Mika Westerberg | cd7bed0 | 2013-01-22 12:26:28 +0200 | [diff] [blame] | 1 | /* |
| 2 | * PXA2xx SPI private DMA support. |
| 3 | * |
| 4 | * Copyright (C) 2005 Stephen Street / StreetFire Sound Labs |
| 5 | * |
| 6 | * This program is free software; you can redistribute it and/or modify |
| 7 | * it under the terms of the GNU General Public License as published by |
| 8 | * the Free Software Foundation; either version 2 of the License, or |
| 9 | * (at your option) any later version. |
| 10 | * |
| 11 | * This program is distributed in the hope that it will be useful, |
| 12 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 13 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 14 | * GNU General Public License for more details. |
| 15 | * |
| 16 | * You should have received a copy of the GNU General Public License |
| 17 | * along with this program; if not, write to the Free Software |
| 18 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
| 19 | */ |
| 20 | |
Mika Westerberg | cd7bed0 | 2013-01-22 12:26:28 +0200 | [diff] [blame] | 21 | #include <linux/delay.h> |
| 22 | #include <linux/device.h> |
| 23 | #include <linux/dma-mapping.h> |
| 24 | #include <linux/pxa2xx_ssp.h> |
| 25 | #include <linux/spi/spi.h> |
| 26 | #include <linux/spi/pxa2xx_spi.h> |
| 27 | |
| 28 | #include "spi-pxa2xx.h" |
| 29 | |
| 30 | #define DMA_INT_MASK (DCSR_ENDINTR | DCSR_STARTINTR | DCSR_BUSERR) |
| 31 | #define RESET_DMA_CHANNEL (DCSR_NODESC | DMA_INT_MASK) |
| 32 | |
| 33 | bool pxa2xx_spi_dma_is_possible(size_t len) |
| 34 | { |
| 35 | /* Try to map dma buffer and do a dma transfer if successful, but |
| 36 | * only if the length is non-zero and less than MAX_DMA_LEN. |
| 37 | * |
| 38 | * Zero-length non-descriptor DMA is illegal on PXA2xx; force use |
| 39 | * of PIO instead. Care is needed above because the transfer may |
| 40 | * have have been passed with buffers that are already dma mapped. |
| 41 | * A zero-length transfer in PIO mode will not try to write/read |
| 42 | * to/from the buffers |
| 43 | * |
| 44 | * REVISIT large transfers are exactly where we most want to be |
| 45 | * using DMA. If this happens much, split those transfers into |
| 46 | * multiple DMA segments rather than forcing PIO. |
| 47 | */ |
| 48 | return len > 0 && len <= MAX_DMA_LEN; |
| 49 | } |
| 50 | |
| 51 | int pxa2xx_spi_map_dma_buffers(struct driver_data *drv_data) |
| 52 | { |
| 53 | struct spi_message *msg = drv_data->cur_msg; |
| 54 | struct device *dev = &msg->spi->dev; |
| 55 | |
| 56 | if (!drv_data->cur_chip->enable_dma) |
| 57 | return 0; |
| 58 | |
| 59 | if (msg->is_dma_mapped) |
| 60 | return drv_data->rx_dma && drv_data->tx_dma; |
| 61 | |
| 62 | if (!IS_DMA_ALIGNED(drv_data->rx) || !IS_DMA_ALIGNED(drv_data->tx)) |
| 63 | return 0; |
| 64 | |
| 65 | /* Modify setup if rx buffer is null */ |
| 66 | if (drv_data->rx == NULL) { |
| 67 | *drv_data->null_dma_buf = 0; |
| 68 | drv_data->rx = drv_data->null_dma_buf; |
| 69 | drv_data->rx_map_len = 4; |
| 70 | } else |
| 71 | drv_data->rx_map_len = drv_data->len; |
| 72 | |
| 73 | |
| 74 | /* Modify setup if tx buffer is null */ |
| 75 | if (drv_data->tx == NULL) { |
| 76 | *drv_data->null_dma_buf = 0; |
| 77 | drv_data->tx = drv_data->null_dma_buf; |
| 78 | drv_data->tx_map_len = 4; |
| 79 | } else |
| 80 | drv_data->tx_map_len = drv_data->len; |
| 81 | |
| 82 | /* Stream map the tx buffer. Always do DMA_TO_DEVICE first |
| 83 | * so we flush the cache *before* invalidating it, in case |
| 84 | * the tx and rx buffers overlap. |
| 85 | */ |
| 86 | drv_data->tx_dma = dma_map_single(dev, drv_data->tx, |
| 87 | drv_data->tx_map_len, DMA_TO_DEVICE); |
| 88 | if (dma_mapping_error(dev, drv_data->tx_dma)) |
| 89 | return 0; |
| 90 | |
| 91 | /* Stream map the rx buffer */ |
| 92 | drv_data->rx_dma = dma_map_single(dev, drv_data->rx, |
| 93 | drv_data->rx_map_len, DMA_FROM_DEVICE); |
| 94 | if (dma_mapping_error(dev, drv_data->rx_dma)) { |
| 95 | dma_unmap_single(dev, drv_data->tx_dma, |
| 96 | drv_data->tx_map_len, DMA_TO_DEVICE); |
| 97 | return 0; |
| 98 | } |
| 99 | |
| 100 | return 1; |
| 101 | } |
| 102 | |
| 103 | static void pxa2xx_spi_unmap_dma_buffers(struct driver_data *drv_data) |
| 104 | { |
| 105 | struct device *dev; |
| 106 | |
| 107 | if (!drv_data->dma_mapped) |
| 108 | return; |
| 109 | |
| 110 | if (!drv_data->cur_msg->is_dma_mapped) { |
| 111 | dev = &drv_data->cur_msg->spi->dev; |
| 112 | dma_unmap_single(dev, drv_data->rx_dma, |
| 113 | drv_data->rx_map_len, DMA_FROM_DEVICE); |
| 114 | dma_unmap_single(dev, drv_data->tx_dma, |
| 115 | drv_data->tx_map_len, DMA_TO_DEVICE); |
| 116 | } |
| 117 | |
| 118 | drv_data->dma_mapped = 0; |
| 119 | } |
| 120 | |
| 121 | static int wait_ssp_rx_stall(void const __iomem *ioaddr) |
| 122 | { |
| 123 | unsigned long limit = loops_per_jiffy << 1; |
| 124 | |
| 125 | while ((read_SSSR(ioaddr) & SSSR_BSY) && --limit) |
| 126 | cpu_relax(); |
| 127 | |
| 128 | return limit; |
| 129 | } |
| 130 | |
| 131 | static int wait_dma_channel_stop(int channel) |
| 132 | { |
| 133 | unsigned long limit = loops_per_jiffy << 1; |
| 134 | |
| 135 | while (!(DCSR(channel) & DCSR_STOPSTATE) && --limit) |
| 136 | cpu_relax(); |
| 137 | |
| 138 | return limit; |
| 139 | } |
| 140 | |
| 141 | static void pxa2xx_spi_dma_error_stop(struct driver_data *drv_data, |
| 142 | const char *msg) |
| 143 | { |
| 144 | void __iomem *reg = drv_data->ioaddr; |
| 145 | |
| 146 | /* Stop and reset */ |
| 147 | DCSR(drv_data->rx_channel) = RESET_DMA_CHANNEL; |
| 148 | DCSR(drv_data->tx_channel) = RESET_DMA_CHANNEL; |
| 149 | write_SSSR_CS(drv_data, drv_data->clear_sr); |
| 150 | write_SSCR1(read_SSCR1(reg) & ~drv_data->dma_cr1, reg); |
| 151 | if (!pxa25x_ssp_comp(drv_data)) |
| 152 | write_SSTO(0, reg); |
| 153 | pxa2xx_spi_flush(drv_data); |
| 154 | write_SSCR0(read_SSCR0(reg) & ~SSCR0_SSE, reg); |
| 155 | |
| 156 | pxa2xx_spi_unmap_dma_buffers(drv_data); |
| 157 | |
| 158 | dev_err(&drv_data->pdev->dev, "%s\n", msg); |
| 159 | |
| 160 | drv_data->cur_msg->state = ERROR_STATE; |
| 161 | tasklet_schedule(&drv_data->pump_transfers); |
| 162 | } |
| 163 | |
| 164 | static void pxa2xx_spi_dma_transfer_complete(struct driver_data *drv_data) |
| 165 | { |
| 166 | void __iomem *reg = drv_data->ioaddr; |
| 167 | struct spi_message *msg = drv_data->cur_msg; |
| 168 | |
| 169 | /* Clear and disable interrupts on SSP and DMA channels*/ |
| 170 | write_SSCR1(read_SSCR1(reg) & ~drv_data->dma_cr1, reg); |
| 171 | write_SSSR_CS(drv_data, drv_data->clear_sr); |
| 172 | DCSR(drv_data->tx_channel) = RESET_DMA_CHANNEL; |
| 173 | DCSR(drv_data->rx_channel) = RESET_DMA_CHANNEL; |
| 174 | |
| 175 | if (wait_dma_channel_stop(drv_data->rx_channel) == 0) |
| 176 | dev_err(&drv_data->pdev->dev, |
| 177 | "dma_handler: dma rx channel stop failed\n"); |
| 178 | |
| 179 | if (wait_ssp_rx_stall(drv_data->ioaddr) == 0) |
| 180 | dev_err(&drv_data->pdev->dev, |
| 181 | "dma_transfer: ssp rx stall failed\n"); |
| 182 | |
| 183 | pxa2xx_spi_unmap_dma_buffers(drv_data); |
| 184 | |
| 185 | /* update the buffer pointer for the amount completed in dma */ |
| 186 | drv_data->rx += drv_data->len - |
| 187 | (DCMD(drv_data->rx_channel) & DCMD_LENGTH); |
| 188 | |
| 189 | /* read trailing data from fifo, it does not matter how many |
| 190 | * bytes are in the fifo just read until buffer is full |
| 191 | * or fifo is empty, which ever occurs first */ |
| 192 | drv_data->read(drv_data); |
| 193 | |
| 194 | /* return count of what was actually read */ |
| 195 | msg->actual_length += drv_data->len - |
| 196 | (drv_data->rx_end - drv_data->rx); |
| 197 | |
| 198 | /* Transfer delays and chip select release are |
| 199 | * handled in pump_transfers or giveback |
| 200 | */ |
| 201 | |
| 202 | /* Move to next transfer */ |
| 203 | msg->state = pxa2xx_spi_next_transfer(drv_data); |
| 204 | |
| 205 | /* Schedule transfer tasklet */ |
| 206 | tasklet_schedule(&drv_data->pump_transfers); |
| 207 | } |
| 208 | |
| 209 | void pxa2xx_spi_dma_handler(int channel, void *data) |
| 210 | { |
| 211 | struct driver_data *drv_data = data; |
| 212 | u32 irq_status = DCSR(channel) & DMA_INT_MASK; |
| 213 | |
| 214 | if (irq_status & DCSR_BUSERR) { |
| 215 | |
| 216 | if (channel == drv_data->tx_channel) |
| 217 | pxa2xx_spi_dma_error_stop(drv_data, |
| 218 | "dma_handler: bad bus address on tx channel"); |
| 219 | else |
| 220 | pxa2xx_spi_dma_error_stop(drv_data, |
| 221 | "dma_handler: bad bus address on rx channel"); |
| 222 | return; |
| 223 | } |
| 224 | |
| 225 | /* PXA255x_SSP has no timeout interrupt, wait for tailing bytes */ |
| 226 | if ((channel == drv_data->tx_channel) |
| 227 | && (irq_status & DCSR_ENDINTR) |
| 228 | && (drv_data->ssp_type == PXA25x_SSP)) { |
| 229 | |
| 230 | /* Wait for rx to stall */ |
| 231 | if (wait_ssp_rx_stall(drv_data->ioaddr) == 0) |
| 232 | dev_err(&drv_data->pdev->dev, |
| 233 | "dma_handler: ssp rx stall failed\n"); |
| 234 | |
| 235 | /* finish this transfer, start the next */ |
| 236 | pxa2xx_spi_dma_transfer_complete(drv_data); |
| 237 | } |
| 238 | } |
| 239 | |
| 240 | irqreturn_t pxa2xx_spi_dma_transfer(struct driver_data *drv_data) |
| 241 | { |
| 242 | u32 irq_status; |
| 243 | void __iomem *reg = drv_data->ioaddr; |
| 244 | |
| 245 | irq_status = read_SSSR(reg) & drv_data->mask_sr; |
| 246 | if (irq_status & SSSR_ROR) { |
| 247 | pxa2xx_spi_dma_error_stop(drv_data, |
| 248 | "dma_transfer: fifo overrun"); |
| 249 | return IRQ_HANDLED; |
| 250 | } |
| 251 | |
| 252 | /* Check for false positive timeout */ |
| 253 | if ((irq_status & SSSR_TINT) |
| 254 | && (DCSR(drv_data->tx_channel) & DCSR_RUN)) { |
| 255 | write_SSSR(SSSR_TINT, reg); |
| 256 | return IRQ_HANDLED; |
| 257 | } |
| 258 | |
| 259 | if (irq_status & SSSR_TINT || drv_data->rx == drv_data->rx_end) { |
| 260 | |
| 261 | /* Clear and disable timeout interrupt, do the rest in |
| 262 | * dma_transfer_complete */ |
| 263 | if (!pxa25x_ssp_comp(drv_data)) |
| 264 | write_SSTO(0, reg); |
| 265 | |
| 266 | /* finish this transfer, start the next */ |
| 267 | pxa2xx_spi_dma_transfer_complete(drv_data); |
| 268 | |
| 269 | return IRQ_HANDLED; |
| 270 | } |
| 271 | |
| 272 | /* Opps problem detected */ |
| 273 | return IRQ_NONE; |
| 274 | } |
| 275 | |
| 276 | int pxa2xx_spi_dma_prepare(struct driver_data *drv_data, u32 dma_burst) |
| 277 | { |
| 278 | u32 dma_width; |
| 279 | |
| 280 | switch (drv_data->n_bytes) { |
| 281 | case 1: |
| 282 | dma_width = DCMD_WIDTH1; |
| 283 | break; |
| 284 | case 2: |
| 285 | dma_width = DCMD_WIDTH2; |
| 286 | break; |
| 287 | default: |
| 288 | dma_width = DCMD_WIDTH4; |
| 289 | break; |
| 290 | } |
| 291 | |
| 292 | /* Setup rx DMA Channel */ |
| 293 | DCSR(drv_data->rx_channel) = RESET_DMA_CHANNEL; |
| 294 | DSADR(drv_data->rx_channel) = drv_data->ssdr_physical; |
| 295 | DTADR(drv_data->rx_channel) = drv_data->rx_dma; |
| 296 | if (drv_data->rx == drv_data->null_dma_buf) |
| 297 | /* No target address increment */ |
| 298 | DCMD(drv_data->rx_channel) = DCMD_FLOWSRC |
| 299 | | dma_width |
| 300 | | dma_burst |
| 301 | | drv_data->len; |
| 302 | else |
| 303 | DCMD(drv_data->rx_channel) = DCMD_INCTRGADDR |
| 304 | | DCMD_FLOWSRC |
| 305 | | dma_width |
| 306 | | dma_burst |
| 307 | | drv_data->len; |
| 308 | |
| 309 | /* Setup tx DMA Channel */ |
| 310 | DCSR(drv_data->tx_channel) = RESET_DMA_CHANNEL; |
| 311 | DSADR(drv_data->tx_channel) = drv_data->tx_dma; |
| 312 | DTADR(drv_data->tx_channel) = drv_data->ssdr_physical; |
| 313 | if (drv_data->tx == drv_data->null_dma_buf) |
| 314 | /* No source address increment */ |
| 315 | DCMD(drv_data->tx_channel) = DCMD_FLOWTRG |
| 316 | | dma_width |
| 317 | | dma_burst |
| 318 | | drv_data->len; |
| 319 | else |
| 320 | DCMD(drv_data->tx_channel) = DCMD_INCSRCADDR |
| 321 | | DCMD_FLOWTRG |
| 322 | | dma_width |
| 323 | | dma_burst |
| 324 | | drv_data->len; |
| 325 | |
| 326 | /* Enable dma end irqs on SSP to detect end of transfer */ |
| 327 | if (drv_data->ssp_type == PXA25x_SSP) |
| 328 | DCMD(drv_data->tx_channel) |= DCMD_ENDIRQEN; |
| 329 | |
| 330 | return 0; |
| 331 | } |
| 332 | |
| 333 | void pxa2xx_spi_dma_start(struct driver_data *drv_data) |
| 334 | { |
| 335 | DCSR(drv_data->rx_channel) |= DCSR_RUN; |
| 336 | DCSR(drv_data->tx_channel) |= DCSR_RUN; |
| 337 | } |
| 338 | |
| 339 | int pxa2xx_spi_dma_setup(struct driver_data *drv_data) |
| 340 | { |
| 341 | struct device *dev = &drv_data->pdev->dev; |
| 342 | struct ssp_device *ssp = drv_data->ssp; |
| 343 | |
| 344 | /* Get two DMA channels (rx and tx) */ |
| 345 | drv_data->rx_channel = pxa_request_dma("pxa2xx_spi_ssp_rx", |
| 346 | DMA_PRIO_HIGH, |
| 347 | pxa2xx_spi_dma_handler, |
| 348 | drv_data); |
| 349 | if (drv_data->rx_channel < 0) { |
| 350 | dev_err(dev, "problem (%d) requesting rx channel\n", |
| 351 | drv_data->rx_channel); |
| 352 | return -ENODEV; |
| 353 | } |
| 354 | drv_data->tx_channel = pxa_request_dma("pxa2xx_spi_ssp_tx", |
| 355 | DMA_PRIO_MEDIUM, |
| 356 | pxa2xx_spi_dma_handler, |
| 357 | drv_data); |
| 358 | if (drv_data->tx_channel < 0) { |
| 359 | dev_err(dev, "problem (%d) requesting tx channel\n", |
| 360 | drv_data->tx_channel); |
| 361 | pxa_free_dma(drv_data->rx_channel); |
| 362 | return -ENODEV; |
| 363 | } |
| 364 | |
| 365 | DRCMR(ssp->drcmr_rx) = DRCMR_MAPVLD | drv_data->rx_channel; |
| 366 | DRCMR(ssp->drcmr_tx) = DRCMR_MAPVLD | drv_data->tx_channel; |
| 367 | |
| 368 | return 0; |
| 369 | } |
| 370 | |
| 371 | void pxa2xx_spi_dma_release(struct driver_data *drv_data) |
| 372 | { |
| 373 | struct ssp_device *ssp = drv_data->ssp; |
| 374 | |
| 375 | DRCMR(ssp->drcmr_rx) = 0; |
| 376 | DRCMR(ssp->drcmr_tx) = 0; |
| 377 | |
| 378 | if (drv_data->tx_channel != 0) |
| 379 | pxa_free_dma(drv_data->tx_channel); |
| 380 | if (drv_data->rx_channel != 0) |
| 381 | pxa_free_dma(drv_data->rx_channel); |
| 382 | } |
| 383 | |
| 384 | void pxa2xx_spi_dma_resume(struct driver_data *drv_data) |
| 385 | { |
| 386 | if (drv_data->rx_channel != -1) |
| 387 | DRCMR(drv_data->ssp->drcmr_rx) = |
| 388 | DRCMR_MAPVLD | drv_data->rx_channel; |
| 389 | if (drv_data->tx_channel != -1) |
| 390 | DRCMR(drv_data->ssp->drcmr_tx) = |
| 391 | DRCMR_MAPVLD | drv_data->tx_channel; |
| 392 | } |
| 393 | |
| 394 | int pxa2xx_spi_set_dma_burst_and_threshold(struct chip_data *chip, |
| 395 | struct spi_device *spi, |
| 396 | u8 bits_per_word, u32 *burst_code, |
| 397 | u32 *threshold) |
| 398 | { |
| 399 | struct pxa2xx_spi_chip *chip_info = |
| 400 | (struct pxa2xx_spi_chip *)spi->controller_data; |
| 401 | int bytes_per_word; |
| 402 | int burst_bytes; |
| 403 | int thresh_words; |
| 404 | int req_burst_size; |
| 405 | int retval = 0; |
| 406 | |
| 407 | /* Set the threshold (in registers) to equal the same amount of data |
| 408 | * as represented by burst size (in bytes). The computation below |
| 409 | * is (burst_size rounded up to nearest 8 byte, word or long word) |
| 410 | * divided by (bytes/register); the tx threshold is the inverse of |
| 411 | * the rx, so that there will always be enough data in the rx fifo |
| 412 | * to satisfy a burst, and there will always be enough space in the |
| 413 | * tx fifo to accept a burst (a tx burst will overwrite the fifo if |
| 414 | * there is not enough space), there must always remain enough empty |
| 415 | * space in the rx fifo for any data loaded to the tx fifo. |
| 416 | * Whenever burst_size (in bytes) equals bits/word, the fifo threshold |
| 417 | * will be 8, or half the fifo; |
| 418 | * The threshold can only be set to 2, 4 or 8, but not 16, because |
| 419 | * to burst 16 to the tx fifo, the fifo would have to be empty; |
| 420 | * however, the minimum fifo trigger level is 1, and the tx will |
| 421 | * request service when the fifo is at this level, with only 15 spaces. |
| 422 | */ |
| 423 | |
| 424 | /* find bytes/word */ |
| 425 | if (bits_per_word <= 8) |
| 426 | bytes_per_word = 1; |
| 427 | else if (bits_per_word <= 16) |
| 428 | bytes_per_word = 2; |
| 429 | else |
| 430 | bytes_per_word = 4; |
| 431 | |
| 432 | /* use struct pxa2xx_spi_chip->dma_burst_size if available */ |
| 433 | if (chip_info) |
| 434 | req_burst_size = chip_info->dma_burst_size; |
| 435 | else { |
| 436 | switch (chip->dma_burst_size) { |
| 437 | default: |
| 438 | /* if the default burst size is not set, |
| 439 | * do it now */ |
| 440 | chip->dma_burst_size = DCMD_BURST8; |
| 441 | case DCMD_BURST8: |
| 442 | req_burst_size = 8; |
| 443 | break; |
| 444 | case DCMD_BURST16: |
| 445 | req_burst_size = 16; |
| 446 | break; |
| 447 | case DCMD_BURST32: |
| 448 | req_burst_size = 32; |
| 449 | break; |
| 450 | } |
| 451 | } |
| 452 | if (req_burst_size <= 8) { |
| 453 | *burst_code = DCMD_BURST8; |
| 454 | burst_bytes = 8; |
| 455 | } else if (req_burst_size <= 16) { |
| 456 | if (bytes_per_word == 1) { |
| 457 | /* don't burst more than 1/2 the fifo */ |
| 458 | *burst_code = DCMD_BURST8; |
| 459 | burst_bytes = 8; |
| 460 | retval = 1; |
| 461 | } else { |
| 462 | *burst_code = DCMD_BURST16; |
| 463 | burst_bytes = 16; |
| 464 | } |
| 465 | } else { |
| 466 | if (bytes_per_word == 1) { |
| 467 | /* don't burst more than 1/2 the fifo */ |
| 468 | *burst_code = DCMD_BURST8; |
| 469 | burst_bytes = 8; |
| 470 | retval = 1; |
| 471 | } else if (bytes_per_word == 2) { |
| 472 | /* don't burst more than 1/2 the fifo */ |
| 473 | *burst_code = DCMD_BURST16; |
| 474 | burst_bytes = 16; |
| 475 | retval = 1; |
| 476 | } else { |
| 477 | *burst_code = DCMD_BURST32; |
| 478 | burst_bytes = 32; |
| 479 | } |
| 480 | } |
| 481 | |
| 482 | thresh_words = burst_bytes / bytes_per_word; |
| 483 | |
| 484 | /* thresh_words will be between 2 and 8 */ |
| 485 | *threshold = (SSCR1_RxTresh(thresh_words) & SSCR1_RFT) |
| 486 | | (SSCR1_TxTresh(16-thresh_words) & SSCR1_TFT); |
| 487 | |
| 488 | return retval; |
| 489 | } |