blob: 07f6baa15c0cd4cc075130d45130729eb77c7d1b [file] [log] [blame]
Stuart Hodgson7c236c42012-09-03 11:09:36 +01001/****************************************************************************
2 * Driver for Solarflare Solarstorm network controllers and boards
3 * Copyright 2011 Solarflare Communications Inc.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 as published
7 * by the Free Software Foundation, incorporated herein by reference.
8 */
9
10/* Theory of operation:
11 *
12 * PTP support is assisted by firmware running on the MC, which provides
13 * the hardware timestamping capabilities. Both transmitted and received
14 * PTP event packets are queued onto internal queues for subsequent processing;
15 * this is because the MC operations are relatively long and would block
16 * block NAPI/interrupt operation.
17 *
18 * Receive event processing:
19 * The event contains the packet's UUID and sequence number, together
20 * with the hardware timestamp. The PTP receive packet queue is searched
21 * for this UUID/sequence number and, if found, put on a pending queue.
22 * Packets not matching are delivered without timestamps (MCDI events will
23 * always arrive after the actual packet).
24 * It is important for the operation of the PTP protocol that the ordering
25 * of packets between the event and general port is maintained.
26 *
27 * Work queue processing:
28 * If work waiting, synchronise host/hardware time
29 *
30 * Transmit: send packet through MC, which returns the transmission time
31 * that is converted to an appropriate timestamp.
32 *
33 * Receive: the packet's reception time is converted to an appropriate
34 * timestamp.
35 */
36#include <linux/ip.h>
37#include <linux/udp.h>
38#include <linux/time.h>
39#include <linux/ktime.h>
40#include <linux/module.h>
41#include <linux/net_tstamp.h>
42#include <linux/pps_kernel.h>
43#include <linux/ptp_clock_kernel.h>
44#include "net_driver.h"
45#include "efx.h"
46#include "mcdi.h"
47#include "mcdi_pcol.h"
48#include "io.h"
49#include "regs.h"
50#include "nic.h"
51
52/* Maximum number of events expected to make up a PTP event */
53#define MAX_EVENT_FRAGS 3
54
55/* Maximum delay, ms, to begin synchronisation */
56#define MAX_SYNCHRONISE_WAIT_MS 2
57
58/* How long, at most, to spend synchronising */
59#define SYNCHRONISE_PERIOD_NS 250000
60
61/* How often to update the shared memory time */
62#define SYNCHRONISATION_GRANULARITY_NS 200
63
64/* Minimum permitted length of a (corrected) synchronisation time */
65#define MIN_SYNCHRONISATION_NS 120
66
67/* Maximum permitted length of a (corrected) synchronisation time */
68#define MAX_SYNCHRONISATION_NS 1000
69
70/* How many (MC) receive events that can be queued */
71#define MAX_RECEIVE_EVENTS 8
72
73/* Length of (modified) moving average. */
74#define AVERAGE_LENGTH 16
75
76/* How long an unmatched event or packet can be held */
77#define PKT_EVENT_LIFETIME_MS 10
78
79/* Offsets into PTP packet for identification. These offsets are from the
80 * start of the IP header, not the MAC header. Note that neither PTP V1 nor
81 * PTP V2 permit the use of IPV4 options.
82 */
83#define PTP_DPORT_OFFSET 22
84
85#define PTP_V1_VERSION_LENGTH 2
86#define PTP_V1_VERSION_OFFSET 28
87
88#define PTP_V1_UUID_LENGTH 6
89#define PTP_V1_UUID_OFFSET 50
90
91#define PTP_V1_SEQUENCE_LENGTH 2
92#define PTP_V1_SEQUENCE_OFFSET 58
93
94/* The minimum length of a PTP V1 packet for offsets, etc. to be valid:
95 * includes IP header.
96 */
97#define PTP_V1_MIN_LENGTH 64
98
99#define PTP_V2_VERSION_LENGTH 1
100#define PTP_V2_VERSION_OFFSET 29
101
Laurence Evansc939a312012-11-15 10:56:07 +0000102#define PTP_V2_UUID_LENGTH 8
103#define PTP_V2_UUID_OFFSET 48
104
Stuart Hodgson7c236c42012-09-03 11:09:36 +0100105/* Although PTP V2 UUIDs are comprised a ClockIdentity (8) and PortNumber (2),
106 * the MC only captures the last six bytes of the clock identity. These values
107 * reflect those, not the ones used in the standard. The standard permits
108 * mapping of V1 UUIDs to V2 UUIDs with these same values.
109 */
110#define PTP_V2_MC_UUID_LENGTH 6
111#define PTP_V2_MC_UUID_OFFSET 50
112
113#define PTP_V2_SEQUENCE_LENGTH 2
114#define PTP_V2_SEQUENCE_OFFSET 58
115
116/* The minimum length of a PTP V2 packet for offsets, etc. to be valid:
117 * includes IP header.
118 */
119#define PTP_V2_MIN_LENGTH 63
120
121#define PTP_MIN_LENGTH 63
122
123#define PTP_ADDRESS 0xe0000181 /* 224.0.1.129 */
124#define PTP_EVENT_PORT 319
125#define PTP_GENERAL_PORT 320
126
127/* Annoyingly the format of the version numbers are different between
128 * versions 1 and 2 so it isn't possible to simply look for 1 or 2.
129 */
130#define PTP_VERSION_V1 1
131
132#define PTP_VERSION_V2 2
133#define PTP_VERSION_V2_MASK 0x0f
134
135enum ptp_packet_state {
136 PTP_PACKET_STATE_UNMATCHED = 0,
137 PTP_PACKET_STATE_MATCHED,
138 PTP_PACKET_STATE_TIMED_OUT,
139 PTP_PACKET_STATE_MATCH_UNWANTED
140};
141
142/* NIC synchronised with single word of time only comprising
143 * partial seconds and full nanoseconds: 10^9 ~ 2^30 so 2 bits for seconds.
144 */
145#define MC_NANOSECOND_BITS 30
146#define MC_NANOSECOND_MASK ((1 << MC_NANOSECOND_BITS) - 1)
147#define MC_SECOND_MASK ((1 << (32 - MC_NANOSECOND_BITS)) - 1)
148
149/* Maximum parts-per-billion adjustment that is acceptable */
150#define MAX_PPB 1000000
151
152/* Number of bits required to hold the above */
153#define MAX_PPB_BITS 20
154
155/* Number of extra bits allowed when calculating fractional ns.
156 * EXTRA_BITS + MC_CMD_PTP_IN_ADJUST_BITS + MAX_PPB_BITS should
157 * be less than 63.
158 */
159#define PPB_EXTRA_BITS 2
160
161/* Precalculate scale word to avoid long long division at runtime */
162#define PPB_SCALE_WORD ((1LL << (PPB_EXTRA_BITS + MC_CMD_PTP_IN_ADJUST_BITS +\
163 MAX_PPB_BITS)) / 1000000000LL)
164
165#define PTP_SYNC_ATTEMPTS 4
166
167/**
168 * struct efx_ptp_match - Matching structure, stored in sk_buff's cb area.
169 * @words: UUID and (partial) sequence number
170 * @expiry: Time after which the packet should be delivered irrespective of
171 * event arrival.
172 * @state: The state of the packet - whether it is ready for processing or
173 * whether that is of no interest.
174 */
175struct efx_ptp_match {
176 u32 words[DIV_ROUND_UP(PTP_V1_UUID_LENGTH, 4)];
177 unsigned long expiry;
178 enum ptp_packet_state state;
179};
180
181/**
182 * struct efx_ptp_event_rx - A PTP receive event (from MC)
183 * @seq0: First part of (PTP) UUID
184 * @seq1: Second part of (PTP) UUID and sequence number
185 * @hwtimestamp: Event timestamp
186 */
187struct efx_ptp_event_rx {
188 struct list_head link;
189 u32 seq0;
190 u32 seq1;
191 ktime_t hwtimestamp;
192 unsigned long expiry;
193};
194
195/**
196 * struct efx_ptp_timeset - Synchronisation between host and MC
197 * @host_start: Host time immediately before hardware timestamp taken
198 * @seconds: Hardware timestamp, seconds
199 * @nanoseconds: Hardware timestamp, nanoseconds
200 * @host_end: Host time immediately after hardware timestamp taken
201 * @waitns: Number of nanoseconds between hardware timestamp being read and
202 * host end time being seen
203 * @window: Difference of host_end and host_start
204 * @valid: Whether this timeset is valid
205 */
206struct efx_ptp_timeset {
207 u32 host_start;
208 u32 seconds;
209 u32 nanoseconds;
210 u32 host_end;
211 u32 waitns;
212 u32 window; /* Derived: end - start, allowing for wrap */
213};
214
215/**
216 * struct efx_ptp_data - Precision Time Protocol (PTP) state
217 * @channel: The PTP channel
218 * @rxq: Receive queue (awaiting timestamps)
219 * @txq: Transmit queue
220 * @evt_list: List of MC receive events awaiting packets
221 * @evt_free_list: List of free events
222 * @evt_lock: Lock for manipulating evt_list and evt_free_list
223 * @rx_evts: Instantiated events (on evt_list and evt_free_list)
224 * @workwq: Work queue for processing pending PTP operations
225 * @work: Work task
226 * @reset_required: A serious error has occurred and the PTP task needs to be
227 * reset (disable, enable).
228 * @rxfilter_event: Receive filter when operating
229 * @rxfilter_general: Receive filter when operating
230 * @config: Current timestamp configuration
231 * @enabled: PTP operation enabled
232 * @mode: Mode in which PTP operating (PTP version)
233 * @evt_frags: Partly assembled PTP events
234 * @evt_frag_idx: Current fragment number
235 * @evt_code: Last event code
236 * @start: Address at which MC indicates ready for synchronisation
237 * @host_time_pps: Host time at last PPS
238 * @last_sync_ns: Last number of nanoseconds between readings when synchronising
239 * @base_sync_ns: Number of nanoseconds for last synchronisation.
240 * @base_sync_valid: Whether base_sync_time is valid.
241 * @current_adjfreq: Current ppb adjustment.
242 * @phc_clock: Pointer to registered phc device
243 * @phc_clock_info: Registration structure for phc device
244 * @pps_work: pps work task for handling pps events
245 * @pps_workwq: pps work queue
246 * @nic_ts_enabled: Flag indicating if NIC generated TS events are handled
247 * @txbuf: Buffer for use when transmitting (PTP) packets to MC (avoids
248 * allocations in main data path).
249 * @debug_ptp_dir: PTP debugfs directory
250 * @missed_rx_sync: Number of packets received without syncrhonisation.
251 * @good_syncs: Number of successful synchronisations.
252 * @no_time_syncs: Number of synchronisations with no good times.
253 * @bad_sync_durations: Number of synchronisations with bad durations.
254 * @bad_syncs: Number of failed synchronisations.
255 * @last_sync_time: Number of nanoseconds for last synchronisation.
256 * @sync_timeouts: Number of synchronisation timeouts
257 * @fast_syncs: Number of synchronisations requiring short delay
258 * @min_sync_delta: Minimum time between event and synchronisation
259 * @max_sync_delta: Maximum time between event and synchronisation
260 * @average_sync_delta: Average time between event and synchronisation.
261 * Modified moving average.
262 * @last_sync_delta: Last time between event and synchronisation
263 * @mc_stats: Context value for MC statistics
264 * @timeset: Last set of synchronisation statistics.
265 */
266struct efx_ptp_data {
267 struct efx_channel *channel;
268 struct sk_buff_head rxq;
269 struct sk_buff_head txq;
270 struct list_head evt_list;
271 struct list_head evt_free_list;
272 spinlock_t evt_lock;
273 struct efx_ptp_event_rx rx_evts[MAX_RECEIVE_EVENTS];
274 struct workqueue_struct *workwq;
275 struct work_struct work;
276 bool reset_required;
277 u32 rxfilter_event;
278 u32 rxfilter_general;
279 bool rxfilter_installed;
280 struct hwtstamp_config config;
281 bool enabled;
282 unsigned int mode;
283 efx_qword_t evt_frags[MAX_EVENT_FRAGS];
284 int evt_frag_idx;
285 int evt_code;
286 struct efx_buffer start;
287 struct pps_event_time host_time_pps;
288 unsigned last_sync_ns;
289 unsigned base_sync_ns;
290 bool base_sync_valid;
291 s64 current_adjfreq;
292 struct ptp_clock *phc_clock;
293 struct ptp_clock_info phc_clock_info;
294 struct work_struct pps_work;
295 struct workqueue_struct *pps_workwq;
296 bool nic_ts_enabled;
297 u8 txbuf[ALIGN(MC_CMD_PTP_IN_TRANSMIT_LEN(
298 MC_CMD_PTP_IN_TRANSMIT_PACKET_MAXNUM), 4)];
299 struct efx_ptp_timeset
300 timeset[MC_CMD_PTP_OUT_SYNCHRONIZE_TIMESET_MAXNUM];
301};
302
303static int efx_phc_adjfreq(struct ptp_clock_info *ptp, s32 delta);
304static int efx_phc_adjtime(struct ptp_clock_info *ptp, s64 delta);
305static int efx_phc_gettime(struct ptp_clock_info *ptp, struct timespec *ts);
306static int efx_phc_settime(struct ptp_clock_info *ptp,
307 const struct timespec *e_ts);
308static int efx_phc_enable(struct ptp_clock_info *ptp,
309 struct ptp_clock_request *request, int on);
310
311/* Enable MCDI PTP support. */
312static int efx_ptp_enable(struct efx_nic *efx)
313{
314 u8 inbuf[MC_CMD_PTP_IN_ENABLE_LEN];
315
316 MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_ENABLE);
317 MCDI_SET_DWORD(inbuf, PTP_IN_ENABLE_QUEUE,
318 efx->ptp_data->channel->channel);
319 MCDI_SET_DWORD(inbuf, PTP_IN_ENABLE_MODE, efx->ptp_data->mode);
320
321 return efx_mcdi_rpc(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
322 NULL, 0, NULL);
323}
324
325/* Disable MCDI PTP support.
326 *
327 * Note that this function should never rely on the presence of ptp_data -
328 * may be called before that exists.
329 */
330static int efx_ptp_disable(struct efx_nic *efx)
331{
332 u8 inbuf[MC_CMD_PTP_IN_DISABLE_LEN];
333
334 MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_DISABLE);
335 return efx_mcdi_rpc(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
336 NULL, 0, NULL);
337}
338
339static void efx_ptp_deliver_rx_queue(struct sk_buff_head *q)
340{
341 struct sk_buff *skb;
342
343 while ((skb = skb_dequeue(q))) {
344 local_bh_disable();
345 netif_receive_skb(skb);
346 local_bh_enable();
347 }
348}
349
350static void efx_ptp_handle_no_channel(struct efx_nic *efx)
351{
352 netif_err(efx, drv, efx->net_dev,
353 "ERROR: PTP requires MSI-X and 1 additional interrupt"
354 "vector. PTP disabled\n");
355}
356
357/* Repeatedly send the host time to the MC which will capture the hardware
358 * time.
359 */
360static void efx_ptp_send_times(struct efx_nic *efx,
361 struct pps_event_time *last_time)
362{
363 struct pps_event_time now;
364 struct timespec limit;
365 struct efx_ptp_data *ptp = efx->ptp_data;
366 struct timespec start;
367 int *mc_running = ptp->start.addr;
368
369 pps_get_ts(&now);
370 start = now.ts_real;
371 limit = now.ts_real;
372 timespec_add_ns(&limit, SYNCHRONISE_PERIOD_NS);
373
374 /* Write host time for specified period or until MC is done */
375 while ((timespec_compare(&now.ts_real, &limit) < 0) &&
376 ACCESS_ONCE(*mc_running)) {
377 struct timespec update_time;
378 unsigned int host_time;
379
380 /* Don't update continuously to avoid saturating the PCIe bus */
381 update_time = now.ts_real;
382 timespec_add_ns(&update_time, SYNCHRONISATION_GRANULARITY_NS);
383 do {
384 pps_get_ts(&now);
385 } while ((timespec_compare(&now.ts_real, &update_time) < 0) &&
386 ACCESS_ONCE(*mc_running));
387
388 /* Synchronise NIC with single word of time only */
389 host_time = (now.ts_real.tv_sec << MC_NANOSECOND_BITS |
390 now.ts_real.tv_nsec);
391 /* Update host time in NIC memory */
392 _efx_writed(efx, cpu_to_le32(host_time),
393 FR_CZ_MC_TREG_SMEM + MC_SMEM_P0_PTP_TIME_OFST);
394 }
395 *last_time = now;
396}
397
398/* Read a timeset from the MC's results and partial process. */
399static void efx_ptp_read_timeset(u8 *data, struct efx_ptp_timeset *timeset)
400{
401 unsigned start_ns, end_ns;
402
403 timeset->host_start = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_HOSTSTART);
404 timeset->seconds = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_SECONDS);
405 timeset->nanoseconds = MCDI_DWORD(data,
406 PTP_OUT_SYNCHRONIZE_NANOSECONDS);
407 timeset->host_end = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_HOSTEND),
408 timeset->waitns = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_WAITNS);
409
410 /* Ignore seconds */
411 start_ns = timeset->host_start & MC_NANOSECOND_MASK;
412 end_ns = timeset->host_end & MC_NANOSECOND_MASK;
413 /* Allow for rollover */
414 if (end_ns < start_ns)
415 end_ns += NSEC_PER_SEC;
416 /* Determine duration of operation */
417 timeset->window = end_ns - start_ns;
418}
419
420/* Process times received from MC.
421 *
422 * Extract times from returned results, and establish the minimum value
423 * seen. The minimum value represents the "best" possible time and events
424 * too much greater than this are rejected - the machine is, perhaps, too
425 * busy. A number of readings are taken so that, hopefully, at least one good
426 * synchronisation will be seen in the results.
427 */
428static int efx_ptp_process_times(struct efx_nic *efx, u8 *synch_buf,
429 size_t response_length,
430 const struct pps_event_time *last_time)
431{
432 unsigned number_readings = (response_length /
433 MC_CMD_PTP_OUT_SYNCHRONIZE_TIMESET_LEN);
434 unsigned i;
Stuart Hodgson7c236c42012-09-03 11:09:36 +0100435 unsigned total;
436 unsigned ngood = 0;
437 unsigned last_good = 0;
438 struct efx_ptp_data *ptp = efx->ptp_data;
Stuart Hodgson7c236c42012-09-03 11:09:36 +0100439 u32 last_sec;
440 u32 start_sec;
441 struct timespec delta;
442
443 if (number_readings == 0)
444 return -EAGAIN;
445
Laurence Evans92304512013-02-11 13:55:08 +0000446 /* Read the set of results and increment stats for any results that
447 * appera to be erroneous.
Stuart Hodgson7c236c42012-09-03 11:09:36 +0100448 */
449 for (i = 0; i < number_readings; i++) {
450 efx_ptp_read_timeset(synch_buf, &ptp->timeset[i]);
451 synch_buf += MC_CMD_PTP_OUT_SYNCHRONIZE_TIMESET_LEN;
Stuart Hodgson7c236c42012-09-03 11:09:36 +0100452 }
453
Laurence Evans92304512013-02-11 13:55:08 +0000454 /* Find the last good host-MC synchronization result. The MC times
455 * when it finishes reading the host time so the corrected window time
456 * should be fairly constant for a given platform.
Stuart Hodgson7c236c42012-09-03 11:09:36 +0100457 */
458 total = 0;
459 for (i = 0; i < number_readings; i++)
460 if (ptp->timeset[i].window > ptp->timeset[i].waitns) {
461 unsigned win;
462
463 win = ptp->timeset[i].window - ptp->timeset[i].waitns;
464 if (win >= MIN_SYNCHRONISATION_NS &&
465 win < MAX_SYNCHRONISATION_NS) {
466 total += ptp->timeset[i].window;
467 ngood++;
468 last_good = i;
469 }
470 }
471
472 if (ngood == 0) {
473 netif_warn(efx, drv, efx->net_dev,
Laurence Evans92304512013-02-11 13:55:08 +0000474 "PTP no suitable synchronisations %dns\n",
475 ptp->base_sync_ns);
Stuart Hodgson7c236c42012-09-03 11:09:36 +0100476 return -EAGAIN;
477 }
478
479 /* Average minimum this synchronisation */
480 ptp->last_sync_ns = DIV_ROUND_UP(total, ngood);
481 if (!ptp->base_sync_valid || (ptp->last_sync_ns < ptp->base_sync_ns)) {
482 ptp->base_sync_valid = true;
483 ptp->base_sync_ns = ptp->last_sync_ns;
484 }
485
486 /* Calculate delay from actual PPS to last_time */
487 delta.tv_nsec =
488 ptp->timeset[last_good].nanoseconds +
489 last_time->ts_real.tv_nsec -
490 (ptp->timeset[last_good].host_start & MC_NANOSECOND_MASK);
491
492 /* It is possible that the seconds rolled over between taking
493 * the start reading and the last value written by the host. The
494 * timescales are such that a gap of more than one second is never
495 * expected.
496 */
497 start_sec = ptp->timeset[last_good].host_start >> MC_NANOSECOND_BITS;
498 last_sec = last_time->ts_real.tv_sec & MC_SECOND_MASK;
499 if (start_sec != last_sec) {
500 if (((start_sec + 1) & MC_SECOND_MASK) != last_sec) {
501 netif_warn(efx, hw, efx->net_dev,
502 "PTP bad synchronisation seconds\n");
503 return -EAGAIN;
504 } else {
505 delta.tv_sec = 1;
506 }
507 } else {
508 delta.tv_sec = 0;
509 }
510
511 ptp->host_time_pps = *last_time;
512 pps_sub_ts(&ptp->host_time_pps, delta);
513
514 return 0;
515}
516
517/* Synchronize times between the host and the MC */
518static int efx_ptp_synchronize(struct efx_nic *efx, unsigned int num_readings)
519{
520 struct efx_ptp_data *ptp = efx->ptp_data;
521 u8 synch_buf[MC_CMD_PTP_OUT_SYNCHRONIZE_LENMAX];
522 size_t response_length;
523 int rc;
524 unsigned long timeout;
525 struct pps_event_time last_time = {};
526 unsigned int loops = 0;
527 int *start = ptp->start.addr;
528
529 MCDI_SET_DWORD(synch_buf, PTP_IN_OP, MC_CMD_PTP_OP_SYNCHRONIZE);
530 MCDI_SET_DWORD(synch_buf, PTP_IN_SYNCHRONIZE_NUMTIMESETS,
531 num_readings);
532 MCDI_SET_DWORD(synch_buf, PTP_IN_SYNCHRONIZE_START_ADDR_LO,
533 (u32)ptp->start.dma_addr);
534 MCDI_SET_DWORD(synch_buf, PTP_IN_SYNCHRONIZE_START_ADDR_HI,
535 (u32)((u64)ptp->start.dma_addr >> 32));
536
537 /* Clear flag that signals MC ready */
538 ACCESS_ONCE(*start) = 0;
539 efx_mcdi_rpc_start(efx, MC_CMD_PTP, synch_buf,
540 MC_CMD_PTP_IN_SYNCHRONIZE_LEN);
541
542 /* Wait for start from MCDI (or timeout) */
543 timeout = jiffies + msecs_to_jiffies(MAX_SYNCHRONISE_WAIT_MS);
544 while (!ACCESS_ONCE(*start) && (time_before(jiffies, timeout))) {
545 udelay(20); /* Usually start MCDI execution quickly */
546 loops++;
547 }
548
549 if (ACCESS_ONCE(*start))
550 efx_ptp_send_times(efx, &last_time);
551
552 /* Collect results */
553 rc = efx_mcdi_rpc_finish(efx, MC_CMD_PTP,
554 MC_CMD_PTP_IN_SYNCHRONIZE_LEN,
555 synch_buf, sizeof(synch_buf),
556 &response_length);
557 if (rc == 0)
558 rc = efx_ptp_process_times(efx, synch_buf, response_length,
559 &last_time);
560
561 return rc;
562}
563
564/* Transmit a PTP packet, via the MCDI interface, to the wire. */
565static int efx_ptp_xmit_skb(struct efx_nic *efx, struct sk_buff *skb)
566{
567 u8 *txbuf = efx->ptp_data->txbuf;
568 struct skb_shared_hwtstamps timestamps;
569 int rc = -EIO;
570 /* MCDI driver requires word aligned lengths */
571 size_t len = ALIGN(MC_CMD_PTP_IN_TRANSMIT_LEN(skb->len), 4);
572 u8 txtime[MC_CMD_PTP_OUT_TRANSMIT_LEN];
573
574 MCDI_SET_DWORD(txbuf, PTP_IN_OP, MC_CMD_PTP_OP_TRANSMIT);
575 MCDI_SET_DWORD(txbuf, PTP_IN_TRANSMIT_LENGTH, skb->len);
576 if (skb_shinfo(skb)->nr_frags != 0) {
577 rc = skb_linearize(skb);
578 if (rc != 0)
579 goto fail;
580 }
581
582 if (skb->ip_summed == CHECKSUM_PARTIAL) {
583 rc = skb_checksum_help(skb);
584 if (rc != 0)
585 goto fail;
586 }
587 skb_copy_from_linear_data(skb,
588 &txbuf[MC_CMD_PTP_IN_TRANSMIT_PACKET_OFST],
589 len);
590 rc = efx_mcdi_rpc(efx, MC_CMD_PTP, txbuf, len, txtime,
591 sizeof(txtime), &len);
592 if (rc != 0)
593 goto fail;
594
595 memset(&timestamps, 0, sizeof(timestamps));
596 timestamps.hwtstamp = ktime_set(
597 MCDI_DWORD(txtime, PTP_OUT_TRANSMIT_SECONDS),
598 MCDI_DWORD(txtime, PTP_OUT_TRANSMIT_NANOSECONDS));
599
600 skb_tstamp_tx(skb, &timestamps);
601
602 rc = 0;
603
604fail:
605 dev_kfree_skb(skb);
606
607 return rc;
608}
609
610static void efx_ptp_drop_time_expired_events(struct efx_nic *efx)
611{
612 struct efx_ptp_data *ptp = efx->ptp_data;
613 struct list_head *cursor;
614 struct list_head *next;
615
616 /* Drop time-expired events */
617 spin_lock_bh(&ptp->evt_lock);
618 if (!list_empty(&ptp->evt_list)) {
619 list_for_each_safe(cursor, next, &ptp->evt_list) {
620 struct efx_ptp_event_rx *evt;
621
622 evt = list_entry(cursor, struct efx_ptp_event_rx,
623 link);
624 if (time_after(jiffies, evt->expiry)) {
Wei Yongjun9545f4e2012-10-07 03:41:50 +0000625 list_move(&evt->link, &ptp->evt_free_list);
Stuart Hodgson7c236c42012-09-03 11:09:36 +0100626 netif_warn(efx, hw, efx->net_dev,
627 "PTP rx event dropped\n");
628 }
629 }
630 }
631 spin_unlock_bh(&ptp->evt_lock);
632}
633
634static enum ptp_packet_state efx_ptp_match_rx(struct efx_nic *efx,
635 struct sk_buff *skb)
636{
637 struct efx_ptp_data *ptp = efx->ptp_data;
638 bool evts_waiting;
639 struct list_head *cursor;
640 struct list_head *next;
641 struct efx_ptp_match *match;
642 enum ptp_packet_state rc = PTP_PACKET_STATE_UNMATCHED;
643
644 spin_lock_bh(&ptp->evt_lock);
645 evts_waiting = !list_empty(&ptp->evt_list);
646 spin_unlock_bh(&ptp->evt_lock);
647
648 if (!evts_waiting)
649 return PTP_PACKET_STATE_UNMATCHED;
650
651 match = (struct efx_ptp_match *)skb->cb;
652 /* Look for a matching timestamp in the event queue */
653 spin_lock_bh(&ptp->evt_lock);
654 list_for_each_safe(cursor, next, &ptp->evt_list) {
655 struct efx_ptp_event_rx *evt;
656
657 evt = list_entry(cursor, struct efx_ptp_event_rx, link);
658 if ((evt->seq0 == match->words[0]) &&
659 (evt->seq1 == match->words[1])) {
660 struct skb_shared_hwtstamps *timestamps;
661
662 /* Match - add in hardware timestamp */
663 timestamps = skb_hwtstamps(skb);
664 timestamps->hwtstamp = evt->hwtimestamp;
665
666 match->state = PTP_PACKET_STATE_MATCHED;
667 rc = PTP_PACKET_STATE_MATCHED;
Wei Yongjun9545f4e2012-10-07 03:41:50 +0000668 list_move(&evt->link, &ptp->evt_free_list);
Stuart Hodgson7c236c42012-09-03 11:09:36 +0100669 break;
670 }
671 }
672 spin_unlock_bh(&ptp->evt_lock);
673
674 return rc;
675}
676
677/* Process any queued receive events and corresponding packets
678 *
679 * q is returned with all the packets that are ready for delivery.
680 * true is returned if at least one of those packets requires
681 * synchronisation.
682 */
683static bool efx_ptp_process_events(struct efx_nic *efx, struct sk_buff_head *q)
684{
685 struct efx_ptp_data *ptp = efx->ptp_data;
686 bool rc = false;
687 struct sk_buff *skb;
688
689 while ((skb = skb_dequeue(&ptp->rxq))) {
690 struct efx_ptp_match *match;
691
692 match = (struct efx_ptp_match *)skb->cb;
693 if (match->state == PTP_PACKET_STATE_MATCH_UNWANTED) {
694 __skb_queue_tail(q, skb);
695 } else if (efx_ptp_match_rx(efx, skb) ==
696 PTP_PACKET_STATE_MATCHED) {
697 rc = true;
698 __skb_queue_tail(q, skb);
699 } else if (time_after(jiffies, match->expiry)) {
700 match->state = PTP_PACKET_STATE_TIMED_OUT;
701 netif_warn(efx, rx_err, efx->net_dev,
702 "PTP packet - no timestamp seen\n");
703 __skb_queue_tail(q, skb);
704 } else {
705 /* Replace unprocessed entry and stop */
706 skb_queue_head(&ptp->rxq, skb);
707 break;
708 }
709 }
710
711 return rc;
712}
713
714/* Complete processing of a received packet */
715static inline void efx_ptp_process_rx(struct efx_nic *efx, struct sk_buff *skb)
716{
717 local_bh_disable();
718 netif_receive_skb(skb);
719 local_bh_enable();
720}
721
722static int efx_ptp_start(struct efx_nic *efx)
723{
724 struct efx_ptp_data *ptp = efx->ptp_data;
725 struct efx_filter_spec rxfilter;
726 int rc;
727
728 ptp->reset_required = false;
729
730 /* Must filter on both event and general ports to ensure
731 * that there is no packet re-ordering.
732 */
733 efx_filter_init_rx(&rxfilter, EFX_FILTER_PRI_REQUIRED, 0,
734 efx_rx_queue_index(
735 efx_channel_get_rx_queue(ptp->channel)));
736 rc = efx_filter_set_ipv4_local(&rxfilter, IPPROTO_UDP,
737 htonl(PTP_ADDRESS),
738 htons(PTP_EVENT_PORT));
739 if (rc != 0)
740 return rc;
741
742 rc = efx_filter_insert_filter(efx, &rxfilter, true);
743 if (rc < 0)
744 return rc;
745 ptp->rxfilter_event = rc;
746
747 efx_filter_init_rx(&rxfilter, EFX_FILTER_PRI_REQUIRED, 0,
748 efx_rx_queue_index(
749 efx_channel_get_rx_queue(ptp->channel)));
750 rc = efx_filter_set_ipv4_local(&rxfilter, IPPROTO_UDP,
751 htonl(PTP_ADDRESS),
752 htons(PTP_GENERAL_PORT));
753 if (rc != 0)
754 goto fail;
755
756 rc = efx_filter_insert_filter(efx, &rxfilter, true);
757 if (rc < 0)
758 goto fail;
759 ptp->rxfilter_general = rc;
760
761 rc = efx_ptp_enable(efx);
762 if (rc != 0)
763 goto fail2;
764
765 ptp->evt_frag_idx = 0;
766 ptp->current_adjfreq = 0;
767 ptp->rxfilter_installed = true;
768
769 return 0;
770
771fail2:
772 efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED,
773 ptp->rxfilter_general);
774fail:
775 efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED,
776 ptp->rxfilter_event);
777
778 return rc;
779}
780
781static int efx_ptp_stop(struct efx_nic *efx)
782{
783 struct efx_ptp_data *ptp = efx->ptp_data;
784 int rc = efx_ptp_disable(efx);
785 struct list_head *cursor;
786 struct list_head *next;
787
788 if (ptp->rxfilter_installed) {
789 efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED,
790 ptp->rxfilter_general);
791 efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED,
792 ptp->rxfilter_event);
793 ptp->rxfilter_installed = false;
794 }
795
796 /* Make sure RX packets are really delivered */
797 efx_ptp_deliver_rx_queue(&efx->ptp_data->rxq);
798 skb_queue_purge(&efx->ptp_data->txq);
799
800 /* Drop any pending receive events */
801 spin_lock_bh(&efx->ptp_data->evt_lock);
802 list_for_each_safe(cursor, next, &efx->ptp_data->evt_list) {
Wei Yongjun9545f4e2012-10-07 03:41:50 +0000803 list_move(cursor, &efx->ptp_data->evt_free_list);
Stuart Hodgson7c236c42012-09-03 11:09:36 +0100804 }
805 spin_unlock_bh(&efx->ptp_data->evt_lock);
806
807 return rc;
808}
809
810static void efx_ptp_pps_worker(struct work_struct *work)
811{
812 struct efx_ptp_data *ptp =
813 container_of(work, struct efx_ptp_data, pps_work);
814 struct efx_nic *efx = ptp->channel->efx;
815 struct ptp_clock_event ptp_evt;
816
817 if (efx_ptp_synchronize(efx, PTP_SYNC_ATTEMPTS))
818 return;
819
820 ptp_evt.type = PTP_CLOCK_PPSUSR;
821 ptp_evt.pps_times = ptp->host_time_pps;
822 ptp_clock_event(ptp->phc_clock, &ptp_evt);
823}
824
825/* Process any pending transmissions and timestamp any received packets.
826 */
827static void efx_ptp_worker(struct work_struct *work)
828{
829 struct efx_ptp_data *ptp_data =
830 container_of(work, struct efx_ptp_data, work);
831 struct efx_nic *efx = ptp_data->channel->efx;
832 struct sk_buff *skb;
833 struct sk_buff_head tempq;
834
835 if (ptp_data->reset_required) {
836 efx_ptp_stop(efx);
837 efx_ptp_start(efx);
838 return;
839 }
840
841 efx_ptp_drop_time_expired_events(efx);
842
843 __skb_queue_head_init(&tempq);
844 if (efx_ptp_process_events(efx, &tempq) ||
845 !skb_queue_empty(&ptp_data->txq)) {
846
847 while ((skb = skb_dequeue(&ptp_data->txq)))
848 efx_ptp_xmit_skb(efx, skb);
849 }
850
851 while ((skb = __skb_dequeue(&tempq)))
852 efx_ptp_process_rx(efx, skb);
853}
854
855/* Initialise PTP channel and state.
856 *
857 * Setting core_index to zero causes the queue to be initialised and doesn't
858 * overlap with 'rxq0' because ptp.c doesn't use skb_record_rx_queue.
859 */
860static int efx_ptp_probe_channel(struct efx_channel *channel)
861{
862 struct efx_nic *efx = channel->efx;
863 struct efx_ptp_data *ptp;
864 int rc = 0;
865 unsigned int pos;
866
867 channel->irq_moderation = 0;
868 channel->rx_queue.core_index = 0;
869
870 ptp = kzalloc(sizeof(struct efx_ptp_data), GFP_KERNEL);
871 efx->ptp_data = ptp;
872 if (!efx->ptp_data)
873 return -ENOMEM;
874
875 rc = efx_nic_alloc_buffer(efx, &ptp->start, sizeof(int));
876 if (rc != 0)
877 goto fail1;
878
879 ptp->channel = channel;
880 skb_queue_head_init(&ptp->rxq);
881 skb_queue_head_init(&ptp->txq);
882 ptp->workwq = create_singlethread_workqueue("sfc_ptp");
883 if (!ptp->workwq) {
884 rc = -ENOMEM;
885 goto fail2;
886 }
887
888 INIT_WORK(&ptp->work, efx_ptp_worker);
889 ptp->config.flags = 0;
890 ptp->config.tx_type = HWTSTAMP_TX_OFF;
891 ptp->config.rx_filter = HWTSTAMP_FILTER_NONE;
892 INIT_LIST_HEAD(&ptp->evt_list);
893 INIT_LIST_HEAD(&ptp->evt_free_list);
894 spin_lock_init(&ptp->evt_lock);
895 for (pos = 0; pos < MAX_RECEIVE_EVENTS; pos++)
896 list_add(&ptp->rx_evts[pos].link, &ptp->evt_free_list);
897
898 ptp->phc_clock_info.owner = THIS_MODULE;
899 snprintf(ptp->phc_clock_info.name,
900 sizeof(ptp->phc_clock_info.name),
901 "%pm", efx->net_dev->perm_addr);
902 ptp->phc_clock_info.max_adj = MAX_PPB;
903 ptp->phc_clock_info.n_alarm = 0;
904 ptp->phc_clock_info.n_ext_ts = 0;
905 ptp->phc_clock_info.n_per_out = 0;
906 ptp->phc_clock_info.pps = 1;
907 ptp->phc_clock_info.adjfreq = efx_phc_adjfreq;
908 ptp->phc_clock_info.adjtime = efx_phc_adjtime;
909 ptp->phc_clock_info.gettime = efx_phc_gettime;
910 ptp->phc_clock_info.settime = efx_phc_settime;
911 ptp->phc_clock_info.enable = efx_phc_enable;
912
Richard Cochran1ef76152012-09-22 07:02:03 +0000913 ptp->phc_clock = ptp_clock_register(&ptp->phc_clock_info,
914 &efx->pci_dev->dev);
Stuart Hodgson7c236c42012-09-03 11:09:36 +0100915 if (!ptp->phc_clock)
916 goto fail3;
917
918 INIT_WORK(&ptp->pps_work, efx_ptp_pps_worker);
919 ptp->pps_workwq = create_singlethread_workqueue("sfc_pps");
920 if (!ptp->pps_workwq) {
921 rc = -ENOMEM;
922 goto fail4;
923 }
924 ptp->nic_ts_enabled = false;
925
926 return 0;
927fail4:
928 ptp_clock_unregister(efx->ptp_data->phc_clock);
929
930fail3:
931 destroy_workqueue(efx->ptp_data->workwq);
932
933fail2:
934 efx_nic_free_buffer(efx, &ptp->start);
935
936fail1:
937 kfree(efx->ptp_data);
938 efx->ptp_data = NULL;
939
940 return rc;
941}
942
943static void efx_ptp_remove_channel(struct efx_channel *channel)
944{
945 struct efx_nic *efx = channel->efx;
946
947 if (!efx->ptp_data)
948 return;
949
950 (void)efx_ptp_disable(channel->efx);
951
952 cancel_work_sync(&efx->ptp_data->work);
953 cancel_work_sync(&efx->ptp_data->pps_work);
954
955 skb_queue_purge(&efx->ptp_data->rxq);
956 skb_queue_purge(&efx->ptp_data->txq);
957
958 ptp_clock_unregister(efx->ptp_data->phc_clock);
959
960 destroy_workqueue(efx->ptp_data->workwq);
961 destroy_workqueue(efx->ptp_data->pps_workwq);
962
963 efx_nic_free_buffer(efx, &efx->ptp_data->start);
964 kfree(efx->ptp_data);
965}
966
967static void efx_ptp_get_channel_name(struct efx_channel *channel,
968 char *buf, size_t len)
969{
970 snprintf(buf, len, "%s-ptp", channel->efx->name);
971}
972
973/* Determine whether this packet should be processed by the PTP module
974 * or transmitted conventionally.
975 */
976bool efx_ptp_is_ptp_tx(struct efx_nic *efx, struct sk_buff *skb)
977{
978 return efx->ptp_data &&
979 efx->ptp_data->enabled &&
980 skb->len >= PTP_MIN_LENGTH &&
981 skb->len <= MC_CMD_PTP_IN_TRANSMIT_PACKET_MAXNUM &&
982 likely(skb->protocol == htons(ETH_P_IP)) &&
983 ip_hdr(skb)->protocol == IPPROTO_UDP &&
984 udp_hdr(skb)->dest == htons(PTP_EVENT_PORT);
985}
986
987/* Receive a PTP packet. Packets are queued until the arrival of
988 * the receive timestamp from the MC - this will probably occur after the
989 * packet arrival because of the processing in the MC.
990 */
Ben Hutchings4a74dc62013-03-05 20:13:54 +0000991static bool efx_ptp_rx(struct efx_channel *channel, struct sk_buff *skb)
Stuart Hodgson7c236c42012-09-03 11:09:36 +0100992{
993 struct efx_nic *efx = channel->efx;
994 struct efx_ptp_data *ptp = efx->ptp_data;
995 struct efx_ptp_match *match = (struct efx_ptp_match *)skb->cb;
Laurence Evansc939a312012-11-15 10:56:07 +0000996 u8 *match_data_012, *match_data_345;
Stuart Hodgson7c236c42012-09-03 11:09:36 +0100997 unsigned int version;
998
999 match->expiry = jiffies + msecs_to_jiffies(PKT_EVENT_LIFETIME_MS);
1000
1001 /* Correct version? */
1002 if (ptp->mode == MC_CMD_PTP_MODE_V1) {
Alexandre Rames97d48a12013-01-11 12:26:21 +00001003 if (!pskb_may_pull(skb, PTP_V1_MIN_LENGTH)) {
Ben Hutchings4a74dc62013-03-05 20:13:54 +00001004 return false;
Stuart Hodgson7c236c42012-09-03 11:09:36 +01001005 }
1006 version = ntohs(*(__be16 *)&skb->data[PTP_V1_VERSION_OFFSET]);
1007 if (version != PTP_VERSION_V1) {
Ben Hutchings4a74dc62013-03-05 20:13:54 +00001008 return false;
Stuart Hodgson7c236c42012-09-03 11:09:36 +01001009 }
Laurence Evansc939a312012-11-15 10:56:07 +00001010
1011 /* PTP V1 uses all six bytes of the UUID to match the packet
1012 * to the timestamp
1013 */
1014 match_data_012 = skb->data + PTP_V1_UUID_OFFSET;
1015 match_data_345 = skb->data + PTP_V1_UUID_OFFSET + 3;
Stuart Hodgson7c236c42012-09-03 11:09:36 +01001016 } else {
Alexandre Rames97d48a12013-01-11 12:26:21 +00001017 if (!pskb_may_pull(skb, PTP_V2_MIN_LENGTH)) {
Ben Hutchings4a74dc62013-03-05 20:13:54 +00001018 return false;
Stuart Hodgson7c236c42012-09-03 11:09:36 +01001019 }
1020 version = skb->data[PTP_V2_VERSION_OFFSET];
Stuart Hodgson7c236c42012-09-03 11:09:36 +01001021 if ((version & PTP_VERSION_V2_MASK) != PTP_VERSION_V2) {
Ben Hutchings4a74dc62013-03-05 20:13:54 +00001022 return false;
Stuart Hodgson7c236c42012-09-03 11:09:36 +01001023 }
Laurence Evansc939a312012-11-15 10:56:07 +00001024
1025 /* The original V2 implementation uses bytes 2-7 of
1026 * the UUID to match the packet to the timestamp. This
1027 * discards two of the bytes of the MAC address used
1028 * to create the UUID (SF bug 33070). The PTP V2
1029 * enhanced mode fixes this issue and uses bytes 0-2
1030 * and byte 5-7 of the UUID.
1031 */
1032 match_data_345 = skb->data + PTP_V2_UUID_OFFSET + 5;
1033 if (ptp->mode == MC_CMD_PTP_MODE_V2) {
1034 match_data_012 = skb->data + PTP_V2_UUID_OFFSET + 2;
1035 } else {
1036 match_data_012 = skb->data + PTP_V2_UUID_OFFSET + 0;
1037 BUG_ON(ptp->mode != MC_CMD_PTP_MODE_V2_ENHANCED);
1038 }
Stuart Hodgson7c236c42012-09-03 11:09:36 +01001039 }
1040
1041 /* Does this packet require timestamping? */
1042 if (ntohs(*(__be16 *)&skb->data[PTP_DPORT_OFFSET]) == PTP_EVENT_PORT) {
1043 struct skb_shared_hwtstamps *timestamps;
1044
1045 match->state = PTP_PACKET_STATE_UNMATCHED;
1046
1047 /* Clear all timestamps held: filled in later */
1048 timestamps = skb_hwtstamps(skb);
1049 memset(timestamps, 0, sizeof(*timestamps));
1050
Laurence Evansc939a312012-11-15 10:56:07 +00001051 /* We expect the sequence number to be in the same position in
1052 * the packet for PTP V1 and V2
1053 */
1054 BUILD_BUG_ON(PTP_V1_SEQUENCE_OFFSET != PTP_V2_SEQUENCE_OFFSET);
1055 BUILD_BUG_ON(PTP_V1_SEQUENCE_LENGTH != PTP_V2_SEQUENCE_LENGTH);
1056
Stuart Hodgson7c236c42012-09-03 11:09:36 +01001057 /* Extract UUID/Sequence information */
Laurence Evansc939a312012-11-15 10:56:07 +00001058 match->words[0] = (match_data_012[0] |
1059 (match_data_012[1] << 8) |
1060 (match_data_012[2] << 16) |
1061 (match_data_345[0] << 24));
1062 match->words[1] = (match_data_345[1] |
1063 (match_data_345[2] << 8) |
Stuart Hodgson7c236c42012-09-03 11:09:36 +01001064 (skb->data[PTP_V1_SEQUENCE_OFFSET +
1065 PTP_V1_SEQUENCE_LENGTH - 1] <<
1066 16));
1067 } else {
1068 match->state = PTP_PACKET_STATE_MATCH_UNWANTED;
1069 }
1070
1071 skb_queue_tail(&ptp->rxq, skb);
1072 queue_work(ptp->workwq, &ptp->work);
Ben Hutchings4a74dc62013-03-05 20:13:54 +00001073
1074 return true;
Stuart Hodgson7c236c42012-09-03 11:09:36 +01001075}
1076
1077/* Transmit a PTP packet. This has to be transmitted by the MC
1078 * itself, through an MCDI call. MCDI calls aren't permitted
1079 * in the transmit path so defer the actual transmission to a suitable worker.
1080 */
1081int efx_ptp_tx(struct efx_nic *efx, struct sk_buff *skb)
1082{
1083 struct efx_ptp_data *ptp = efx->ptp_data;
1084
1085 skb_queue_tail(&ptp->txq, skb);
1086
1087 if ((udp_hdr(skb)->dest == htons(PTP_EVENT_PORT)) &&
1088 (skb->len <= MC_CMD_PTP_IN_TRANSMIT_PACKET_MAXNUM))
1089 efx_xmit_hwtstamp_pending(skb);
1090 queue_work(ptp->workwq, &ptp->work);
1091
1092 return NETDEV_TX_OK;
1093}
1094
1095static int efx_ptp_change_mode(struct efx_nic *efx, bool enable_wanted,
1096 unsigned int new_mode)
1097{
1098 if ((enable_wanted != efx->ptp_data->enabled) ||
1099 (enable_wanted && (efx->ptp_data->mode != new_mode))) {
1100 int rc;
1101
1102 if (enable_wanted) {
1103 /* Change of mode requires disable */
1104 if (efx->ptp_data->enabled &&
1105 (efx->ptp_data->mode != new_mode)) {
1106 efx->ptp_data->enabled = false;
1107 rc = efx_ptp_stop(efx);
1108 if (rc != 0)
1109 return rc;
1110 }
1111
1112 /* Set new operating mode and establish
1113 * baseline synchronisation, which must
1114 * succeed.
1115 */
1116 efx->ptp_data->mode = new_mode;
1117 rc = efx_ptp_start(efx);
1118 if (rc == 0) {
1119 rc = efx_ptp_synchronize(efx,
1120 PTP_SYNC_ATTEMPTS * 2);
1121 if (rc != 0)
1122 efx_ptp_stop(efx);
1123 }
1124 } else {
1125 rc = efx_ptp_stop(efx);
1126 }
1127
1128 if (rc != 0)
1129 return rc;
1130
1131 efx->ptp_data->enabled = enable_wanted;
1132 }
1133
1134 return 0;
1135}
1136
1137static int efx_ptp_ts_init(struct efx_nic *efx, struct hwtstamp_config *init)
1138{
1139 bool enable_wanted = false;
1140 unsigned int new_mode;
1141 int rc;
1142
1143 if (init->flags)
1144 return -EINVAL;
1145
1146 if ((init->tx_type != HWTSTAMP_TX_OFF) &&
1147 (init->tx_type != HWTSTAMP_TX_ON))
1148 return -ERANGE;
1149
1150 new_mode = efx->ptp_data->mode;
1151 /* Determine whether any PTP HW operations are required */
1152 switch (init->rx_filter) {
1153 case HWTSTAMP_FILTER_NONE:
1154 break;
1155 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
1156 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
1157 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
1158 init->rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
1159 new_mode = MC_CMD_PTP_MODE_V1;
1160 enable_wanted = true;
1161 break;
1162 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
1163 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
1164 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
1165 /* Although these three are accepted only IPV4 packets will be
1166 * timestamped
1167 */
1168 init->rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
Laurence Evansc939a312012-11-15 10:56:07 +00001169 new_mode = MC_CMD_PTP_MODE_V2_ENHANCED;
Stuart Hodgson7c236c42012-09-03 11:09:36 +01001170 enable_wanted = true;
1171 break;
1172 case HWTSTAMP_FILTER_PTP_V2_EVENT:
1173 case HWTSTAMP_FILTER_PTP_V2_SYNC:
1174 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
1175 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
1176 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
1177 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
1178 /* Non-IP + IPv6 timestamping not supported */
1179 return -ERANGE;
1180 break;
1181 default:
1182 return -ERANGE;
1183 }
1184
1185 if (init->tx_type != HWTSTAMP_TX_OFF)
1186 enable_wanted = true;
1187
Laurence Evansc939a312012-11-15 10:56:07 +00001188 /* Old versions of the firmware do not support the improved
1189 * UUID filtering option (SF bug 33070). If the firmware does
1190 * not accept the enhanced mode, fall back to the standard PTP
1191 * v2 UUID filtering.
1192 */
Stuart Hodgson7c236c42012-09-03 11:09:36 +01001193 rc = efx_ptp_change_mode(efx, enable_wanted, new_mode);
Laurence Evansc939a312012-11-15 10:56:07 +00001194 if ((rc != 0) && (new_mode == MC_CMD_PTP_MODE_V2_ENHANCED))
1195 rc = efx_ptp_change_mode(efx, enable_wanted, MC_CMD_PTP_MODE_V2);
Stuart Hodgson7c236c42012-09-03 11:09:36 +01001196 if (rc != 0)
1197 return rc;
1198
1199 efx->ptp_data->config = *init;
1200
1201 return 0;
1202}
1203
1204int
1205efx_ptp_get_ts_info(struct net_device *net_dev, struct ethtool_ts_info *ts_info)
1206{
1207 struct efx_nic *efx = netdev_priv(net_dev);
1208 struct efx_ptp_data *ptp = efx->ptp_data;
1209
1210 if (!ptp)
1211 return -EOPNOTSUPP;
1212
1213 ts_info->so_timestamping = (SOF_TIMESTAMPING_TX_HARDWARE |
1214 SOF_TIMESTAMPING_RX_HARDWARE |
1215 SOF_TIMESTAMPING_RAW_HARDWARE);
1216 ts_info->phc_index = ptp_clock_index(ptp->phc_clock);
1217 ts_info->tx_types = 1 << HWTSTAMP_TX_OFF | 1 << HWTSTAMP_TX_ON;
1218 ts_info->rx_filters = (1 << HWTSTAMP_FILTER_NONE |
1219 1 << HWTSTAMP_FILTER_PTP_V1_L4_EVENT |
1220 1 << HWTSTAMP_FILTER_PTP_V1_L4_SYNC |
1221 1 << HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ |
1222 1 << HWTSTAMP_FILTER_PTP_V2_L4_EVENT |
1223 1 << HWTSTAMP_FILTER_PTP_V2_L4_SYNC |
1224 1 << HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ);
1225 return 0;
1226}
1227
1228int efx_ptp_ioctl(struct efx_nic *efx, struct ifreq *ifr, int cmd)
1229{
1230 struct hwtstamp_config config;
1231 int rc;
1232
1233 /* Not a PTP enabled port */
1234 if (!efx->ptp_data)
1235 return -EOPNOTSUPP;
1236
1237 if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
1238 return -EFAULT;
1239
1240 rc = efx_ptp_ts_init(efx, &config);
1241 if (rc != 0)
1242 return rc;
1243
1244 return copy_to_user(ifr->ifr_data, &config, sizeof(config))
1245 ? -EFAULT : 0;
1246}
1247
1248static void ptp_event_failure(struct efx_nic *efx, int expected_frag_len)
1249{
1250 struct efx_ptp_data *ptp = efx->ptp_data;
1251
1252 netif_err(efx, hw, efx->net_dev,
1253 "PTP unexpected event length: got %d expected %d\n",
1254 ptp->evt_frag_idx, expected_frag_len);
1255 ptp->reset_required = true;
1256 queue_work(ptp->workwq, &ptp->work);
1257}
1258
1259/* Process a completed receive event. Put it on the event queue and
1260 * start worker thread. This is required because event and their
1261 * correspoding packets may come in either order.
1262 */
1263static void ptp_event_rx(struct efx_nic *efx, struct efx_ptp_data *ptp)
1264{
1265 struct efx_ptp_event_rx *evt = NULL;
1266
1267 if (ptp->evt_frag_idx != 3) {
1268 ptp_event_failure(efx, 3);
1269 return;
1270 }
1271
1272 spin_lock_bh(&ptp->evt_lock);
1273 if (!list_empty(&ptp->evt_free_list)) {
1274 evt = list_first_entry(&ptp->evt_free_list,
1275 struct efx_ptp_event_rx, link);
1276 list_del(&evt->link);
1277
1278 evt->seq0 = EFX_QWORD_FIELD(ptp->evt_frags[2], MCDI_EVENT_DATA);
1279 evt->seq1 = (EFX_QWORD_FIELD(ptp->evt_frags[2],
1280 MCDI_EVENT_SRC) |
1281 (EFX_QWORD_FIELD(ptp->evt_frags[1],
1282 MCDI_EVENT_SRC) << 8) |
1283 (EFX_QWORD_FIELD(ptp->evt_frags[0],
1284 MCDI_EVENT_SRC) << 16));
1285 evt->hwtimestamp = ktime_set(
1286 EFX_QWORD_FIELD(ptp->evt_frags[0], MCDI_EVENT_DATA),
1287 EFX_QWORD_FIELD(ptp->evt_frags[1], MCDI_EVENT_DATA));
1288 evt->expiry = jiffies + msecs_to_jiffies(PKT_EVENT_LIFETIME_MS);
1289 list_add_tail(&evt->link, &ptp->evt_list);
1290
1291 queue_work(ptp->workwq, &ptp->work);
1292 } else {
1293 netif_err(efx, rx_err, efx->net_dev, "No free PTP event");
1294 }
1295 spin_unlock_bh(&ptp->evt_lock);
1296}
1297
1298static void ptp_event_fault(struct efx_nic *efx, struct efx_ptp_data *ptp)
1299{
1300 int code = EFX_QWORD_FIELD(ptp->evt_frags[0], MCDI_EVENT_DATA);
1301 if (ptp->evt_frag_idx != 1) {
1302 ptp_event_failure(efx, 1);
1303 return;
1304 }
1305
1306 netif_err(efx, hw, efx->net_dev, "PTP error %d\n", code);
1307}
1308
1309static void ptp_event_pps(struct efx_nic *efx, struct efx_ptp_data *ptp)
1310{
1311 if (ptp->nic_ts_enabled)
1312 queue_work(ptp->pps_workwq, &ptp->pps_work);
1313}
1314
1315void efx_ptp_event(struct efx_nic *efx, efx_qword_t *ev)
1316{
1317 struct efx_ptp_data *ptp = efx->ptp_data;
1318 int code = EFX_QWORD_FIELD(*ev, MCDI_EVENT_CODE);
1319
1320 if (!ptp->enabled)
1321 return;
1322
1323 if (ptp->evt_frag_idx == 0) {
1324 ptp->evt_code = code;
1325 } else if (ptp->evt_code != code) {
1326 netif_err(efx, hw, efx->net_dev,
1327 "PTP out of sequence event %d\n", code);
1328 ptp->evt_frag_idx = 0;
1329 }
1330
1331 ptp->evt_frags[ptp->evt_frag_idx++] = *ev;
1332 if (!MCDI_EVENT_FIELD(*ev, CONT)) {
1333 /* Process resulting event */
1334 switch (code) {
1335 case MCDI_EVENT_CODE_PTP_RX:
1336 ptp_event_rx(efx, ptp);
1337 break;
1338 case MCDI_EVENT_CODE_PTP_FAULT:
1339 ptp_event_fault(efx, ptp);
1340 break;
1341 case MCDI_EVENT_CODE_PTP_PPS:
1342 ptp_event_pps(efx, ptp);
1343 break;
1344 default:
1345 netif_err(efx, hw, efx->net_dev,
1346 "PTP unknown event %d\n", code);
1347 break;
1348 }
1349 ptp->evt_frag_idx = 0;
1350 } else if (MAX_EVENT_FRAGS == ptp->evt_frag_idx) {
1351 netif_err(efx, hw, efx->net_dev,
1352 "PTP too many event fragments\n");
1353 ptp->evt_frag_idx = 0;
1354 }
1355}
1356
1357static int efx_phc_adjfreq(struct ptp_clock_info *ptp, s32 delta)
1358{
1359 struct efx_ptp_data *ptp_data = container_of(ptp,
1360 struct efx_ptp_data,
1361 phc_clock_info);
1362 struct efx_nic *efx = ptp_data->channel->efx;
1363 u8 inadj[MC_CMD_PTP_IN_ADJUST_LEN];
1364 s64 adjustment_ns;
1365 int rc;
1366
1367 if (delta > MAX_PPB)
1368 delta = MAX_PPB;
1369 else if (delta < -MAX_PPB)
1370 delta = -MAX_PPB;
1371
1372 /* Convert ppb to fixed point ns. */
1373 adjustment_ns = (((s64)delta * PPB_SCALE_WORD) >>
1374 (PPB_EXTRA_BITS + MAX_PPB_BITS));
1375
1376 MCDI_SET_DWORD(inadj, PTP_IN_OP, MC_CMD_PTP_OP_ADJUST);
1377 MCDI_SET_DWORD(inadj, PTP_IN_ADJUST_FREQ_LO, (u32)adjustment_ns);
1378 MCDI_SET_DWORD(inadj, PTP_IN_ADJUST_FREQ_HI,
1379 (u32)(adjustment_ns >> 32));
1380 MCDI_SET_DWORD(inadj, PTP_IN_ADJUST_SECONDS, 0);
1381 MCDI_SET_DWORD(inadj, PTP_IN_ADJUST_NANOSECONDS, 0);
1382 rc = efx_mcdi_rpc(efx, MC_CMD_PTP, inadj, sizeof(inadj),
1383 NULL, 0, NULL);
1384 if (rc != 0)
1385 return rc;
1386
1387 ptp_data->current_adjfreq = delta;
1388 return 0;
1389}
1390
1391static int efx_phc_adjtime(struct ptp_clock_info *ptp, s64 delta)
1392{
1393 struct efx_ptp_data *ptp_data = container_of(ptp,
1394 struct efx_ptp_data,
1395 phc_clock_info);
1396 struct efx_nic *efx = ptp_data->channel->efx;
1397 struct timespec delta_ts = ns_to_timespec(delta);
1398 u8 inbuf[MC_CMD_PTP_IN_ADJUST_LEN];
1399
1400 MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_ADJUST);
1401 MCDI_SET_DWORD(inbuf, PTP_IN_ADJUST_FREQ_LO, 0);
1402 MCDI_SET_DWORD(inbuf, PTP_IN_ADJUST_FREQ_HI, 0);
1403 MCDI_SET_DWORD(inbuf, PTP_IN_ADJUST_SECONDS, (u32)delta_ts.tv_sec);
1404 MCDI_SET_DWORD(inbuf, PTP_IN_ADJUST_NANOSECONDS, (u32)delta_ts.tv_nsec);
1405 return efx_mcdi_rpc(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
1406 NULL, 0, NULL);
1407}
1408
1409static int efx_phc_gettime(struct ptp_clock_info *ptp, struct timespec *ts)
1410{
1411 struct efx_ptp_data *ptp_data = container_of(ptp,
1412 struct efx_ptp_data,
1413 phc_clock_info);
1414 struct efx_nic *efx = ptp_data->channel->efx;
1415 u8 inbuf[MC_CMD_PTP_IN_READ_NIC_TIME_LEN];
1416 u8 outbuf[MC_CMD_PTP_OUT_READ_NIC_TIME_LEN];
1417 int rc;
1418
1419 MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_READ_NIC_TIME);
1420
1421 rc = efx_mcdi_rpc(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
1422 outbuf, sizeof(outbuf), NULL);
1423 if (rc != 0)
1424 return rc;
1425
1426 ts->tv_sec = MCDI_DWORD(outbuf, PTP_OUT_READ_NIC_TIME_SECONDS);
1427 ts->tv_nsec = MCDI_DWORD(outbuf, PTP_OUT_READ_NIC_TIME_NANOSECONDS);
1428 return 0;
1429}
1430
1431static int efx_phc_settime(struct ptp_clock_info *ptp,
1432 const struct timespec *e_ts)
1433{
1434 /* Get the current NIC time, efx_phc_gettime.
1435 * Subtract from the desired time to get the offset
1436 * call efx_phc_adjtime with the offset
1437 */
1438 int rc;
1439 struct timespec time_now;
1440 struct timespec delta;
1441
1442 rc = efx_phc_gettime(ptp, &time_now);
1443 if (rc != 0)
1444 return rc;
1445
1446 delta = timespec_sub(*e_ts, time_now);
1447
Julia Lawall56567c62013-01-21 03:02:48 +00001448 rc = efx_phc_adjtime(ptp, timespec_to_ns(&delta));
Stuart Hodgson7c236c42012-09-03 11:09:36 +01001449 if (rc != 0)
1450 return rc;
1451
1452 return 0;
1453}
1454
1455static int efx_phc_enable(struct ptp_clock_info *ptp,
1456 struct ptp_clock_request *request,
1457 int enable)
1458{
1459 struct efx_ptp_data *ptp_data = container_of(ptp,
1460 struct efx_ptp_data,
1461 phc_clock_info);
1462 if (request->type != PTP_CLK_REQ_PPS)
1463 return -EOPNOTSUPP;
1464
1465 ptp_data->nic_ts_enabled = !!enable;
1466 return 0;
1467}
1468
1469static const struct efx_channel_type efx_ptp_channel_type = {
1470 .handle_no_channel = efx_ptp_handle_no_channel,
1471 .pre_probe = efx_ptp_probe_channel,
1472 .post_remove = efx_ptp_remove_channel,
1473 .get_name = efx_ptp_get_channel_name,
1474 /* no copy operation; there is no need to reallocate this channel */
1475 .receive_skb = efx_ptp_rx,
1476 .keep_eventq = false,
1477};
1478
1479void efx_ptp_probe(struct efx_nic *efx)
1480{
1481 /* Check whether PTP is implemented on this NIC. The DISABLE
1482 * operation will succeed if and only if it is implemented.
1483 */
1484 if (efx_ptp_disable(efx) == 0)
1485 efx->extra_channel_type[EFX_EXTRA_CHANNEL_PTP] =
1486 &efx_ptp_channel_type;
1487}