serialname = "ttyE";
173
174static struct tty_driver *stli_serial;
175
176/*
177 * We will need to allocate a temporary write buffer for chars that
178 * come direct from user space. The problem is that a copy from user
179 * space might cause a page fault (typically on a system that is
180 * swapping!). All ports will share one buffer - since if the system
181 * is already swapping a shared buffer won't make things any worse.
182 */
183static char *stli_tmpwritebuf;
184static DECLARE_MUTEX(stli_tmpwritesem);
185
186#define STLI_TXBUFSIZE 4096
187
188/*
189 * Use a fast local buffer for cooked characters. Typically a whole
190 * bunch of cooked characters come in for a port, 1 at a time. So we
191 * save those up into a local buffer, then write out the whole lot
192 * with a large memcpy. Just use 1 buffer for all ports, since its
193 * use it is only need for short periods of time by each port.
194 */
195static char *stli_txcookbuf;
196static int stli_txcooksize;
197static int stli_txcookrealsize;
198static struct tty_struct *stli_txcooktty;
199
200/*
201 * Define a local default termios struct. All ports will be created
202 * with this termios initially. Basically all it defines is a raw port
203 * at 9600 baud, 8 data bits, no parity, 1 stop bit.
204 */
205static struct termios stli_deftermios = {
206 .c_cflag = (B9600 | CS8 | CREAD | HUPCL | CLOCAL),
207 .c_cc = INIT_C_CC,
208};
209
210/*
211 * Define global stats structures. Not used often, and can be
212 * re-used for each stats call.
213 */
214static comstats_t stli_comstats;
215static combrd_t stli_brdstats;
216static asystats_t stli_cdkstats;
217static stlibrd_t stli_dummybrd;
218static stliport_t stli_dummyport;
219
220/*****************************************************************************/
221
222static stlibrd_t *stli_brds[STL_MAXBRDS];
223
224static int stli_shared;
225
226/*
227 * Per board state flags. Used with the state field of the board struct.
228 * Not really much here... All we need to do is keep track of whether
229 * the board has been detected, and whether it is actually running a slave
230 * or not.
231 */
232#define BST_FOUND 0x1
233#define BST_STARTED 0x2
234
235/*
236 * Define the set of port state flags. These are marked for internal
237 * state purposes only, usually to do with the state of communications
238 * with the slave. Most of them need to be updated atomically, so always
239 * use the bit setting operations (unless protected by cli/sti).
240 */
241#define ST_INITIALIZING 1
242#define ST_OPENING 2
243#define ST_CLOSING 3
244#define ST_CMDING 4
245#define ST_TXBUSY 5
246#define ST_RXING 6
247#define ST_DOFLUSHRX 7
248#define ST_DOFLUSHTX 8
249#define ST_DOSIGS 9
250#define ST_RXSTOP 10
251#define ST_GETSIGS 11
252
253/*
254 * Define an array of board names as printable strings. Handy for
255 * referencing boards when printing trace and stuff.
256 */
257static char *stli_brdnames[] = {
258 "Unknown",
259 "Stallion",
260 "Brumby",
261 "ONboard-MC",
262 "ONboard",
263 "Brumby",
264 "Brumby",
265 "ONboard-EI",
266 (char *) NULL,
267 "ONboard",
268 "ONboard-MC",
269 "ONboard-MC",
270 (char *) NULL,
271 (char *) NULL,
272 (char *) NULL,
273 (char *) NULL,
274 (char *) NULL,
275 (char *) NULL,
276 (char *) NULL,
277 (char *) NULL,
278 "EasyIO",
279 "EC8/32-AT",
280 "EC8/32-MC",
281 "EC8/64-AT",
282 "EC8/64-EI",
283 "EC8/64-MC",
284 "EC8/32-PCI",
285 "EC8/64-PCI",
286 "EasyIO-PCI",
287 "EC/RA-PCI",
288};
289
290/*****************************************************************************/
291
292#ifdef MODULE
293/*
294 * Define some string labels for arguments passed from the module
295 * load line. These allow for easy board definitions, and easy
296 * modification of the io, memory and irq resoucres.
297 */
298
299static char *board0[8];
300static char *board1[8];
301static char *board2[8];
302static char *board3[8];
303
304static char **stli_brdsp[] = {
305 (char **) &board0,
306 (char **) &board1,
307 (char **) &board2,
308 (char **) &board3
309};
310
311/*
312 * Define a set of common board names, and types. This is used to
313 * parse any module arguments.
314 */
315
316typedef struct stlibrdtype {
317 char *name;
318 int type;
319} stlibrdtype_t;
320
321static stlibrdtype_t stli_brdstr[] = {
322 { "stallion", BRD_STALLION },
323 { "1", BRD_STALLION },
324 { "brumby", BRD_BRUMBY },
325 { "brumby4", BRD_BRUMBY },
326 { "brumby/4", BRD_BRUMBY },
327 { "brumby-4", BRD_BRUMBY },
328 { "brumby8", BRD_BRUMBY },
329 { "brumby/8", BRD_BRUMBY },
330 { "brumby-8", BRD_BRUMBY },
331 { "brumby16", BRD_BRUMBY },
332 { "brumby/16", BRD_BRUMBY },
333 { "brumby-16", BRD_BRUMBY },
334 { "2", BRD_BRUMBY },
335 { "onboard2", BRD_ONBOARD2 },
336 { "onboard-2", BRD_ONBOARD2 },
337 { "onboard/2", BRD_ONBOARD2 },
338 { "onboard-mc", BRD_ONBOARD2 },
339 { "onboard/mc", BRD_ONBOARD2 },
340 { "onboard-mca", BRD_ONBOARD2 },
341 { "onboard/mca", BRD_ONBOARD2 },
342 { "3", BRD_ONBOARD2 },
343 { "onboard", BRD_ONBOARD },
344 { "onboardat", BRD_ONBOARD },
345 { "4", BRD_ONBOARD },
346 { "onboarde", BRD_ONBOARDE },
347 { "onboard-e", BRD_ONBOARDE },
348 { "onboard/e", BRD_ONBOARDE },
349 { "onboard-ei", BRD_ONBOARDE },
350 { "onboard/ei", BRD_ONBOARDE },
351 { "7", BRD_ONBOARDE },
352 { "ecp", BRD_ECP },
353 { "ecpat", BRD_ECP },
354 { "ec8/64", BRD_ECP },
355 { "ec8/64-at", BRD_ECP },
356 { "ec8/64-isa", BRD_ECP },
357 { "23", BRD_ECP },
358 { "ecpe", BRD_ECPE },
359 { "ecpei", BRD_ECPE },
360 { "ec8/64-e", BRD_ECPE },
361 { "ec8/64-ei", BRD_ECPE },
362 { "24", BRD_ECPE },
363 { "ecpmc", BRD_ECPMC },
364 { "ec8/64-mc", BRD_ECPMC },
365 { "ec8/64-mca", BRD_ECPMC },
366 { "25", BRD_ECPMC },
367 { "ecppci", BRD_ECPPCI },
368 { "ec/ra", BRD_ECPPCI },
369 { "ec/ra-pc", BRD_ECPPCI },
370 { "ec/ra-pci", BRD_ECPPCI },
371 { "29", BRD_ECPPCI },
372};
373
374/*
375 * Define the module agruments.
376 */
377MODULE_AUTHOR("Greg Ungerer");
378MODULE_DESCRIPTION("Stallion Intelligent Multiport Serial Driver");
379MODULE_LICENSE("GPL");
380
381
382MODULE_PARM(board0, "1-3s");
383MODULE_PARM_DESC(board0, "Board 0 config -> name[,ioaddr[,memaddr]");
384MODULE_PARM(board1, "1-3s");
385MODULE_PARM_DESC(board1, "Board 1 config -> name[,ioaddr[,memaddr]");
386MODULE_PARM(board2, "1-3s");
387MODULE_PARM_DESC(board2, "Board 2 config -> name[,ioaddr[,memaddr]");
388MODULE_PARM(board3, "1-3s");
389MODULE_PARM_DESC(board3, "Board 3 config -> name[,ioaddr[,memaddr]");
390
391#endif
392
393/*
394 * Set up a default memory address table for EISA board probing.
395 * The default addresses are all bellow 1Mbyte, which has to be the
396 * case anyway. They should be safe, since we only read values from
397 * them, and interrupts are disabled while we do it. If the higher
398 * memory support is compiled in then we also try probing around
399 * the 1Gb, 2Gb and 3Gb areas as well...
400 */
401static unsigned long stli_eisamemprobeaddrs[] = {
402 0xc0000, 0xd0000, 0xe0000, 0xf0000,
403 0x80000000, 0x80010000, 0x80020000, 0x80030000,
404 0x40000000, 0x40010000, 0x40020000, 0x40030000,
405 0xc0000000, 0xc0010000, 0xc0020000, 0xc0030000,
406 0xff000000, 0xff010000, 0xff020000, 0xff030000,
407};
408
409static int stli_eisamempsize = sizeof(stli_eisamemprobeaddrs) / sizeof(unsigned long);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700410
411/*
412 * Define the Stallion PCI vendor and device IDs.
413 */
414#ifdef CONFIG_PCI
415#ifndef PCI_VENDOR_ID_STALLION
416#define PCI_VENDOR_ID_STALLION 0x124d
417#endif
418#ifndef PCI_DEVICE_ID_ECRA
419#define PCI_DEVICE_ID_ECRA 0x0004
420#endif
421
422static struct pci_device_id istallion_pci_tbl[] = {
423 { PCI_VENDOR_ID_STALLION, PCI_DEVICE_ID_ECRA, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
424 { 0 }
425};
426MODULE_DEVICE_TABLE(pci, istallion_pci_tbl);
427
428#endif /* CONFIG_PCI */
429
430/*****************************************************************************/
431
432/*
433 * Hardware configuration info for ECP boards. These defines apply
434 * to the directly accessible io ports of the ECP. There is a set of
435 * defines for each ECP board type, ISA, EISA, MCA and PCI.
436 */
437#define ECP_IOSIZE 4
438
439#define ECP_MEMSIZE (128 * 1024)
440#define ECP_PCIMEMSIZE (256 * 1024)
441
442#define ECP_ATPAGESIZE (4 * 1024)
443#define ECP_MCPAGESIZE (4 * 1024)
444#define ECP_EIPAGESIZE (64 * 1024)
445#define ECP_PCIPAGESIZE (64 * 1024)
446
447#define STL_EISAID 0x8c4e
448
449/*
450 * Important defines for the ISA class of ECP board.
451 */
452#define ECP_ATIREG 0
453#define ECP_ATCONFR 1
454#define ECP_ATMEMAR 2
455#define ECP_ATMEMPR 3
456#define ECP_ATSTOP 0x1
457#define ECP_ATINTENAB 0x10
458#define ECP_ATENABLE 0x20
459#define ECP_ATDISABLE 0x00
460#define ECP_ATADDRMASK 0x3f000
461#define ECP_ATADDRSHFT 12
462
463/*
464 * Important defines for the EISA class of ECP board.
465 */
466#define ECP_EIIREG 0
467#define ECP_EIMEMARL 1
468#define ECP_EICONFR 2
469#define ECP_EIMEMARH 3
470#define ECP_EIENABLE 0x1
471#define ECP_EIDISABLE 0x0
472#define ECP_EISTOP 0x4
473#define ECP_EIEDGE 0x00
474#define ECP_EILEVEL 0x80
475#define ECP_EIADDRMASKL 0x00ff0000
476#define ECP_EIADDRSHFTL 16
477#define ECP_EIADDRMASKH 0xff000000
478#define ECP_EIADDRSHFTH 24
479#define ECP_EIBRDENAB 0xc84
480
481#define ECP_EISAID 0x4
482
483/*
484 * Important defines for the Micro-channel class of ECP board.
485 * (It has a lot in common with the ISA boards.)
486 */
487#define ECP_MCIREG 0
488#define ECP_MCCONFR 1
489#define ECP_MCSTOP 0x20
490#define ECP_MCENABLE 0x80
491#define ECP_MCDISABLE 0x00
492
493/*
494 * Important defines for the PCI class of ECP board.
495 * (It has a lot in common with the other ECP boards.)
496 */
497#define ECP_PCIIREG 0
498#define ECP_PCICONFR 1
499#define ECP_PCISTOP 0x01
500
501/*
502 * Hardware configuration info for ONboard and Brumby boards. These
503 * defines apply to the directly accessible io ports of these boards.
504 */
505#define ONB_IOSIZE 16
506#define ONB_MEMSIZE (64 * 1024)
507#define ONB_ATPAGESIZE (64 * 1024)
508#define ONB_MCPAGESIZE (64 * 1024)
509#define ONB_EIMEMSIZE (128 * 1024)
510#define ONB_EIPAGESIZE (64 * 1024)
511
512/*
513 * Important defines for the ISA class of ONboard board.
514 */
515#define ONB_ATIREG 0
516#define ONB_ATMEMAR 1
517#define ONB_ATCONFR 2
518#define ONB_ATSTOP 0x4
519#define ONB_ATENABLE 0x01
520#define ONB_ATDISABLE 0x00
521#define ONB_ATADDRMASK 0xff0000
522#define ONB_ATADDRSHFT 16
523
524#define ONB_MEMENABLO 0
525#define ONB_MEMENABHI 0x02
526
527/*
528 * Important defines for the EISA class of ONboard board.
529 */
530#define ONB_EIIREG 0
531#define ONB_EIMEMARL 1
532#define ONB_EICONFR 2
533#define ONB_EIMEMARH 3
534#define ONB_EIENABLE 0x1
535#define ONB_EIDISABLE 0x0
536#define ONB_EISTOP 0x4
537#define ONB_EIEDGE 0x00
538#define ONB_EILEVEL 0x80
539#define ONB_EIADDRMASKL 0x00ff0000
540#define ONB_EIADDRSHFTL 16
541#define ONB_EIADDRMASKH 0xff000000
542#define ONB_EIADDRSHFTH 24
543#define ONB_EIBRDENAB 0xc84
544
545#define ONB_EISAID 0x1
546
547/*
548 * Important defines for the Brumby boards. They are pretty simple,
549 * there is not much that is programmably configurable.
550 */
551#define BBY_IOSIZE 16
552#define BBY_MEMSIZE (64 * 1024)
553#define BBY_PAGESIZE (16 * 1024)
554
555#define BBY_ATIREG 0
556#define BBY_ATCONFR 1
557#define BBY_ATSTOP 0x4
558
559/*
560 * Important defines for the Stallion boards. They are pretty simple,
561 * there is not much that is programmably configurable.
562 */
563#define STAL_IOSIZE 16
564#define STAL_MEMSIZE (64 * 1024)
565#define STAL_PAGESIZE (64 * 1024)
566
567/*
568 * Define the set of status register values for EasyConnection panels.
569 * The signature will return with the status value for each panel. From
570 * this we can determine what is attached to the board - before we have
571 * actually down loaded any code to it.
572 */
573#define ECH_PNLSTATUS 2
574#define ECH_PNL16PORT 0x20
575#define ECH_PNLIDMASK 0x07
576#define ECH_PNLXPID 0x40
577#define ECH_PNLINTRPEND 0x80
578
579/*
580 * Define some macros to do things to the board. Even those these boards
581 * are somewhat related there is often significantly different ways of
582 * doing some operation on it (like enable, paging, reset, etc). So each
583 * board class has a set of functions which do the commonly required
584 * operations. The macros below basically just call these functions,
585 * generally checking for a NULL function - which means that the board
586 * needs nothing done to it to achieve this operation!
587 */
588#define EBRDINIT(brdp) \
589 if (brdp->init != NULL) \
590 (* brdp->init)(brdp)
591
592#define EBRDENABLE(brdp) \
593 if (brdp->enable != NULL) \
594 (* brdp->enable)(brdp);
595
596#define EBRDDISABLE(brdp) \
597 if (brdp->disable != NULL) \
598 (* brdp->disable)(brdp);
599
600#define EBRDINTR(brdp) \
601 if (brdp->intr != NULL) \
602 (* brdp->intr)(brdp);
603
604#define EBRDRESET(brdp) \
605 if (brdp->reset != NULL) \
606 (* brdp->reset)(brdp);
607
608#define EBRDGETMEMPTR(brdp,offset) \
609 (* brdp->getmemptr)(brdp, offset, __LINE__)
610
611/*
612 * Define the maximal baud rate, and the default baud base for ports.
613 */
614#define STL_MAXBAUD 460800
615#define STL_BAUDBASE 115200
616#define STL_CLOSEDELAY (5 * HZ / 10)
617
618/*****************************************************************************/
619
620/*
621 * Define macros to extract a brd or port number from a minor number.
622 */
623#define MINOR2BRD(min) (((min) & 0xc0) >> 6)
624#define MINOR2PORT(min) ((min) & 0x3f)
625
626/*
627 * Define a baud rate table that converts termios baud rate selector
628 * into the actual baud rate value. All baud rate calculations are based
629 * on the actual baud rate required.
630 */
631static unsigned int stli_baudrates[] = {
632 0, 50, 75, 110, 134, 150, 200, 300, 600, 1200, 1800, 2400, 4800,
633 9600, 19200, 38400, 57600, 115200, 230400, 460800, 921600
634};
635
636/*****************************************************************************/
637
638/*
639 * Define some handy local macros...
640 */
641#undef MIN
642#define MIN(a,b) (((a) <= (b)) ? (a) : (b))
643
644#undef TOLOWER
645#define TOLOWER(x) ((((x) >= 'A') && ((x) <= 'Z')) ? ((x) + 0x20) : (x))
646
647/*****************************************************************************/
648
649/*
650 * Prototype all functions in this driver!
651 */
652
653#ifdef MODULE
654static void stli_argbrds(void);
655static int stli_parsebrd(stlconf_t *confp, char **argp);
656
657static unsigned long stli_atol(char *str);
658#endif
659
660int stli_init(void);
661static int stli_open(struct tty_struct *tty, struct file *filp);
662static void stli_close(struct tty_struct *tty, struct file *filp);
663static int stli_write(struct tty_struct *tty, const unsigned char *buf, int count);
664static void stli_putchar(struct tty_struct *tty, unsigned char ch);
665static void stli_flushchars(struct tty_struct *tty);
666static int stli_writeroom(struct tty_struct *tty);
667static int stli_charsinbuffer(struct tty_struct *tty);
668static int stli_ioctl(struct tty_struct *tty, struct file *file, unsigned int cmd, unsigned long arg);
669static void stli_settermios(struct tty_struct *tty, struct termios *old);
670static void stli_throttle(struct tty_struct *tty);
671static void stli_unthrottle(struct tty_struct *tty);
672static void stli_stop(struct tty_struct *tty);
673static void stli_start(struct tty_struct *tty);
674static void stli_flushbuffer(struct tty_struct *tty);
675static void stli_breakctl(struct tty_struct *tty, int state);
676static void stli_waituntilsent(struct tty_struct *tty, int timeout);
677static void stli_sendxchar(struct tty_struct *tty, char ch);
678static void stli_hangup(struct tty_struct *tty);
679static int stli_portinfo(stlibrd_t *brdp, stliport_t *portp, int portnr, char *pos);
680
681static int stli_brdinit(stlibrd_t *brdp);
682static int stli_startbrd(stlibrd_t *brdp);
683static ssize_t stli_memread(struct file *fp, char __user *buf, size_t count, loff_t *offp);
684static ssize_t stli_memwrite(struct file *fp, const char __user *buf, size_t count, loff_t *offp);
685static int stli_memioctl(struct inode *ip, struct file *fp, unsigned int cmd, unsigned long arg);
686static void stli_brdpoll(stlibrd_t *brdp, volatile cdkhdr_t *hdrp);
687static void stli_poll(unsigned long arg);
688static int stli_hostcmd(stlibrd_t *brdp, stliport_t *portp);
689static int stli_initopen(stlibrd_t *brdp, stliport_t *portp);
690static int stli_rawopen(stlibrd_t *brdp, stliport_t *portp, unsigned long arg, int wait);
691static int stli_rawclose(stlibrd_t *brdp, stliport_t *portp, unsigned long arg, int wait);
692static int stli_waitcarrier(stlibrd_t *brdp, stliport_t *portp, struct file *filp);
693static void stli_dohangup(void *arg);
694static int stli_setport(stliport_t *portp);
695static int stli_cmdwait(stlibrd_t *brdp, stliport_t *portp, unsigned long cmd, void *arg, int size, int copyback);
696static void stli_sendcmd(stlibrd_t *brdp, stliport_t *portp, unsigned long cmd, void *arg, int size, int copyback);
697static void stli_dodelaycmd(stliport_t *portp, volatile cdkctrl_t *cp);
698static void stli_mkasyport(stliport_t *portp, asyport_t *pp, struct termios *tiosp);
699static void stli_mkasysigs(asysigs_t *sp, int dtr, int rts);
700static long stli_mktiocm(unsigned long sigvalue);
701static void stli_read(stlibrd_t *brdp, stliport_t *portp);
702static int stli_getserial(stliport_t *portp, struct serial_struct __user *sp);
703static int stli_setserial(stliport_t *portp, struct serial_struct __user *sp);
704static int stli_getbrdstats(combrd_t __user *bp);
705static int stli_getportstats(stliport_t *portp, comstats_t __user *cp);
706static int stli_portcmdstats(stliport_t *portp);
707static int stli_clrportstats(stliport_t *portp, comstats_t __user *cp);
708static int stli_getportstruct(stliport_t __user *arg);
709static int stli_getbrdstruct(stlibrd_t __user *arg);
710static void *stli_memalloc(int len);
711static stlibrd_t *stli_allocbrd(void);
712
713static void stli_ecpinit(stlibrd_t *brdp);
714static void stli_ecpenable(stlibrd_t *brdp);
715static void stli_ecpdisable(stlibrd_t *brdp);
716static char *stli_ecpgetmemptr(stlibrd_t *brdp, unsigned long offset, int line);
717static void stli_ecpreset(stlibrd_t *brdp);
718static void stli_ecpintr(stlibrd_t *brdp);
719static void stli_ecpeiinit(stlibrd_t *brdp);
720static void stli_ecpeienable(stlibrd_t *brdp);
721static void stli_ecpeidisable(stlibrd_t *brdp);
722static char *stli_ecpeigetmemptr(stlibrd_t *brdp, unsigned long offset, int line);
723static void stli_ecpeireset(stlibrd_t *brdp);
724static void stli_ecpmcenable(stlibrd_t *brdp);
725static void stli_ecpmcdisable(stlibrd_t *brdp);
726static char *stli_ecpmcgetmemptr(stlibrd_t *brdp, unsigned long offset, int line);
727static void stli_ecpmcreset(stlibrd_t *brdp);
728static void stli_ecppciinit(stlibrd_t *brdp);
729static char *stli_ecppcigetmemptr(stlibrd_t *brdp, unsigned long offset, int line);
730static void stli_ecppcireset(stlibrd_t *brdp);
731
732static void stli_onbinit(stlibrd_t *brdp);
733static void stli_onbenable(stlibrd_t *brdp);
734static void stli_onbdisable(stlibrd_t *brdp);
735static char *stli_onbgetmemptr(stlibrd_t *brdp, unsigned long offset, int line);
736static void stli_onbreset(stlibrd_t *brdp);
737static void stli_onbeinit(stlibrd_t *brdp);
738static void stli_onbeenable(stlibrd_t *brdp);
739static void stli_onbedisable(stlibrd_t *brdp);
740static char *stli_onbegetmemptr(stlibrd_t *brdp, unsigned long offset, int line);
741static void stli_onbereset(stlibrd_t *brdp);
742static void stli_bbyinit(stlibrd_t *brdp);
743static char *stli_bbygetmemptr(stlibrd_t *brdp, unsigned long offset, int line);
744static void stli_bbyreset(stlibrd_t *brdp);
745static void stli_stalinit(stlibrd_t *brdp);
746static char *stli_stalgetmemptr(stlibrd_t *brdp, unsigned long offset, int line);
747static void stli_stalreset(stlibrd_t *brdp);
748
749static stliport_t *stli_getport(int brdnr, int panelnr, int portnr);
750
751static int stli_initecp(stlibrd_t *brdp);
752static int stli_initonb(stlibrd_t *brdp);
753static int stli_eisamemprobe(stlibrd_t *brdp);
754static int stli_initports(stlibrd_t *brdp);
755
756#ifdef CONFIG_PCI
757static int stli_initpcibrd(int brdtype, struct pci_dev *devp);
758#endif
759
760/*****************************************************************************/
761
762/*
763 * Define the driver info for a user level shared memory device. This
764 * device will work sort of like the /dev/kmem device - except that it
765 * will give access to the shared memory on the Stallion intelligent
766 * board. This is also a very useful debugging tool.
767 */
768static struct file_operations stli_fsiomem = {
769 .owner = THIS_MODULE,
770 .read = stli_memread,
771 .write = stli_memwrite,
772 .ioctl = stli_memioctl,
773};
774
775/*****************************************************************************/
776
777/*
778 * Define a timer_list entry for our poll routine. The slave board
779 * is polled every so often to see if anything needs doing. This is
780 * much cheaper on host cpu than using interrupts. It turns out to
781 * not increase character latency by much either...
782 */
Ingo Molnar8d06afa2005-09-09 13:10:40 -0700783static DEFINE_TIMER(stli_timerlist, stli_poll, 0, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700784
785static int stli_timeron;
786
787/*
788 * Define the calculation for the timeout routine.
789 */
790#define STLI_TIMEOUT (jiffies + 1)
791
792/*****************************************************************************/
793
gregkh@suse.deca8eca62005-03-23 09:53:09 -0800794static struct class *istallion_class;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700795
796#ifdef MODULE
797
798/*
799 * Loadable module initialization stuff.
800 */
801
802static int __init istallion_module_init(void)
803{
804 unsigned long flags;
805
806#ifdef DEBUG
807 printk("init_module()\n");
808#endif
809
810 save_flags(flags);
811 cli();
812 stli_init();
813 restore_flags(flags);
814
815 return(0);
816}
817
818/*****************************************************************************/
819
820static void __exit istallion_module_exit(void)
821{
822 stlibrd_t *brdp;
823 stliport_t *portp;
824 unsigned long flags;
825 int i, j;
826
827#ifdef DEBUG
828 printk("cleanup_module()\n");
829#endif
830
831 printk(KERN_INFO "Unloading %s: version %s\n", stli_drvtitle,
832 stli_drvversion);
833
834 save_flags(flags);
835 cli();
836
837/*
838 * Free up all allocated resources used by the ports. This includes
839 * memory and interrupts.
840 */
841 if (stli_timeron) {
842 stli_timeron = 0;
843 del_timer(&stli_timerlist);
844 }
845
846 i = tty_unregister_driver(stli_serial);
847 if (i) {
848 printk("STALLION: failed to un-register tty driver, "
849 "errno=%d\n", -i);
850 restore_flags(flags);
851 return;
852 }
853 put_tty_driver(stli_serial);
854 for (i = 0; i < 4; i++) {
855 devfs_remove("staliomem/%d", i);
gregkh@suse.deca8eca62005-03-23 09:53:09 -0800856 class_device_destroy(istallion_class, MKDEV(STL_SIOMEMMAJOR, i));
Linus Torvalds1da177e2005-04-16 15:20:36 -0700857 }
858 devfs_remove("staliomem");
gregkh@suse.deca8eca62005-03-23 09:53:09 -0800859 class_destroy(istallion_class);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700860 if ((i = unregister_chrdev(STL_SIOMEMMAJOR, "staliomem")))
861 printk("STALLION: failed to un-register serial memory device, "
862 "errno=%d\n", -i);
Jesper Juhl735d5662005-11-07 01:01:29 -0800863
864 kfree(stli_tmpwritebuf);
865 kfree(stli_txcookbuf);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700866
867 for (i = 0; (i < stli_nrbrds); i++) {
868 if ((brdp = stli_brds[i]) == (stlibrd_t *) NULL)
869 continue;
870 for (j = 0; (j < STL_MAXPORTS); j++) {
871 portp = brdp->ports[j];
872 if (portp != (stliport_t *) NULL) {
873 if (portp->tty != (struct tty_struct *) NULL)
874 tty_hangup(portp->tty);
875 kfree(portp);
876 }
877 }
878
879 iounmap(brdp->membase);
880 if (brdp->iosize > 0)
881 release_region(brdp->iobase, brdp->iosize);
882 kfree(brdp);
883 stli_brds[i] = (stlibrd_t *) NULL;
884 }
885
886 restore_flags(flags);
887}
888
889module_init(istallion_module_init);
890module_exit(istallion_module_exit);
891
892/*****************************************************************************/
893
894/*
895 * Check for any arguments passed in on the module load command line.
896 */
897
898static void stli_argbrds(void)
899{
900 stlconf_t conf;
901 stlibrd_t *brdp;
902 int nrargs, i;
903
904#ifdef DEBUG
905 printk("stli_argbrds()\n");
906#endif
907
908 nrargs = sizeof(stli_brdsp) / sizeof(char **);
909
910 for (i = stli_nrbrds; (i < nrargs); i++) {
911 memset(&conf, 0, sizeof(conf));
912 if (stli_parsebrd(&conf, stli_brdsp[i]) == 0)
913 continue;
914 if ((brdp = stli_allocbrd()) == (stlibrd_t *) NULL)
915 continue;
916 stli_nrbrds = i + 1;
917 brdp->brdnr = i;
918 brdp->brdtype = conf.brdtype;
919 brdp->iobase = conf.ioaddr1;
920 brdp->memaddr = conf.memaddr;
921 stli_brdinit(brdp);
922 }
923}
924
925/*****************************************************************************/
926
927/*
928 * Convert an ascii string number into an unsigned long.
929 */
930
931static unsigned long stli_atol(char *str)
932{
933 unsigned long val;
934 int base, c;
935 char *sp;
936
937 val = 0;
938 sp = str;
939 if ((*sp == '0') && (*(sp+1) == 'x')) {
940 base = 16;
941 sp += 2;
942 } else if (*sp == '0') {
943 base = 8;
944 sp++;
945 } else {
946 base = 10;
947 }
948
949 for (; (*sp != 0); sp++) {
950 c = (*sp > '9') ? (TOLOWER(*sp) - 'a' + 10) : (*sp - '0');
951 if ((c < 0) || (c >= base)) {
952 printk("STALLION: invalid argument %s\n", str);
953 val = 0;
954 break;
955 }
956 val = (val * base) + c;
957 }
958 return(val);
959}
960
961/*****************************************************************************/
962
963/*
964 * Parse the supplied argument string, into the board conf struct.
965 */
966
967static int stli_parsebrd(stlconf_t *confp, char **argp)
968{
969 char *sp;
970 int nrbrdnames, i;
971
972#ifdef DEBUG
973 printk("stli_parsebrd(confp=%x,argp=%x)\n", (int) confp, (int) argp);
974#endif
975
976 if ((argp[0] == (char *) NULL) || (*argp[0] == 0))
977 return(0);
978
979 for (sp = argp[0], i = 0; ((*sp != 0) && (i < 25)); sp++, i++)
980 *sp = TOLOWER(*sp);
981
982 nrbrdnames = sizeof(stli_brdstr) / sizeof(stlibrdtype_t);
983 for (i = 0; (i < nrbrdnames); i++) {
984 if (strcmp(stli_brdstr[i].name, argp[0]) == 0)
985 break;
986 }
987 if (i >= nrbrdnames) {
988 printk("STALLION: unknown board name, %s?\n", argp[0]);
989 return(0);
990 }
991
992 confp->brdtype = stli_brdstr[i].type;
993 if ((argp[1] != (char *) NULL) && (*argp[1] != 0))
994 confp->ioaddr1 = stli_atol(argp[1]);
995 if ((argp[2] != (char *) NULL) && (*argp[2] != 0))
996 confp->memaddr = stli_atol(argp[2]);
997 return(1);
998}
999
1000#endif
1001
1002/*****************************************************************************/
1003
1004/*
1005 * Local driver kernel malloc routine.
1006 */
1007
1008static void *stli_memalloc(int len)
1009{
1010 return((void *) kmalloc(len, GFP_KERNEL));
1011}
1012
1013/*****************************************************************************/
1014
1015static int stli_open(struct tty_struct *tty, struct file *filp)
1016{
1017 stlibrd_t *brdp;
1018 stliport_t *portp;
1019 unsigned int minordev;
1020 int brdnr, portnr, rc;
1021
1022#ifdef DEBUG
1023 printk("stli_open(tty=%x,filp=%x): device=%s\n", (int) tty,
1024 (int) filp, tty->name);
1025#endif
1026
1027 minordev = tty->index;
1028 brdnr = MINOR2BRD(minordev);
1029 if (brdnr >= stli_nrbrds)
1030 return(-ENODEV);
1031 brdp = stli_brds[brdnr];
1032 if (brdp == (stlibrd_t *) NULL)
1033 return(-ENODEV);
1034 if ((brdp->state & BST_STARTED) == 0)
1035 return(-ENODEV);
1036 portnr = MINOR2PORT(minordev);
1037 if ((portnr < 0) || (portnr > brdp->nrports))
1038 return(-ENODEV);
1039
1040 portp = brdp->ports[portnr];
1041 if (portp == (stliport_t *) NULL)
1042 return(-ENODEV);
1043 if (portp->devnr < 1)
1044 return(-ENODEV);
1045
1046
1047/*
1048 * Check if this port is in the middle of closing. If so then wait
1049 * until it is closed then return error status based on flag settings.
1050 * The sleep here does not need interrupt protection since the wakeup
1051 * for it is done with the same context.
1052 */
1053 if (portp->flags & ASYNC_CLOSING) {
1054 interruptible_sleep_on(&portp->close_wait);
1055 if (portp->flags & ASYNC_HUP_NOTIFY)
1056 return(-EAGAIN);
1057 return(-ERESTARTSYS);
1058 }
1059
1060/*
1061 * On the first open of the device setup the port hardware, and
1062 * initialize the per port data structure. Since initializing the port
1063 * requires several commands to the board we will need to wait for any
1064 * other open that is already initializing the port.
1065 */
1066 portp->tty = tty;
1067 tty->driver_data = portp;
1068 portp->refcount++;
1069
1070 wait_event_interruptible(portp->raw_wait,
1071 !test_bit(ST_INITIALIZING, &portp->state));
1072 if (signal_pending(current))
1073 return(-ERESTARTSYS);
1074
1075 if ((portp->flags & ASYNC_INITIALIZED) == 0) {
1076 set_bit(ST_INITIALIZING, &portp->state);
1077 if ((rc = stli_initopen(brdp, portp)) >= 0) {
1078 portp->flags |= ASYNC_INITIALIZED;
1079 clear_bit(TTY_IO_ERROR, &tty->flags);
1080 }
1081 clear_bit(ST_INITIALIZING, &portp->state);
1082 wake_up_interruptible(&portp->raw_wait);
1083 if (rc < 0)
1084 return(rc);
1085 }
1086
1087/*
1088 * Check if this port is in the middle of closing. If so then wait
1089 * until it is closed then return error status, based on flag settings.
1090 * The sleep here does not need interrupt protection since the wakeup
1091 * for it is done with the same context.
1092 */
1093 if (portp->flags & ASYNC_CLOSING) {
1094 interruptible_sleep_on(&portp->close_wait);
1095 if (portp->flags & ASYNC_HUP_NOTIFY)
1096 return(-EAGAIN);
1097 return(-ERESTARTSYS);
1098 }
1099
1100/*
1101 * Based on type of open being done check if it can overlap with any
1102 * previous opens still in effect. If we are a normal serial device
1103 * then also we might have to wait for carrier.
1104 */
1105 if (!(filp->f_flags & O_NONBLOCK)) {
1106 if ((rc = stli_waitcarrier(brdp, portp, filp)) != 0)
1107 return(rc);
1108 }
1109 portp->flags |= ASYNC_NORMAL_ACTIVE;
1110 return(0);
1111}
1112
1113/*****************************************************************************/
1114
1115static void stli_close(struct tty_struct *tty, struct file *filp)
1116{
1117 stlibrd_t *brdp;
1118 stliport_t *portp;
1119 unsigned long flags;
1120
1121#ifdef DEBUG
1122 printk("stli_close(tty=%x,filp=%x)\n", (int) tty, (int) filp);
1123#endif
1124
1125 portp = tty->driver_data;
1126 if (portp == (stliport_t *) NULL)
1127 return;
1128
1129 save_flags(flags);
1130 cli();
1131 if (tty_hung_up_p(filp)) {
1132 restore_flags(flags);
1133 return;
1134 }
1135 if ((tty->count == 1) && (portp->refcount != 1))
1136 portp->refcount = 1;
1137 if (portp->refcount-- > 1) {
1138 restore_flags(flags);
1139 return;
1140 }
1141
1142 portp->flags |= ASYNC_CLOSING;
1143
1144/*
1145 * May want to wait for data to drain before closing. The BUSY flag
1146 * keeps track of whether we are still transmitting or not. It is
1147 * updated by messages from the slave - indicating when all chars
1148 * really have drained.
1149 */
1150 if (tty == stli_txcooktty)
1151 stli_flushchars(tty);
1152 tty->closing = 1;
1153 if (portp->closing_wait != ASYNC_CLOSING_WAIT_NONE)
1154 tty_wait_until_sent(tty, portp->closing_wait);
1155
1156 portp->flags &= ~ASYNC_INITIALIZED;
1157 brdp = stli_brds[portp->brdnr];
1158 stli_rawclose(brdp, portp, 0, 0);
1159 if (tty->termios->c_cflag & HUPCL) {
1160 stli_mkasysigs(&portp->asig, 0, 0);
1161 if (test_bit(ST_CMDING, &portp->state))
1162 set_bit(ST_DOSIGS, &portp->state);
1163 else
1164 stli_sendcmd(brdp, portp, A_SETSIGNALS, &portp->asig,
1165 sizeof(asysigs_t), 0);
1166 }
1167 clear_bit(ST_TXBUSY, &portp->state);
1168 clear_bit(ST_RXSTOP, &portp->state);
1169 set_bit(TTY_IO_ERROR, &tty->flags);
1170 if (tty->ldisc.flush_buffer)
1171 (tty->ldisc.flush_buffer)(tty);
1172 set_bit(ST_DOFLUSHRX, &portp->state);
1173 stli_flushbuffer(tty);
1174
1175 tty->closing = 0;
1176 portp->tty = (struct tty_struct *) NULL;
1177
1178 if (portp->openwaitcnt) {
1179 if (portp->close_delay)
1180 msleep_interruptible(jiffies_to_msecs(portp->close_delay));
1181 wake_up_interruptible(&portp->open_wait);
1182 }
1183
1184 portp->flags &= ~(ASYNC_NORMAL_ACTIVE|ASYNC_CLOSING);
1185 wake_up_interruptible(&portp->close_wait);
1186 restore_flags(flags);
1187}
1188
1189/*****************************************************************************/
1190
1191/*
1192 * Carry out first open operations on a port. This involves a number of
1193 * commands to be sent to the slave. We need to open the port, set the
1194 * notification events, set the initial port settings, get and set the
1195 * initial signal values. We sleep and wait in between each one. But
1196 * this still all happens pretty quickly.
1197 */
1198
1199static int stli_initopen(stlibrd_t *brdp, stliport_t *portp)
1200{
1201 struct tty_struct *tty;
1202 asynotify_t nt;
1203 asyport_t aport;
1204 int rc;
1205
1206#ifdef DEBUG
1207 printk("stli_initopen(brdp=%x,portp=%x)\n", (int) brdp, (int) portp);
1208#endif
1209
1210 if ((rc = stli_rawopen(brdp, portp, 0, 1)) < 0)
1211 return(rc);
1212
1213 memset(&nt, 0, sizeof(asynotify_t));
1214 nt.data = (DT_TXLOW | DT_TXEMPTY | DT_RXBUSY | DT_RXBREAK);
1215 nt.signal = SG_DCD;
1216 if ((rc = stli_cmdwait(brdp, portp, A_SETNOTIFY, &nt,
1217 sizeof(asynotify_t), 0)) < 0)
1218 return(rc);
1219
1220 tty = portp->tty;
1221 if (tty == (struct tty_struct *) NULL)
1222 return(-ENODEV);
1223 stli_mkasyport(portp, &aport, tty->termios);
1224 if ((rc = stli_cmdwait(brdp, portp, A_SETPORT, &aport,
1225 sizeof(asyport_t), 0)) < 0)
1226 return(rc);
1227
1228 set_bit(ST_GETSIGS, &portp->state);
1229 if ((rc = stli_cmdwait(brdp, portp, A_GETSIGNALS, &portp->asig,
1230 sizeof(asysigs_t), 1)) < 0)
1231 return(rc);
1232 if (test_and_clear_bit(ST_GETSIGS, &portp->state))
1233 portp->sigs = stli_mktiocm(portp->asig.sigvalue);
1234 stli_mkasysigs(&portp->asig, 1, 1);
1235 if ((rc = stli_cmdwait(brdp, portp, A_SETSIGNALS, &portp->asig,
1236 sizeof(asysigs_t), 0)) < 0)
1237 return(rc);
1238
1239 return(0);
1240}
1241
1242/*****************************************************************************/
1243
1244/*
1245 * Send an open message to the slave. This will sleep waiting for the
1246 * acknowledgement, so must have user context. We need to co-ordinate
1247 * with close events here, since we don't want open and close events
1248 * to overlap.
1249 */
1250
1251static int stli_rawopen(stlibrd_t *brdp, stliport_t *portp, unsigned long arg, int wait)
1252{
1253 volatile cdkhdr_t *hdrp;
1254 volatile cdkctrl_t *cp;
1255 volatile unsigned char *bits;
1256 unsigned long flags;
1257 int rc;
1258
1259#ifdef DEBUG
1260 printk("stli_rawopen(brdp=%x,portp=%x,arg=%x,wait=%d)\n",
1261 (int) brdp, (int) portp, (int) arg, wait);
1262#endif
1263
1264/*
1265 * Send a message to the slave to open this port.
1266 */
1267 save_flags(flags);
1268 cli();
1269
1270/*
1271 * Slave is already closing this port. This can happen if a hangup
1272 * occurs on this port. So we must wait until it is complete. The
1273 * order of opens and closes may not be preserved across shared
1274 * memory, so we must wait until it is complete.
1275 */
1276 wait_event_interruptible(portp->raw_wait,
1277 !test_bit(ST_CLOSING, &portp->state));
1278 if (signal_pending(current)) {
1279 restore_flags(flags);
1280 return -ERESTARTSYS;
1281 }
1282
1283/*
1284 * Everything is ready now, so write the open message into shared
1285 * memory. Once the message is in set the service bits to say that
1286 * this port wants service.
1287 */
1288 EBRDENABLE(brdp);
1289 cp = &((volatile cdkasy_t *) EBRDGETMEMPTR(brdp, portp->addr))->ctrl;
1290 cp->openarg = arg;
1291 cp->open = 1;
1292 hdrp = (volatile cdkhdr_t *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
1293 bits = ((volatile unsigned char *) hdrp) + brdp->slaveoffset +
1294 portp->portidx;
1295 *bits |= portp->portbit;
1296 EBRDDISABLE(brdp);
1297
1298 if (wait == 0) {
1299 restore_flags(flags);
1300 return(0);
1301 }
1302
1303/*
1304 * Slave is in action, so now we must wait for the open acknowledgment
1305 * to come back.
1306 */
1307 rc = 0;
1308 set_bit(ST_OPENING, &portp->state);
1309 wait_event_interruptible(portp->raw_wait,
1310 !test_bit(ST_OPENING, &portp->state));
1311 if (signal_pending(current))
1312 rc = -ERESTARTSYS;
1313 restore_flags(flags);
1314
1315 if ((rc == 0) && (portp->rc != 0))
1316 rc = -EIO;
1317 return(rc);
1318}
1319
1320/*****************************************************************************/
1321
1322/*
1323 * Send a close message to the slave. Normally this will sleep waiting
1324 * for the acknowledgement, but if wait parameter is 0 it will not. If
1325 * wait is true then must have user context (to sleep).
1326 */
1327
1328static int stli_rawclose(stlibrd_t *brdp, stliport_t *portp, unsigned long arg, int wait)
1329{
1330 volatile cdkhdr_t *hdrp;
1331 volatile cdkctrl_t *cp;
1332 volatile unsigned char *bits;
1333 unsigned long flags;
1334 int rc;
1335
1336#ifdef DEBUG
1337 printk("stli_rawclose(brdp=%x,portp=%x,arg=%x,wait=%d)\n",
1338 (int) brdp, (int) portp, (int) arg, wait);
1339#endif
1340
1341 save_flags(flags);
1342 cli();
1343
1344/*
1345 * Slave is already closing this port. This can happen if a hangup
1346 * occurs on this port.
1347 */
1348 if (wait) {
1349 wait_event_interruptible(portp->raw_wait,
1350 !test_bit(ST_CLOSING, &portp->state));
1351 if (signal_pending(current)) {
1352 restore_flags(flags);
1353 return -ERESTARTSYS;
1354 }
1355 }
1356
1357/*
1358 * Write the close command into shared memory.
1359 */
1360 EBRDENABLE(brdp);
1361 cp = &((volatile cdkasy_t *) EBRDGETMEMPTR(brdp, portp->addr))->ctrl;
1362 cp->closearg = arg;
1363 cp->close = 1;
1364 hdrp = (volatile cdkhdr_t *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
1365 bits = ((volatile unsigned char *) hdrp) + brdp->slaveoffset +
1366 portp->portidx;
1367 *bits |= portp->portbit;
1368 EBRDDISABLE(brdp);
1369
1370 set_bit(ST_CLOSING, &portp->state);
1371 if (wait == 0) {
1372 restore_flags(flags);
1373 return(0);
1374 }
1375
1376/*
1377 * Slave is in action, so now we must wait for the open acknowledgment
1378 * to come back.
1379 */
1380 rc = 0;
1381 wait_event_interruptible(portp->raw_wait,
1382 !test_bit(ST_CLOSING, &portp->state));
1383 if (signal_pending(current))
1384 rc = -ERESTARTSYS;
1385 restore_flags(flags);
1386
1387 if ((rc == 0) && (portp->rc != 0))
1388 rc = -EIO;
1389 return(rc);
1390}
1391
1392/*****************************************************************************/
1393
1394/*
1395 * Send a command to the slave and wait for the response. This must
1396 * have user context (it sleeps). This routine is generic in that it
1397 * can send any type of command. Its purpose is to wait for that command
1398 * to complete (as opposed to initiating the command then returning).
1399 */
1400
1401static int stli_cmdwait(stlibrd_t *brdp, stliport_t *portp, unsigned long cmd, void *arg, int size, int copyback)
1402{
1403 unsigned long flags;
1404
1405#ifdef DEBUG
1406 printk("stli_cmdwait(brdp=%x,portp=%x,cmd=%x,arg=%x,size=%d,"
1407 "copyback=%d)\n", (int) brdp, (int) portp, (int) cmd,
1408 (int) arg, size, copyback);
1409#endif
1410
1411 save_flags(flags);
1412 cli();
1413 wait_event_interruptible(portp->raw_wait,
1414 !test_bit(ST_CMDING, &portp->state));
1415 if (signal_pending(current)) {
1416 restore_flags(flags);
1417 return -ERESTARTSYS;
1418 }
1419
1420 stli_sendcmd(brdp, portp, cmd, arg, size, copyback);
1421
1422 wait_event_interruptible(portp->raw_wait,
1423 !test_bit(ST_CMDING, &portp->state));
1424 if (signal_pending(current)) {
1425 restore_flags(flags);
1426 return -ERESTARTSYS;
1427 }
1428 restore_flags(flags);
1429
1430 if (portp->rc != 0)
1431 return(-EIO);
1432 return(0);
1433}
1434
1435/*****************************************************************************/
1436
1437/*
1438 * Send the termios settings for this port to the slave. This sleeps
1439 * waiting for the command to complete - so must have user context.
1440 */
1441
1442static int stli_setport(stliport_t *portp)
1443{
1444 stlibrd_t *brdp;
1445 asyport_t aport;
1446
1447#ifdef DEBUG
1448 printk("stli_setport(portp=%x)\n", (int) portp);
1449#endif
1450
1451 if (portp == (stliport_t *) NULL)
1452 return(-ENODEV);
1453 if (portp->tty == (struct tty_struct *) NULL)
1454 return(-ENODEV);
1455 if ((portp->brdnr < 0) && (portp->brdnr >= stli_nrbrds))
1456 return(-ENODEV);
1457 brdp = stli_brds[portp->brdnr];
1458 if (brdp == (stlibrd_t *) NULL)
1459 return(-ENODEV);
1460
1461 stli_mkasyport(portp, &aport, portp->tty->termios);
1462 return(stli_cmdwait(brdp, portp, A_SETPORT, &aport, sizeof(asyport_t), 0));
1463}
1464
1465/*****************************************************************************/
1466
1467/*
1468 * Possibly need to wait for carrier (DCD signal) to come high. Say
1469 * maybe because if we are clocal then we don't need to wait...
1470 */
1471
1472static int stli_waitcarrier(stlibrd_t *brdp, stliport_t *portp, struct file *filp)
1473{
1474 unsigned long flags;
1475 int rc, doclocal;
1476
1477#ifdef DEBUG
1478 printk("stli_waitcarrier(brdp=%x,portp=%x,filp=%x)\n",
1479 (int) brdp, (int) portp, (int) filp);
1480#endif
1481
1482 rc = 0;
1483 doclocal = 0;
1484
1485 if (portp->tty->termios->c_cflag & CLOCAL)
1486 doclocal++;
1487
1488 save_flags(flags);
1489 cli();
1490 portp->openwaitcnt++;
1491 if (! tty_hung_up_p(filp))
1492 portp->refcount--;
1493
1494 for (;;) {
1495 stli_mkasysigs(&portp->asig, 1, 1);
1496 if ((rc = stli_cmdwait(brdp, portp, A_SETSIGNALS,
1497 &portp->asig, sizeof(asysigs_t), 0)) < 0)
1498 break;
1499 if (tty_hung_up_p(filp) ||
1500 ((portp->flags & ASYNC_INITIALIZED) == 0)) {
1501 if (portp->flags & ASYNC_HUP_NOTIFY)
1502 rc = -EBUSY;
1503 else
1504 rc = -ERESTARTSYS;
1505 break;
1506 }
1507 if (((portp->flags & ASYNC_CLOSING) == 0) &&
1508 (doclocal || (portp->sigs & TIOCM_CD))) {
1509 break;
1510 }
1511 if (signal_pending(current)) {
1512 rc = -ERESTARTSYS;
1513 break;
1514 }
1515 interruptible_sleep_on(&portp->open_wait);
1516 }
1517
1518 if (! tty_hung_up_p(filp))
1519 portp->refcount++;
1520 portp->openwaitcnt--;
1521 restore_flags(flags);
1522
1523 return(rc);
1524}
1525
1526/*****************************************************************************/
1527
1528/*
1529 * Write routine. Take the data and put it in the shared memory ring
1530 * queue. If port is not already sending chars then need to mark the
1531 * service bits for this port.
1532 */
1533
1534static int stli_write(struct tty_struct *tty, const unsigned char *buf, int count)
1535{
1536 volatile cdkasy_t *ap;
1537 volatile cdkhdr_t *hdrp;
1538 volatile unsigned char *bits;
1539 unsigned char *shbuf, *chbuf;
1540 stliport_t *portp;
1541 stlibrd_t *brdp;
1542 unsigned int len, stlen, head, tail, size;
1543 unsigned long flags;
1544
1545#ifdef DEBUG
1546 printk("stli_write(tty=%x,buf=%x,count=%d)\n",
1547 (int) tty, (int) buf, count);
1548#endif
1549
1550 if ((tty == (struct tty_struct *) NULL) ||
1551 (stli_tmpwritebuf == (char *) NULL))
1552 return(0);
1553 if (tty == stli_txcooktty)
1554 stli_flushchars(tty);
1555 portp = tty->driver_data;
1556 if (portp == (stliport_t *) NULL)
1557 return(0);
1558 if ((portp->brdnr < 0) || (portp->brdnr >= stli_nrbrds))
1559 return(0);
1560 brdp = stli_brds[portp->brdnr];
1561 if (brdp == (stlibrd_t *) NULL)
1562 return(0);
1563 chbuf = (unsigned char *) buf;
1564
1565/*
1566 * All data is now local, shove as much as possible into shared memory.
1567 */
1568 save_flags(flags);
1569 cli();
1570 EBRDENABLE(brdp);
1571 ap = (volatile cdkasy_t *) EBRDGETMEMPTR(brdp, portp->addr);
1572 head = (unsigned int) ap->txq.head;
1573 tail = (unsigned int) ap->txq.tail;
1574 if (tail != ((unsigned int) ap->txq.tail))
1575 tail = (unsigned int) ap->txq.tail;
1576 size = portp->txsize;
1577 if (head >= tail) {
1578 len = size - (head - tail) - 1;
1579 stlen = size - head;
1580 } else {
1581 len = tail - head - 1;
1582 stlen = len;
1583 }
1584
1585 len = MIN(len, count);
1586 count = 0;
1587 shbuf = (char *) EBRDGETMEMPTR(brdp, portp->txoffset);
1588
1589 while (len > 0) {
1590 stlen = MIN(len, stlen);
1591 memcpy((shbuf + head), chbuf, stlen);
1592 chbuf += stlen;
1593 len -= stlen;
1594 count += stlen;
1595 head += stlen;
1596 if (head >= size) {
1597 head = 0;
1598 stlen = tail;
1599 }
1600 }
1601
1602 ap = (volatile cdkasy_t *) EBRDGETMEMPTR(brdp, portp->addr);
1603 ap->txq.head = head;
1604 if (test_bit(ST_TXBUSY, &portp->state)) {
1605 if (ap->changed.data & DT_TXEMPTY)
1606 ap->changed.data &= ~DT_TXEMPTY;
1607 }
1608 hdrp = (volatile cdkhdr_t *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
1609 bits = ((volatile unsigned char *) hdrp) + brdp->slaveoffset +
1610 portp->portidx;
1611 *bits |= portp->portbit;
1612 set_bit(ST_TXBUSY, &portp->state);
1613 EBRDDISABLE(brdp);
1614
1615 restore_flags(flags);
1616
1617 return(count);
1618}
1619
1620/*****************************************************************************/
1621
1622/*
1623 * Output a single character. We put it into a temporary local buffer
1624 * (for speed) then write out that buffer when the flushchars routine
1625 * is called. There is a safety catch here so that if some other port
1626 * writes chars before the current buffer has been, then we write them
1627 * first them do the new ports.
1628 */
1629
1630static void stli_putchar(struct tty_struct *tty, unsigned char ch)
1631{
1632#ifdef DEBUG
1633 printk("stli_putchar(tty=%x,ch=%x)\n", (int) tty, (int) ch);
1634#endif
1635
1636 if (tty == (struct tty_struct *) NULL)
1637 return;
1638 if (tty != stli_txcooktty) {
1639 if (stli_txcooktty != (struct tty_struct *) NULL)
1640 stli_flushchars(stli_txcooktty);
1641 stli_txcooktty = tty;
1642 }
1643
1644 stli_txcookbuf[stli_txcooksize++] = ch;
1645}
1646
1647/*****************************************************************************/
1648
1649/*
1650 * Transfer characters from the local TX cooking buffer to the board.
1651 * We sort of ignore the tty that gets passed in here. We rely on the
1652 * info stored with the TX cook buffer to tell us which port to flush
1653 * the data on. In any case we clean out the TX cook buffer, for re-use
1654 * by someone else.
1655 */
1656
1657static void stli_flushchars(struct tty_struct *tty)
1658{
1659 volatile cdkhdr_t *hdrp;
1660 volatile unsigned char *bits;
1661 volatile cdkasy_t *ap;
1662 struct tty_struct *cooktty;
1663 stliport_t *portp;
1664 stlibrd_t *brdp;
1665 unsigned int len, stlen, head, tail, size, count, cooksize;
1666 unsigned char *buf, *shbuf;
1667 unsigned long flags;
1668
1669#ifdef DEBUG
1670 printk("stli_flushchars(tty=%x)\n", (int) tty);
1671#endif
1672
1673 cooksize = stli_txcooksize;
1674 cooktty = stli_txcooktty;
1675 stli_txcooksize = 0;
1676 stli_txcookrealsize = 0;
1677 stli_txcooktty = (struct tty_struct *) NULL;
1678
1679 if (tty == (struct tty_struct *) NULL)
1680 return;
1681 if (cooktty == (struct tty_struct *) NULL)
1682 return;
1683 if (tty != cooktty)
1684 tty = cooktty;
1685 if (cooksize == 0)
1686 return;
1687
1688 portp = tty->driver_data;
1689 if (portp == (stliport_t *) NULL)
1690 return;
1691 if ((portp->brdnr < 0) || (portp->brdnr >= stli_nrbrds))
1692 return;
1693 brdp = stli_brds[portp->brdnr];
1694 if (brdp == (stlibrd_t *) NULL)
1695 return;
1696
1697 save_flags(flags);
1698 cli();
1699 EBRDENABLE(brdp);
1700
1701 ap = (volatile cdkasy_t *) EBRDGETMEMPTR(brdp, portp->addr);
1702 head = (unsigned int) ap->txq.head;
1703 tail = (unsigned int) ap->txq.tail;
1704 if (tail != ((unsigned int) ap->txq.tail))
1705 tail = (unsigned int) ap->txq.tail;
1706 size = portp->txsize;
1707 if (head >= tail) {
1708 len = size - (head - tail) - 1;
1709 stlen = size - head;
1710 } else {
1711 len = tail - head - 1;
1712 stlen = len;
1713 }
1714
1715 len = MIN(len, cooksize);
1716 count = 0;
1717 shbuf = (char *) EBRDGETMEMPTR(brdp, portp->txoffset);
1718 buf = stli_txcookbuf;
1719
1720 while (len > 0) {
1721 stlen = MIN(len, stlen);
1722 memcpy((shbuf + head), buf, stlen);
1723 buf += stlen;
1724 len -= stlen;
1725 count += stlen;
1726 head += stlen;
1727 if (head >= size) {
1728 head = 0;
1729 stlen = tail;
1730 }
1731 }
1732
1733 ap = (volatile cdkasy_t *) EBRDGETMEMPTR(brdp, portp->addr);
1734 ap->txq.head = head;
1735
1736 if (test_bit(ST_TXBUSY, &portp->state)) {
1737 if (ap->changed.data & DT_TXEMPTY)
1738 ap->changed.data &= ~DT_TXEMPTY;
1739 }
1740 hdrp = (volatile cdkhdr_t *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
1741 bits = ((volatile unsigned char *) hdrp) + brdp->slaveoffset +
1742 portp->portidx;
1743 *bits |= portp->portbit;
1744 set_bit(ST_TXBUSY, &portp->state);
1745
1746 EBRDDISABLE(brdp);
1747 restore_flags(flags);
1748}
1749
1750/*****************************************************************************/
1751
1752static int stli_writeroom(struct tty_struct *tty)
1753{
1754 volatile cdkasyrq_t *rp;
1755 stliport_t *portp;
1756 stlibrd_t *brdp;
1757 unsigned int head, tail, len;
1758 unsigned long flags;
1759
1760#ifdef DEBUG
1761 printk("stli_writeroom(tty=%x)\n", (int) tty);
1762#endif
1763
1764 if (tty == (struct tty_struct *) NULL)
1765 return(0);
1766 if (tty == stli_txcooktty) {
1767 if (stli_txcookrealsize != 0) {
1768 len = stli_txcookrealsize - stli_txcooksize;
1769 return(len);
1770 }
1771 }
1772
1773 portp = tty->driver_data;
1774 if (portp == (stliport_t *) NULL)
1775 return(0);
1776 if ((portp->brdnr < 0) || (portp->brdnr >= stli_nrbrds))
1777 return(0);
1778 brdp = stli_brds[portp->brdnr];
1779 if (brdp == (stlibrd_t *) NULL)
1780 return(0);
1781
1782 save_flags(flags);
1783 cli();
1784 EBRDENABLE(brdp);
1785 rp = &((volatile cdkasy_t *) EBRDGETMEMPTR(brdp, portp->addr))->txq;
1786 head = (unsigned int) rp->head;
1787 tail = (unsigned int) rp->tail;
1788 if (tail != ((unsigned int) rp->tail))
1789 tail = (unsigned int) rp->tail;
1790 len = (head >= tail) ? (portp->txsize - (head - tail)) : (tail - head);
1791 len--;
1792 EBRDDISABLE(brdp);
1793 restore_flags(flags);
1794
1795 if (tty == stli_txcooktty) {
1796 stli_txcookrealsize = len;
1797 len -= stli_txcooksize;
1798 }
1799 return(len);
1800}
1801
1802/*****************************************************************************/
1803
1804/*
1805 * Return the number of characters in the transmit buffer. Normally we
1806 * will return the number of chars in the shared memory ring queue.
1807 * We need to kludge around the case where the shared memory buffer is
1808 * empty but not all characters have drained yet, for this case just
1809 * return that there is 1 character in the buffer!
1810 */
1811
1812static int stli_charsinbuffer(struct tty_struct *tty)
1813{
1814 volatile cdkasyrq_t *rp;
1815 stliport_t *portp;
1816 stlibrd_t *brdp;
1817 unsigned int head, tail, len;
1818 unsigned long flags;
1819
1820#ifdef DEBUG
1821 printk("stli_charsinbuffer(tty=%x)\n", (int) tty);
1822#endif
1823
1824 if (tty == (struct tty_struct *) NULL)
1825 return(0);
1826 if (tty == stli_txcooktty)
1827 stli_flushchars(tty);
1828 portp = tty->driver_data;
1829 if (portp == (stliport_t *) NULL)
1830 return(0);
1831 if ((portp->brdnr < 0) || (portp->brdnr >= stli_nrbrds))
1832 return(0);
1833 brdp = stli_brds[portp->brdnr];
1834 if (brdp == (stlibrd_t *) NULL)
1835 return(0);
1836
1837 save_flags(flags);
1838 cli();
1839 EBRDENABLE(brdp);
1840 rp = &((volatile cdkasy_t *) EBRDGETMEMPTR(brdp, portp->addr))->txq;
1841 head = (unsigned int) rp->head;
1842 tail = (unsigned int) rp->tail;
1843 if (tail != ((unsigned int) rp->tail))
1844 tail = (unsigned int) rp->tail;
1845 len = (head >= tail) ? (head - tail) : (portp->txsize - (tail - head));
1846 if ((len == 0) && test_bit(ST_TXBUSY, &portp->state))
1847 len = 1;
1848 EBRDDISABLE(brdp);
1849 restore_flags(flags);
1850
1851 return(len);
1852}
1853
1854/*****************************************************************************/
1855
1856/*
1857 * Generate the serial struct info.
1858 */
1859
1860static int stli_getserial(stliport_t *portp, struct serial_struct __user *sp)
1861{
1862 struct serial_struct sio;
1863 stlibrd_t *brdp;
1864
1865#ifdef DEBUG
1866 printk("stli_getserial(portp=%x,sp=%x)\n", (int) portp, (int) sp);
1867#endif
1868
1869 memset(&sio, 0, sizeof(struct serial_struct));
1870 sio.type = PORT_UNKNOWN;
1871 sio.line = portp->portnr;
1872 sio.irq = 0;
1873 sio.flags = portp->flags;
1874 sio.baud_base = portp->baud_base;
1875 sio.close_delay = portp->close_delay;
1876 sio.closing_wait = portp->closing_wait;
1877 sio.custom_divisor = portp->custom_divisor;
1878 sio.xmit_fifo_size = 0;
1879 sio.hub6 = 0;
1880
1881 brdp = stli_brds[portp->brdnr];
1882 if (brdp != (stlibrd_t *) NULL)
1883 sio.port = brdp->iobase;
1884
1885 return copy_to_user(sp, &sio, sizeof(struct serial_struct)) ?
1886 -EFAULT : 0;
1887}
1888
1889/*****************************************************************************/
1890
1891/*
1892 * Set port according to the serial struct info.
1893 * At this point we do not do any auto-configure stuff, so we will
1894 * just quietly ignore any requests to change irq, etc.
1895 */
1896
1897static int stli_setserial(stliport_t *portp, struct serial_struct __user *sp)
1898{
1899 struct serial_struct sio;
1900 int rc;
1901
1902#ifdef DEBUG
1903 printk("stli_setserial(portp=%p,sp=%p)\n", portp, sp);
1904#endif
1905
1906 if (copy_from_user(&sio, sp, sizeof(struct serial_struct)))
1907 return -EFAULT;
1908 if (!capable(CAP_SYS_ADMIN)) {
1909 if ((sio.baud_base != portp->baud_base) ||
1910 (sio.close_delay != portp->close_delay) ||
1911 ((sio.flags & ~ASYNC_USR_MASK) !=
1912 (portp->flags & ~ASYNC_USR_MASK)))
1913 return(-EPERM);
1914 }
1915
1916 portp->flags = (portp->flags & ~ASYNC_USR_MASK) |
1917 (sio.flags & ASYNC_USR_MASK);
1918 portp->baud_base = sio.baud_base;
1919 portp->close_delay = sio.close_delay;
1920 portp->closing_wait = sio.closing_wait;
1921 portp->custom_divisor = sio.custom_divisor;
1922
1923 if ((rc = stli_setport(portp)) < 0)
1924 return(rc);
1925 return(0);
1926}
1927
1928/*****************************************************************************/
1929
1930static int stli_tiocmget(struct tty_struct *tty, struct file *file)
1931{
1932 stliport_t *portp = tty->driver_data;
1933 stlibrd_t *brdp;
1934 int rc;
1935
1936 if (portp == (stliport_t *) NULL)
1937 return(-ENODEV);
1938 if ((portp->brdnr < 0) || (portp->brdnr >= stli_nrbrds))
1939 return(0);
1940 brdp = stli_brds[portp->brdnr];
1941 if (brdp == (stlibrd_t *) NULL)
1942 return(0);
1943 if (tty->flags & (1 << TTY_IO_ERROR))
1944 return(-EIO);
1945
1946 if ((rc = stli_cmdwait(brdp, portp, A_GETSIGNALS,
1947 &portp->asig, sizeof(asysigs_t), 1)) < 0)
1948 return(rc);
1949
1950 return stli_mktiocm(portp->asig.sigvalue);
1951}
1952
1953static int stli_tiocmset(struct tty_struct *tty, struct file *file,
1954 unsigned int set, unsigned int clear)
1955{
1956 stliport_t *portp = tty->driver_data;
1957 stlibrd_t *brdp;
1958 int rts = -1, dtr = -1;
1959
1960 if (portp == (stliport_t *) NULL)
1961 return(-ENODEV);
1962 if ((portp->brdnr < 0) || (portp->brdnr >= stli_nrbrds))
1963 return(0);
1964 brdp = stli_brds[portp->brdnr];
1965 if (brdp == (stlibrd_t *) NULL)
1966 return(0);
1967 if (tty->flags & (1 << TTY_IO_ERROR))
1968 return(-EIO);
1969
1970 if (set & TIOCM_RTS)
1971 rts = 1;
1972 if (set & TIOCM_DTR)
1973 dtr = 1;
1974 if (clear & TIOCM_RTS)
1975 rts = 0;
1976 if (clear & TIOCM_DTR)
1977 dtr = 0;
1978
1979 stli_mkasysigs(&portp->asig, dtr, rts);
1980
1981 return stli_cmdwait(brdp, portp, A_SETSIGNALS, &portp->asig,
1982 sizeof(asysigs_t), 0);
1983}
1984
1985static int stli_ioctl(struct tty_struct *tty, struct file *file, unsigned int cmd, unsigned long arg)
1986{
1987 stliport_t *portp;
1988 stlibrd_t *brdp;
1989 unsigned int ival;
1990 int rc;
1991 void __user *argp = (void __user *)arg;
1992
1993#ifdef DEBUG
1994 printk("stli_ioctl(tty=%x,file=%x,cmd=%x,arg=%x)\n",
1995 (int) tty, (int) file, cmd, (int) arg);
1996#endif
1997
1998 if (tty == (struct tty_struct *) NULL)
1999 return(-ENODEV);
2000 portp = tty->driver_data;
2001 if (portp == (stliport_t *) NULL)
2002 return(-ENODEV);
2003 if ((portp->brdnr < 0) || (portp->brdnr >= stli_nrbrds))
2004 return(0);
2005 brdp = stli_brds[portp->brdnr];
2006 if (brdp == (stlibrd_t *) NULL)
2007 return(0);
2008
2009 if ((cmd != TIOCGSERIAL) && (cmd != TIOCSSERIAL) &&
2010 (cmd != COM_GETPORTSTATS) && (cmd != COM_CLRPORTSTATS)) {
2011 if (tty->flags & (1 << TTY_IO_ERROR))
2012 return(-EIO);
2013 }
2014
2015 rc = 0;
2016
2017 switch (cmd) {
2018 case TIOCGSOFTCAR:
2019 rc = put_user(((tty->termios->c_cflag & CLOCAL) ? 1 : 0),
2020 (unsigned __user *) arg);
2021 break;
2022 case TIOCSSOFTCAR:
2023 if ((rc = get_user(ival, (unsigned __user *) arg)) == 0)
2024 tty->termios->c_cflag =
2025 (tty->termios->c_cflag & ~CLOCAL) |
2026 (ival ? CLOCAL : 0);
2027 break;
2028 case TIOCGSERIAL:
2029 rc = stli_getserial(portp, argp);
2030 break;
2031 case TIOCSSERIAL:
2032 rc = stli_setserial(portp, argp);
2033 break;
2034 case STL_GETPFLAG:
2035 rc = put_user(portp->pflag, (unsigned __user *)argp);
2036 break;
2037 case STL_SETPFLAG:
2038 if ((rc = get_user(portp->pflag, (unsigned __user *)argp)) == 0)
2039 stli_setport(portp);
2040 break;
2041 case COM_GETPORTSTATS:
2042 rc = stli_getportstats(portp, argp);
2043 break;
2044 case COM_CLRPORTSTATS:
2045 rc = stli_clrportstats(portp, argp);
2046 break;
2047 case TIOCSERCONFIG:
2048 case TIOCSERGWILD:
2049 case TIOCSERSWILD:
2050 case TIOCSERGETLSR:
2051 case TIOCSERGSTRUCT:
2052 case TIOCSERGETMULTI:
2053 case TIOCSERSETMULTI:
2054 default:
2055 rc = -ENOIOCTLCMD;
2056 break;
2057 }
2058
2059 return(rc);
2060}
2061
2062/*****************************************************************************/
2063
2064/*
2065 * This routine assumes that we have user context and can sleep.
2066 * Looks like it is true for the current ttys implementation..!!
2067 */
2068
2069static void stli_settermios(struct tty_struct *tty, struct termios *old)
2070{
2071 stliport_t *portp;
2072 stlibrd_t *brdp;
2073 struct termios *tiosp;
2074 asyport_t aport;
2075
2076#ifdef DEBUG
2077 printk("stli_settermios(tty=%x,old=%x)\n", (int) tty, (int) old);
2078#endif
2079
2080 if (tty == (struct tty_struct *) NULL)
2081 return;
2082 portp = tty->driver_data;
2083 if (portp == (stliport_t *) NULL)
2084 return;
2085 if ((portp->brdnr < 0) || (portp->brdnr >= stli_nrbrds))
2086 return;
2087 brdp = stli_brds[portp->brdnr];
2088 if (brdp == (stlibrd_t *) NULL)
2089 return;
2090
2091 tiosp = tty->termios;
2092 if ((tiosp->c_cflag == old->c_cflag) &&
2093 (tiosp->c_iflag == old->c_iflag))
2094 return;
2095
2096 stli_mkasyport(portp, &aport, tiosp);
2097 stli_cmdwait(brdp, portp, A_SETPORT, &aport, sizeof(asyport_t), 0);
2098 stli_mkasysigs(&portp->asig, ((tiosp->c_cflag & CBAUD) ? 1 : 0), -1);
2099 stli_cmdwait(brdp, portp, A_SETSIGNALS, &portp->asig,
2100 sizeof(asysigs_t), 0);
2101 if ((old->c_cflag & CRTSCTS) && ((tiosp->c_cflag & CRTSCTS) == 0))
2102 tty->hw_stopped = 0;
2103 if (((old->c_cflag & CLOCAL) == 0) && (tiosp->c_cflag & CLOCAL))
2104 wake_up_interruptible(&portp->open_wait);
2105}
2106
2107/*****************************************************************************/
2108
2109/*
2110 * Attempt to flow control who ever is sending us data. We won't really
2111 * do any flow control action here. We can't directly, and even if we
2112 * wanted to we would have to send a command to the slave. The slave
2113 * knows how to flow control, and will do so when its buffers reach its
2114 * internal high water marks. So what we will do is set a local state
2115 * bit that will stop us sending any RX data up from the poll routine
2116 * (which is the place where RX data from the slave is handled).
2117 */
2118
2119static void stli_throttle(struct tty_struct *tty)
2120{
2121 stliport_t *portp;
2122
2123#ifdef DEBUG
2124 printk("stli_throttle(tty=%x)\n", (int) tty);
2125#endif
2126
2127 if (tty == (struct tty_struct *) NULL)
2128 return;
2129 portp = tty->driver_data;
2130 if (portp == (stliport_t *) NULL)
2131 return;
2132
2133 set_bit(ST_RXSTOP, &portp->state);
2134}
2135
2136/*****************************************************************************/
2137
2138/*
2139 * Unflow control the device sending us data... That means that all
2140 * we have to do is clear the RXSTOP state bit. The next poll call
2141 * will then be able to pass the RX data back up.
2142 */
2143
2144static void stli_unthrottle(struct tty_struct *tty)
2145{
2146 stliport_t *portp;
2147
2148#ifdef DEBUG
2149 printk("stli_unthrottle(tty=%x)\n", (int) tty);
2150#endif
2151
2152 if (tty == (struct tty_struct *) NULL)
2153 return;
2154 portp = tty->driver_data;
2155 if (portp == (stliport_t *) NULL)
2156 return;
2157
2158 clear_bit(ST_RXSTOP, &portp->state);
2159}
2160
2161/*****************************************************************************/
2162
2163/*
2164 * Stop the transmitter. Basically to do this we will just turn TX
2165 * interrupts off.
2166 */
2167
2168static void stli_stop(struct tty_struct *tty)
2169{
2170 stlibrd_t *brdp;
2171 stliport_t *portp;
2172 asyctrl_t actrl;
2173
2174#ifdef DEBUG
2175 printk("stli_stop(tty=%x)\n", (int) tty);
2176#endif
2177
2178 if (tty == (struct tty_struct *) NULL)
2179 return;
2180 portp = tty->driver_data;
2181 if (portp == (stliport_t *) NULL)
2182 return;
2183 if ((portp->brdnr < 0) || (portp->brdnr >= stli_nrbrds))
2184 return;
2185 brdp = stli_brds[portp->brdnr];
2186 if (brdp == (stlibrd_t *) NULL)
2187 return;
2188
2189 memset(&actrl, 0, sizeof(asyctrl_t));
2190 actrl.txctrl = CT_STOPFLOW;
2191#if 0
2192 stli_cmdwait(brdp, portp, A_PORTCTRL, &actrl, sizeof(asyctrl_t), 0);
2193#endif
2194}
2195
2196/*****************************************************************************/
2197
2198/*
2199 * Start the transmitter again. Just turn TX interrupts back on.
2200 */
2201
2202static void stli_start(struct tty_struct *tty)
2203{
2204 stliport_t *portp;
2205 stlibrd_t *brdp;
2206 asyctrl_t actrl;
2207
2208#ifdef DEBUG
2209 printk("stli_start(tty=%x)\n", (int) tty);
2210#endif
2211
2212 if (tty == (struct tty_struct *) NULL)
2213 return;
2214 portp = tty->driver_data;
2215 if (portp == (stliport_t *) NULL)
2216 return;
2217 if ((portp->brdnr < 0) || (portp->brdnr >= stli_nrbrds))
2218 return;
2219 brdp = stli_brds[portp->brdnr];
2220 if (brdp == (stlibrd_t *) NULL)
2221 return;
2222
2223 memset(&actrl, 0, sizeof(asyctrl_t));
2224 actrl.txctrl = CT_STARTFLOW;
2225#if 0
2226 stli_cmdwait(brdp, portp, A_PORTCTRL, &actrl, sizeof(asyctrl_t), 0);
2227#endif
2228}
2229
2230/*****************************************************************************/
2231
2232/*
2233 * Scheduler called hang up routine. This is called from the scheduler,
2234 * not direct from the driver "poll" routine. We can't call it there
2235 * since the real local hangup code will enable/disable the board and
2236 * other things that we can't do while handling the poll. Much easier
2237 * to deal with it some time later (don't really care when, hangups
2238 * aren't that time critical).
2239 */
2240
2241static void stli_dohangup(void *arg)
2242{
2243 stliport_t *portp;
2244
2245#ifdef DEBUG
2246 printk(KERN_DEBUG "stli_dohangup(portp=%x)\n", (int) arg);
2247#endif
2248
2249 /*
2250 * FIXME: There's a module removal race here: tty_hangup
2251 * calls schedule_work which will call into this
2252 * driver later.
2253 */
2254 portp = (stliport_t *) arg;
2255 if (portp != (stliport_t *) NULL) {
2256 if (portp->tty != (struct tty_struct *) NULL) {
2257 tty_hangup(portp->tty);
2258 }
2259 }
2260}
2261
2262/*****************************************************************************/
2263
2264/*
2265 * Hangup this port. This is pretty much like closing the port, only
2266 * a little more brutal. No waiting for data to drain. Shutdown the
2267 * port and maybe drop signals. This is rather tricky really. We want
2268 * to close the port as well.
2269 */
2270
2271static void stli_hangup(struct tty_struct *tty)
2272{
2273 stliport_t *portp;
2274 stlibrd_t *brdp;
2275 unsigned long flags;
2276
2277#ifdef DEBUG
2278 printk(KERN_DEBUG "stli_hangup(tty=%x)\n", (int) tty);
2279#endif
2280
2281 if (tty == (struct tty_struct *) NULL)
2282 return;
2283 portp = tty->driver_data;
2284 if (portp == (stliport_t *) NULL)
2285 return;
2286 if ((portp->brdnr < 0) || (portp->brdnr >= stli_nrbrds))
2287 return;
2288 brdp = stli_brds[portp->brdnr];
2289 if (brdp == (stlibrd_t *) NULL)
2290 return;
2291
2292 portp->flags &= ~ASYNC_INITIALIZED;
2293
2294 save_flags(flags);
2295 cli();
2296 if (! test_bit(ST_CLOSING, &portp->state))
2297 stli_rawclose(brdp, portp, 0, 0);
2298 if (tty->termios->c_cflag & HUPCL) {
2299 stli_mkasysigs(&portp->asig, 0, 0);
2300 if (test_bit(ST_CMDING, &portp->state)) {
2301 set_bit(ST_DOSIGS, &portp->state);
2302 set_bit(ST_DOFLUSHTX, &portp->state);
2303 set_bit(ST_DOFLUSHRX, &portp->state);
2304 } else {
2305 stli_sendcmd(brdp, portp, A_SETSIGNALSF,
2306 &portp->asig, sizeof(asysigs_t), 0);
2307 }
2308 }
2309 restore_flags(flags);
2310
2311 clear_bit(ST_TXBUSY, &portp->state);
2312 clear_bit(ST_RXSTOP, &portp->state);
2313 set_bit(TTY_IO_ERROR, &tty->flags);
2314 portp->tty = (struct tty_struct *) NULL;
2315 portp->flags &= ~ASYNC_NORMAL_ACTIVE;
2316 portp->refcount = 0;
2317 wake_up_interruptible(&portp->open_wait);
2318}
2319
2320/*****************************************************************************/
2321
2322/*
2323 * Flush characters from the lower buffer. We may not have user context
2324 * so we cannot sleep waiting for it to complete. Also we need to check
2325 * if there is chars for this port in the TX cook buffer, and flush them
2326 * as well.
2327 */
2328
2329static void stli_flushbuffer(struct tty_struct *tty)
2330{
2331 stliport_t *portp;
2332 stlibrd_t *brdp;
2333 unsigned long ftype, flags;
2334
2335#ifdef DEBUG
2336 printk(KERN_DEBUG "stli_flushbuffer(tty=%x)\n", (int) tty);
2337#endif
2338
2339 if (tty == (struct tty_struct *) NULL)
2340 return;
2341 portp = tty->driver_data;
2342 if (portp == (stliport_t *) NULL)
2343 return;
2344 if ((portp->brdnr < 0) || (portp->brdnr >= stli_nrbrds))
2345 return;
2346 brdp = stli_brds[portp->brdnr];
2347 if (brdp == (stlibrd_t *) NULL)
2348 return;
2349
2350 save_flags(flags);
2351 cli();
2352 if (tty == stli_txcooktty) {
2353 stli_txcooktty = (struct tty_struct *) NULL;
2354 stli_txcooksize = 0;
2355 stli_txcookrealsize = 0;
2356 }
2357 if (test_bit(ST_CMDING, &portp->state)) {
2358 set_bit(ST_DOFLUSHTX, &portp->state);
2359 } else {
2360 ftype = FLUSHTX;
2361 if (test_bit(ST_DOFLUSHRX, &portp->state)) {
2362 ftype |= FLUSHRX;
2363 clear_bit(ST_DOFLUSHRX, &portp->state);
2364 }
2365 stli_sendcmd(brdp, portp, A_FLUSH, &ftype,
2366 sizeof(unsigned long), 0);
2367 }
2368 restore_flags(flags);
2369
2370 wake_up_interruptible(&tty->write_wait);
2371 if ((tty->flags & (1 << TTY_DO_WRITE_WAKEUP)) &&
2372 tty->ldisc.write_wakeup)
2373 (tty->ldisc.write_wakeup)(tty);
2374}
2375
2376/*****************************************************************************/
2377
2378static void stli_breakctl(struct tty_struct *tty, int state)
2379{
2380 stlibrd_t *brdp;
2381 stliport_t *portp;
2382 long arg;
2383 /* long savestate, savetime; */
2384
2385#ifdef DEBUG
2386 printk(KERN_DEBUG "stli_breakctl(tty=%x,state=%d)\n", (int) tty, state);
2387#endif
2388
2389 if (tty == (struct tty_struct *) NULL)
2390 return;
2391 portp = tty->driver_data;
2392 if (portp == (stliport_t *) NULL)
2393 return;
2394 if ((portp->brdnr < 0) || (portp->brdnr >= stli_nrbrds))
2395 return;
2396 brdp = stli_brds[portp->brdnr];
2397 if (brdp == (stlibrd_t *) NULL)
2398 return;
2399
2400/*
2401 * Due to a bug in the tty send_break() code we need to preserve
2402 * the current process state and timeout...
2403 savetime = current->timeout;
2404 savestate = current->state;
2405 */
2406
2407 arg = (state == -1) ? BREAKON : BREAKOFF;
2408 stli_cmdwait(brdp, portp, A_BREAK, &arg, sizeof(long), 0);
2409
2410/*
2411 *
2412 current->timeout = savetime;
2413 current->state = savestate;
2414 */
2415}
2416
2417/*****************************************************************************/
2418
2419static void stli_waituntilsent(struct tty_struct *tty, int timeout)
2420{
2421 stliport_t *portp;
2422 unsigned long tend;
2423
2424#ifdef DEBUG
2425 printk(KERN_DEBUG "stli_waituntilsent(tty=%x,timeout=%x)\n", (int) tty, timeout);
2426#endif
2427
2428 if (tty == (struct tty_struct *) NULL)
2429 return;
2430 portp = tty->driver_data;
2431 if (portp == (stliport_t *) NULL)
2432 return;
2433
2434 if (timeout == 0)
2435 timeout = HZ;
2436 tend = jiffies + timeout;
2437
2438 while (test_bit(ST_TXBUSY, &portp->state)) {
2439 if (signal_pending(current))
2440 break;
2441 msleep_interruptible(20);
2442 if (time_after_eq(jiffies, tend))
2443 break;
2444 }
2445}
2446
2447/*****************************************************************************/
2448
2449static void stli_sendxchar(struct tty_struct *tty, char ch)
2450{
2451 stlibrd_t *brdp;
2452 stliport_t *portp;
2453 asyctrl_t actrl;
2454
2455#ifdef DEBUG
2456 printk(KERN_DEBUG "stli_sendxchar(tty=%x,ch=%x)\n", (int) tty, ch);
2457#endif
2458
2459 if (tty == (struct tty_struct *) NULL)
2460 return;
2461 portp = tty->driver_data;
2462 if (portp == (stliport_t *) NULL)
2463 return;
2464 if ((portp->brdnr < 0) || (portp->brdnr >= stli_nrbrds))
2465 return;
2466 brdp = stli_brds[portp->brdnr];
2467 if (brdp == (stlibrd_t *) NULL)
2468 return;
2469
2470 memset(&actrl, 0, sizeof(asyctrl_t));
2471 if (ch == STOP_CHAR(tty)) {
2472 actrl.rxctrl = CT_STOPFLOW;
2473 } else if (ch == START_CHAR(tty)) {
2474 actrl.rxctrl = CT_STARTFLOW;
2475 } else {
2476 actrl.txctrl = CT_SENDCHR;
2477 actrl.tximdch = ch;
2478 }
2479
2480 stli_cmdwait(brdp, portp, A_PORTCTRL, &actrl, sizeof(asyctrl_t), 0);
2481}
2482
2483/*****************************************************************************/
2484
2485#define MAXLINE 80
2486
2487/*
2488 * Format info for a specified port. The line is deliberately limited
2489 * to 80 characters. (If it is too long it will be truncated, if too
2490 * short then padded with spaces).
2491 */
2492
2493static int stli_portinfo(stlibrd_t *brdp, stliport_t *portp, int portnr, char *pos)
2494{
2495 char *sp, *uart;
2496 int rc, cnt;
2497
2498 rc = stli_portcmdstats(portp);
2499
2500 uart = "UNKNOWN";
2501 if (brdp->state & BST_STARTED) {
2502 switch (stli_comstats.hwid) {
2503 case 0: uart = "2681"; break;
2504 case 1: uart = "SC26198"; break;
2505 default: uart = "CD1400"; break;
2506 }
2507 }
2508
2509 sp = pos;
2510 sp += sprintf(sp, "%d: uart:%s ", portnr, uart);
2511
2512 if ((brdp->state & BST_STARTED) && (rc >= 0)) {
2513 sp += sprintf(sp, "tx:%d rx:%d", (int) stli_comstats.txtotal,
2514 (int) stli_comstats.rxtotal);
2515
2516 if (stli_comstats.rxframing)
2517 sp += sprintf(sp, " fe:%d",
2518 (int) stli_comstats.rxframing);
2519 if (stli_comstats.rxparity)
2520 sp += sprintf(sp, " pe:%d",
2521 (int) stli_comstats.rxparity);
2522 if (stli_comstats.rxbreaks)
2523 sp += sprintf(sp, " brk:%d",
2524 (int) stli_comstats.rxbreaks);
2525 if (stli_comstats.rxoverrun)
2526 sp += sprintf(sp, " oe:%d",
2527 (int) stli_comstats.rxoverrun);
2528
2529 cnt = sprintf(sp, "%s%s%s%s%s ",
2530 (stli_comstats.signals & TIOCM_RTS) ? "|RTS" : "",
2531 (stli_comstats.signals & TIOCM_CTS) ? "|CTS" : "",
2532 (stli_comstats.signals & TIOCM_DTR) ? "|DTR" : "",
2533 (stli_comstats.signals & TIOCM_CD) ? "|DCD" : "",
2534 (stli_comstats.signals & TIOCM_DSR) ? "|DSR" : "");
2535 *sp = ' ';
2536 sp += cnt;
2537 }
2538
2539 for (cnt = (sp - pos); (cnt < (MAXLINE - 1)); cnt++)
2540 *sp++ = ' ';
2541 if (cnt >= MAXLINE)
2542 pos[(MAXLINE - 2)] = '+';
2543 pos[(MAXLINE - 1)] = '\n';
2544
2545 return(MAXLINE);
2546}
2547
2548/*****************************************************************************/
2549
2550/*
2551 * Port info, read from the /proc file system.
2552 */
2553
2554static int stli_readproc(char *page, char **start, off_t off, int count, int *eof, void *data)
2555{
2556 stlibrd_t *brdp;
2557 stliport_t *portp;
2558 int brdnr, portnr, totalport;
2559 int curoff, maxoff;
2560 char *pos;
2561
2562#ifdef DEBUG
2563 printk(KERN_DEBUG "stli_readproc(page=%x,start=%x,off=%x,count=%d,eof=%x,"
2564 "data=%x\n", (int) page, (int) start, (int) off, count,
2565 (int) eof, (int) data);
2566#endif
2567
2568 pos = page;
2569 totalport = 0;
2570 curoff = 0;
2571
2572 if (off == 0) {
2573 pos += sprintf(pos, "%s: version %s", stli_drvtitle,
2574 stli_drvversion);
2575 while (pos < (page + MAXLINE - 1))
2576 *pos++ = ' ';
2577 *pos++ = '\n';
2578 }
2579 curoff = MAXLINE;
2580
2581/*
2582 * We scan through for each board, panel and port. The offset is
2583 * calculated on the fly, and irrelevant ports are skipped.
2584 */
2585 for (brdnr = 0; (brdnr < stli_nrbrds); brdnr++) {
2586 brdp = stli_brds[brdnr];
2587 if (brdp == (stlibrd_t *) NULL)
2588 continue;
2589 if (brdp->state == 0)
2590 continue;
2591
2592 maxoff = curoff + (brdp->nrports * MAXLINE);
2593 if (off >= maxoff) {
2594 curoff = maxoff;
2595 continue;
2596 }
2597
2598 totalport = brdnr * STL_MAXPORTS;
2599 for (portnr = 0; (portnr < brdp->nrports); portnr++,
2600 totalport++) {
2601 portp = brdp->ports[portnr];
2602 if (portp == (stliport_t *) NULL)
2603 continue;
2604 if (off >= (curoff += MAXLINE))
2605 continue;
2606 if ((pos - page + MAXLINE) > count)
2607 goto stli_readdone;
2608 pos += stli_portinfo(brdp, portp, totalport, pos);
2609 }
2610 }
2611
2612 *eof = 1;
2613
2614stli_readdone:
2615 *start = page;
2616 return(pos - page);
2617}
2618
2619/*****************************************************************************/
2620
2621/*
2622 * Generic send command routine. This will send a message to the slave,
2623 * of the specified type with the specified argument. Must be very
2624 * careful of data that will be copied out from shared memory -
2625 * containing command results. The command completion is all done from
2626 * a poll routine that does not have user context. Therefore you cannot
2627 * copy back directly into user space, or to the kernel stack of a
2628 * process. This routine does not sleep, so can be called from anywhere.
2629 */
2630
2631static void stli_sendcmd(stlibrd_t *brdp, stliport_t *portp, unsigned long cmd, void *arg, int size, int copyback)
2632{
2633 volatile cdkhdr_t *hdrp;
2634 volatile cdkctrl_t *cp;
2635 volatile unsigned char *bits;
2636 unsigned long flags;
2637
2638#ifdef DEBUG
2639 printk(KERN_DEBUG "stli_sendcmd(brdp=%x,portp=%x,cmd=%x,arg=%x,size=%d,"
2640 "copyback=%d)\n", (int) brdp, (int) portp, (int) cmd,
2641 (int) arg, size, copyback);
2642#endif
2643
2644 save_flags(flags);
2645 cli();
2646
2647 if (test_bit(ST_CMDING, &portp->state)) {
2648 printk(KERN_ERR "STALLION: command already busy, cmd=%x!\n",
2649 (int) cmd);
2650 restore_flags(flags);
2651 return;
2652 }
2653
2654 EBRDENABLE(brdp);
2655 cp = &((volatile cdkasy_t *) EBRDGETMEMPTR(brdp, portp->addr))->ctrl;
2656 if (size > 0) {
2657 memcpy((void *) &(cp->args[0]), arg, size);
2658 if (copyback) {
2659 portp->argp = arg;
2660 portp->argsize = size;
2661 }
2662 }
2663 cp->status = 0;
2664 cp->cmd = cmd;
2665 hdrp = (volatile cdkhdr_t *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
2666 bits = ((volatile unsigned char *) hdrp) + brdp->slaveoffset +
2667 portp->portidx;
2668 *bits |= portp->portbit;
2669 set_bit(ST_CMDING, &portp->state);
2670 EBRDDISABLE(brdp);
2671 restore_flags(flags);
2672}
2673
2674/*****************************************************************************/
2675
2676/*
2677 * Read data from shared memory. This assumes that the shared memory
2678 * is enabled and that interrupts are off. Basically we just empty out
2679 * the shared memory buffer into the tty buffer. Must be careful to
2680 * handle the case where we fill up the tty buffer, but still have
2681 * more chars to unload.
2682 */
2683
2684static void stli_read(stlibrd_t *brdp, stliport_t *portp)
2685{
2686 volatile cdkasyrq_t *rp;
2687 volatile char *shbuf;
2688 struct tty_struct *tty;
2689 unsigned int head, tail, size;
2690 unsigned int len, stlen;
2691
2692#ifdef DEBUG
2693 printk(KERN_DEBUG "stli_read(brdp=%x,portp=%d)\n",
2694 (int) brdp, (int) portp);
2695#endif
2696
2697 if (test_bit(ST_RXSTOP, &portp->state))
2698 return;
2699 tty = portp->tty;
2700 if (tty == (struct tty_struct *) NULL)
2701 return;
2702
2703 rp = &((volatile cdkasy_t *) EBRDGETMEMPTR(brdp, portp->addr))->rxq;
2704 head = (unsigned int) rp->head;
2705 if (head != ((unsigned int) rp->head))
2706 head = (unsigned int) rp->head;
2707 tail = (unsigned int) rp->tail;
2708 size = portp->rxsize;
2709 if (head >= tail) {
2710 len = head - tail;
2711 stlen = len;
2712 } else {
2713 len = size - (tail - head);
2714 stlen = size - tail;
2715 }
2716
2717 len = MIN(len, (TTY_FLIPBUF_SIZE - tty->flip.count));
2718 shbuf = (volatile char *) EBRDGETMEMPTR(brdp, portp->rxoffset);
2719
2720 while (len > 0) {
2721 stlen = MIN(len, stlen);
2722 memcpy(tty->flip.char_buf_ptr, (char *) (shbuf + tail), stlen);
2723 memset(tty->flip.flag_buf_ptr, 0, stlen);
2724 tty->flip.char_buf_ptr += stlen;
2725 tty->flip.flag_buf_ptr += stlen;
2726 tty->flip.count += stlen;
2727
2728 len -= stlen;
2729 tail += stlen;
2730 if (tail >= size) {
2731 tail = 0;
2732 stlen = head;
2733 }
2734 }
2735 rp = &((volatile cdkasy_t *) EBRDGETMEMPTR(brdp, portp->addr))->rxq;
2736 rp->tail = tail;
2737
2738 if (head != tail)
2739 set_bit(ST_RXING, &portp->state);
2740
2741 tty_schedule_flip(tty);
2742}
2743
2744/*****************************************************************************/
2745
2746/*
2747 * Set up and carry out any delayed commands. There is only a small set
2748 * of slave commands that can be done "off-level". So it is not too
2749 * difficult to deal with them here.
2750 */
2751
2752static void stli_dodelaycmd(stliport_t *portp, volatile cdkctrl_t *cp)
2753{
2754 int cmd;
2755
2756 if (test_bit(ST_DOSIGS, &portp->state)) {
2757 if (test_bit(ST_DOFLUSHTX, &portp->state) &&
2758 test_bit(ST_DOFLUSHRX, &portp->state))
2759 cmd = A_SETSIGNALSF;
2760 else if (test_bit(ST_DOFLUSHTX, &portp->state))
2761 cmd = A_SETSIGNALSFTX;
2762 else if (test_bit(ST_DOFLUSHRX, &portp->state))
2763 cmd = A_SETSIGNALSFRX;
2764 else
2765 cmd = A_SETSIGNALS;
2766 clear_bit(ST_DOFLUSHTX, &portp->state);
2767 clear_bit(ST_DOFLUSHRX, &portp->state);
2768 clear_bit(ST_DOSIGS, &portp->state);
2769 memcpy((void *) &(cp->args[0]), (void *) &portp->asig,
2770 sizeof(asysigs_t));
2771 cp->status = 0;
2772 cp->cmd = cmd;
2773 set_bit(ST_CMDING, &portp->state);
2774 } else if (test_bit(ST_DOFLUSHTX, &portp->state) ||
2775 test_bit(ST_DOFLUSHRX, &portp->state)) {
2776 cmd = ((test_bit(ST_DOFLUSHTX, &portp->state)) ? FLUSHTX : 0);
2777 cmd |= ((test_bit(ST_DOFLUSHRX, &portp->state)) ? FLUSHRX : 0);
2778 clear_bit(ST_DOFLUSHTX, &portp->state);
2779 clear_bit(ST_DOFLUSHRX, &portp->state);
2780 memcpy((void *) &(cp->args[0]), (void *) &cmd, sizeof(int));
2781 cp->status = 0;
2782 cp->cmd = A_FLUSH;
2783 set_bit(ST_CMDING, &portp->state);
2784 }
2785}
2786
2787/*****************************************************************************/
2788
2789/*
2790 * Host command service checking. This handles commands or messages
2791 * coming from the slave to the host. Must have board shared memory
2792 * enabled and interrupts off when called. Notice that by servicing the
2793 * read data last we don't need to change the shared memory pointer
2794 * during processing (which is a slow IO operation).
2795 * Return value indicates if this port is still awaiting actions from
2796 * the slave (like open, command, or even TX data being sent). If 0
2797 * then port is still busy, otherwise no longer busy.
2798 */
2799
2800static int stli_hostcmd(stlibrd_t *brdp, stliport_t *portp)
2801{
2802 volatile cdkasy_t *ap;
2803 volatile cdkctrl_t *cp;
2804 struct tty_struct *tty;
2805 asynotify_t nt;
2806 unsigned long oldsigs;
2807 int rc, donerx;
2808
2809#ifdef DEBUG
2810 printk(KERN_DEBUG "stli_hostcmd(brdp=%x,channr=%d)\n",
2811 (int) brdp, channr);
2812#endif
2813
2814 ap = (volatile cdkasy_t *) EBRDGETMEMPTR(brdp, portp->addr);
2815 cp = &ap->ctrl;
2816
2817/*
2818 * Check if we are waiting for an open completion message.
2819 */
2820 if (test_bit(ST_OPENING, &portp->state)) {
2821 rc = (int) cp->openarg;
2822 if ((cp->open == 0) && (rc != 0)) {
2823 if (rc > 0)
2824 rc--;
2825 cp->openarg = 0;
2826 portp->rc = rc;
2827 clear_bit(ST_OPENING, &portp->state);
2828 wake_up_interruptible(&portp->raw_wait);
2829 }
2830 }
2831
2832/*
2833 * Check if we are waiting for a close completion message.
2834 */
2835 if (test_bit(ST_CLOSING, &portp->state)) {
2836 rc = (int) cp->closearg;
2837 if ((cp->close == 0) && (rc != 0)) {
2838 if (rc > 0)
2839 rc--;
2840 cp->closearg = 0;
2841 portp->rc = rc;
2842 clear_bit(ST_CLOSING, &portp->state);
2843 wake_up_interruptible(&portp->raw_wait);
2844 }
2845 }
2846
2847/*
2848 * Check if we are waiting for a command completion message. We may
2849 * need to copy out the command results associated with this command.
2850 */
2851 if (test_bit(ST_CMDING, &portp->state)) {
2852 rc = cp->status;
2853 if ((cp->cmd == 0) && (rc != 0)) {
2854 if (rc > 0)
2855 rc--;
2856 if (portp->argp != (void *) NULL) {
2857 memcpy(portp->argp, (void *) &(cp->args[0]),
2858 portp->argsize);
2859 portp->argp = (void *) NULL;
2860 }
2861 cp->status = 0;
2862 portp->rc = rc;
2863 clear_bit(ST_CMDING, &portp->state);
2864 stli_dodelaycmd(portp, cp);
2865 wake_up_interruptible(&portp->raw_wait);
2866 }
2867 }
2868
2869/*
2870 * Check for any notification messages ready. This includes lots of
2871 * different types of events - RX chars ready, RX break received,
2872 * TX data low or empty in the slave, modem signals changed state.
2873 */
2874 donerx = 0;
2875
2876 if (ap->notify) {
2877 nt = ap->changed;
2878 ap->notify = 0;
2879 tty = portp->tty;
2880
2881 if (nt.signal & SG_DCD) {
2882 oldsigs = portp->sigs;
2883 portp->sigs = stli_mktiocm(nt.sigvalue);
2884 clear_bit(ST_GETSIGS, &portp->state);
2885 if ((portp->sigs & TIOCM_CD) &&
2886 ((oldsigs & TIOCM_CD) == 0))
2887 wake_up_interruptible(&portp->open_wait);
2888 if ((oldsigs & TIOCM_CD) &&
2889 ((portp->sigs & TIOCM_CD) == 0)) {
2890 if (portp->flags & ASYNC_CHECK_CD) {
2891 if (tty)
2892 schedule_work(&portp->tqhangup);
2893 }
2894 }
2895 }
2896
2897 if (nt.data & DT_TXEMPTY)
2898 clear_bit(ST_TXBUSY, &portp->state);
2899 if (nt.data & (DT_TXEMPTY | DT_TXLOW)) {
2900 if (tty != (struct tty_struct *) NULL) {
2901 if ((tty->flags & (1 << TTY_DO_WRITE_WAKEUP)) &&
2902 tty->ldisc.write_wakeup) {
2903 (tty->ldisc.write_wakeup)(tty);
2904 EBRDENABLE(brdp);
2905 }
2906 wake_up_interruptible(&tty->write_wait);
2907 }
2908 }
2909
2910 if ((nt.data & DT_RXBREAK) && (portp->rxmarkmsk & BRKINT)) {
2911 if (tty != (struct tty_struct *) NULL) {
2912 if (tty->flip.count < TTY_FLIPBUF_SIZE) {
2913 tty->flip.count++;
2914 *tty->flip.flag_buf_ptr++ = TTY_BREAK;
2915 *tty->flip.char_buf_ptr++ = 0;
2916 if (portp->flags & ASYNC_SAK) {
2917 do_SAK(tty);
2918 EBRDENABLE(brdp);
2919 }
2920 tty_schedule_flip(tty);
2921 }
2922 }
2923 }
2924
2925 if (nt.data & DT_RXBUSY) {
2926 donerx++;
2927 stli_read(brdp, portp);
2928 }
2929 }
2930
2931/*
2932 * It might seem odd that we are checking for more RX chars here.
2933 * But, we need to handle the case where the tty buffer was previously
2934 * filled, but we had more characters to pass up. The slave will not
2935 * send any more RX notify messages until the RX buffer has been emptied.
2936 * But it will leave the service bits on (since the buffer is not empty).
2937 * So from here we can try to process more RX chars.
2938 */
2939 if ((!donerx) && test_bit(ST_RXING, &portp->state)) {
2940 clear_bit(ST_RXING, &portp->state);
2941 stli_read(brdp, portp);
2942 }
2943
2944 return((test_bit(ST_OPENING, &portp->state) ||
2945 test_bit(ST_CLOSING, &portp->state) ||
2946 test_bit(ST_CMDING, &portp->state) ||
2947 test_bit(ST_TXBUSY, &portp->state) ||
2948 test_bit(ST_RXING, &portp->state)) ? 0 : 1);
2949}
2950
2951/*****************************************************************************/
2952
2953/*
2954 * Service all ports on a particular board. Assumes that the boards
2955 * shared memory is enabled, and that the page pointer is pointed
2956 * at the cdk header structure.
2957 */
2958
2959static void stli_brdpoll(stlibrd_t *brdp, volatile cdkhdr_t *hdrp)
2960{
2961 stliport_t *portp;
2962 unsigned char hostbits[(STL_MAXCHANS / 8) + 1];
2963 unsigned char slavebits[(STL_MAXCHANS / 8) + 1];
2964 unsigned char *slavep;
2965 int bitpos, bitat, bitsize;
2966 int channr, nrdevs, slavebitchange;
2967
2968 bitsize = brdp->bitsize;
2969 nrdevs = brdp->nrdevs;
2970
2971/*
2972 * Check if slave wants any service. Basically we try to do as
2973 * little work as possible here. There are 2 levels of service
2974 * bits. So if there is nothing to do we bail early. We check
2975 * 8 service bits at a time in the inner loop, so we can bypass
2976 * the lot if none of them want service.
2977 */
2978 memcpy(&hostbits[0], (((unsigned char *) hdrp) + brdp->hostoffset),
2979 bitsize);
2980
2981 memset(&slavebits[0], 0, bitsize);
2982 slavebitchange = 0;
2983
2984 for (bitpos = 0; (bitpos < bitsize); bitpos++) {
2985 if (hostbits[bitpos] == 0)
2986 continue;
2987 channr = bitpos * 8;
2988 for (bitat = 0x1; (channr < nrdevs); channr++, bitat <<= 1) {
2989 if (hostbits[bitpos] & bitat) {
2990 portp = brdp->ports[(channr - 1)];
2991 if (stli_hostcmd(brdp, portp)) {
2992 slavebitchange++;
2993 slavebits[bitpos] |= bitat;
2994 }
2995 }
2996 }
2997 }
2998
2999/*
3000 * If any of the ports are no longer busy then update them in the
3001 * slave request bits. We need to do this after, since a host port
3002 * service may initiate more slave requests.
3003 */
3004 if (slavebitchange) {
3005 hdrp = (volatile cdkhdr_t *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
3006 slavep = ((unsigned char *) hdrp) + brdp->slaveoffset;
3007 for (bitpos = 0; (bitpos < bitsize); bitpos++) {
3008 if (slavebits[bitpos])
3009 slavep[bitpos] &= ~slavebits[bitpos];
3010 }
3011 }
3012}
3013
3014/*****************************************************************************/
3015
3016/*
3017 * Driver poll routine. This routine polls the boards in use and passes
3018 * messages back up to host when necessary. This is actually very
3019 * CPU efficient, since we will always have the kernel poll clock, it
3020 * adds only a few cycles when idle (since board service can be
3021 * determined very easily), but when loaded generates no interrupts
3022 * (with their expensive associated context change).
3023 */
3024
3025static void stli_poll(unsigned long arg)
3026{
3027 volatile cdkhdr_t *hdrp;
3028 stlibrd_t *brdp;
3029 int brdnr;
3030
3031 stli_timerlist.expires = STLI_TIMEOUT;
3032 add_timer(&stli_timerlist);
3033
3034/*
3035 * Check each board and do any servicing required.
3036 */
3037 for (brdnr = 0; (brdnr < stli_nrbrds); brdnr++) {
3038 brdp = stli_brds[brdnr];
3039 if (brdp == (stlibrd_t *) NULL)
3040 continue;
3041 if ((brdp->state & BST_STARTED) == 0)
3042 continue;
3043
3044 EBRDENABLE(brdp);
3045 hdrp = (volatile cdkhdr_t *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
3046 if (hdrp->hostreq)
3047 stli_brdpoll(brdp, hdrp);
3048 EBRDDISABLE(brdp);
3049 }
3050}
3051
3052/*****************************************************************************/
3053
3054/*
3055 * Translate the termios settings into the port setting structure of
3056 * the slave.
3057 */
3058
3059static void stli_mkasyport(stliport_t *portp, asyport_t *pp, struct termios *tiosp)
3060{
3061#ifdef DEBUG
3062 printk(KERN_DEBUG "stli_mkasyport(portp=%x,pp=%x,tiosp=%d)\n",
3063 (int) portp, (int) pp, (int) tiosp);
3064#endif
3065
3066 memset(pp, 0, sizeof(asyport_t));
3067
3068/*
3069 * Start of by setting the baud, char size, parity and stop bit info.
3070 */
3071 pp->baudout = tiosp->c_cflag & CBAUD;
3072 if (pp->baudout & CBAUDEX) {
3073 pp->baudout &= ~CBAUDEX;
3074 if ((pp->baudout < 1) || (pp->baudout > 4))
3075 tiosp->c_cflag &= ~CBAUDEX;
3076 else
3077 pp->baudout += 15;
3078 }
3079 pp->baudout = stli_baudrates[pp->baudout];
3080 if ((tiosp->c_cflag & CBAUD) == B38400) {
3081 if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_HI)
3082 pp->baudout = 57600;
3083 else if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_VHI)
3084 pp->baudout = 115200;
3085 else if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_SHI)
3086 pp->baudout = 230400;
3087 else if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_WARP)
3088 pp->baudout = 460800;
3089 else if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_CUST)
3090 pp->baudout = (portp->baud_base / portp->custom_divisor);
3091 }
3092 if (pp->baudout > STL_MAXBAUD)
3093 pp->baudout = STL_MAXBAUD;
3094 pp->baudin = pp->baudout;
3095
3096 switch (tiosp->c_cflag & CSIZE) {
3097 case CS5:
3098 pp->csize = 5;
3099 break;
3100 case CS6:
3101 pp->csize = 6;
3102 break;
3103 case CS7:
3104 pp->csize = 7;
3105 break;
3106 default:
3107 pp->csize = 8;
3108 break;
3109 }
3110
3111 if (tiosp->c_cflag & CSTOPB)
3112 pp->stopbs = PT_STOP2;
3113 else
3114 pp->stopbs = PT_STOP1;
3115
3116 if (tiosp->c_cflag & PARENB) {
3117 if (tiosp->c_cflag & PARODD)
3118 pp->parity = PT_ODDPARITY;
3119 else
3120 pp->parity = PT_EVENPARITY;
3121 } else {
3122 pp->parity = PT_NOPARITY;
3123 }
3124
3125/*
3126 * Set up any flow control options enabled.
3127 */
3128 if (tiosp->c_iflag & IXON) {
3129 pp->flow |= F_IXON;
3130 if (tiosp->c_iflag & IXANY)
3131 pp->flow |= F_IXANY;
3132 }
3133 if (tiosp->c_cflag & CRTSCTS)
3134 pp->flow |= (F_RTSFLOW | F_CTSFLOW);
3135
3136 pp->startin = tiosp->c_cc[VSTART];
3137 pp->stopin = tiosp->c_cc[VSTOP];
3138 pp->startout = tiosp->c_cc[VSTART];
3139 pp->stopout = tiosp->c_cc[VSTOP];
3140
3141/*
3142 * Set up the RX char marking mask with those RX error types we must
3143 * catch. We can get the slave to help us out a little here, it will
3144 * ignore parity errors and breaks for us, and mark parity errors in
3145 * the data stream.
3146 */
3147 if (tiosp->c_iflag & IGNPAR)
3148 pp->iflag |= FI_IGNRXERRS;
3149 if (tiosp->c_iflag & IGNBRK)
3150 pp->iflag |= FI_IGNBREAK;
3151
3152 portp->rxmarkmsk = 0;
3153 if (tiosp->c_iflag & (INPCK | PARMRK))
3154 pp->iflag |= FI_1MARKRXERRS;
3155 if (tiosp->c_iflag & BRKINT)
3156 portp->rxmarkmsk |= BRKINT;
3157
3158/*
3159 * Set up clocal processing as required.
3160 */
3161 if (tiosp->c_cflag & CLOCAL)
3162 portp->flags &= ~ASYNC_CHECK_CD;
3163 else
3164 portp->flags |= ASYNC_CHECK_CD;
3165
3166/*
3167 * Transfer any persistent flags into the asyport structure.
3168 */
3169 pp->pflag = (portp->pflag & 0xffff);
3170 pp->vmin = (portp->pflag & P_RXIMIN) ? 1 : 0;
3171 pp->vtime = (portp->pflag & P_RXITIME) ? 1 : 0;
3172 pp->cc[1] = (portp->pflag & P_RXTHOLD) ? 1 : 0;
3173}
3174
3175/*****************************************************************************/
3176
3177/*
3178 * Construct a slave signals structure for setting the DTR and RTS
3179 * signals as specified.
3180 */
3181
3182static void stli_mkasysigs(asysigs_t *sp, int dtr, int rts)
3183{
3184#ifdef DEBUG
3185 printk(KERN_DEBUG "stli_mkasysigs(sp=%x,dtr=%d,rts=%d)\n",
3186 (int) sp, dtr, rts);
3187#endif
3188
3189 memset(sp, 0, sizeof(asysigs_t));
3190 if (dtr >= 0) {
3191 sp->signal |= SG_DTR;
3192 sp->sigvalue |= ((dtr > 0) ? SG_DTR : 0);
3193 }
3194 if (rts >= 0) {
3195 sp->signal |= SG_RTS;
3196 sp->sigvalue |= ((rts > 0) ? SG_RTS : 0);
3197 }
3198}
3199
3200/*****************************************************************************/
3201
3202/*
3203 * Convert the signals returned from the slave into a local TIOCM type
3204 * signals value. We keep them locally in TIOCM format.
3205 */
3206
3207static long stli_mktiocm(unsigned long sigvalue)
3208{
3209 long tiocm;
3210
3211#ifdef DEBUG
3212 printk(KERN_DEBUG "stli_mktiocm(sigvalue=%x)\n", (int) sigvalue);
3213#endif
3214
3215 tiocm = 0;
3216 tiocm |= ((sigvalue & SG_DCD) ? TIOCM_CD : 0);
3217 tiocm |= ((sigvalue & SG_CTS) ? TIOCM_CTS : 0);
3218 tiocm |= ((sigvalue & SG_RI) ? TIOCM_RI : 0);
3219 tiocm |= ((sigvalue & SG_DSR) ? TIOCM_DSR : 0);
3220 tiocm |= ((sigvalue & SG_DTR) ? TIOCM_DTR : 0);
3221 tiocm |= ((sigvalue & SG_RTS) ? TIOCM_RTS : 0);
3222 return(tiocm);
3223}
3224
3225/*****************************************************************************/
3226
3227/*
3228 * All panels and ports actually attached have been worked out. All
3229 * we need to do here is set up the appropriate per port data structures.
3230 */
3231
3232static int stli_initports(stlibrd_t *brdp)
3233{
3234 stliport_t *portp;
3235 int i, panelnr, panelport;
3236
3237#ifdef DEBUG
3238 printk(KERN_DEBUG "stli_initports(brdp=%x)\n", (int) brdp);
3239#endif
3240
3241 for (i = 0, panelnr = 0, panelport = 0; (i < brdp->nrports); i++) {
3242 portp = (stliport_t *) stli_memalloc(sizeof(stliport_t));
3243 if (portp == (stliport_t *) NULL) {
3244 printk("STALLION: failed to allocate port structure\n");
3245 continue;
3246 }
3247
3248 memset(portp, 0, sizeof(stliport_t));
3249 portp->magic = STLI_PORTMAGIC;
3250 portp->portnr = i;
3251 portp->brdnr = brdp->brdnr;
3252 portp->panelnr = panelnr;
3253 portp->baud_base = STL_BAUDBASE;
3254 portp->close_delay = STL_CLOSEDELAY;
3255 portp->closing_wait = 30 * HZ;
3256 INIT_WORK(&portp->tqhangup, stli_dohangup, portp);
3257 init_waitqueue_head(&portp->open_wait);
3258 init_waitqueue_head(&portp->close_wait);
3259 init_waitqueue_head(&portp->raw_wait);
3260 panelport++;
3261 if (panelport >= brdp->panels[panelnr]) {
3262 panelport = 0;
3263 panelnr++;
3264 }
3265 brdp->ports[i] = portp;
3266 }
3267
3268 return(0);
3269}
3270
3271/*****************************************************************************/
3272
3273/*
3274 * All the following routines are board specific hardware operations.
3275 */
3276
3277static void stli_ecpinit(stlibrd_t *brdp)
3278{
3279 unsigned long memconf;
3280
3281#ifdef DEBUG
3282 printk(KERN_DEBUG "stli_ecpinit(brdp=%d)\n", (int) brdp);
3283#endif
3284
3285 outb(ECP_ATSTOP, (brdp->iobase + ECP_ATCONFR));
3286 udelay(10);
3287 outb(ECP_ATDISABLE, (brdp->iobase + ECP_ATCONFR));
3288 udelay(100);
3289
3290 memconf = (brdp->memaddr & ECP_ATADDRMASK) >> ECP_ATADDRSHFT;
3291 outb(memconf, (brdp->iobase + ECP_ATMEMAR));
3292}
3293
3294/*****************************************************************************/
3295
3296static void stli_ecpenable(stlibrd_t *brdp)
3297{
3298#ifdef DEBUG
3299 printk(KERN_DEBUG "stli_ecpenable(brdp=%x)\n", (int) brdp);
3300#endif
3301 outb(ECP_ATENABLE, (brdp->iobase + ECP_ATCONFR));
3302}
3303
3304/*****************************************************************************/
3305
3306static void stli_ecpdisable(stlibrd_t *brdp)
3307{
3308#ifdef DEBUG
3309 printk(KERN_DEBUG "stli_ecpdisable(brdp=%x)\n", (int) brdp);
3310#endif
3311 outb(ECP_ATDISABLE, (brdp->iobase + ECP_ATCONFR));
3312}
3313
3314/*****************************************************************************/
3315
3316static char *stli_ecpgetmemptr(stlibrd_t *brdp, unsigned long offset, int line)
3317{
3318 void *ptr;
3319 unsigned char val;
3320
3321#ifdef DEBUG
3322 printk(KERN_DEBUG "stli_ecpgetmemptr(brdp=%x,offset=%x)\n", (int) brdp,
3323 (int) offset);
3324#endif
3325
3326 if (offset > brdp->memsize) {
3327 printk(KERN_ERR "STALLION: shared memory pointer=%x out of "
3328 "range at line=%d(%d), brd=%d\n",
3329 (int) offset, line, __LINE__, brdp->brdnr);
3330 ptr = NULL;
3331 val = 0;
3332 } else {
3333 ptr = brdp->membase + (offset % ECP_ATPAGESIZE);
3334 val = (unsigned char) (offset / ECP_ATPAGESIZE);
3335 }
3336 outb(val, (brdp->iobase + ECP_ATMEMPR));
3337 return(ptr);
3338}
3339
3340/*****************************************************************************/
3341
3342static void stli_ecpreset(stlibrd_t *brdp)
3343{
3344#ifdef DEBUG
3345 printk(KERN_DEBUG "stli_ecpreset(brdp=%x)\n", (int) brdp);
3346#endif
3347
3348 outb(ECP_ATSTOP, (brdp->iobase + ECP_ATCONFR));
3349 udelay(10);
3350 outb(ECP_ATDISABLE, (brdp->iobase + ECP_ATCONFR));
3351 udelay(500);
3352}
3353
3354/*****************************************************************************/
3355
3356static void stli_ecpintr(stlibrd_t *brdp)
3357{
3358#ifdef DEBUG
3359 printk(KERN_DEBUG "stli_ecpintr(brdp=%x)\n", (int) brdp);
3360#endif
3361 outb(0x1, brdp->iobase);
3362}
3363
3364/*****************************************************************************/
3365
3366/*
3367 * The following set of functions act on ECP EISA boards.
3368 */
3369
3370static void stli_ecpeiinit(stlibrd_t *brdp)
3371{
3372 unsigned long memconf;
3373
3374#ifdef DEBUG
3375 printk(KERN_DEBUG "stli_ecpeiinit(brdp=%x)\n", (int) brdp);
3376#endif
3377
3378 outb(0x1, (brdp->iobase + ECP_EIBRDENAB));
3379 outb(ECP_EISTOP, (brdp->iobase + ECP_EICONFR));
3380 udelay(10);
3381 outb(ECP_EIDISABLE, (brdp->iobase + ECP_EICONFR));
3382 udelay(500);
3383
3384 memconf = (brdp->memaddr & ECP_EIADDRMASKL) >> ECP_EIADDRSHFTL;
3385 outb(memconf, (brdp->iobase + ECP_EIMEMARL));
3386 memconf = (brdp->memaddr & ECP_EIADDRMASKH) >> ECP_EIADDRSHFTH;
3387 outb(memconf, (brdp->iobase + ECP_EIMEMARH));
3388}
3389
3390/*****************************************************************************/
3391
3392static void stli_ecpeienable(stlibrd_t *brdp)
3393{
3394 outb(ECP_EIENABLE, (brdp->iobase + ECP_EICONFR));
3395}
3396
3397/*****************************************************************************/
3398
3399static void stli_ecpeidisable(stlibrd_t *brdp)
3400{
3401 outb(ECP_EIDISABLE, (brdp->iobase + ECP_EICONFR));
3402}
3403
3404/*****************************************************************************/
3405
3406static char *stli_ecpeigetmemptr(stlibrd_t *brdp, unsigned long offset, int line)
3407{
3408 void *ptr;
3409 unsigned char val;
3410
3411#ifdef DEBUG
3412 printk(KERN_DEBUG "stli_ecpeigetmemptr(brdp=%x,offset=%x,line=%d)\n",
3413 (int) brdp, (int) offset, line);
3414#endif
3415
3416 if (offset > brdp->memsize) {
3417 printk(KERN_ERR "STALLION: shared memory pointer=%x out of "
3418 "range at line=%d(%d), brd=%d\n",
3419 (int) offset, line, __LINE__, brdp->brdnr);
3420 ptr = NULL;
3421 val = 0;
3422 } else {
3423 ptr = brdp->membase + (offset % ECP_EIPAGESIZE);
3424 if (offset < ECP_EIPAGESIZE)
3425 val = ECP_EIENABLE;
3426 else
3427 val = ECP_EIENABLE | 0x40;
3428 }
3429 outb(val, (brdp->iobase + ECP_EICONFR));
3430 return(ptr);
3431}
3432
3433/*****************************************************************************/
3434
3435static void stli_ecpeireset(stlibrd_t *brdp)
3436{
3437 outb(ECP_EISTOP, (brdp->iobase + ECP_EICONFR));
3438 udelay(10);
3439 outb(ECP_EIDISABLE, (brdp->iobase + ECP_EICONFR));
3440 udelay(500);
3441}
3442
3443/*****************************************************************************/
3444
3445/*
3446 * The following set of functions act on ECP MCA boards.
3447 */
3448
3449static void stli_ecpmcenable(stlibrd_t *brdp)
3450{
3451 outb(ECP_MCENABLE, (brdp->iobase + ECP_MCCONFR));
3452}
3453
3454/*****************************************************************************/
3455
3456static void stli_ecpmcdisable(stlibrd_t *brdp)
3457{
3458 outb(ECP_MCDISABLE, (brdp->iobase + ECP_MCCONFR));
3459}
3460
3461/*****************************************************************************/
3462
3463static char *stli_ecpmcgetmemptr(stlibrd_t *brdp, unsigned long offset, int line)
3464{
3465 void *ptr;
3466 unsigned char val;
3467
3468 if (offset > brdp->memsize) {
3469 printk(KERN_ERR "STALLION: shared memory pointer=%x out of "
3470 "range at line=%d(%d), brd=%d\n",
3471 (int) offset, line, __LINE__, brdp->brdnr);
3472 ptr = NULL;
3473 val = 0;
3474 } else {
3475 ptr = brdp->membase + (offset % ECP_MCPAGESIZE);
3476 val = ((unsigned char) (offset / ECP_MCPAGESIZE)) | ECP_MCENABLE;
3477 }
3478 outb(val, (brdp->iobase + ECP_MCCONFR));
3479 return(ptr);
3480}
3481
3482/*****************************************************************************/
3483
3484static void stli_ecpmcreset(stlibrd_t *brdp)
3485{
3486 outb(ECP_MCSTOP, (brdp->iobase + ECP_MCCONFR));
3487 udelay(10);
3488 outb(ECP_MCDISABLE, (brdp->iobase + ECP_MCCONFR));
3489 udelay(500);
3490}
3491
3492/*****************************************************************************/
3493
3494/*
3495 * The following set of functions act on ECP PCI boards.
3496 */
3497
3498static void stli_ecppciinit(stlibrd_t *brdp)
3499{
3500#ifdef DEBUG
3501 printk(KERN_DEBUG "stli_ecppciinit(brdp=%x)\n", (int) brdp);
3502#endif
3503
3504 outb(ECP_PCISTOP, (brdp->iobase + ECP_PCICONFR));
3505 udelay(10);
3506 outb(0, (brdp->iobase + ECP_PCICONFR));
3507 udelay(500);
3508}
3509
3510/*****************************************************************************/
3511
3512static char *stli_ecppcigetmemptr(stlibrd_t *brdp, unsigned long offset, int line)
3513{
3514 void *ptr;
3515 unsigned char val;
3516
3517#ifdef DEBUG
3518 printk(KERN_DEBUG "stli_ecppcigetmemptr(brdp=%x,offset=%x,line=%d)\n",
3519 (int) brdp, (int) offset, line);
3520#endif
3521
3522 if (offset > brdp->memsize) {
3523 printk(KERN_ERR "STALLION: shared memory pointer=%x out of "
3524 "range at line=%d(%d), board=%d\n",
3525 (int) offset, line, __LINE__, brdp->brdnr);
3526 ptr = NULL;
3527 val = 0;
3528 } else {
3529 ptr = brdp->membase + (offset % ECP_PCIPAGESIZE);
3530 val = (offset / ECP_PCIPAGESIZE) << 1;
3531 }
3532 outb(val, (brdp->iobase + ECP_PCICONFR));
3533 return(ptr);
3534}
3535
3536/*****************************************************************************/
3537
3538static void stli_ecppcireset(stlibrd_t *brdp)
3539{
3540 outb(ECP_PCISTOP, (brdp->iobase + ECP_PCICONFR));
3541 udelay(10);
3542 outb(0, (brdp->iobase + ECP_PCICONFR));
3543 udelay(500);
3544}
3545
3546/*****************************************************************************/
3547
3548/*
3549 * The following routines act on ONboards.
3550 */
3551
3552static void stli_onbinit(stlibrd_t *brdp)
3553{
3554 unsigned long memconf;
3555
3556#ifdef DEBUG
3557 printk(KERN_DEBUG "stli_onbinit(brdp=%d)\n", (int) brdp);
3558#endif
3559
3560 outb(ONB_ATSTOP, (brdp->iobase + ONB_ATCONFR));
3561 udelay(10);
3562 outb(ONB_ATDISABLE, (brdp->iobase + ONB_ATCONFR));
3563 mdelay(1000);
3564
3565 memconf = (brdp->memaddr & ONB_ATADDRMASK) >> ONB_ATADDRSHFT;
3566 outb(memconf, (brdp->iobase + ONB_ATMEMAR));
3567 outb(0x1, brdp->iobase);
3568 mdelay(1);
3569}
3570
3571/*****************************************************************************/
3572
3573static void stli_onbenable(stlibrd_t *brdp)
3574{
3575#ifdef DEBUG
3576 printk(KERN_DEBUG "stli_onbenable(brdp=%x)\n", (int) brdp);
3577#endif
3578 outb((brdp->enabval | ONB_ATENABLE), (brdp->iobase + ONB_ATCONFR));
3579}
3580
3581/*****************************************************************************/
3582
3583static void stli_onbdisable(stlibrd_t *brdp)
3584{
3585#ifdef DEBUG
3586 printk(KERN_DEBUG "stli_onbdisable(brdp=%x)\n", (int) brdp);
3587#endif
3588 outb((brdp->enabval | ONB_ATDISABLE), (brdp->iobase + ONB_ATCONFR));
3589}
3590
3591/*****************************************************************************/
3592
3593static char *stli_onbgetmemptr(stlibrd_t *brdp, unsigned long offset, int line)
3594{
3595 void *ptr;
3596
3597#ifdef DEBUG
3598 printk(KERN_DEBUG "stli_onbgetmemptr(brdp=%x,offset=%x)\n", (int) brdp,
3599 (int) offset);
3600#endif
3601
3602 if (offset > brdp->memsize) {
3603 printk(KERN_ERR "STALLION: shared memory pointer=%x out of "
3604 "range at line=%d(%d), brd=%d\n",
3605 (int) offset, line, __LINE__, brdp->brdnr);
3606 ptr = NULL;
3607 } else {
3608 ptr = brdp->membase + (offset % ONB_ATPAGESIZE);
3609 }
3610 return(ptr);
3611}
3612
3613/*****************************************************************************/
3614
3615static void stli_onbreset(stlibrd_t *brdp)
3616{
3617
3618#ifdef DEBUG
3619 printk(KERN_DEBUG "stli_onbreset(brdp=%x)\n", (int) brdp);
3620#endif
3621
3622 outb(ONB_ATSTOP, (brdp->iobase + ONB_ATCONFR));
3623 udelay(10);
3624 outb(ONB_ATDISABLE, (brdp->iobase + ONB_ATCONFR));
3625 mdelay(1000);
3626}
3627
3628/*****************************************************************************/
3629
3630/*
3631 * The following routines act on ONboard EISA.
3632 */
3633
3634static void stli_onbeinit(stlibrd_t *brdp)
3635{
3636 unsigned long memconf;
3637
3638#ifdef DEBUG
3639 printk(KERN_DEBUG "stli_onbeinit(brdp=%d)\n", (int) brdp);
3640#endif
3641
3642 outb(0x1, (brdp->iobase + ONB_EIBRDENAB));
3643 outb(ONB_EISTOP, (brdp->iobase + ONB_EICONFR));
3644 udelay(10);
3645 outb(ONB_EIDISABLE, (brdp->iobase + ONB_EICONFR));
3646 mdelay(1000);
3647
3648 memconf = (brdp->memaddr & ONB_EIADDRMASKL) >> ONB_EIADDRSHFTL;
3649 outb(memconf, (brdp->iobase + ONB_EIMEMARL));
3650 memconf = (brdp->memaddr & ONB_EIADDRMASKH) >> ONB_EIADDRSHFTH;
3651 outb(memconf, (brdp->iobase + ONB_EIMEMARH));
3652 outb(0x1, brdp->iobase);
3653 mdelay(1);
3654}
3655
3656/*****************************************************************************/
3657
3658static void stli_onbeenable(stlibrd_t *brdp)
3659{
3660#ifdef DEBUG
3661 printk(KERN_DEBUG "stli_onbeenable(brdp=%x)\n", (int) brdp);
3662#endif
3663 outb(ONB_EIENABLE, (brdp->iobase + ONB_EICONFR));
3664}
3665
3666/*****************************************************************************/
3667
3668static void stli_onbedisable(stlibrd_t *brdp)
3669{
3670#ifdef DEBUG
3671 printk(KERN_DEBUG "stli_onbedisable(brdp=%x)\n", (int) brdp);
3672#endif
3673 outb(ONB_EIDISABLE, (brdp->iobase + ONB_EICONFR));
3674}
3675
3676/*****************************************************************************/
3677
3678static char *stli_onbegetmemptr(stlibrd_t *brdp, unsigned long offset, int line)
3679{
3680 void *ptr;
3681 unsigned char val;
3682
3683#ifdef DEBUG
3684 printk(KERN_DEBUG "stli_onbegetmemptr(brdp=%x,offset=%x,line=%d)\n",
3685 (int) brdp, (int) offset, line);
3686#endif
3687
3688 if (offset > brdp->memsize) {
3689 printk(KERN_ERR "STALLION: shared memory pointer=%x out of "
3690 "range at line=%d(%d), brd=%d\n",
3691 (int) offset, line, __LINE__, brdp->brdnr);
3692 ptr = NULL;
3693 val = 0;
3694 } else {
3695 ptr = brdp->membase + (offset % ONB_EIPAGESIZE);
3696 if (offset < ONB_EIPAGESIZE)
3697 val = ONB_EIENABLE;
3698 else
3699 val = ONB_EIENABLE | 0x40;
3700 }
3701 outb(val, (brdp->iobase + ONB_EICONFR));
3702 return(ptr);
3703}
3704
3705/*****************************************************************************/
3706
3707static void stli_onbereset(stlibrd_t *brdp)
3708{
3709
3710#ifdef DEBUG
3711 printk(KERN_ERR "stli_onbereset(brdp=%x)\n", (int) brdp);
3712#endif
3713
3714 outb(ONB_EISTOP, (brdp->iobase + ONB_EICONFR));
3715 udelay(10);
3716 outb(ONB_EIDISABLE, (brdp->iobase + ONB_EICONFR));
3717 mdelay(1000);
3718}
3719
3720/*****************************************************************************/
3721
3722/*
3723 * The following routines act on Brumby boards.
3724 */
3725
3726static void stli_bbyinit(stlibrd_t *brdp)
3727{
3728
3729#ifdef DEBUG
3730 printk(KERN_ERR "stli_bbyinit(brdp=%d)\n", (int) brdp);
3731#endif
3732
3733 outb(BBY_ATSTOP, (brdp->iobase + BBY_ATCONFR));
3734 udelay(10);
3735 outb(0, (brdp->iobase + BBY_ATCONFR));
3736 mdelay(1000);
3737 outb(0x1, brdp->iobase);
3738 mdelay(1);
3739}
3740
3741/*****************************************************************************/
3742
3743static char *stli_bbygetmemptr(stlibrd_t *brdp, unsigned long offset, int line)
3744{
3745 void *ptr;
3746 unsigned char val;
3747
3748#ifdef DEBUG
3749 printk(KERN_ERR "stli_bbygetmemptr(brdp=%x,offset=%x)\n", (int) brdp,
3750 (int) offset);
3751#endif
3752
3753 if (offset > brdp->memsize) {
3754 printk(KERN_ERR "STALLION: shared memory pointer=%x out of "
3755 "range at line=%d(%d), brd=%d\n",
3756 (int) offset, line, __LINE__, brdp->brdnr);
3757 ptr = NULL;
3758 val = 0;
3759 } else {
3760 ptr = brdp->membase + (offset % BBY_PAGESIZE);
3761 val = (unsigned char) (offset / BBY_PAGESIZE);
3762 }
3763 outb(val, (brdp->iobase + BBY_ATCONFR));
3764 return(ptr);
3765}
3766
3767/*****************************************************************************/
3768
3769static void stli_bbyreset(stlibrd_t *brdp)
3770{
3771
3772#ifdef DEBUG
3773 printk(KERN_DEBUG "stli_bbyreset(brdp=%x)\n", (int) brdp);
3774#endif
3775
3776 outb(BBY_ATSTOP, (brdp->iobase + BBY_ATCONFR));
3777 udelay(10);
3778 outb(0, (brdp->iobase + BBY_ATCONFR));
3779 mdelay(1000);
3780}
3781
3782/*****************************************************************************/
3783
3784/*
3785 * The following routines act on original old Stallion boards.
3786 */
3787
3788static void stli_stalinit(stlibrd_t *brdp)
3789{
3790
3791#ifdef DEBUG
3792 printk(KERN_DEBUG "stli_stalinit(brdp=%d)\n", (int) brdp);
3793#endif
3794
3795 outb(0x1, brdp->iobase);
3796 mdelay(1000);
3797}
3798
3799/*****************************************************************************/
3800
3801static char *stli_stalgetmemptr(stlibrd_t *brdp, unsigned long offset, int line)
3802{
3803 void *ptr;
3804
3805#ifdef DEBUG
3806 printk(KERN_DEBUG "stli_stalgetmemptr(brdp=%x,offset=%x)\n", (int) brdp,
3807 (int) offset);
3808#endif
3809
3810 if (offset > brdp->memsize) {
3811 printk(KERN_ERR "STALLION: shared memory pointer=%x out of "
3812 "range at line=%d(%d), brd=%d\n",
3813 (int) offset, line, __LINE__, brdp->brdnr);
3814 ptr = NULL;
3815 } else {
3816 ptr = brdp->membase + (offset % STAL_PAGESIZE);
3817 }
3818 return(ptr);
3819}
3820
3821/*****************************************************************************/
3822
3823static void stli_stalreset(stlibrd_t *brdp)
3824{
3825 volatile unsigned long *vecp;
3826
3827#ifdef DEBUG
3828 printk(KERN_DEBUG "stli_stalreset(brdp=%x)\n", (int) brdp);
3829#endif
3830
3831 vecp = (volatile unsigned long *) (brdp->membase + 0x30);
3832 *vecp = 0xffff0000;
3833 outb(0, brdp->iobase);
3834 mdelay(1000);
3835}
3836
3837/*****************************************************************************/
3838
3839/*
3840 * Try to find an ECP board and initialize it. This handles only ECP
3841 * board types.
3842 */
3843
3844static int stli_initecp(stlibrd_t *brdp)
3845{
3846 cdkecpsig_t sig;
3847 cdkecpsig_t *sigsp;
3848 unsigned int status, nxtid;
3849 char *name;
3850 int panelnr, nrports;
3851
3852#ifdef DEBUG
3853 printk(KERN_DEBUG "stli_initecp(brdp=%x)\n", (int) brdp);
3854#endif
3855
3856 if (!request_region(brdp->iobase, brdp->iosize, "istallion"))
3857 return -EIO;
3858
3859 if ((brdp->iobase == 0) || (brdp->memaddr == 0))
3860 {
3861 release_region(brdp->iobase, brdp->iosize);
3862 return(-ENODEV);
3863 }
3864
3865 brdp->iosize = ECP_IOSIZE;
3866
3867/*
3868 * Based on the specific board type setup the common vars to access
3869 * and enable shared memory. Set all board specific information now
3870 * as well.
3871 */
3872 switch (brdp->brdtype) {
3873 case BRD_ECP:
3874 brdp->membase = (void *) brdp->memaddr;
3875 brdp->memsize = ECP_MEMSIZE;
3876 brdp->pagesize = ECP_ATPAGESIZE;
3877 brdp->init = stli_ecpinit;
3878 brdp->enable = stli_ecpenable;
3879 brdp->reenable = stli_ecpenable;
3880 brdp->disable = stli_ecpdisable;
3881 brdp->getmemptr = stli_ecpgetmemptr;
3882 brdp->intr = stli_ecpintr;
3883 brdp->reset = stli_ecpreset;
3884 name = "serial(EC8/64)";
3885 break;
3886
3887 case BRD_ECPE:
3888 brdp->membase = (void *) brdp->memaddr;
3889 brdp->memsize = ECP_MEMSIZE;
3890 brdp->pagesize = ECP_EIPAGESIZE;
3891 brdp->init = stli_ecpeiinit;
3892 brdp->enable = stli_ecpeienable;
3893 brdp->reenable = stli_ecpeienable;
3894 brdp->disable = stli_ecpeidisable;
3895 brdp->getmemptr = stli_ecpeigetmemptr;
3896 brdp->intr = stli_ecpintr;
3897 brdp->reset = stli_ecpeireset;
3898 name = "serial(EC8/64-EI)";
3899 break;
3900
3901 case BRD_ECPMC:
3902 brdp->membase = (void *) brdp->memaddr;
3903 brdp->memsize = ECP_MEMSIZE;
3904 brdp->pagesize = ECP_MCPAGESIZE;
3905 brdp->init = NULL;
3906 brdp->enable = stli_ecpmcenable;
3907 brdp->reenable = stli_ecpmcenable;
3908 brdp->disable = stli_ecpmcdisable;
3909 brdp->getmemptr = stli_ecpmcgetmemptr;
3910 brdp->intr = stli_ecpintr;
3911 brdp->reset = stli_ecpmcreset;
3912 name = "serial(EC8/64-MCA)";
3913 break;
3914
3915 case BRD_ECPPCI:
3916 brdp->membase = (void *) brdp->memaddr;
3917 brdp->memsize = ECP_PCIMEMSIZE;
3918 brdp->pagesize = ECP_PCIPAGESIZE;
3919 brdp->init = stli_ecppciinit;
3920 brdp->enable = NULL;
3921 brdp->reenable = NULL;
3922 brdp->disable = NULL;
3923 brdp->getmemptr = stli_ecppcigetmemptr;
3924 brdp->intr = stli_ecpintr;
3925 brdp->reset = stli_ecppcireset;
3926 name = "serial(EC/RA-PCI)";
3927 break;
3928
3929 default:
3930 release_region(brdp->iobase, brdp->iosize);
3931 return(-EINVAL);
3932 }
3933
3934/*
3935 * The per-board operations structure is all set up, so now let's go
3936 * and get the board operational. Firstly initialize board configuration
3937 * registers. Set the memory mapping info so we can get at the boards
3938 * shared memory.
3939 */
3940 EBRDINIT(brdp);
3941
3942 brdp->membase = ioremap(brdp->memaddr, brdp->memsize);
3943 if (brdp->membase == (void *) NULL)
3944 {
3945 release_region(brdp->iobase, brdp->iosize);
3946 return(-ENOMEM);
3947 }
3948
3949/*
3950 * Now that all specific code is set up, enable the shared memory and
3951 * look for the a signature area that will tell us exactly what board
3952 * this is, and what it is connected to it.
3953 */
3954 EBRDENABLE(brdp);
3955 sigsp = (cdkecpsig_t *) EBRDGETMEMPTR(brdp, CDK_SIGADDR);
3956 memcpy(&sig, sigsp, sizeof(cdkecpsig_t));
3957 EBRDDISABLE(brdp);
3958
3959#if 0
3960 printk("%s(%d): sig-> magic=%x rom=%x panel=%x,%x,%x,%x,%x,%x,%x,%x\n",
3961 __FILE__, __LINE__, (int) sig.magic, sig.romver, sig.panelid[0],
3962 (int) sig.panelid[1], (int) sig.panelid[2],
3963 (int) sig.panelid[3], (int) sig.panelid[4],
3964 (int) sig.panelid[5], (int) sig.panelid[6],
3965 (int) sig.panelid[7]);
3966#endif
3967
3968 if (sig.magic != ECP_MAGIC)
3969 {
3970 release_region(brdp->iobase, brdp->iosize);
3971 return(-ENODEV);
3972 }
3973
3974/*
3975 * Scan through the signature looking at the panels connected to the
3976 * board. Calculate the total number of ports as we go.
3977 */
3978 for (panelnr = 0, nxtid = 0; (panelnr < STL_MAXPANELS); panelnr++) {
3979 status = sig.panelid[nxtid];
3980 if ((status & ECH_PNLIDMASK) != nxtid)
3981 break;
3982
3983 brdp->panelids[panelnr] = status;
3984 nrports = (status & ECH_PNL16PORT) ? 16 : 8;
3985 if ((nrports == 16) && ((status & ECH_PNLXPID) == 0))
3986 nxtid++;
3987 brdp->panels[panelnr] = nrports;
3988 brdp->nrports += nrports;
3989 nxtid++;
3990 brdp->nrpanels++;
3991 }
3992
3993
3994 brdp->state |= BST_FOUND;
3995 return(0);
3996}
3997
3998/*****************************************************************************/
3999
4000/*
4001 * Try to find an ONboard, Brumby or Stallion board and initialize it.
4002 * This handles only these board types.
4003 */
4004
4005static int stli_initonb(stlibrd_t *brdp)
4006{
4007 cdkonbsig_t sig;
4008 cdkonbsig_t *sigsp;
4009 char *name;
4010 int i;
4011
4012#ifdef DEBUG
4013 printk(KERN_DEBUG "stli_initonb(brdp=%x)\n", (int) brdp);
4014#endif
4015
4016/*
4017 * Do a basic sanity check on the IO and memory addresses.
4018 */
4019 if ((brdp->iobase == 0) || (brdp->memaddr == 0))
4020 return(-ENODEV);
4021
4022 brdp->iosize = ONB_IOSIZE;
4023
4024 if (!request_region(brdp->iobase, brdp->iosize, "istallion"))
4025 return -EIO;
4026
4027/*
4028 * Based on the specific board type setup the common vars to access
4029 * and enable shared memory. Set all board specific information now
4030 * as well.
4031 */
4032 switch (brdp->brdtype) {
4033 case BRD_ONBOARD:
4034 case BRD_ONBOARD32:
4035 case BRD_ONBOARD2:
4036 case BRD_ONBOARD2_32:
4037 case BRD_ONBOARDRS:
4038 brdp->membase = (void *) brdp->memaddr;
4039 brdp->memsize = ONB_MEMSIZE;
4040 brdp->pagesize = ONB_ATPAGESIZE;
4041 brdp->init = stli_onbinit;
4042 brdp->enable = stli_onbenable;
4043 brdp->reenable = stli_onbenable;
4044 brdp->disable = stli_onbdisable;
4045 brdp->getmemptr = stli_onbgetmemptr;
4046 brdp->intr = stli_ecpintr;
4047 brdp->reset = stli_onbreset;
4048 if (brdp->memaddr > 0x100000)
4049 brdp->enabval = ONB_MEMENABHI;
4050 else
4051 brdp->enabval = ONB_MEMENABLO;
4052 name = "serial(ONBoard)";
4053 break;
4054
4055 case BRD_ONBOARDE:
4056 brdp->membase = (void *) brdp->memaddr;
4057 brdp->memsize = ONB_EIMEMSIZE;
4058 brdp->pagesize = ONB_EIPAGESIZE;
4059 brdp->init = stli_onbeinit;
4060 brdp->enable = stli_onbeenable;
4061 brdp->reenable = stli_onbeenable;
4062 brdp->disable = stli_onbedisable;
4063 brdp->getmemptr = stli_onbegetmemptr;
4064 brdp->intr = stli_ecpintr;
4065 brdp->reset = stli_onbereset;
4066 name = "serial(ONBoard/E)";
4067 break;
4068
4069 case BRD_BRUMBY4:
4070 case BRD_BRUMBY8:
4071 case BRD_BRUMBY16:
4072 brdp->membase = (void *) brdp->memaddr;
4073 brdp->memsize = BBY_MEMSIZE;
4074 brdp->pagesize = BBY_PAGESIZE;
4075 brdp->init = stli_bbyinit;
4076 brdp->enable = NULL;
4077 brdp->reenable = NULL;
4078 brdp->disable = NULL;
4079 brdp->getmemptr = stli_bbygetmemptr;
4080 brdp->intr = stli_ecpintr;
4081 brdp->reset = stli_bbyreset;
4082 name = "serial(Brumby)";
4083 break;
4084
4085 case BRD_STALLION:
4086 brdp->membase = (void *) brdp->memaddr;
4087 brdp->memsize = STAL_MEMSIZE;
4088 brdp->pagesize = STAL_PAGESIZE;
4089 brdp->init = stli_stalinit;
4090 brdp->enable = NULL;
4091 brdp->reenable = NULL;
4092 brdp->disable = NULL;
4093 brdp->getmemptr = stli_stalgetmemptr;
4094 brdp->intr = stli_ecpintr;
4095 brdp->reset = stli_stalreset;
4096 name = "serial(Stallion)";
4097 break;
4098
4099 default:
4100 release_region(brdp->iobase, brdp->iosize);
4101 return(-EINVAL);
4102 }
4103
4104/*
4105 * The per-board operations structure is all set up, so now let's go
4106 * and get the board operational. Firstly initialize board configuration
4107 * registers. Set the memory mapping info so we can get at the boards
4108 * shared memory.
4109 */
4110 EBRDINIT(brdp);
4111
4112 brdp->membase = ioremap(brdp->memaddr, brdp->memsize);
4113 if (brdp->membase == (void *) NULL)
4114 {
4115 release_region(brdp->iobase, brdp->iosize);
4116 return(-ENOMEM);
4117 }
4118
4119/*
4120 * Now that all specific code is set up, enable the shared memory and
4121 * look for the a signature area that will tell us exactly what board
4122 * this is, and how many ports.
4123 */
4124 EBRDENABLE(brdp);
4125 sigsp = (cdkonbsig_t *) EBRDGETMEMPTR(brdp, CDK_SIGADDR);
4126 memcpy(&sig, sigsp, sizeof(cdkonbsig_t));
4127 EBRDDISABLE(brdp);
4128
4129#if 0
4130 printk("%s(%d): sig-> magic=%x:%x:%x:%x romver=%x amask=%x:%x:%x\n",
4131 __FILE__, __LINE__, sig.magic0, sig.magic1, sig.magic2,
4132 sig.magic3, sig.romver, sig.amask0, sig.amask1, sig.amask2);
4133#endif
4134
4135 if ((sig.magic0 != ONB_MAGIC0) || (sig.magic1 != ONB_MAGIC1) ||
4136 (sig.magic2 != ONB_MAGIC2) || (sig.magic3 != ONB_MAGIC3))
4137 {
4138 release_region(brdp->iobase, brdp->iosize);
4139 return(-ENODEV);
4140 }
4141
4142/*
4143 * Scan through the signature alive mask and calculate how many ports
4144 * there are on this board.
4145 */
4146 brdp->nrpanels = 1;
4147 if (sig.amask1) {
4148 brdp->nrports = 32;
4149 } else {
4150 for (i = 0; (i < 16); i++) {
4151 if (((sig.amask0 << i) & 0x8000) == 0)
4152 break;
4153 }
4154 brdp->nrports = i;
4155 }
4156 brdp->panels[0] = brdp->nrports;
4157
4158
4159 brdp->state |= BST_FOUND;
4160 return(0);
4161}
4162
4163/*****************************************************************************/
4164
4165/*
4166 * Start up a running board. This routine is only called after the
4167 * code has been down loaded to the board and is operational. It will
4168 * read in the memory map, and get the show on the road...
4169 */
4170
4171static int stli_startbrd(stlibrd_t *brdp)
4172{
4173 volatile cdkhdr_t *hdrp;
4174 volatile cdkmem_t *memp;
4175 volatile cdkasy_t *ap;
4176 unsigned long flags;
4177 stliport_t *portp;
4178 int portnr, nrdevs, i, rc;
4179
4180#ifdef DEBUG
4181 printk(KERN_DEBUG "stli_startbrd(brdp=%x)\n", (int) brdp);
4182#endif
4183
4184 rc = 0;
4185
4186 save_flags(flags);
4187 cli();
4188 EBRDENABLE(brdp);
4189 hdrp = (volatile cdkhdr_t *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
4190 nrdevs = hdrp->nrdevs;
4191
4192#if 0
4193 printk("%s(%d): CDK version %d.%d.%d --> "
4194 "nrdevs=%d memp=%x hostp=%x slavep=%x\n",
4195 __FILE__, __LINE__, hdrp->ver_release, hdrp->ver_modification,
4196 hdrp->ver_fix, nrdevs, (int) hdrp->memp, (int) hdrp->hostp,
4197 (int) hdrp->slavep);
4198#endif
4199
4200 if (nrdevs < (brdp->nrports + 1)) {
4201 printk(KERN_ERR "STALLION: slave failed to allocate memory for "
4202 "all devices, devices=%d\n", nrdevs);
4203 brdp->nrports = nrdevs - 1;
4204 }
4205 brdp->nrdevs = nrdevs;
4206 brdp->hostoffset = hdrp->hostp - CDK_CDKADDR;
4207 brdp->slaveoffset = hdrp->slavep - CDK_CDKADDR;
4208 brdp->bitsize = (nrdevs + 7) / 8;
4209 memp = (volatile cdkmem_t *) hdrp->memp;
4210 if (((unsigned long) memp) > brdp->memsize) {
4211 printk(KERN_ERR "STALLION: corrupted shared memory region?\n");
4212 rc = -EIO;
4213 goto stli_donestartup;
4214 }
4215 memp = (volatile cdkmem_t *) EBRDGETMEMPTR(brdp, (unsigned long) memp);
4216 if (memp->dtype != TYP_ASYNCTRL) {
4217 printk(KERN_ERR "STALLION: no slave control device found\n");
4218 goto stli_donestartup;
4219 }
4220 memp++;
4221
4222/*
4223 * Cycle through memory allocation of each port. We are guaranteed to
4224 * have all ports inside the first page of slave window, so no need to
4225 * change pages while reading memory map.
4226 */
4227 for (i = 1, portnr = 0; (i < nrdevs); i++, portnr++, memp++) {
4228 if (memp->dtype != TYP_ASYNC)
4229 break;
4230 portp = brdp->ports[portnr];
4231 if (portp == (stliport_t *) NULL)
4232 break;
4233 portp->devnr = i;
4234 portp->addr = memp->offset;
4235 portp->reqbit = (unsigned char) (0x1 << (i * 8 / nrdevs));
4236 portp->portidx = (unsigned char) (i / 8);
4237 portp->portbit = (unsigned char) (0x1 << (i % 8));
4238 }
4239
4240 hdrp->slavereq = 0xff;
4241
4242/*
4243 * For each port setup a local copy of the RX and TX buffer offsets
4244 * and sizes. We do this separate from the above, because we need to
4245 * move the shared memory page...
4246 */
4247 for (i = 1, portnr = 0; (i < nrdevs); i++, portnr++) {
4248 portp = brdp->ports[portnr];
4249 if (portp == (stliport_t *) NULL)
4250 break;
4251 if (portp->addr == 0)
4252 break;
4253 ap = (volatile cdkasy_t *) EBRDGETMEMPTR(brdp, portp->addr);
4254 if (ap != (volatile cdkasy_t *) NULL) {
4255 portp->rxsize = ap->rxq.size;
4256 portp->txsize = ap->txq.size;
4257 portp->rxoffset = ap->rxq.offset;
4258 portp->txoffset = ap->txq.offset;
4259 }
4260 }
4261
4262stli_donestartup:
4263 EBRDDISABLE(brdp);
4264 restore_flags(flags);
4265
4266 if (rc == 0)
4267 brdp->state |= BST_STARTED;
4268
4269 if (! stli_timeron) {
4270 stli_timeron++;
4271 stli_timerlist.expires = STLI_TIMEOUT;
4272 add_timer(&stli_timerlist);
4273 }
4274
4275 return(rc);
4276}
4277
4278/*****************************************************************************/
4279
4280/*
4281 * Probe and initialize the specified board.
4282 */
4283
4284static int __init stli_brdinit(stlibrd_t *brdp)
4285{
4286#ifdef DEBUG
4287 printk(KERN_DEBUG "stli_brdinit(brdp=%x)\n", (int) brdp);
4288#endif
4289
4290 stli_brds[brdp->brdnr] = brdp;
4291
4292 switch (brdp->brdtype) {
4293 case BRD_ECP:
4294 case BRD_ECPE:
4295 case BRD_ECPMC:
4296 case BRD_ECPPCI:
4297 stli_initecp(brdp);
4298 break;
4299 case BRD_ONBOARD:
4300 case BRD_ONBOARDE:
4301 case BRD_ONBOARD2:
4302 case BRD_ONBOARD32:
4303 case BRD_ONBOARD2_32:
4304 case BRD_ONBOARDRS:
4305 case BRD_BRUMBY4:
4306 case BRD_BRUMBY8:
4307 case BRD_BRUMBY16:
4308 case BRD_STALLION:
4309 stli_initonb(brdp);
4310 break;
4311 case BRD_EASYIO:
4312 case BRD_ECH:
4313 case BRD_ECHMC:
4314 case BRD_ECHPCI:
4315 printk(KERN_ERR "STALLION: %s board type not supported in "
4316 "this driver\n", stli_brdnames[brdp->brdtype]);
4317 return(ENODEV);
4318 default:
4319 printk(KERN_ERR "STALLION: board=%d is unknown board "
4320 "type=%d\n", brdp->brdnr, brdp->brdtype);
4321 return(ENODEV);
4322 }
4323
4324 if ((brdp->state & BST_FOUND) == 0) {
4325 printk(KERN_ERR "STALLION: %s board not found, board=%d "
4326 "io=%x mem=%x\n",
4327 stli_brdnames[brdp->brdtype], brdp->brdnr,
4328 brdp->iobase, (int) brdp->memaddr);
4329 return(ENODEV);
4330 }
4331
4332 stli_initports(brdp);
4333 printk(KERN_INFO "STALLION: %s found, board=%d io=%x mem=%x "
4334 "nrpanels=%d nrports=%d\n", stli_brdnames[brdp->brdtype],
4335 brdp->brdnr, brdp->iobase, (int) brdp->memaddr,
4336 brdp->nrpanels, brdp->nrports);
4337 return(0);
4338}
4339
4340/*****************************************************************************/
4341
4342/*
4343 * Probe around trying to find where the EISA boards shared memory
4344 * might be. This is a bit if hack, but it is the best we can do.
4345 */
4346
4347static int stli_eisamemprobe(stlibrd_t *brdp)
4348{
4349 cdkecpsig_t ecpsig, *ecpsigp;
4350 cdkonbsig_t onbsig, *onbsigp;
4351 int i, foundit;
4352
4353#ifdef DEBUG
4354 printk(KERN_DEBUG "stli_eisamemprobe(brdp=%x)\n", (int) brdp);
4355#endif
4356
4357/*
4358 * First up we reset the board, to get it into a known state. There
4359 * is only 2 board types here we need to worry about. Don;t use the
4360 * standard board init routine here, it programs up the shared
4361 * memory address, and we don't know it yet...
4362 */
4363 if (brdp->brdtype == BRD_ECPE) {
4364 outb(0x1, (brdp->iobase + ECP_EIBRDENAB));
4365 outb(ECP_EISTOP, (brdp->iobase + ECP_EICONFR));
4366 udelay(10);
4367 outb(ECP_EIDISABLE, (brdp->iobase + ECP_EICONFR));
4368 udelay(500);
4369 stli_ecpeienable(brdp);
4370 } else if (brdp->brdtype == BRD_ONBOARDE) {
4371 outb(0x1, (brdp->iobase + ONB_EIBRDENAB));
4372 outb(ONB_EISTOP, (brdp->iobase + ONB_EICONFR));
4373 udelay(10);
4374 outb(ONB_EIDISABLE, (brdp->iobase + ONB_EICONFR));
4375 mdelay(100);
4376 outb(0x1, brdp->iobase);
4377 mdelay(1);
4378 stli_onbeenable(brdp);
4379 } else {
4380 return(-ENODEV);
4381 }
4382
4383 foundit = 0;
4384 brdp->memsize = ECP_MEMSIZE;
4385
4386/*
4387 * Board shared memory is enabled, so now we have a poke around and
4388 * see if we can find it.
4389 */
4390 for (i = 0; (i < stli_eisamempsize); i++) {
4391 brdp->memaddr = stli_eisamemprobeaddrs[i];
4392 brdp->membase = (void *) brdp->memaddr;
4393 brdp->membase = ioremap(brdp->memaddr, brdp->memsize);
4394 if (brdp->membase == (void *) NULL)
4395 continue;
4396
4397 if (brdp->brdtype == BRD_ECPE) {
4398 ecpsigp = (cdkecpsig_t *) stli_ecpeigetmemptr(brdp,
4399 CDK_SIGADDR, __LINE__);
4400 memcpy(&ecpsig, ecpsigp, sizeof(cdkecpsig_t));
4401 if (ecpsig.magic == ECP_MAGIC)
4402 foundit = 1;
4403 } else {
4404 onbsigp = (cdkonbsig_t *) stli_onbegetmemptr(brdp,
4405 CDK_SIGADDR, __LINE__);
4406 memcpy(&onbsig, onbsigp, sizeof(cdkonbsig_t));
4407 if ((onbsig.magic0 == ONB_MAGIC0) &&
4408 (onbsig.magic1 == ONB_MAGIC1) &&
4409 (onbsig.magic2 == ONB_MAGIC2) &&
4410 (onbsig.magic3 == ONB_MAGIC3))
4411 foundit = 1;
4412 }
4413
4414 iounmap(brdp->membase);
4415 if (foundit)
4416 break;
4417 }
4418
4419/*
4420 * Regardless of whether we found the shared memory or not we must
4421 * disable the region. After that return success or failure.
4422 */
4423 if (brdp->brdtype == BRD_ECPE)
4424 stli_ecpeidisable(brdp);
4425 else
4426 stli_onbedisable(brdp);
4427
4428 if (! foundit) {
4429 brdp->memaddr = 0;
4430 brdp->membase = NULL;
4431 printk(KERN_ERR "STALLION: failed to probe shared memory "
4432 "region for %s in EISA slot=%d\n",
4433 stli_brdnames[brdp->brdtype], (brdp->iobase >> 12));
4434 return(-ENODEV);
4435 }
4436 return(0);
4437}
4438
4439static int stli_getbrdnr(void)
4440{
4441 int i;
4442
4443 for (i = 0; i < STL_MAXBRDS; i++) {
4444 if (!stli_brds[i]) {
4445 if (i >= stli_nrbrds)
4446 stli_nrbrds = i + 1;
4447 return i;
4448 }
4449 }
4450 return -1;
4451}
4452
4453/*****************************************************************************/
4454
4455/*
4456 * Probe around and try to find any EISA boards in system. The biggest
4457 * problem here is finding out what memory address is associated with
4458 * an EISA board after it is found. The registers of the ECPE and
4459 * ONboardE are not readable - so we can't read them from there. We
4460 * don't have access to the EISA CMOS (or EISA BIOS) so we don't
4461 * actually have any way to find out the real value. The best we can
4462 * do is go probing around in the usual places hoping we can find it.
4463 */
4464
4465static int stli_findeisabrds(void)
4466{
4467 stlibrd_t *brdp;
4468 unsigned int iobase, eid;
4469 int i;
4470
4471#ifdef DEBUG
4472 printk(KERN_DEBUG "stli_findeisabrds()\n");
4473#endif
4474
4475/*
4476 * Firstly check if this is an EISA system. Do this by probing for
4477 * the system board EISA ID. If this is not an EISA system then
4478 * don't bother going any further!
4479 */
4480 outb(0xff, 0xc80);
4481 if (inb(0xc80) == 0xff)
4482 return(0);
4483
4484/*
4485 * Looks like an EISA system, so go searching for EISA boards.
4486 */
4487 for (iobase = 0x1000; (iobase <= 0xc000); iobase += 0x1000) {
4488 outb(0xff, (iobase + 0xc80));
4489 eid = inb(iobase + 0xc80);
4490 eid |= inb(iobase + 0xc81) << 8;
4491 if (eid != STL_EISAID)
4492 continue;
4493
4494/*
4495 * We have found a board. Need to check if this board was
4496 * statically configured already (just in case!).
4497 */
4498 for (i = 0; (i < STL_MAXBRDS); i++) {
4499 brdp = stli_brds[i];
4500 if (brdp == (stlibrd_t *) NULL)
4501 continue;
4502 if (brdp->iobase == iobase)
4503 break;
4504 }
4505 if (i < STL_MAXBRDS)
4506 continue;
4507
4508/*
4509 * We have found a Stallion board and it is not configured already.
4510 * Allocate a board structure and initialize it.
4511 */
4512 if ((brdp = stli_allocbrd()) == (stlibrd_t *) NULL)
4513 return(-ENOMEM);
4514 if ((brdp->brdnr = stli_getbrdnr()) < 0)
4515 return(-ENOMEM);
4516 eid = inb(iobase + 0xc82);
4517 if (eid == ECP_EISAID)
4518 brdp->brdtype = BRD_ECPE;
4519 else if (eid == ONB_EISAID)
4520 brdp->brdtype = BRD_ONBOARDE;
4521 else
4522 brdp->brdtype = BRD_UNKNOWN;
4523 brdp->iobase = iobase;
4524 outb(0x1, (iobase + 0xc84));
4525 if (stli_eisamemprobe(brdp))
4526 outb(0, (iobase + 0xc84));
4527 stli_brdinit(brdp);
4528 }
4529
4530 return(0);
4531}
4532
4533/*****************************************************************************/
4534
4535/*
4536 * Find the next available board number that is free.
4537 */
4538
4539/*****************************************************************************/
4540
4541#ifdef CONFIG_PCI
4542
4543/*
4544 * We have a Stallion board. Allocate a board structure and
4545 * initialize it. Read its IO and MEMORY resources from PCI
4546 * configuration space.
4547 */
4548
4549static int stli_initpcibrd(int brdtype, struct pci_dev *devp)
4550{
4551 stlibrd_t *brdp;
4552
4553#ifdef DEBUG
4554 printk(KERN_DEBUG "stli_initpcibrd(brdtype=%d,busnr=%x,devnr=%x)\n",
4555 brdtype, dev->bus->number, dev->devfn);
4556#endif
4557
4558 if (pci_enable_device(devp))
4559 return(-EIO);
4560 if ((brdp = stli_allocbrd()) == (stlibrd_t *) NULL)
4561 return(-ENOMEM);
4562 if ((brdp->brdnr = stli_getbrdnr()) < 0) {
4563 printk(KERN_INFO "STALLION: too many boards found, "
4564 "maximum supported %d\n", STL_MAXBRDS);
4565 return(0);
4566 }
4567 brdp->brdtype = brdtype;
4568
4569#ifdef DEBUG
4570 printk(KERN_DEBUG "%s(%d): BAR[]=%lx,%lx,%lx,%lx\n", __FILE__, __LINE__,
4571 pci_resource_start(devp, 0),
4572 pci_resource_start(devp, 1),
4573 pci_resource_start(devp, 2),
4574 pci_resource_start(devp, 3));
4575#endif
4576
4577/*
4578 * We have all resources from the board, so lets setup the actual
4579 * board structure now.
4580 */
4581 brdp->iobase = pci_resource_start(devp, 3);
4582 brdp->memaddr = pci_resource_start(devp, 2);
4583 stli_brdinit(brdp);
4584
4585 return(0);
4586}
4587
4588/*****************************************************************************/
4589
4590/*
4591 * Find all Stallion PCI boards that might be installed. Initialize each
4592 * one as it is found.
4593 */
4594
4595static int stli_findpcibrds(void)
4596{
4597 struct pci_dev *dev = NULL;
4598 int rc;
4599
4600#ifdef DEBUG
4601 printk("stli_findpcibrds()\n");
4602#endif
4603
4604 while ((dev = pci_find_device(PCI_VENDOR_ID_STALLION,
4605 PCI_DEVICE_ID_ECRA, dev))) {
4606 if ((rc = stli_initpcibrd(BRD_ECPPCI, dev)))
4607 return(rc);
4608 }
4609
4610 return(0);
4611}
4612
4613#endif
4614
4615/*****************************************************************************/
4616
4617/*
4618 * Allocate a new board structure. Fill out the basic info in it.
4619 */
4620
4621static stlibrd_t *stli_allocbrd(void)
4622{
4623 stlibrd_t *brdp;
4624
4625 brdp = (stlibrd_t *) stli_memalloc(sizeof(stlibrd_t));
4626 if (brdp == (stlibrd_t *) NULL) {
4627 printk(KERN_ERR "STALLION: failed to allocate memory "
4628 "(size=%d)\n", sizeof(stlibrd_t));
4629 return((stlibrd_t *) NULL);
4630 }
4631
4632 memset(brdp, 0, sizeof(stlibrd_t));
4633 brdp->magic = STLI_BOARDMAGIC;
4634 return(brdp);
4635}
4636
4637/*****************************************************************************/
4638
4639/*
4640 * Scan through all the boards in the configuration and see what we
4641 * can find.
4642 */
4643
4644static int stli_initbrds(void)
4645{
4646 stlibrd_t *brdp, *nxtbrdp;
4647 stlconf_t *confp;
4648 int i, j;
4649
4650#ifdef DEBUG
4651 printk(KERN_DEBUG "stli_initbrds()\n");
4652#endif
4653
4654 if (stli_nrbrds > STL_MAXBRDS) {
4655 printk(KERN_INFO "STALLION: too many boards in configuration "
4656 "table, truncating to %d\n", STL_MAXBRDS);
4657 stli_nrbrds = STL_MAXBRDS;
4658 }
4659
4660/*
4661 * Firstly scan the list of static boards configured. Allocate
4662 * resources and initialize the boards as found. If this is a
4663 * module then let the module args override static configuration.
4664 */
4665 for (i = 0; (i < stli_nrbrds); i++) {
4666 confp = &stli_brdconf[i];
4667#ifdef MODULE
4668 stli_parsebrd(confp, stli_brdsp[i]);
4669#endif
4670 if ((brdp = stli_allocbrd()) == (stlibrd_t *) NULL)
4671 return(-ENOMEM);
4672 brdp->brdnr = i;
4673 brdp->brdtype = confp->brdtype;
4674 brdp->iobase = confp->ioaddr1;
4675 brdp->memaddr = confp->memaddr;
4676 stli_brdinit(brdp);
4677 }
4678
4679/*
4680 * Static configuration table done, so now use dynamic methods to
4681 * see if any more boards should be configured.
4682 */
4683#ifdef MODULE
4684 stli_argbrds();
4685#endif
Adrian Bunkdbc6b5f2005-06-25 14:59:03 -07004686 if (STLI_EISAPROBE)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004687 stli_findeisabrds();
4688#ifdef CONFIG_PCI
4689 stli_findpcibrds();
4690#endif
4691
4692/*
4693 * All found boards are initialized. Now for a little optimization, if
4694 * no boards are sharing the "shared memory" regions then we can just
4695 * leave them all enabled. This is in fact the usual case.
4696 */
4697 stli_shared = 0;
4698 if (stli_nrbrds > 1) {
4699 for (i = 0; (i < stli_nrbrds); i++) {
4700 brdp = stli_brds[i];
4701 if (brdp == (stlibrd_t *) NULL)
4702 continue;
4703 for (j = i + 1; (j < stli_nrbrds); j++) {
4704 nxtbrdp = stli_brds[j];
4705 if (nxtbrdp == (stlibrd_t *) NULL)
4706 continue;
4707 if ((brdp->membase >= nxtbrdp->membase) &&
4708 (brdp->membase <= (nxtbrdp->membase +
4709 nxtbrdp->memsize - 1))) {
4710 stli_shared++;
4711 break;
4712 }
4713 }
4714 }
4715 }
4716
4717 if (stli_shared == 0) {
4718 for (i = 0; (i < stli_nrbrds); i++) {
4719 brdp = stli_brds[i];
4720 if (brdp == (stlibrd_t *) NULL)
4721 continue;
4722 if (brdp->state & BST_FOUND) {
4723 EBRDENABLE(brdp);
4724 brdp->enable = NULL;
4725 brdp->disable = NULL;
4726 }
4727 }
4728 }
4729
4730 return(0);
4731}
4732
4733/*****************************************************************************/
4734
4735/*
4736 * Code to handle an "staliomem" read operation. This device is the
4737 * contents of the board shared memory. It is used for down loading
4738 * the slave image (and debugging :-)
4739 */
4740
4741static ssize_t stli_memread(struct file *fp, char __user *buf, size_t count, loff_t *offp)
4742{
4743 unsigned long flags;
4744 void *memptr;
4745 stlibrd_t *brdp;
4746 int brdnr, size, n;
4747
4748#ifdef DEBUG
4749 printk(KERN_DEBUG "stli_memread(fp=%x,buf=%x,count=%x,offp=%x)\n",
4750 (int) fp, (int) buf, count, (int) offp);
4751#endif
4752
4753 brdnr = iminor(fp->f_dentry->d_inode);
4754 if (brdnr >= stli_nrbrds)
4755 return(-ENODEV);
4756 brdp = stli_brds[brdnr];
4757 if (brdp == (stlibrd_t *) NULL)
4758 return(-ENODEV);
4759 if (brdp->state == 0)
4760 return(-ENODEV);
4761 if (fp->f_pos >= brdp->memsize)
4762 return(0);
4763
4764 size = MIN(count, (brdp->memsize - fp->f_pos));
4765
4766 save_flags(flags);
4767 cli();
4768 EBRDENABLE(brdp);
4769 while (size > 0) {
4770 memptr = (void *) EBRDGETMEMPTR(brdp, fp->f_pos);
4771 n = MIN(size, (brdp->pagesize - (((unsigned long) fp->f_pos) % brdp->pagesize)));
4772 if (copy_to_user(buf, memptr, n)) {
4773 count = -EFAULT;
4774 goto out;
4775 }
4776 fp->f_pos += n;
4777 buf += n;
4778 size -= n;
4779 }
4780out:
4781 EBRDDISABLE(brdp);
4782 restore_flags(flags);
4783
4784 return(count);
4785}
4786
4787/*****************************************************************************/
4788
4789/*
4790 * Code to handle an "staliomem" write operation. This device is the
4791 * contents of the board shared memory. It is used for down loading
4792 * the slave image (and debugging :-)
4793 */
4794
4795static ssize_t stli_memwrite(struct file *fp, const char __user *buf, size_t count, loff_t *offp)
4796{
4797 unsigned long flags;
4798 void *memptr;
4799 stlibrd_t *brdp;
4800 char __user *chbuf;
4801 int brdnr, size, n;
4802
4803#ifdef DEBUG
4804 printk(KERN_DEBUG "stli_memwrite(fp=%x,buf=%x,count=%x,offp=%x)\n",
4805 (int) fp, (int) buf, count, (int) offp);
4806#endif
4807
4808 brdnr = iminor(fp->f_dentry->d_inode);
4809 if (brdnr >= stli_nrbrds)
4810 return(-ENODEV);
4811 brdp = stli_brds[brdnr];
4812 if (brdp == (stlibrd_t *) NULL)
4813 return(-ENODEV);
4814 if (brdp->state == 0)
4815 return(-ENODEV);
4816 if (fp->f_pos >= brdp->memsize)
4817 return(0);
4818
4819 chbuf = (char __user *) buf;
4820 size = MIN(count, (brdp->memsize - fp->f_pos));
4821
4822 save_flags(flags);
4823 cli();
4824 EBRDENABLE(brdp);
4825 while (size > 0) {
4826 memptr = (void *) EBRDGETMEMPTR(brdp, fp->f_pos);
4827 n = MIN(size, (brdp->pagesize - (((unsigned long) fp->f_pos) % brdp->pagesize)));
4828 if (copy_from_user(memptr, chbuf, n)) {
4829 count = -EFAULT;
4830 goto out;
4831 }
4832 fp->f_pos += n;
4833 chbuf += n;
4834 size -= n;
4835 }
4836out:
4837 EBRDDISABLE(brdp);
4838 restore_flags(flags);
4839
4840 return(count);
4841}
4842
4843/*****************************************************************************/
4844
4845/*
4846 * Return the board stats structure to user app.
4847 */
4848
4849static int stli_getbrdstats(combrd_t __user *bp)
4850{
4851 stlibrd_t *brdp;
4852 int i;
4853
4854 if (copy_from_user(&stli_brdstats, bp, sizeof(combrd_t)))
4855 return -EFAULT;
4856 if (stli_brdstats.brd >= STL_MAXBRDS)
4857 return(-ENODEV);
4858 brdp = stli_brds[stli_brdstats.brd];
4859 if (brdp == (stlibrd_t *) NULL)
4860 return(-ENODEV);
4861
4862 memset(&stli_brdstats, 0, sizeof(combrd_t));
4863 stli_brdstats.brd = brdp->brdnr;
4864 stli_brdstats.type = brdp->brdtype;
4865 stli_brdstats.hwid = 0;
4866 stli_brdstats.state = brdp->state;
4867 stli_brdstats.ioaddr = brdp->iobase;
4868 stli_brdstats.memaddr = brdp->memaddr;
4869 stli_brdstats.nrpanels = brdp->nrpanels;
4870 stli_brdstats.nrports = brdp->nrports;
4871 for (i = 0; (i < brdp->nrpanels); i++) {
4872 stli_brdstats.panels[i].panel = i;
4873 stli_brdstats.panels[i].hwid = brdp->panelids[i];
4874 stli_brdstats.panels[i].nrports = brdp->panels[i];
4875 }
4876
4877 if (copy_to_user(bp, &stli_brdstats, sizeof(combrd_t)))
4878 return -EFAULT;
4879 return(0);
4880}
4881
4882/*****************************************************************************/
4883
4884/*
4885 * Resolve the referenced port number into a port struct pointer.
4886 */
4887
4888static stliport_t *stli_getport(int brdnr, int panelnr, int portnr)
4889{
4890 stlibrd_t *brdp;
4891 int i;
4892
4893 if ((brdnr < 0) || (brdnr >= STL_MAXBRDS))
4894 return((stliport_t *) NULL);
4895 brdp = stli_brds[brdnr];
4896 if (brdp == (stlibrd_t *) NULL)
4897 return((stliport_t *) NULL);
4898 for (i = 0; (i < panelnr); i++)
4899 portnr += brdp->panels[i];
4900 if ((portnr < 0) || (portnr >= brdp->nrports))
4901 return((stliport_t *) NULL);
4902 return(brdp->ports[portnr]);
4903}
4904
4905/*****************************************************************************/
4906
4907/*
4908 * Return the port stats structure to user app. A NULL port struct
4909 * pointer passed in means that we need to find out from the app
4910 * what port to get stats for (used through board control device).
4911 */
4912
4913static int stli_portcmdstats(stliport_t *portp)
4914{
4915 unsigned long flags;
4916 stlibrd_t *brdp;
4917 int rc;
4918
4919 memset(&stli_comstats, 0, sizeof(comstats_t));
4920
4921 if (portp == (stliport_t *) NULL)
4922 return(-ENODEV);
4923 brdp = stli_brds[portp->brdnr];
4924 if (brdp == (stlibrd_t *) NULL)
4925 return(-ENODEV);
4926
4927 if (brdp->state & BST_STARTED) {
4928 if ((rc = stli_cmdwait(brdp, portp, A_GETSTATS,
4929 &stli_cdkstats, sizeof(asystats_t), 1)) < 0)
4930 return(rc);
4931 } else {
4932 memset(&stli_cdkstats, 0, sizeof(asystats_t));
4933 }
4934
4935 stli_comstats.brd = portp->brdnr;
4936 stli_comstats.panel = portp->panelnr;
4937 stli_comstats.port = portp->portnr;
4938 stli_comstats.state = portp->state;
4939 stli_comstats.flags = portp->flags;
4940
4941 save_flags(flags);
4942 cli();
4943 if (portp->tty != (struct tty_struct *) NULL) {
4944 if (portp->tty->driver_data == portp) {
4945 stli_comstats.ttystate = portp->tty->flags;
4946 stli_comstats.rxbuffered = portp->tty->flip.count;
4947 if (portp->tty->termios != (struct termios *) NULL) {
4948 stli_comstats.cflags = portp->tty->termios->c_cflag;
4949 stli_comstats.iflags = portp->tty->termios->c_iflag;
4950 stli_comstats.oflags = portp->tty->termios->c_oflag;
4951 stli_comstats.lflags = portp->tty->termios->c_lflag;
4952 }
4953 }
4954 }
4955 restore_flags(flags);
4956
4957 stli_comstats.txtotal = stli_cdkstats.txchars;
4958 stli_comstats.rxtotal = stli_cdkstats.rxchars + stli_cdkstats.ringover;
4959 stli_comstats.txbuffered = stli_cdkstats.txringq;
4960 stli_comstats.rxbuffered += stli_cdkstats.rxringq;
4961 stli_comstats.rxoverrun = stli_cdkstats.overruns;
4962 stli_comstats.rxparity = stli_cdkstats.parity;
4963 stli_comstats.rxframing = stli_cdkstats.framing;
4964 stli_comstats.rxlost = stli_cdkstats.ringover;
4965 stli_comstats.rxbreaks = stli_cdkstats.rxbreaks;
4966 stli_comstats.txbreaks = stli_cdkstats.txbreaks;
4967 stli_comstats.txxon = stli_cdkstats.txstart;
4968 stli_comstats.txxoff = stli_cdkstats.txstop;
4969 stli_comstats.rxxon = stli_cdkstats.rxstart;
4970 stli_comstats.rxxoff = stli_cdkstats.rxstop;
4971 stli_comstats.rxrtsoff = stli_cdkstats.rtscnt / 2;
4972 stli_comstats.rxrtson = stli_cdkstats.rtscnt - stli_comstats.rxrtsoff;
4973 stli_comstats.modem = stli_cdkstats.dcdcnt;
4974 stli_comstats.hwid = stli_cdkstats.hwid;
4975 stli_comstats.signals = stli_mktiocm(stli_cdkstats.signals);
4976
4977 return(0);
4978}
4979
4980/*****************************************************************************/
4981
4982/*
4983 * Return the port stats structure to user app. A NULL port struct
4984 * pointer passed in means that we need to find out from the app
4985 * what port to get stats for (used through board control device).
4986 */
4987
4988static int stli_getportstats(stliport_t *portp, comstats_t __user *cp)
4989{
4990 stlibrd_t *brdp;
4991 int rc;
4992
4993 if (!portp) {
4994 if (copy_from_user(&stli_comstats, cp, sizeof(comstats_t)))
4995 return -EFAULT;
4996 portp = stli_getport(stli_comstats.brd, stli_comstats.panel,
4997 stli_comstats.port);
4998 if (!portp)
4999 return -ENODEV;
5000 }
5001
5002 brdp = stli_brds[portp->brdnr];
5003 if (!brdp)
5004 return -ENODEV;
5005
5006 if ((rc = stli_portcmdstats(portp)) < 0)
5007 return rc;
5008
5009 return copy_to_user(cp, &stli_comstats, sizeof(comstats_t)) ?
5010 -EFAULT : 0;
5011}
5012
5013/*****************************************************************************/
5014
5015/*
5016 * Clear the port stats structure. We also return it zeroed out...
5017 */
5018
5019static int stli_clrportstats(stliport_t *portp, comstats_t __user *cp)
5020{
5021 stlibrd_t *brdp;
5022 int rc;
5023
5024 if (!portp) {
5025 if (copy_from_user(&stli_comstats, cp, sizeof(comstats_t)))
5026 return -EFAULT;
5027 portp = stli_getport(stli_comstats.brd, stli_comstats.panel,
5028 stli_comstats.port);
5029 if (!portp)
5030 return -ENODEV;
5031 }
5032
5033 brdp = stli_brds[portp->brdnr];
5034 if (!brdp)
5035 return -ENODEV;
5036
5037 if (brdp->state & BST_STARTED) {
5038 if ((rc = stli_cmdwait(brdp, portp, A_CLEARSTATS, NULL, 0, 0)) < 0)
5039 return rc;
5040 }
5041
5042 memset(&stli_comstats, 0, sizeof(comstats_t));
5043 stli_comstats.brd = portp->brdnr;
5044 stli_comstats.panel = portp->panelnr;
5045 stli_comstats.port = portp->portnr;
5046
5047 if (copy_to_user(cp, &stli_comstats, sizeof(comstats_t)))
5048 return -EFAULT;
5049 return 0;
5050}
5051
5052/*****************************************************************************/
5053
5054/*
5055 * Return the entire driver ports structure to a user app.
5056 */
5057
5058static int stli_getportstruct(stliport_t __user *arg)
5059{
5060 stliport_t *portp;
5061
5062 if (copy_from_user(&stli_dummyport, arg, sizeof(stliport_t)))
5063 return -EFAULT;
5064 portp = stli_getport(stli_dummyport.brdnr, stli_dummyport.panelnr,
5065 stli_dummyport.portnr);
5066 if (!portp)
5067 return -ENODEV;
5068 if (copy_to_user(arg, portp, sizeof(stliport_t)))
5069 return -EFAULT;
5070 return 0;
5071}
5072
5073/*****************************************************************************/
5074
5075/*
5076 * Return the entire driver board structure to a user app.
5077 */
5078
5079static int stli_getbrdstruct(stlibrd_t __user *arg)
5080{
5081 stlibrd_t *brdp;
5082
5083 if (copy_from_user(&stli_dummybrd, arg, sizeof(stlibrd_t)))
5084 return -EFAULT;
5085 if ((stli_dummybrd.brdnr < 0) || (stli_dummybrd.brdnr >= STL_MAXBRDS))
5086 return -ENODEV;
5087 brdp = stli_brds[stli_dummybrd.brdnr];
5088 if (!brdp)
5089 return -ENODEV;
5090 if (copy_to_user(arg, brdp, sizeof(stlibrd_t)))
5091 return -EFAULT;
5092 return 0;
5093}
5094
5095/*****************************************************************************/
5096
5097/*
5098 * The "staliomem" device is also required to do some special operations on
5099 * the board. We need to be able to send an interrupt to the board,
5100 * reset it, and start/stop it.
5101 */
5102
5103static int stli_memioctl(struct inode *ip, struct file *fp, unsigned int cmd, unsigned long arg)
5104{
5105 stlibrd_t *brdp;
5106 int brdnr, rc, done;
5107 void __user *argp = (void __user *)arg;
5108
5109#ifdef DEBUG
5110 printk(KERN_DEBUG "stli_memioctl(ip=%x,fp=%x,cmd=%x,arg=%x)\n",
5111 (int) ip, (int) fp, cmd, (int) arg);
5112#endif
5113
5114/*
5115 * First up handle the board independent ioctls.
5116 */
5117 done = 0;
5118 rc = 0;
5119
5120 switch (cmd) {
5121 case COM_GETPORTSTATS:
5122 rc = stli_getportstats(NULL, argp);
5123 done++;
5124 break;
5125 case COM_CLRPORTSTATS:
5126 rc = stli_clrportstats(NULL, argp);
5127 done++;
5128 break;
5129 case COM_GETBRDSTATS:
5130 rc = stli_getbrdstats(argp);
5131 done++;
5132 break;
5133 case COM_READPORT:
5134 rc = stli_getportstruct(argp);
5135 done++;
5136 break;
5137 case COM_READBOARD:
5138 rc = stli_getbrdstruct(argp);
5139 done++;
5140 break;
5141 }
5142
5143 if (done)
5144 return(rc);
5145
5146/*
5147 * Now handle the board specific ioctls. These all depend on the
5148 * minor number of the device they were called from.
5149 */
5150 brdnr = iminor(ip);
5151 if (brdnr >= STL_MAXBRDS)
5152 return(-ENODEV);
5153 brdp = stli_brds[brdnr];
5154 if (!brdp)
5155 return(-ENODEV);
5156 if (brdp->state == 0)
5157 return(-ENODEV);
5158
5159 switch (cmd) {
5160 case STL_BINTR:
5161 EBRDINTR(brdp);
5162 break;
5163 case STL_BSTART:
5164 rc = stli_startbrd(brdp);
5165 break;
5166 case STL_BSTOP:
5167 brdp->state &= ~BST_STARTED;
5168 break;
5169 case STL_BRESET:
5170 brdp->state &= ~BST_STARTED;
5171 EBRDRESET(brdp);
5172 if (stli_shared == 0) {
5173 if (brdp->reenable != NULL)
5174 (* brdp->reenable)(brdp);
5175 }
5176 break;
5177 default:
5178 rc = -ENOIOCTLCMD;
5179 break;
5180 }
5181
5182 return(rc);
5183}
5184
5185static struct tty_operations stli_ops = {
5186 .open = stli_open,
5187 .close = stli_close,
5188 .write = stli_write,
5189 .put_char = stli_putchar,
5190 .flush_chars = stli_flushchars,
5191 .write_room = stli_writeroom,
5192 .chars_in_buffer = stli_charsinbuffer,
5193 .ioctl = stli_ioctl,
5194 .set_termios = stli_settermios,
5195 .throttle = stli_throttle,
5196 .unthrottle = stli_unthrottle,
5197 .stop = stli_stop,
5198 .start = stli_start,
5199 .hangup = stli_hangup,
5200 .flush_buffer = stli_flushbuffer,
5201 .break_ctl = stli_breakctl,
5202 .wait_until_sent = stli_waituntilsent,
5203 .send_xchar = stli_sendxchar,
5204 .read_proc = stli_readproc,
5205 .tiocmget = stli_tiocmget,
5206 .tiocmset = stli_tiocmset,
5207};
5208
5209/*****************************************************************************/
5210
5211int __init stli_init(void)
5212{
5213 int i;
5214 printk(KERN_INFO "%s: version %s\n", stli_drvtitle, stli_drvversion);
5215
5216 stli_initbrds();
5217
5218 stli_serial = alloc_tty_driver(STL_MAXBRDS * STL_MAXPORTS);
5219 if (!stli_serial)
5220 return -ENOMEM;
5221
5222/*
5223 * Allocate a temporary write buffer.
5224 */
5225 stli_tmpwritebuf = (char *) stli_memalloc(STLI_TXBUFSIZE);
5226 if (stli_tmpwritebuf == (char *) NULL)
5227 printk(KERN_ERR "STALLION: failed to allocate memory "
5228 "(size=%d)\n", STLI_TXBUFSIZE);
5229 stli_txcookbuf = stli_memalloc(STLI_TXBUFSIZE);
5230 if (stli_txcookbuf == (char *) NULL)
5231 printk(KERN_ERR "STALLION: failed to allocate memory "
5232 "(size=%d)\n", STLI_TXBUFSIZE);
5233
5234/*
5235 * Set up a character driver for the shared memory region. We need this
5236 * to down load the slave code image. Also it is a useful debugging tool.
5237 */
5238 if (register_chrdev(STL_SIOMEMMAJOR, "staliomem", &stli_fsiomem))
5239 printk(KERN_ERR "STALLION: failed to register serial memory "
5240 "device\n");
5241
5242 devfs_mk_dir("staliomem");
gregkh@suse.deca8eca62005-03-23 09:53:09 -08005243 istallion_class = class_create(THIS_MODULE, "staliomem");
Linus Torvalds1da177e2005-04-16 15:20:36 -07005244 for (i = 0; i < 4; i++) {
5245 devfs_mk_cdev(MKDEV(STL_SIOMEMMAJOR, i),
5246 S_IFCHR | S_IRUSR | S_IWUSR,
5247 "staliomem/%d", i);
Greg Kroah-Hartman53f46542005-10-27 22:25:43 -07005248 class_device_create(istallion_class, NULL,
5249 MKDEV(STL_SIOMEMMAJOR, i),
Linus Torvalds1da177e2005-04-16 15:20:36 -07005250 NULL, "staliomem%d", i);
5251 }
5252
5253/*
5254 * Set up the tty driver structure and register us as a driver.
5255 */
5256 stli_serial->owner = THIS_MODULE;
5257 stli_serial->driver_name = stli_drvname;
5258 stli_serial->name = stli_serialname;
5259 stli_serial->major = STL_SERIALMAJOR;
5260 stli_serial->minor_start = 0;
5261 stli_serial->type = TTY_DRIVER_TYPE_SERIAL;
5262 stli_serial->subtype = SERIAL_TYPE_NORMAL;
5263 stli_serial->init_termios = stli_deftermios;
5264 stli_serial->flags = TTY_DRIVER_REAL_RAW;
5265 tty_set_operations(stli_serial, &stli_ops);
5266
5267 if (tty_register_driver(stli_serial)) {
5268 put_tty_driver(stli_serial);
5269 printk(KERN_ERR "STALLION: failed to register serial driver\n");
5270 return -EBUSY;
5271 }
5272 return(0);
5273}
5274
5275/*****************************************************************************/