blob: 5737e3590adb6a338d6165332fa1eff93a07d57e [file] [log] [blame]
Daniel Mack73969ff2009-03-04 23:27:14 -08001rotary-encoder - a generic driver for GPIO connected devices
2Daniel Mack <daniel@caiaq.de>, Feb 2009
3
40. Function
5-----------
6
7Rotary encoders are devices which are connected to the CPU or other
8peripherals with two wires. The outputs are phase-shifted by 90 degrees
9and by triggering on falling and rising edges, the turn direction can
10be determined.
11
Johan Hovolde70bdd42011-05-11 16:35:30 -070012Some encoders have both outputs low in stable states, whereas others also have
13a stable state with both outputs high (half-period mode).
14
Daniel Mack73969ff2009-03-04 23:27:14 -080015The phase diagram of these two outputs look like this:
16
17 _____ _____ _____
18 | | | | | |
19 Channel A ____| |_____| |_____| |____
20
21 : : : : : : : : : : : :
22 __ _____ _____ _____
23 | | | | | | |
24 Channel B |_____| |_____| |_____| |__
25
26 : : : : : : : : : : : :
27 Event a b c d a b c d a b c d
28
29 |<-------->|
30 one step
31
Johan Hovolde70bdd42011-05-11 16:35:30 -070032 |<-->|
33 one step (half-period mode)
Daniel Mack73969ff2009-03-04 23:27:14 -080034
35For more information, please see
Masanari Iidaae13c652015-06-18 00:12:02 +090036 https://en.wikipedia.org/wiki/Rotary_encoder
Daniel Mack73969ff2009-03-04 23:27:14 -080037
38
391. Events / state machine
40-------------------------
41
Johan Hovolde70bdd42011-05-11 16:35:30 -070042In half-period mode, state a) and c) above are used to determine the
43rotational direction based on the last stable state. Events are reported in
44states b) and d) given that the new stable state is different from the last
45(i.e. the rotation was not reversed half-way).
46
47Otherwise, the following apply:
48
Daniel Mack73969ff2009-03-04 23:27:14 -080049a) Rising edge on channel A, channel B in low state
50 This state is used to recognize a clockwise turn
51
52b) Rising edge on channel B, channel A in high state
53 When entering this state, the encoder is put into 'armed' state,
54 meaning that there it has seen half the way of a one-step transition.
55
56c) Falling edge on channel A, channel B in high state
57 This state is used to recognize a counter-clockwise turn
58
59d) Falling edge on channel B, channel A in low state
60 Parking position. If the encoder enters this state, a full transition
Lucas De Marchi25985ed2011-03-30 22:57:33 -030061 should have happened, unless it flipped back on half the way. The
Daniel Mack73969ff2009-03-04 23:27:14 -080062 'armed' state tells us about that.
63
642. Platform requirements
65------------------------
66
67As there is no hardware dependent call in this driver, the platform it is
68used with must support gpiolib. Another requirement is that IRQs must be
69able to fire on both edges.
70
71
723. Board integration
73--------------------
74
75To use this driver in your system, register a platform_device with the
76name 'rotary-encoder' and associate the IRQs and some specific platform
77data with it.
78
79struct rotary_encoder_platform_data is declared in
80include/linux/rotary-encoder.h and needs to be filled with the number of
81steps the encoder has and can carry information about externally inverted
H Hartley Sweetenbd3ce652009-04-17 20:12:35 -070082signals (because of an inverting buffer or other reasons). The encoder
83can be set up to deliver input information as either an absolute or relative
84axes. For relative axes the input event returns +/-1 for each step. For
85absolute axes the position of the encoder can either roll over between zero
86and the number of steps or will clamp at the maximum and zero depending on
87the configuration.
Daniel Mack73969ff2009-03-04 23:27:14 -080088
89Because GPIO to IRQ mapping is platform specific, this information must
Daniel Mack3ad2f3f2010-02-03 08:01:28 +080090be given in separately to the driver. See the example below.
Daniel Mack73969ff2009-03-04 23:27:14 -080091
92---------<snip>---------
93
94/* board support file example */
95
96#include <linux/input.h>
97#include <linux/rotary_encoder.h>
98
99#define GPIO_ROTARY_A 1
100#define GPIO_ROTARY_B 2
101
102static struct rotary_encoder_platform_data my_rotary_encoder_info = {
103 .steps = 24,
104 .axis = ABS_X,
H Hartley Sweetenbd3ce652009-04-17 20:12:35 -0700105 .relative_axis = false,
106 .rollover = false,
Daniel Mack73969ff2009-03-04 23:27:14 -0800107 .gpio_a = GPIO_ROTARY_A,
108 .gpio_b = GPIO_ROTARY_B,
109 .inverted_a = 0,
110 .inverted_b = 0,
Johan Hovolde70bdd42011-05-11 16:35:30 -0700111 .half_period = false,
Daniel Mack73969ff2009-03-04 23:27:14 -0800112};
113
114static struct platform_device rotary_encoder_device = {
115 .name = "rotary-encoder",
116 .id = 0,
117 .dev = {
118 .platform_data = &my_rotary_encoder_info,
119 }
120};
121