blob: 5ffb3702b5e90f0424d7f9ac3645dd1d4e63921a [file] [log] [blame]
Mark Fashehccd979b2005-12-15 14:31:24 -08001/* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
3 *
4 * Copyright (C) 2002, 2004 Oracle. All rights reserved.
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public
17 * License along with this program; if not, write to the
18 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 * Boston, MA 021110-1307, USA.
20 */
21
22#include <linux/fs.h>
23#include <linux/slab.h>
24#include <linux/highmem.h>
25#include <linux/pagemap.h>
26#include <asm/byteorder.h>
Mark Fasheh9517bac2007-02-09 20:24:12 -080027#include <linux/swap.h>
Mark Fashehccd979b2005-12-15 14:31:24 -080028
29#define MLOG_MASK_PREFIX ML_FILE_IO
30#include <cluster/masklog.h>
31
32#include "ocfs2.h"
33
34#include "alloc.h"
35#include "aops.h"
36#include "dlmglue.h"
37#include "extent_map.h"
38#include "file.h"
39#include "inode.h"
40#include "journal.h"
Mark Fasheh9517bac2007-02-09 20:24:12 -080041#include "suballoc.h"
Mark Fashehccd979b2005-12-15 14:31:24 -080042#include "super.h"
43#include "symlink.h"
44
45#include "buffer_head_io.h"
46
47static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
48 struct buffer_head *bh_result, int create)
49{
50 int err = -EIO;
51 int status;
52 struct ocfs2_dinode *fe = NULL;
53 struct buffer_head *bh = NULL;
54 struct buffer_head *buffer_cache_bh = NULL;
55 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
56 void *kaddr;
57
58 mlog_entry("(0x%p, %llu, 0x%p, %d)\n", inode,
59 (unsigned long long)iblock, bh_result, create);
60
61 BUG_ON(ocfs2_inode_is_fast_symlink(inode));
62
63 if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
64 mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
65 (unsigned long long)iblock);
66 goto bail;
67 }
68
69 status = ocfs2_read_block(OCFS2_SB(inode->i_sb),
70 OCFS2_I(inode)->ip_blkno,
71 &bh, OCFS2_BH_CACHED, inode);
72 if (status < 0) {
73 mlog_errno(status);
74 goto bail;
75 }
76 fe = (struct ocfs2_dinode *) bh->b_data;
77
78 if (!OCFS2_IS_VALID_DINODE(fe)) {
Mark Fashehb06970532006-03-03 10:24:33 -080079 mlog(ML_ERROR, "Invalid dinode #%llu: signature = %.*s\n",
80 (unsigned long long)fe->i_blkno, 7, fe->i_signature);
Mark Fashehccd979b2005-12-15 14:31:24 -080081 goto bail;
82 }
83
84 if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
85 le32_to_cpu(fe->i_clusters))) {
86 mlog(ML_ERROR, "block offset is outside the allocated size: "
87 "%llu\n", (unsigned long long)iblock);
88 goto bail;
89 }
90
91 /* We don't use the page cache to create symlink data, so if
92 * need be, copy it over from the buffer cache. */
93 if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
94 u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
95 iblock;
96 buffer_cache_bh = sb_getblk(osb->sb, blkno);
97 if (!buffer_cache_bh) {
98 mlog(ML_ERROR, "couldn't getblock for symlink!\n");
99 goto bail;
100 }
101
102 /* we haven't locked out transactions, so a commit
103 * could've happened. Since we've got a reference on
104 * the bh, even if it commits while we're doing the
105 * copy, the data is still good. */
106 if (buffer_jbd(buffer_cache_bh)
107 && ocfs2_inode_is_new(inode)) {
108 kaddr = kmap_atomic(bh_result->b_page, KM_USER0);
109 if (!kaddr) {
110 mlog(ML_ERROR, "couldn't kmap!\n");
111 goto bail;
112 }
113 memcpy(kaddr + (bh_result->b_size * iblock),
114 buffer_cache_bh->b_data,
115 bh_result->b_size);
116 kunmap_atomic(kaddr, KM_USER0);
117 set_buffer_uptodate(bh_result);
118 }
119 brelse(buffer_cache_bh);
120 }
121
122 map_bh(bh_result, inode->i_sb,
123 le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
124
125 err = 0;
126
127bail:
128 if (bh)
129 brelse(bh);
130
131 mlog_exit(err);
132 return err;
133}
134
135static int ocfs2_get_block(struct inode *inode, sector_t iblock,
136 struct buffer_head *bh_result, int create)
137{
138 int err = 0;
139 u64 p_blkno, past_eof;
140
141 mlog_entry("(0x%p, %llu, 0x%p, %d)\n", inode,
142 (unsigned long long)iblock, bh_result, create);
143
144 if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
145 mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
146 inode, inode->i_ino);
147
148 if (S_ISLNK(inode->i_mode)) {
149 /* this always does I/O for some reason. */
150 err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
151 goto bail;
152 }
153
154 /* this can happen if another node truncs after our extend! */
155 spin_lock(&OCFS2_I(inode)->ip_lock);
156 if (iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
157 OCFS2_I(inode)->ip_clusters))
158 err = -EIO;
159 spin_unlock(&OCFS2_I(inode)->ip_lock);
160 if (err)
161 goto bail;
162
Mark Fasheh363041a2007-01-17 12:31:35 -0800163 err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, NULL);
Mark Fashehccd979b2005-12-15 14:31:24 -0800164 if (err) {
165 mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
Mark Fashehb06970532006-03-03 10:24:33 -0800166 "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
167 (unsigned long long)p_blkno);
Mark Fashehccd979b2005-12-15 14:31:24 -0800168 goto bail;
169 }
170
171 map_bh(bh_result, inode->i_sb, p_blkno);
172
173 if (bh_result->b_blocknr == 0) {
174 err = -EIO;
Mark Fashehb06970532006-03-03 10:24:33 -0800175 mlog(ML_ERROR, "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
176 (unsigned long long)iblock,
177 (unsigned long long)p_blkno,
178 (unsigned long long)OCFS2_I(inode)->ip_blkno);
Mark Fashehccd979b2005-12-15 14:31:24 -0800179 }
180
181 past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
Mark Fashehb06970532006-03-03 10:24:33 -0800182 mlog(0, "Inode %lu, past_eof = %llu\n", inode->i_ino,
183 (unsigned long long)past_eof);
Mark Fashehccd979b2005-12-15 14:31:24 -0800184
185 if (create && (iblock >= past_eof))
186 set_buffer_new(bh_result);
187
188bail:
189 if (err < 0)
190 err = -EIO;
191
192 mlog_exit(err);
193 return err;
194}
195
196static int ocfs2_readpage(struct file *file, struct page *page)
197{
198 struct inode *inode = page->mapping->host;
199 loff_t start = (loff_t)page->index << PAGE_CACHE_SHIFT;
200 int ret, unlock = 1;
201
202 mlog_entry("(0x%p, %lu)\n", file, (page ? page->index : 0));
203
Mark Fasheh4bcec182006-10-09 16:02:40 -0700204 ret = ocfs2_meta_lock_with_page(inode, NULL, 0, page);
Mark Fashehccd979b2005-12-15 14:31:24 -0800205 if (ret != 0) {
206 if (ret == AOP_TRUNCATED_PAGE)
207 unlock = 0;
208 mlog_errno(ret);
209 goto out;
210 }
211
212 down_read(&OCFS2_I(inode)->ip_alloc_sem);
213
214 /*
215 * i_size might have just been updated as we grabed the meta lock. We
216 * might now be discovering a truncate that hit on another node.
217 * block_read_full_page->get_block freaks out if it is asked to read
218 * beyond the end of a file, so we check here. Callers
219 * (generic_file_read, fault->nopage) are clever enough to check i_size
220 * and notice that the page they just read isn't needed.
221 *
222 * XXX sys_readahead() seems to get that wrong?
223 */
224 if (start >= i_size_read(inode)) {
225 char *addr = kmap(page);
226 memset(addr, 0, PAGE_SIZE);
227 flush_dcache_page(page);
228 kunmap(page);
229 SetPageUptodate(page);
230 ret = 0;
231 goto out_alloc;
232 }
233
234 ret = ocfs2_data_lock_with_page(inode, 0, page);
235 if (ret != 0) {
236 if (ret == AOP_TRUNCATED_PAGE)
237 unlock = 0;
238 mlog_errno(ret);
239 goto out_alloc;
240 }
241
242 ret = block_read_full_page(page, ocfs2_get_block);
243 unlock = 0;
244
245 ocfs2_data_unlock(inode, 0);
246out_alloc:
247 up_read(&OCFS2_I(inode)->ip_alloc_sem);
248 ocfs2_meta_unlock(inode, 0);
249out:
250 if (unlock)
251 unlock_page(page);
252 mlog_exit(ret);
253 return ret;
254}
255
256/* Note: Because we don't support holes, our allocation has
257 * already happened (allocation writes zeros to the file data)
258 * so we don't have to worry about ordered writes in
259 * ocfs2_writepage.
260 *
261 * ->writepage is called during the process of invalidating the page cache
262 * during blocked lock processing. It can't block on any cluster locks
263 * to during block mapping. It's relying on the fact that the block
264 * mapping can't have disappeared under the dirty pages that it is
265 * being asked to write back.
266 */
267static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
268{
269 int ret;
270
271 mlog_entry("(0x%p)\n", page);
272
273 ret = block_write_full_page(page, ocfs2_get_block, wbc);
274
275 mlog_exit(ret);
276
277 return ret;
278}
279
Mark Fasheh53013cb2006-05-05 19:04:03 -0700280/* This can also be called from ocfs2_write_zero_page() which has done
281 * it's own cluster locking. */
282int ocfs2_prepare_write_nolock(struct inode *inode, struct page *page,
283 unsigned from, unsigned to)
284{
285 int ret;
286
287 down_read(&OCFS2_I(inode)->ip_alloc_sem);
288
289 ret = block_prepare_write(page, from, to, ocfs2_get_block);
290
291 up_read(&OCFS2_I(inode)->ip_alloc_sem);
292
293 return ret;
294}
295
Mark Fashehccd979b2005-12-15 14:31:24 -0800296/*
297 * ocfs2_prepare_write() can be an outer-most ocfs2 call when it is called
298 * from loopback. It must be able to perform its own locking around
299 * ocfs2_get_block().
300 */
Mark Fasheh53013cb2006-05-05 19:04:03 -0700301static int ocfs2_prepare_write(struct file *file, struct page *page,
302 unsigned from, unsigned to)
Mark Fashehccd979b2005-12-15 14:31:24 -0800303{
304 struct inode *inode = page->mapping->host;
305 int ret;
306
307 mlog_entry("(0x%p, 0x%p, %u, %u)\n", file, page, from, to);
308
Mark Fasheh4bcec182006-10-09 16:02:40 -0700309 ret = ocfs2_meta_lock_with_page(inode, NULL, 0, page);
Mark Fashehccd979b2005-12-15 14:31:24 -0800310 if (ret != 0) {
311 mlog_errno(ret);
312 goto out;
313 }
314
Mark Fasheh53013cb2006-05-05 19:04:03 -0700315 ret = ocfs2_prepare_write_nolock(inode, page, from, to);
Mark Fashehccd979b2005-12-15 14:31:24 -0800316
317 ocfs2_meta_unlock(inode, 0);
318out:
319 mlog_exit(ret);
320 return ret;
321}
322
323/* Taken from ext3. We don't necessarily need the full blown
324 * functionality yet, but IMHO it's better to cut and paste the whole
325 * thing so we can avoid introducing our own bugs (and easily pick up
326 * their fixes when they happen) --Mark */
327static int walk_page_buffers( handle_t *handle,
328 struct buffer_head *head,
329 unsigned from,
330 unsigned to,
331 int *partial,
332 int (*fn)( handle_t *handle,
333 struct buffer_head *bh))
334{
335 struct buffer_head *bh;
336 unsigned block_start, block_end;
337 unsigned blocksize = head->b_size;
338 int err, ret = 0;
339 struct buffer_head *next;
340
341 for ( bh = head, block_start = 0;
342 ret == 0 && (bh != head || !block_start);
343 block_start = block_end, bh = next)
344 {
345 next = bh->b_this_page;
346 block_end = block_start + blocksize;
347 if (block_end <= from || block_start >= to) {
348 if (partial && !buffer_uptodate(bh))
349 *partial = 1;
350 continue;
351 }
352 err = (*fn)(handle, bh);
353 if (!ret)
354 ret = err;
355 }
356 return ret;
357}
358
Mark Fasheh1fabe142006-10-09 18:11:45 -0700359handle_t *ocfs2_start_walk_page_trans(struct inode *inode,
Mark Fashehccd979b2005-12-15 14:31:24 -0800360 struct page *page,
361 unsigned from,
362 unsigned to)
363{
364 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
Mark Fasheh1fabe142006-10-09 18:11:45 -0700365 handle_t *handle = NULL;
Mark Fashehccd979b2005-12-15 14:31:24 -0800366 int ret = 0;
367
Mark Fasheh65eff9c2006-10-09 17:26:22 -0700368 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
Mark Fashehccd979b2005-12-15 14:31:24 -0800369 if (!handle) {
370 ret = -ENOMEM;
371 mlog_errno(ret);
372 goto out;
373 }
374
375 if (ocfs2_should_order_data(inode)) {
Mark Fasheh1fabe142006-10-09 18:11:45 -0700376 ret = walk_page_buffers(handle,
Mark Fashehccd979b2005-12-15 14:31:24 -0800377 page_buffers(page),
378 from, to, NULL,
379 ocfs2_journal_dirty_data);
380 if (ret < 0)
381 mlog_errno(ret);
382 }
383out:
384 if (ret) {
385 if (handle)
Mark Fasheh02dc1af2006-10-09 16:48:10 -0700386 ocfs2_commit_trans(osb, handle);
Mark Fashehccd979b2005-12-15 14:31:24 -0800387 handle = ERR_PTR(ret);
388 }
389 return handle;
390}
391
392static int ocfs2_commit_write(struct file *file, struct page *page,
393 unsigned from, unsigned to)
394{
Mark Fashehe0b40962006-07-11 14:38:54 -0700395 int ret;
Mark Fashehccd979b2005-12-15 14:31:24 -0800396 struct buffer_head *di_bh = NULL;
397 struct inode *inode = page->mapping->host;
Mark Fasheh1fabe142006-10-09 18:11:45 -0700398 handle_t *handle = NULL;
Mark Fashehe0b40962006-07-11 14:38:54 -0700399 struct ocfs2_dinode *di;
Mark Fashehccd979b2005-12-15 14:31:24 -0800400
401 mlog_entry("(0x%p, 0x%p, %u, %u)\n", file, page, from, to);
402
403 /* NOTE: ocfs2_file_aio_write has ensured that it's safe for
Mark Fashehe0b40962006-07-11 14:38:54 -0700404 * us to continue here without rechecking the I/O against
405 * changed inode values.
Mark Fashehccd979b2005-12-15 14:31:24 -0800406 *
407 * 1) We're currently holding the inode alloc lock, so no
408 * nodes can change it underneath us.
409 *
410 * 2) We've had to take the metadata lock at least once
Mark Fashehe0b40962006-07-11 14:38:54 -0700411 * already to check for extending writes, suid removal, etc.
412 * The meta data update code then ensures that we don't get a
413 * stale inode allocation image (i_size, i_clusters, etc).
Mark Fashehccd979b2005-12-15 14:31:24 -0800414 */
Mark Fashehccd979b2005-12-15 14:31:24 -0800415
Mark Fasheh4bcec182006-10-09 16:02:40 -0700416 ret = ocfs2_meta_lock_with_page(inode, &di_bh, 1, page);
Mark Fashehccd979b2005-12-15 14:31:24 -0800417 if (ret != 0) {
418 mlog_errno(ret);
419 goto out;
420 }
421
422 ret = ocfs2_data_lock_with_page(inode, 1, page);
423 if (ret != 0) {
424 mlog_errno(ret);
425 goto out_unlock_meta;
426 }
427
Mark Fashehe0b40962006-07-11 14:38:54 -0700428 handle = ocfs2_start_walk_page_trans(inode, page, from, to);
429 if (IS_ERR(handle)) {
430 ret = PTR_ERR(handle);
431 goto out_unlock_data;
432 }
Mark Fashehccd979b2005-12-15 14:31:24 -0800433
Mark Fashehe0b40962006-07-11 14:38:54 -0700434 /* Mark our buffer early. We'd rather catch this error up here
435 * as opposed to after a successful commit_write which would
436 * require us to set back inode->i_size. */
437 ret = ocfs2_journal_access(handle, inode, di_bh,
438 OCFS2_JOURNAL_ACCESS_WRITE);
439 if (ret < 0) {
440 mlog_errno(ret);
441 goto out_commit;
Mark Fashehccd979b2005-12-15 14:31:24 -0800442 }
443
444 /* might update i_size */
445 ret = generic_commit_write(file, page, from, to);
446 if (ret < 0) {
447 mlog_errno(ret);
448 goto out_commit;
449 }
450
Mark Fashehe0b40962006-07-11 14:38:54 -0700451 di = (struct ocfs2_dinode *)di_bh->b_data;
Mark Fashehccd979b2005-12-15 14:31:24 -0800452
Mark Fashehe0b40962006-07-11 14:38:54 -0700453 /* ocfs2_mark_inode_dirty() is too heavy to use here. */
454 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
455 di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
456 di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
Mark Fashehccd979b2005-12-15 14:31:24 -0800457
Mark Fashehe0b40962006-07-11 14:38:54 -0700458 inode->i_blocks = ocfs2_align_bytes_to_sectors((u64)(i_size_read(inode)));
459 di->i_size = cpu_to_le64((u64)i_size_read(inode));
Mark Fashehccd979b2005-12-15 14:31:24 -0800460
Mark Fashehe0b40962006-07-11 14:38:54 -0700461 ret = ocfs2_journal_dirty(handle, di_bh);
462 if (ret < 0) {
463 mlog_errno(ret);
464 goto out_commit;
Mark Fashehccd979b2005-12-15 14:31:24 -0800465 }
466
Mark Fashehccd979b2005-12-15 14:31:24 -0800467out_commit:
Mark Fasheh02dc1af2006-10-09 16:48:10 -0700468 ocfs2_commit_trans(OCFS2_SB(inode->i_sb), handle);
Mark Fashehccd979b2005-12-15 14:31:24 -0800469out_unlock_data:
470 ocfs2_data_unlock(inode, 1);
471out_unlock_meta:
Mark Fashehe0b40962006-07-11 14:38:54 -0700472 ocfs2_meta_unlock(inode, 1);
Mark Fashehccd979b2005-12-15 14:31:24 -0800473out:
474 if (di_bh)
475 brelse(di_bh);
476
477 mlog_exit(ret);
478 return ret;
479}
480
481static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
482{
483 sector_t status;
484 u64 p_blkno = 0;
485 int err = 0;
486 struct inode *inode = mapping->host;
487
488 mlog_entry("(block = %llu)\n", (unsigned long long)block);
489
490 /* We don't need to lock journal system files, since they aren't
491 * accessed concurrently from multiple nodes.
492 */
493 if (!INODE_JOURNAL(inode)) {
Mark Fasheh4bcec182006-10-09 16:02:40 -0700494 err = ocfs2_meta_lock(inode, NULL, 0);
Mark Fashehccd979b2005-12-15 14:31:24 -0800495 if (err) {
496 if (err != -ENOENT)
497 mlog_errno(err);
498 goto bail;
499 }
500 down_read(&OCFS2_I(inode)->ip_alloc_sem);
501 }
502
Mark Fasheh363041a2007-01-17 12:31:35 -0800503 err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL);
Mark Fashehccd979b2005-12-15 14:31:24 -0800504
505 if (!INODE_JOURNAL(inode)) {
506 up_read(&OCFS2_I(inode)->ip_alloc_sem);
507 ocfs2_meta_unlock(inode, 0);
508 }
509
510 if (err) {
511 mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
512 (unsigned long long)block);
513 mlog_errno(err);
514 goto bail;
515 }
516
517
518bail:
519 status = err ? 0 : p_blkno;
520
521 mlog_exit((int)status);
522
523 return status;
524}
525
526/*
527 * TODO: Make this into a generic get_blocks function.
528 *
529 * From do_direct_io in direct-io.c:
530 * "So what we do is to permit the ->get_blocks function to populate
531 * bh.b_size with the size of IO which is permitted at this offset and
532 * this i_blkbits."
533 *
534 * This function is called directly from get_more_blocks in direct-io.c.
535 *
536 * called like this: dio->get_blocks(dio->inode, fs_startblk,
537 * fs_count, map_bh, dio->rw == WRITE);
538 */
539static int ocfs2_direct_IO_get_blocks(struct inode *inode, sector_t iblock,
Mark Fashehccd979b2005-12-15 14:31:24 -0800540 struct buffer_head *bh_result, int create)
541{
542 int ret;
Mark Fasheh564f8a32006-12-14 13:01:05 -0800543 u64 p_blkno, inode_blocks;
Mark Fashehccd979b2005-12-15 14:31:24 -0800544 int contig_blocks;
Florin Malita184d7d22006-06-03 19:30:10 -0400545 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
Badari Pulavarty1d8fa7a2006-03-26 01:38:02 -0800546 unsigned long max_blocks = bh_result->b_size >> inode->i_blkbits;
Mark Fashehccd979b2005-12-15 14:31:24 -0800547
Mark Fashehccd979b2005-12-15 14:31:24 -0800548 /* This function won't even be called if the request isn't all
549 * nicely aligned and of the right size, so there's no need
550 * for us to check any of that. */
551
Mark Fashehccd979b2005-12-15 14:31:24 -0800552 spin_lock(&OCFS2_I(inode)->ip_lock);
Mark Fasheh564f8a32006-12-14 13:01:05 -0800553 inode_blocks = ocfs2_clusters_to_blocks(inode->i_sb,
554 OCFS2_I(inode)->ip_clusters);
555
556 /*
557 * For a read which begins past the end of file, we return a hole.
558 */
559 if (!create && (iblock >= inode_blocks)) {
560 spin_unlock(&OCFS2_I(inode)->ip_lock);
561 ret = 0;
562 goto bail;
563 }
564
565 /*
566 * Any write past EOF is not allowed because we'd be extending.
567 */
568 if (create && (iblock + max_blocks) > inode_blocks) {
Mark Fashehccd979b2005-12-15 14:31:24 -0800569 spin_unlock(&OCFS2_I(inode)->ip_lock);
570 ret = -EIO;
571 goto bail;
572 }
573 spin_unlock(&OCFS2_I(inode)->ip_lock);
574
575 /* This figures out the size of the next contiguous block, and
576 * our logical offset */
Mark Fasheh363041a2007-01-17 12:31:35 -0800577 ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno,
Mark Fashehccd979b2005-12-15 14:31:24 -0800578 &contig_blocks);
579 if (ret) {
580 mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n",
581 (unsigned long long)iblock);
582 ret = -EIO;
583 goto bail;
584 }
585
586 map_bh(bh_result, inode->i_sb, p_blkno);
587
588 /* make sure we don't map more than max_blocks blocks here as
589 that's all the kernel will handle at this point. */
590 if (max_blocks < contig_blocks)
591 contig_blocks = max_blocks;
592 bh_result->b_size = contig_blocks << blocksize_bits;
593bail:
594 return ret;
595}
596
597/*
598 * ocfs2_dio_end_io is called by the dio core when a dio is finished. We're
599 * particularly interested in the aio/dio case. Like the core uses
600 * i_alloc_sem, we use the rw_lock DLM lock to protect io on one node from
601 * truncation on another.
602 */
603static void ocfs2_dio_end_io(struct kiocb *iocb,
604 loff_t offset,
605 ssize_t bytes,
606 void *private)
607{
Josef Sipekd28c9172006-12-08 02:37:25 -0800608 struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
Mark Fashehccd979b2005-12-15 14:31:24 -0800609
610 /* this io's submitter should not have unlocked this before we could */
611 BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
612 ocfs2_iocb_clear_rw_locked(iocb);
613 up_read(&inode->i_alloc_sem);
614 ocfs2_rw_unlock(inode, 0);
615}
616
Joel Becker03f981c2007-01-04 14:54:41 -0800617/*
618 * ocfs2_invalidatepage() and ocfs2_releasepage() are shamelessly stolen
619 * from ext3. PageChecked() bits have been removed as OCFS2 does not
620 * do journalled data.
621 */
622static void ocfs2_invalidatepage(struct page *page, unsigned long offset)
623{
624 journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
625
626 journal_invalidatepage(journal, page, offset);
627}
628
629static int ocfs2_releasepage(struct page *page, gfp_t wait)
630{
631 journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
632
633 if (!page_has_buffers(page))
634 return 0;
635 return journal_try_to_free_buffers(journal, page, wait);
636}
637
Mark Fashehccd979b2005-12-15 14:31:24 -0800638static ssize_t ocfs2_direct_IO(int rw,
639 struct kiocb *iocb,
640 const struct iovec *iov,
641 loff_t offset,
642 unsigned long nr_segs)
643{
644 struct file *file = iocb->ki_filp;
Josef Sipekd28c9172006-12-08 02:37:25 -0800645 struct inode *inode = file->f_path.dentry->d_inode->i_mapping->host;
Mark Fashehccd979b2005-12-15 14:31:24 -0800646 int ret;
647
648 mlog_entry_void();
Mark Fasheh53013cb2006-05-05 19:04:03 -0700649
Mark Fasheh9517bac2007-02-09 20:24:12 -0800650 if (!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb))) {
651 /*
652 * We get PR data locks even for O_DIRECT. This
653 * allows concurrent O_DIRECT I/O but doesn't let
654 * O_DIRECT with extending and buffered zeroing writes
655 * race. If they did race then the buffered zeroing
656 * could be written back after the O_DIRECT I/O. It's
657 * one thing to tell people not to mix buffered and
658 * O_DIRECT writes, but expecting them to understand
659 * that file extension is also an implicit buffered
660 * write is too much. By getting the PR we force
661 * writeback of the buffered zeroing before
662 * proceeding.
663 */
664 ret = ocfs2_data_lock(inode, 0);
665 if (ret < 0) {
666 mlog_errno(ret);
667 goto out;
668 }
669 ocfs2_data_unlock(inode, 0);
Mark Fasheh53013cb2006-05-05 19:04:03 -0700670 }
Mark Fasheh53013cb2006-05-05 19:04:03 -0700671
Mark Fashehccd979b2005-12-15 14:31:24 -0800672 ret = blockdev_direct_IO_no_locking(rw, iocb, inode,
673 inode->i_sb->s_bdev, iov, offset,
674 nr_segs,
675 ocfs2_direct_IO_get_blocks,
676 ocfs2_dio_end_io);
Mark Fasheh53013cb2006-05-05 19:04:03 -0700677out:
Mark Fashehccd979b2005-12-15 14:31:24 -0800678 mlog_exit(ret);
679 return ret;
680}
681
Mark Fasheh9517bac2007-02-09 20:24:12 -0800682static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
683 u32 cpos,
684 unsigned int *start,
685 unsigned int *end)
686{
687 unsigned int cluster_start = 0, cluster_end = PAGE_CACHE_SIZE;
688
689 if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) {
690 unsigned int cpp;
691
692 cpp = 1 << (PAGE_CACHE_SHIFT - osb->s_clustersize_bits);
693
694 cluster_start = cpos % cpp;
695 cluster_start = cluster_start << osb->s_clustersize_bits;
696
697 cluster_end = cluster_start + osb->s_clustersize;
698 }
699
700 BUG_ON(cluster_start > PAGE_SIZE);
701 BUG_ON(cluster_end > PAGE_SIZE);
702
703 if (start)
704 *start = cluster_start;
705 if (end)
706 *end = cluster_end;
707}
708
709/*
710 * 'from' and 'to' are the region in the page to avoid zeroing.
711 *
712 * If pagesize > clustersize, this function will avoid zeroing outside
713 * of the cluster boundary.
714 *
715 * from == to == 0 is code for "zero the entire cluster region"
716 */
717static void ocfs2_clear_page_regions(struct page *page,
718 struct ocfs2_super *osb, u32 cpos,
719 unsigned from, unsigned to)
720{
721 void *kaddr;
722 unsigned int cluster_start, cluster_end;
723
724 ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
725
726 kaddr = kmap_atomic(page, KM_USER0);
727
728 if (from || to) {
729 if (from > cluster_start)
730 memset(kaddr + cluster_start, 0, from - cluster_start);
731 if (to < cluster_end)
732 memset(kaddr + to, 0, cluster_end - to);
733 } else {
734 memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
735 }
736
737 kunmap_atomic(kaddr, KM_USER0);
738}
739
740/*
741 * Some of this taken from block_prepare_write(). We already have our
742 * mapping by now though, and the entire write will be allocating or
743 * it won't, so not much need to use BH_New.
744 *
745 * This will also skip zeroing, which is handled externally.
746 */
747static int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
748 struct inode *inode, unsigned int from,
749 unsigned int to, int new)
750{
751 int ret = 0;
752 struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
753 unsigned int block_end, block_start;
754 unsigned int bsize = 1 << inode->i_blkbits;
755
756 if (!page_has_buffers(page))
757 create_empty_buffers(page, bsize, 0);
758
759 head = page_buffers(page);
760 for (bh = head, block_start = 0; bh != head || !block_start;
761 bh = bh->b_this_page, block_start += bsize) {
762 block_end = block_start + bsize;
763
764 /*
765 * Ignore blocks outside of our i/o range -
766 * they may belong to unallocated clusters.
767 */
768 if (block_start >= to ||
769 (block_start + bsize) <= from) {
770 if (PageUptodate(page))
771 set_buffer_uptodate(bh);
772 continue;
773 }
774
775 /*
776 * For an allocating write with cluster size >= page
777 * size, we always write the entire page.
778 */
779
780 if (buffer_new(bh))
781 clear_buffer_new(bh);
782
783 if (!buffer_mapped(bh)) {
784 map_bh(bh, inode->i_sb, *p_blkno);
785 unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
786 }
787
788 if (PageUptodate(page)) {
789 if (!buffer_uptodate(bh))
790 set_buffer_uptodate(bh);
791 } else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
792 (block_start < from || block_end > to)) {
793 ll_rw_block(READ, 1, &bh);
794 *wait_bh++=bh;
795 }
796
797 *p_blkno = *p_blkno + 1;
798 }
799
800 /*
801 * If we issued read requests - let them complete.
802 */
803 while(wait_bh > wait) {
804 wait_on_buffer(*--wait_bh);
805 if (!buffer_uptodate(*wait_bh))
806 ret = -EIO;
807 }
808
809 if (ret == 0 || !new)
810 return ret;
811
812 /*
813 * If we get -EIO above, zero out any newly allocated blocks
814 * to avoid exposing stale data.
815 */
816 bh = head;
817 block_start = 0;
818 do {
819 void *kaddr;
820
821 block_end = block_start + bsize;
822 if (block_end <= from)
823 goto next_bh;
824 if (block_start >= to)
825 break;
826
827 kaddr = kmap_atomic(page, KM_USER0);
828 memset(kaddr+block_start, 0, bh->b_size);
829 flush_dcache_page(page);
830 kunmap_atomic(kaddr, KM_USER0);
831 set_buffer_uptodate(bh);
832 mark_buffer_dirty(bh);
833
834next_bh:
835 block_start = block_end;
836 bh = bh->b_this_page;
837 } while (bh != head);
838
839 return ret;
840}
841
842/*
843 * This will copy user data from the iovec in the buffered write
844 * context.
845 */
846int ocfs2_map_and_write_user_data(struct inode *inode,
847 struct ocfs2_write_ctxt *wc, u64 *p_blkno,
848 unsigned int *ret_from, unsigned int *ret_to)
849{
850 int ret;
851 unsigned int to, from, cluster_start, cluster_end;
852 unsigned long bytes, src_from;
853 char *dst;
854 struct ocfs2_buffered_write_priv *bp = wc->w_private;
855 const struct iovec *cur_iov = bp->b_cur_iov;
856 char __user *buf;
857 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
858
859 ocfs2_figure_cluster_boundaries(osb, wc->w_cpos, &cluster_start,
860 &cluster_end);
861
862 buf = cur_iov->iov_base + bp->b_cur_off;
863 src_from = (unsigned long)buf & ~PAGE_CACHE_MASK;
864
865 from = wc->w_pos & (PAGE_CACHE_SIZE - 1);
866
867 /*
868 * This is a lot of comparisons, but it reads quite
869 * easily, which is important here.
870 */
871 /* Stay within the src page */
872 bytes = PAGE_SIZE - src_from;
873 /* Stay within the vector */
874 bytes = min(bytes,
875 (unsigned long)(cur_iov->iov_len - bp->b_cur_off));
876 /* Stay within count */
877 bytes = min(bytes, (unsigned long)wc->w_count);
878 /*
879 * For clustersize > page size, just stay within
880 * target page, otherwise we have to calculate pos
881 * within the cluster and obey the rightmost
882 * boundary.
883 */
884 if (wc->w_large_pages) {
885 /*
886 * For cluster size < page size, we have to
887 * calculate pos within the cluster and obey
888 * the rightmost boundary.
889 */
890 bytes = min(bytes, (unsigned long)(osb->s_clustersize
891 - (wc->w_pos & (osb->s_clustersize - 1))));
892 } else {
893 /*
894 * cluster size > page size is the most common
895 * case - we just stay within the target page
896 * boundary.
897 */
898 bytes = min(bytes, PAGE_CACHE_SIZE - from);
899 }
900
901 to = from + bytes;
902
903 if (wc->w_this_page_new)
904 ret = ocfs2_map_page_blocks(wc->w_this_page, p_blkno, inode,
905 cluster_start, cluster_end, 1);
906 else
907 ret = ocfs2_map_page_blocks(wc->w_this_page, p_blkno, inode,
908 from, to, 0);
909 if (ret) {
910 mlog_errno(ret);
911 goto out;
912 }
913
914 BUG_ON(from > PAGE_CACHE_SIZE);
915 BUG_ON(to > PAGE_CACHE_SIZE);
916 BUG_ON(from > osb->s_clustersize);
917 BUG_ON(to > osb->s_clustersize);
918
919 dst = kmap(wc->w_this_page);
920 memcpy(dst + from, bp->b_src_buf + src_from, bytes);
921 kunmap(wc->w_this_page);
922
923 /*
924 * XXX: This is slow, but simple. The caller of
925 * ocfs2_buffered_write_cluster() is responsible for
926 * passing through the iovecs, so it's difficult to
927 * predict what our next step is in here after our
928 * initial write. A future version should be pushing
929 * that iovec manipulation further down.
930 *
931 * By setting this, we indicate that a copy from user
932 * data was done, and subsequent calls for this
933 * cluster will skip copying more data.
934 */
935 wc->w_finished_copy = 1;
936
937 *ret_from = from;
938 *ret_to = to;
939out:
940
941 return bytes ? (unsigned int)bytes : ret;
942}
943
944/*
945 * Map, fill and write a page to disk.
946 *
947 * The work of copying data is done via callback. Newly allocated
948 * pages which don't take user data will be zero'd (set 'new' to
949 * indicate an allocating write)
950 *
951 * Returns a negative error code or the number of bytes copied into
952 * the page.
953 */
954int ocfs2_write_data_page(struct inode *inode, handle_t *handle,
955 u64 *p_blkno, struct page *page,
956 struct ocfs2_write_ctxt *wc, int new)
957{
958 int ret, copied = 0;
959 unsigned int from = 0, to = 0;
960 unsigned int cluster_start, cluster_end;
961 unsigned int zero_from = 0, zero_to = 0;
962
963 ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), wc->w_cpos,
964 &cluster_start, &cluster_end);
965
966 if ((wc->w_pos >> PAGE_CACHE_SHIFT) == page->index
967 && !wc->w_finished_copy) {
968
969 wc->w_this_page = page;
970 wc->w_this_page_new = new;
971 ret = wc->w_write_data_page(inode, wc, p_blkno, &from, &to);
972 if (ret < 0) {
973 mlog_errno(ret);
974 goto out;
975 }
976
977 copied = ret;
978
979 zero_from = from;
980 zero_to = to;
981 if (new) {
982 from = cluster_start;
983 to = cluster_end;
984 }
985 } else {
986 /*
987 * If we haven't allocated the new page yet, we
988 * shouldn't be writing it out without copying user
989 * data. This is likely a math error from the caller.
990 */
991 BUG_ON(!new);
992
993 from = cluster_start;
994 to = cluster_end;
995
996 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
997 cluster_start, cluster_end, 1);
998 if (ret) {
999 mlog_errno(ret);
1000 goto out;
1001 }
1002 }
1003
1004 /*
1005 * Parts of newly allocated pages need to be zero'd.
1006 *
1007 * Above, we have also rewritten 'to' and 'from' - as far as
1008 * the rest of the function is concerned, the entire cluster
1009 * range inside of a page needs to be written.
1010 *
1011 * We can skip this if the page is up to date - it's already
1012 * been zero'd from being read in as a hole.
1013 */
1014 if (new && !PageUptodate(page))
1015 ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
1016 wc->w_cpos, zero_from, zero_to);
1017
1018 flush_dcache_page(page);
1019
1020 if (ocfs2_should_order_data(inode)) {
1021 ret = walk_page_buffers(handle,
1022 page_buffers(page),
1023 from, to, NULL,
1024 ocfs2_journal_dirty_data);
1025 if (ret < 0)
1026 mlog_errno(ret);
1027 }
1028
1029 /*
1030 * We don't use generic_commit_write() because we need to
1031 * handle our own i_size update.
1032 */
1033 ret = block_commit_write(page, from, to);
1034 if (ret)
1035 mlog_errno(ret);
1036out:
1037
1038 return copied ? copied : ret;
1039}
1040
1041/*
1042 * Do the actual write of some data into an inode. Optionally allocate
1043 * in order to fulfill the write.
1044 *
1045 * cpos is the logical cluster offset within the file to write at
1046 *
1047 * 'phys' is the physical mapping of that offset. a 'phys' value of
1048 * zero indicates that allocation is required. In this case, data_ac
1049 * and meta_ac should be valid (meta_ac can be null if metadata
1050 * allocation isn't required).
1051 */
1052static ssize_t ocfs2_write(struct file *file, u32 phys, handle_t *handle,
1053 struct buffer_head *di_bh,
1054 struct ocfs2_alloc_context *data_ac,
1055 struct ocfs2_alloc_context *meta_ac,
1056 struct ocfs2_write_ctxt *wc)
1057{
1058 int ret, i, numpages = 1, new;
1059 unsigned int copied = 0;
1060 u32 tmp_pos;
1061 u64 v_blkno, p_blkno;
1062 struct address_space *mapping = file->f_mapping;
1063 struct inode *inode = mapping->host;
1064 unsigned int cbits = OCFS2_SB(inode->i_sb)->s_clustersize_bits;
1065 unsigned long index, start;
1066 struct page **cpages;
1067
1068 new = phys == 0 ? 1 : 0;
1069
1070 /*
1071 * Figure out how many pages we'll be manipulating here. For
1072 * non-allocating write, or any writes where cluster size is
1073 * less than page size, we only need one page. Otherwise,
1074 * allocating writes of cluster size larger than page size
1075 * need cluster size pages.
1076 */
1077 if (new && !wc->w_large_pages)
1078 numpages = (1 << cbits) / PAGE_SIZE;
1079
1080 cpages = kzalloc(sizeof(*cpages) * numpages, GFP_NOFS);
1081 if (!cpages) {
1082 ret = -ENOMEM;
1083 mlog_errno(ret);
1084 return ret;
1085 }
1086
1087 /*
1088 * Fill our page array first. That way we've grabbed enough so
1089 * that we can zero and flush if we error after adding the
1090 * extent.
1091 */
1092 if (new) {
1093 start = ocfs2_align_clusters_to_page_index(inode->i_sb,
1094 wc->w_cpos);
1095 v_blkno = ocfs2_clusters_to_blocks(inode->i_sb, wc->w_cpos);
1096 } else {
1097 start = wc->w_pos >> PAGE_CACHE_SHIFT;
1098 v_blkno = wc->w_pos >> inode->i_sb->s_blocksize_bits;
1099 }
1100
1101 for(i = 0; i < numpages; i++) {
1102 index = start + i;
1103
1104 cpages[i] = grab_cache_page(mapping, index);
1105 if (!cpages[i]) {
1106 ret = -ENOMEM;
1107 mlog_errno(ret);
1108 goto out;
1109 }
1110 }
1111
1112 if (new) {
1113 /*
1114 * This is safe to call with the page locks - it won't take
1115 * any additional semaphores or cluster locks.
1116 */
1117 tmp_pos = wc->w_cpos;
1118 ret = ocfs2_do_extend_allocation(OCFS2_SB(inode->i_sb), inode,
1119 &tmp_pos, 1, di_bh, handle,
1120 data_ac, meta_ac, NULL);
1121 /*
1122 * This shouldn't happen because we must have already
1123 * calculated the correct meta data allocation required. The
1124 * internal tree allocation code should know how to increase
1125 * transaction credits itself.
1126 *
1127 * If need be, we could handle -EAGAIN for a
1128 * RESTART_TRANS here.
1129 */
1130 mlog_bug_on_msg(ret == -EAGAIN,
1131 "Inode %llu: EAGAIN return during allocation.\n",
1132 (unsigned long long)OCFS2_I(inode)->ip_blkno);
1133 if (ret < 0) {
1134 mlog_errno(ret);
1135 goto out;
1136 }
1137 }
1138
1139 ret = ocfs2_extent_map_get_blocks(inode, v_blkno, &p_blkno, NULL);
1140 if (ret < 0) {
1141
1142 /*
1143 * XXX: Should we go readonly here?
1144 */
1145
1146 mlog_errno(ret);
1147 goto out;
1148 }
1149
1150 BUG_ON(p_blkno == 0);
1151
1152 for(i = 0; i < numpages; i++) {
1153 ret = ocfs2_write_data_page(inode, handle, &p_blkno, cpages[i],
1154 wc, new);
1155 if (ret < 0) {
1156 mlog_errno(ret);
1157 goto out;
1158 }
1159
1160 copied += ret;
1161 }
1162
1163out:
1164 for(i = 0; i < numpages; i++) {
1165 unlock_page(cpages[i]);
1166 mark_page_accessed(cpages[i]);
1167 page_cache_release(cpages[i]);
1168 }
1169 kfree(cpages);
1170
1171 return copied ? copied : ret;
1172}
1173
1174static void ocfs2_write_ctxt_init(struct ocfs2_write_ctxt *wc,
1175 struct ocfs2_super *osb, loff_t pos,
1176 size_t count, ocfs2_page_writer *cb,
1177 void *cb_priv)
1178{
1179 wc->w_count = count;
1180 wc->w_pos = pos;
1181 wc->w_cpos = wc->w_pos >> osb->s_clustersize_bits;
1182 wc->w_finished_copy = 0;
1183
1184 if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits))
1185 wc->w_large_pages = 1;
1186 else
1187 wc->w_large_pages = 0;
1188
1189 wc->w_write_data_page = cb;
1190 wc->w_private = cb_priv;
1191}
1192
1193/*
1194 * Write a cluster to an inode. The cluster may not be allocated yet,
1195 * in which case it will be. This only exists for buffered writes -
1196 * O_DIRECT takes a more "traditional" path through the kernel.
1197 *
1198 * The caller is responsible for incrementing pos, written counts, etc
1199 *
1200 * For file systems that don't support sparse files, pre-allocation
1201 * and page zeroing up until cpos should be done prior to this
1202 * function call.
1203 *
1204 * Callers should be holding i_sem, and the rw cluster lock.
1205 *
1206 * Returns the number of user bytes written, or less than zero for
1207 * error.
1208 */
1209ssize_t ocfs2_buffered_write_cluster(struct file *file, loff_t pos,
1210 size_t count, ocfs2_page_writer *actor,
1211 void *priv)
1212{
1213 int ret, credits = OCFS2_INODE_UPDATE_CREDITS;
1214 ssize_t written = 0;
1215 u32 phys;
1216 struct inode *inode = file->f_mapping->host;
1217 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1218 struct buffer_head *di_bh = NULL;
1219 struct ocfs2_dinode *di;
1220 struct ocfs2_alloc_context *data_ac = NULL;
1221 struct ocfs2_alloc_context *meta_ac = NULL;
1222 handle_t *handle;
1223 struct ocfs2_write_ctxt wc;
1224
1225 ocfs2_write_ctxt_init(&wc, osb, pos, count, actor, priv);
1226
1227 ret = ocfs2_meta_lock(inode, &di_bh, 1);
1228 if (ret) {
1229 mlog_errno(ret);
1230 goto out;
1231 }
1232 di = (struct ocfs2_dinode *)di_bh->b_data;
1233
1234 /*
1235 * Take alloc sem here to prevent concurrent lookups. That way
1236 * the mapping, zeroing and tree manipulation within
1237 * ocfs2_write() will be safe against ->readpage(). This
1238 * should also serve to lock out allocation from a shared
1239 * writeable region.
1240 */
1241 down_write(&OCFS2_I(inode)->ip_alloc_sem);
1242
1243 ret = ocfs2_get_clusters(inode, wc.w_cpos, &phys, NULL);
1244 if (ret) {
1245 mlog_errno(ret);
1246 goto out_meta;
1247 }
1248
1249 /* phys == 0 means that allocation is required. */
1250 if (phys == 0) {
1251 ret = ocfs2_lock_allocators(inode, di, 1, &data_ac, &meta_ac);
1252 if (ret) {
1253 mlog_errno(ret);
1254 goto out_meta;
1255 }
1256
1257 credits = ocfs2_calc_extend_credits(inode->i_sb, di, 1);
1258 }
1259
1260 ret = ocfs2_data_lock(inode, 1);
1261 if (ret) {
1262 mlog_errno(ret);
1263 goto out_meta;
1264 }
1265
1266 handle = ocfs2_start_trans(osb, credits);
1267 if (IS_ERR(handle)) {
1268 ret = PTR_ERR(handle);
1269 mlog_errno(ret);
1270 goto out_data;
1271 }
1272
1273 written = ocfs2_write(file, phys, handle, di_bh, data_ac,
1274 meta_ac, &wc);
1275 if (written < 0) {
1276 ret = written;
1277 mlog_errno(ret);
1278 goto out_commit;
1279 }
1280
1281 ret = ocfs2_journal_access(handle, inode, di_bh,
1282 OCFS2_JOURNAL_ACCESS_WRITE);
1283 if (ret) {
1284 mlog_errno(ret);
1285 goto out_commit;
1286 }
1287
1288 pos += written;
1289 if (pos > inode->i_size) {
1290 i_size_write(inode, pos);
1291 mark_inode_dirty(inode);
1292 }
1293 inode->i_blocks = ocfs2_align_bytes_to_sectors((u64)(i_size_read(inode)));
1294 di->i_size = cpu_to_le64((u64)i_size_read(inode));
1295 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1296 di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
1297 di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
1298
1299 ret = ocfs2_journal_dirty(handle, di_bh);
1300 if (ret)
1301 mlog_errno(ret);
1302
1303out_commit:
1304 ocfs2_commit_trans(osb, handle);
1305
1306out_data:
1307 ocfs2_data_unlock(inode, 1);
1308
1309out_meta:
1310 up_write(&OCFS2_I(inode)->ip_alloc_sem);
1311 ocfs2_meta_unlock(inode, 1);
1312
1313out:
1314 brelse(di_bh);
1315 if (data_ac)
1316 ocfs2_free_alloc_context(data_ac);
1317 if (meta_ac)
1318 ocfs2_free_alloc_context(meta_ac);
1319
1320 return written ? written : ret;
1321}
1322
Christoph Hellwigf5e54d62006-06-28 04:26:44 -07001323const struct address_space_operations ocfs2_aops = {
Mark Fashehccd979b2005-12-15 14:31:24 -08001324 .readpage = ocfs2_readpage,
1325 .writepage = ocfs2_writepage,
1326 .prepare_write = ocfs2_prepare_write,
1327 .commit_write = ocfs2_commit_write,
1328 .bmap = ocfs2_bmap,
1329 .sync_page = block_sync_page,
Joel Becker03f981c2007-01-04 14:54:41 -08001330 .direct_IO = ocfs2_direct_IO,
1331 .invalidatepage = ocfs2_invalidatepage,
1332 .releasepage = ocfs2_releasepage,
1333 .migratepage = buffer_migrate_page,
Mark Fashehccd979b2005-12-15 14:31:24 -08001334};