Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | #ifndef _H8300_BITOPS_H |
| 2 | #define _H8300_BITOPS_H |
| 3 | |
| 4 | /* |
| 5 | * Copyright 1992, Linus Torvalds. |
| 6 | * Copyright 2002, Yoshinori Sato |
| 7 | */ |
| 8 | |
| 9 | #include <linux/config.h> |
| 10 | #include <linux/compiler.h> |
| 11 | #include <asm/byteorder.h> /* swab32 */ |
| 12 | #include <asm/system.h> |
| 13 | |
| 14 | #ifdef __KERNEL__ |
| 15 | /* |
| 16 | * Function prototypes to keep gcc -Wall happy |
| 17 | */ |
| 18 | |
| 19 | /* |
| 20 | * ffz = Find First Zero in word. Undefined if no zero exists, |
| 21 | * so code should check against ~0UL first.. |
| 22 | */ |
| 23 | static __inline__ unsigned long ffz(unsigned long word) |
| 24 | { |
| 25 | unsigned long result; |
| 26 | |
| 27 | result = -1; |
| 28 | __asm__("1:\n\t" |
| 29 | "shlr.l %2\n\t" |
| 30 | "adds #1,%0\n\t" |
| 31 | "bcs 1b" |
| 32 | : "=r" (result) |
| 33 | : "0" (result),"r" (word)); |
| 34 | return result; |
| 35 | } |
| 36 | |
| 37 | #define H8300_GEN_BITOP_CONST(OP,BIT) \ |
| 38 | case BIT: \ |
| 39 | __asm__(OP " #" #BIT ",@%0"::"r"(b_addr):"memory"); \ |
| 40 | break; |
| 41 | |
| 42 | #define H8300_GEN_BITOP(FNAME,OP) \ |
| 43 | static __inline__ void FNAME(int nr, volatile unsigned long* addr) \ |
| 44 | { \ |
| 45 | volatile unsigned char *b_addr; \ |
| 46 | b_addr = (volatile unsigned char *)addr + ((nr >> 3) ^ 3); \ |
| 47 | if (__builtin_constant_p(nr)) { \ |
| 48 | switch(nr & 7) { \ |
| 49 | H8300_GEN_BITOP_CONST(OP,0) \ |
| 50 | H8300_GEN_BITOP_CONST(OP,1) \ |
| 51 | H8300_GEN_BITOP_CONST(OP,2) \ |
| 52 | H8300_GEN_BITOP_CONST(OP,3) \ |
| 53 | H8300_GEN_BITOP_CONST(OP,4) \ |
| 54 | H8300_GEN_BITOP_CONST(OP,5) \ |
| 55 | H8300_GEN_BITOP_CONST(OP,6) \ |
| 56 | H8300_GEN_BITOP_CONST(OP,7) \ |
| 57 | } \ |
| 58 | } else { \ |
| 59 | __asm__(OP " %w0,@%1"::"r"(nr),"r"(b_addr):"memory"); \ |
| 60 | } \ |
| 61 | } |
| 62 | |
| 63 | /* |
| 64 | * clear_bit() doesn't provide any barrier for the compiler. |
| 65 | */ |
| 66 | #define smp_mb__before_clear_bit() barrier() |
| 67 | #define smp_mb__after_clear_bit() barrier() |
| 68 | |
| 69 | H8300_GEN_BITOP(set_bit ,"bset") |
| 70 | H8300_GEN_BITOP(clear_bit ,"bclr") |
| 71 | H8300_GEN_BITOP(change_bit,"bnot") |
| 72 | #define __set_bit(nr,addr) set_bit((nr),(addr)) |
| 73 | #define __clear_bit(nr,addr) clear_bit((nr),(addr)) |
| 74 | #define __change_bit(nr,addr) change_bit((nr),(addr)) |
| 75 | |
| 76 | #undef H8300_GEN_BITOP |
| 77 | #undef H8300_GEN_BITOP_CONST |
| 78 | |
| 79 | static __inline__ int test_bit(int nr, const unsigned long* addr) |
| 80 | { |
| 81 | return (*((volatile unsigned char *)addr + |
| 82 | ((nr >> 3) ^ 3)) & (1UL << (nr & 7))) != 0; |
| 83 | } |
| 84 | |
| 85 | #define __test_bit(nr, addr) test_bit(nr, addr) |
| 86 | |
| 87 | #define H8300_GEN_TEST_BITOP_CONST_INT(OP,BIT) \ |
| 88 | case BIT: \ |
| 89 | __asm__("stc ccr,%w1\n\t" \ |
| 90 | "orc #0x80,ccr\n\t" \ |
| 91 | "bld #" #BIT ",@%4\n\t" \ |
| 92 | OP " #" #BIT ",@%4\n\t" \ |
| 93 | "rotxl.l %0\n\t" \ |
| 94 | "ldc %w1,ccr" \ |
| 95 | : "=r"(retval),"=&r"(ccrsave),"=m"(*b_addr) \ |
| 96 | : "0" (retval),"r" (b_addr) \ |
| 97 | : "memory"); \ |
| 98 | break; |
| 99 | |
| 100 | #define H8300_GEN_TEST_BITOP_CONST(OP,BIT) \ |
| 101 | case BIT: \ |
| 102 | __asm__("bld #" #BIT ",@%3\n\t" \ |
| 103 | OP " #" #BIT ",@%3\n\t" \ |
| 104 | "rotxl.l %0\n\t" \ |
| 105 | : "=r"(retval),"=m"(*b_addr) \ |
| 106 | : "0" (retval),"r" (b_addr) \ |
| 107 | : "memory"); \ |
| 108 | break; |
| 109 | |
| 110 | #define H8300_GEN_TEST_BITOP(FNNAME,OP) \ |
| 111 | static __inline__ int FNNAME(int nr, volatile void * addr) \ |
| 112 | { \ |
| 113 | int retval = 0; \ |
| 114 | char ccrsave; \ |
| 115 | volatile unsigned char *b_addr; \ |
| 116 | b_addr = (volatile unsigned char *)addr + ((nr >> 3) ^ 3); \ |
| 117 | if (__builtin_constant_p(nr)) { \ |
| 118 | switch(nr & 7) { \ |
| 119 | H8300_GEN_TEST_BITOP_CONST_INT(OP,0) \ |
| 120 | H8300_GEN_TEST_BITOP_CONST_INT(OP,1) \ |
| 121 | H8300_GEN_TEST_BITOP_CONST_INT(OP,2) \ |
| 122 | H8300_GEN_TEST_BITOP_CONST_INT(OP,3) \ |
| 123 | H8300_GEN_TEST_BITOP_CONST_INT(OP,4) \ |
| 124 | H8300_GEN_TEST_BITOP_CONST_INT(OP,5) \ |
| 125 | H8300_GEN_TEST_BITOP_CONST_INT(OP,6) \ |
| 126 | H8300_GEN_TEST_BITOP_CONST_INT(OP,7) \ |
| 127 | } \ |
| 128 | } else { \ |
| 129 | __asm__("stc ccr,%w1\n\t" \ |
| 130 | "orc #0x80,ccr\n\t" \ |
| 131 | "btst %w5,@%4\n\t" \ |
| 132 | OP " %w5,@%4\n\t" \ |
| 133 | "beq 1f\n\t" \ |
| 134 | "inc.l #1,%0\n" \ |
| 135 | "1:\n\t" \ |
| 136 | "ldc %w1,ccr" \ |
| 137 | : "=r"(retval),"=&r"(ccrsave),"=m"(*b_addr) \ |
| 138 | : "0" (retval),"r" (b_addr),"r"(nr) \ |
| 139 | : "memory"); \ |
| 140 | } \ |
| 141 | return retval; \ |
| 142 | } \ |
| 143 | \ |
| 144 | static __inline__ int __ ## FNNAME(int nr, volatile void * addr) \ |
| 145 | { \ |
| 146 | int retval = 0; \ |
| 147 | volatile unsigned char *b_addr; \ |
| 148 | b_addr = (volatile unsigned char *)addr + ((nr >> 3) ^ 3); \ |
| 149 | if (__builtin_constant_p(nr)) { \ |
| 150 | switch(nr & 7) { \ |
| 151 | H8300_GEN_TEST_BITOP_CONST(OP,0) \ |
| 152 | H8300_GEN_TEST_BITOP_CONST(OP,1) \ |
| 153 | H8300_GEN_TEST_BITOP_CONST(OP,2) \ |
| 154 | H8300_GEN_TEST_BITOP_CONST(OP,3) \ |
| 155 | H8300_GEN_TEST_BITOP_CONST(OP,4) \ |
| 156 | H8300_GEN_TEST_BITOP_CONST(OP,5) \ |
| 157 | H8300_GEN_TEST_BITOP_CONST(OP,6) \ |
| 158 | H8300_GEN_TEST_BITOP_CONST(OP,7) \ |
| 159 | } \ |
| 160 | } else { \ |
| 161 | __asm__("btst %w4,@%3\n\t" \ |
| 162 | OP " %w4,@%3\n\t" \ |
| 163 | "beq 1f\n\t" \ |
| 164 | "inc.l #1,%0\n" \ |
| 165 | "1:" \ |
| 166 | : "=r"(retval),"=m"(*b_addr) \ |
| 167 | : "0" (retval),"r" (b_addr),"r"(nr) \ |
| 168 | : "memory"); \ |
| 169 | } \ |
| 170 | return retval; \ |
| 171 | } |
| 172 | |
| 173 | H8300_GEN_TEST_BITOP(test_and_set_bit, "bset") |
| 174 | H8300_GEN_TEST_BITOP(test_and_clear_bit, "bclr") |
| 175 | H8300_GEN_TEST_BITOP(test_and_change_bit,"bnot") |
| 176 | #undef H8300_GEN_TEST_BITOP_CONST |
| 177 | #undef H8300_GEN_TEST_BITOP_CONST_INT |
| 178 | #undef H8300_GEN_TEST_BITOP |
| 179 | |
| 180 | #define find_first_zero_bit(addr, size) \ |
| 181 | find_next_zero_bit((addr), (size), 0) |
| 182 | |
| 183 | #define ffs(x) generic_ffs(x) |
| 184 | |
| 185 | static __inline__ unsigned long __ffs(unsigned long word) |
| 186 | { |
| 187 | unsigned long result; |
| 188 | |
| 189 | result = -1; |
| 190 | __asm__("1:\n\t" |
| 191 | "shlr.l %2\n\t" |
| 192 | "adds #1,%0\n\t" |
| 193 | "bcc 1b" |
| 194 | : "=r" (result) |
| 195 | : "0"(result),"r"(word)); |
| 196 | return result; |
| 197 | } |
| 198 | |
| 199 | static __inline__ int find_next_zero_bit (const unsigned long * addr, int size, int offset) |
| 200 | { |
| 201 | unsigned long *p = (unsigned long *)(((unsigned long)addr + (offset >> 3)) & ~3); |
| 202 | unsigned long result = offset & ~31UL; |
| 203 | unsigned long tmp; |
| 204 | |
| 205 | if (offset >= size) |
| 206 | return size; |
| 207 | size -= result; |
| 208 | offset &= 31UL; |
| 209 | if (offset) { |
| 210 | tmp = *(p++); |
| 211 | tmp |= ~0UL >> (32-offset); |
| 212 | if (size < 32) |
| 213 | goto found_first; |
| 214 | if (~tmp) |
| 215 | goto found_middle; |
| 216 | size -= 32; |
| 217 | result += 32; |
| 218 | } |
| 219 | while (size & ~31UL) { |
| 220 | if (~(tmp = *(p++))) |
| 221 | goto found_middle; |
| 222 | result += 32; |
| 223 | size -= 32; |
| 224 | } |
| 225 | if (!size) |
| 226 | return result; |
| 227 | tmp = *p; |
| 228 | |
| 229 | found_first: |
| 230 | tmp |= ~0UL >> size; |
| 231 | found_middle: |
| 232 | return result + ffz(tmp); |
| 233 | } |
| 234 | |
| 235 | static __inline__ unsigned long find_next_bit(const unsigned long *addr, |
| 236 | unsigned long size, unsigned long offset) |
| 237 | { |
| 238 | unsigned long *p = (unsigned long *)(((unsigned long)addr + (offset >> 3)) & ~3); |
| 239 | unsigned int result = offset & ~31UL; |
| 240 | unsigned int tmp; |
| 241 | |
| 242 | if (offset >= size) |
| 243 | return size; |
| 244 | size -= result; |
| 245 | offset &= 31UL; |
| 246 | if (offset) { |
| 247 | tmp = *(p++); |
| 248 | tmp &= ~0UL << offset; |
| 249 | if (size < 32) |
| 250 | goto found_first; |
| 251 | if (tmp) |
| 252 | goto found_middle; |
| 253 | size -= 32; |
| 254 | result += 32; |
| 255 | } |
| 256 | while (size >= 32) { |
| 257 | if ((tmp = *p++) != 0) |
| 258 | goto found_middle; |
| 259 | result += 32; |
| 260 | size -= 32; |
| 261 | } |
| 262 | if (!size) |
| 263 | return result; |
| 264 | tmp = *p; |
| 265 | |
| 266 | found_first: |
| 267 | tmp &= ~0UL >> (32 - size); |
| 268 | if (tmp == 0UL) |
| 269 | return result + size; |
| 270 | found_middle: |
| 271 | return result + __ffs(tmp); |
| 272 | } |
| 273 | |
| 274 | #define find_first_bit(addr, size) find_next_bit(addr, size, 0) |
| 275 | |
| 276 | /* |
| 277 | * Every architecture must define this function. It's the fastest |
| 278 | * way of searching a 140-bit bitmap where the first 100 bits are |
| 279 | * unlikely to be set. It's guaranteed that at least one of the 140 |
| 280 | * bits is cleared. |
| 281 | */ |
| 282 | static inline int sched_find_first_bit(unsigned long *b) |
| 283 | { |
| 284 | if (unlikely(b[0])) |
| 285 | return __ffs(b[0]); |
| 286 | if (unlikely(b[1])) |
| 287 | return __ffs(b[1]) + 32; |
| 288 | if (unlikely(b[2])) |
| 289 | return __ffs(b[2]) + 64; |
| 290 | if (b[3]) |
| 291 | return __ffs(b[3]) + 96; |
| 292 | return __ffs(b[4]) + 128; |
| 293 | } |
| 294 | |
| 295 | /* |
| 296 | * hweightN: returns the hamming weight (i.e. the number |
| 297 | * of bits set) of a N-bit word |
| 298 | */ |
| 299 | |
| 300 | #define hweight32(x) generic_hweight32(x) |
| 301 | #define hweight16(x) generic_hweight16(x) |
| 302 | #define hweight8(x) generic_hweight8(x) |
| 303 | |
| 304 | static __inline__ int ext2_set_bit(int nr, volatile void * addr) |
| 305 | { |
| 306 | int mask, retval; |
| 307 | unsigned long flags; |
| 308 | volatile unsigned char *ADDR = (unsigned char *) addr; |
| 309 | |
| 310 | ADDR += nr >> 3; |
| 311 | mask = 1 << (nr & 0x07); |
| 312 | local_irq_save(flags); |
| 313 | retval = (mask & *ADDR) != 0; |
| 314 | *ADDR |= mask; |
| 315 | local_irq_restore(flags); |
| 316 | return retval; |
| 317 | } |
| 318 | #define ext2_set_bit_atomic(lock, nr, addr) ext2_set_bit(nr, addr) |
| 319 | |
| 320 | static __inline__ int ext2_clear_bit(int nr, volatile void * addr) |
| 321 | { |
| 322 | int mask, retval; |
| 323 | unsigned long flags; |
| 324 | volatile unsigned char *ADDR = (unsigned char *) addr; |
| 325 | |
| 326 | ADDR += nr >> 3; |
| 327 | mask = 1 << (nr & 0x07); |
| 328 | local_irq_save(flags); |
| 329 | retval = (mask & *ADDR) != 0; |
| 330 | *ADDR &= ~mask; |
| 331 | local_irq_restore(flags); |
| 332 | return retval; |
| 333 | } |
| 334 | #define ext2_clear_bit_atomic(lock, nr, addr) ext2_set_bit(nr, addr) |
| 335 | |
| 336 | static __inline__ int ext2_test_bit(int nr, const volatile void * addr) |
| 337 | { |
| 338 | int mask; |
| 339 | const volatile unsigned char *ADDR = (const unsigned char *) addr; |
| 340 | |
| 341 | ADDR += nr >> 3; |
| 342 | mask = 1 << (nr & 0x07); |
| 343 | return ((mask & *ADDR) != 0); |
| 344 | } |
| 345 | |
| 346 | #define ext2_find_first_zero_bit(addr, size) \ |
| 347 | ext2_find_next_zero_bit((addr), (size), 0) |
| 348 | |
| 349 | static __inline__ unsigned long ext2_find_next_zero_bit(void *addr, unsigned long size, unsigned long offset) |
| 350 | { |
| 351 | unsigned long *p = ((unsigned long *) addr) + (offset >> 5); |
| 352 | unsigned long result = offset & ~31UL; |
| 353 | unsigned long tmp; |
| 354 | |
| 355 | if (offset >= size) |
| 356 | return size; |
| 357 | size -= result; |
| 358 | offset &= 31UL; |
| 359 | if(offset) { |
| 360 | /* We hold the little endian value in tmp, but then the |
| 361 | * shift is illegal. So we could keep a big endian value |
| 362 | * in tmp, like this: |
| 363 | * |
| 364 | * tmp = __swab32(*(p++)); |
| 365 | * tmp |= ~0UL >> (32-offset); |
| 366 | * |
| 367 | * but this would decrease performance, so we change the |
| 368 | * shift: |
| 369 | */ |
| 370 | tmp = *(p++); |
| 371 | tmp |= __swab32(~0UL >> (32-offset)); |
| 372 | if(size < 32) |
| 373 | goto found_first; |
| 374 | if(~tmp) |
| 375 | goto found_middle; |
| 376 | size -= 32; |
| 377 | result += 32; |
| 378 | } |
| 379 | while(size & ~31UL) { |
| 380 | if(~(tmp = *(p++))) |
| 381 | goto found_middle; |
| 382 | result += 32; |
| 383 | size -= 32; |
| 384 | } |
| 385 | if(!size) |
| 386 | return result; |
| 387 | tmp = *p; |
| 388 | |
| 389 | found_first: |
| 390 | /* tmp is little endian, so we would have to swab the shift, |
| 391 | * see above. But then we have to swab tmp below for ffz, so |
| 392 | * we might as well do this here. |
| 393 | */ |
| 394 | return result + ffz(__swab32(tmp) | (~0UL << size)); |
| 395 | found_middle: |
| 396 | return result + ffz(__swab32(tmp)); |
| 397 | } |
| 398 | |
| 399 | /* Bitmap functions for the minix filesystem. */ |
| 400 | #define minix_test_and_set_bit(nr,addr) test_and_set_bit(nr,addr) |
| 401 | #define minix_set_bit(nr,addr) set_bit(nr,addr) |
| 402 | #define minix_test_and_clear_bit(nr,addr) test_and_clear_bit(nr,addr) |
| 403 | #define minix_test_bit(nr,addr) test_bit(nr,addr) |
| 404 | #define minix_find_first_zero_bit(addr,size) find_first_zero_bit(addr,size) |
| 405 | |
| 406 | #endif /* __KERNEL__ */ |
| 407 | |
| 408 | #define fls(x) generic_fls(x) |
| 409 | |
| 410 | #endif /* _H8300_BITOPS_H */ |