blob: d0652153f576c8794e6006305bbc0486e889b387 [file] [log] [blame]
Matt Flemingbd353862009-08-14 01:58:43 +09001/*
2 * Copyright (C) 2009 Matt Fleming <matt@console-pimps.org>
3 *
4 * This file is subject to the terms and conditions of the GNU General Public
5 * License. See the file "COPYING" in the main directory of this archive
6 * for more details.
7 *
8 * This is an implementation of a DWARF unwinder. Its main purpose is
9 * for generating stacktrace information. Based on the DWARF 3
10 * specification from http://www.dwarfstd.org.
11 *
12 * TODO:
13 * - DWARF64 doesn't work.
14 */
15
16/* #define DEBUG */
17#include <linux/kernel.h>
18#include <linux/io.h>
19#include <linux/list.h>
20#include <linux/mm.h>
21#include <asm/dwarf.h>
22#include <asm/unwinder.h>
23#include <asm/sections.h>
Paul Mundt34974472009-08-14 02:10:59 +090024#include <asm/unaligned.h>
Matt Flemingbd353862009-08-14 01:58:43 +090025#include <asm/dwarf.h>
26#include <asm/stacktrace.h>
27
28static LIST_HEAD(dwarf_cie_list);
Paul Mundt97f361e2009-08-17 05:07:38 +090029static DEFINE_SPINLOCK(dwarf_cie_lock);
Matt Flemingbd353862009-08-14 01:58:43 +090030
31static LIST_HEAD(dwarf_fde_list);
Paul Mundt97f361e2009-08-17 05:07:38 +090032static DEFINE_SPINLOCK(dwarf_fde_lock);
Matt Flemingbd353862009-08-14 01:58:43 +090033
34static struct dwarf_cie *cached_cie;
35
36/*
37 * Figure out whether we need to allocate some dwarf registers. If dwarf
38 * registers have already been allocated then we may need to realloc
39 * them. "reg" is a register number that we need to be able to access
40 * after this call.
41 *
42 * Register numbers start at zero, therefore we need to allocate space
43 * for "reg" + 1 registers.
44 */
45static void dwarf_frame_alloc_regs(struct dwarf_frame *frame,
46 unsigned int reg)
47{
48 struct dwarf_reg *regs;
49 unsigned int num_regs = reg + 1;
50 size_t new_size;
51 size_t old_size;
52
53 new_size = num_regs * sizeof(*regs);
54 old_size = frame->num_regs * sizeof(*regs);
55
56 /* Fast path: don't allocate any regs if we've already got enough. */
57 if (frame->num_regs >= num_regs)
58 return;
59
Paul Mundt0fc11e32009-08-14 23:58:37 +090060 regs = kzalloc(new_size, GFP_ATOMIC);
Matt Flemingbd353862009-08-14 01:58:43 +090061 if (!regs) {
62 printk(KERN_WARNING "Unable to allocate DWARF registers\n");
63 /*
64 * Let's just bomb hard here, we have no way to
65 * gracefully recover.
66 */
67 BUG();
68 }
69
70 if (frame->regs) {
71 memcpy(regs, frame->regs, old_size);
72 kfree(frame->regs);
73 }
74
75 frame->regs = regs;
76 frame->num_regs = num_regs;
77}
78
79/**
80 * dwarf_read_addr - read dwarf data
81 * @src: source address of data
82 * @dst: destination address to store the data to
83 *
84 * Read 'n' bytes from @src, where 'n' is the size of an address on
85 * the native machine. We return the number of bytes read, which
86 * should always be 'n'. We also have to be careful when reading
87 * from @src and writing to @dst, because they can be arbitrarily
88 * aligned. Return 'n' - the number of bytes read.
89 */
Paul Mundt34974472009-08-14 02:10:59 +090090static inline int dwarf_read_addr(unsigned long *src, unsigned long *dst)
Matt Flemingbd353862009-08-14 01:58:43 +090091{
Paul Mundtbf43a162009-08-14 03:06:13 +090092 u32 val = get_unaligned(src);
93 put_unaligned(val, dst);
Matt Flemingbd353862009-08-14 01:58:43 +090094 return sizeof(unsigned long *);
95}
96
97/**
98 * dwarf_read_uleb128 - read unsigned LEB128 data
99 * @addr: the address where the ULEB128 data is stored
100 * @ret: address to store the result
101 *
102 * Decode an unsigned LEB128 encoded datum. The algorithm is taken
103 * from Appendix C of the DWARF 3 spec. For information on the
104 * encodings refer to section "7.6 - Variable Length Data". Return
105 * the number of bytes read.
106 */
107static inline unsigned long dwarf_read_uleb128(char *addr, unsigned int *ret)
108{
109 unsigned int result;
110 unsigned char byte;
111 int shift, count;
112
113 result = 0;
114 shift = 0;
115 count = 0;
116
117 while (1) {
118 byte = __raw_readb(addr);
119 addr++;
120 count++;
121
122 result |= (byte & 0x7f) << shift;
123 shift += 7;
124
125 if (!(byte & 0x80))
126 break;
127 }
128
129 *ret = result;
130
131 return count;
132}
133
134/**
135 * dwarf_read_leb128 - read signed LEB128 data
136 * @addr: the address of the LEB128 encoded data
137 * @ret: address to store the result
138 *
139 * Decode signed LEB128 data. The algorithm is taken from Appendix
140 * C of the DWARF 3 spec. Return the number of bytes read.
141 */
142static inline unsigned long dwarf_read_leb128(char *addr, int *ret)
143{
144 unsigned char byte;
145 int result, shift;
146 int num_bits;
147 int count;
148
149 result = 0;
150 shift = 0;
151 count = 0;
152
153 while (1) {
154 byte = __raw_readb(addr);
155 addr++;
156 result |= (byte & 0x7f) << shift;
157 shift += 7;
158 count++;
159
160 if (!(byte & 0x80))
161 break;
162 }
163
164 /* The number of bits in a signed integer. */
165 num_bits = 8 * sizeof(result);
166
167 if ((shift < num_bits) && (byte & 0x40))
168 result |= (-1 << shift);
169
170 *ret = result;
171
172 return count;
173}
174
175/**
176 * dwarf_read_encoded_value - return the decoded value at @addr
177 * @addr: the address of the encoded value
178 * @val: where to write the decoded value
179 * @encoding: the encoding with which we can decode @addr
180 *
181 * GCC emits encoded address in the .eh_frame FDE entries. Decode
182 * the value at @addr using @encoding. The decoded value is written
183 * to @val and the number of bytes read is returned.
184 */
185static int dwarf_read_encoded_value(char *addr, unsigned long *val,
186 char encoding)
187{
188 unsigned long decoded_addr = 0;
189 int count = 0;
190
191 switch (encoding & 0x70) {
192 case DW_EH_PE_absptr:
193 break;
194 case DW_EH_PE_pcrel:
195 decoded_addr = (unsigned long)addr;
196 break;
197 default:
198 pr_debug("encoding=0x%x\n", (encoding & 0x70));
199 BUG();
200 }
201
202 if ((encoding & 0x07) == 0x00)
203 encoding |= DW_EH_PE_udata4;
204
205 switch (encoding & 0x0f) {
206 case DW_EH_PE_sdata4:
207 case DW_EH_PE_udata4:
208 count += 4;
Paul Mundt34974472009-08-14 02:10:59 +0900209 decoded_addr += get_unaligned((u32 *)addr);
Matt Flemingbd353862009-08-14 01:58:43 +0900210 __raw_writel(decoded_addr, val);
211 break;
212 default:
213 pr_debug("encoding=0x%x\n", encoding);
214 BUG();
215 }
216
217 return count;
218}
219
220/**
221 * dwarf_entry_len - return the length of an FDE or CIE
222 * @addr: the address of the entry
223 * @len: the length of the entry
224 *
225 * Read the initial_length field of the entry and store the size of
226 * the entry in @len. We return the number of bytes read. Return a
227 * count of 0 on error.
228 */
229static inline int dwarf_entry_len(char *addr, unsigned long *len)
230{
231 u32 initial_len;
232 int count;
233
Paul Mundt34974472009-08-14 02:10:59 +0900234 initial_len = get_unaligned((u32 *)addr);
Matt Flemingbd353862009-08-14 01:58:43 +0900235 count = 4;
236
237 /*
238 * An initial length field value in the range DW_LEN_EXT_LO -
239 * DW_LEN_EXT_HI indicates an extension, and should not be
240 * interpreted as a length. The only extension that we currently
241 * understand is the use of DWARF64 addresses.
242 */
243 if (initial_len >= DW_EXT_LO && initial_len <= DW_EXT_HI) {
244 /*
245 * The 64-bit length field immediately follows the
246 * compulsory 32-bit length field.
247 */
248 if (initial_len == DW_EXT_DWARF64) {
Paul Mundt34974472009-08-14 02:10:59 +0900249 *len = get_unaligned((u64 *)addr + 4);
Matt Flemingbd353862009-08-14 01:58:43 +0900250 count = 12;
251 } else {
252 printk(KERN_WARNING "Unknown DWARF extension\n");
253 count = 0;
254 }
255 } else
256 *len = initial_len;
257
258 return count;
259}
260
261/**
262 * dwarf_lookup_cie - locate the cie
263 * @cie_ptr: pointer to help with lookup
264 */
265static struct dwarf_cie *dwarf_lookup_cie(unsigned long cie_ptr)
266{
Paul Mundt97f361e2009-08-17 05:07:38 +0900267 struct dwarf_cie *cie;
Matt Flemingbd353862009-08-14 01:58:43 +0900268 unsigned long flags;
269
270 spin_lock_irqsave(&dwarf_cie_lock, flags);
271
272 /*
273 * We've cached the last CIE we looked up because chances are
274 * that the FDE wants this CIE.
275 */
276 if (cached_cie && cached_cie->cie_pointer == cie_ptr) {
277 cie = cached_cie;
278 goto out;
279 }
280
Paul Mundt97f361e2009-08-17 05:07:38 +0900281 list_for_each_entry(cie, &dwarf_cie_list, link) {
Matt Flemingbd353862009-08-14 01:58:43 +0900282 if (cie->cie_pointer == cie_ptr) {
283 cached_cie = cie;
284 break;
285 }
286 }
287
288 /* Couldn't find the entry in the list. */
289 if (&cie->link == &dwarf_cie_list)
290 cie = NULL;
291out:
292 spin_unlock_irqrestore(&dwarf_cie_lock, flags);
293 return cie;
294}
295
296/**
297 * dwarf_lookup_fde - locate the FDE that covers pc
298 * @pc: the program counter
299 */
300struct dwarf_fde *dwarf_lookup_fde(unsigned long pc)
301{
Paul Mundt97f361e2009-08-17 05:07:38 +0900302 struct dwarf_fde *fde;
Matt Flemingbd353862009-08-14 01:58:43 +0900303 unsigned long flags;
Matt Flemingbd353862009-08-14 01:58:43 +0900304
305 spin_lock_irqsave(&dwarf_fde_lock, flags);
Paul Mundt97f361e2009-08-17 05:07:38 +0900306
307 list_for_each_entry(fde, &dwarf_fde_list, link) {
Matt Flemingbd353862009-08-14 01:58:43 +0900308 unsigned long start, end;
309
310 start = fde->initial_location;
311 end = fde->initial_location + fde->address_range;
312
313 if (pc >= start && pc < end)
314 break;
315 }
316
317 /* Couldn't find the entry in the list. */
318 if (&fde->link == &dwarf_fde_list)
319 fde = NULL;
320
321 spin_unlock_irqrestore(&dwarf_fde_lock, flags);
322
323 return fde;
324}
325
326/**
327 * dwarf_cfa_execute_insns - execute instructions to calculate a CFA
328 * @insn_start: address of the first instruction
329 * @insn_end: address of the last instruction
330 * @cie: the CIE for this function
331 * @fde: the FDE for this function
332 * @frame: the instructions calculate the CFA for this frame
333 * @pc: the program counter of the address we're interested in
334 *
335 * Execute the Call Frame instruction sequence starting at
336 * @insn_start and ending at @insn_end. The instructions describe
337 * how to calculate the Canonical Frame Address of a stackframe.
338 * Store the results in @frame.
339 */
340static int dwarf_cfa_execute_insns(unsigned char *insn_start,
341 unsigned char *insn_end,
342 struct dwarf_cie *cie,
343 struct dwarf_fde *fde,
344 struct dwarf_frame *frame,
Matt Flemingb9558732009-08-15 23:10:57 +0100345 unsigned long pc)
Matt Flemingbd353862009-08-14 01:58:43 +0900346{
347 unsigned char insn;
348 unsigned char *current_insn;
349 unsigned int count, delta, reg, expr_len, offset;
350
351 current_insn = insn_start;
352
Matt Flemingb9558732009-08-15 23:10:57 +0100353 while (current_insn < insn_end && frame->pc <= pc) {
Matt Flemingbd353862009-08-14 01:58:43 +0900354 insn = __raw_readb(current_insn++);
355
356 /*
357 * Firstly, handle the opcodes that embed their operands
358 * in the instructions.
359 */
360 switch (DW_CFA_opcode(insn)) {
361 case DW_CFA_advance_loc:
362 delta = DW_CFA_operand(insn);
363 delta *= cie->code_alignment_factor;
364 frame->pc += delta;
365 continue;
366 /* NOTREACHED */
367 case DW_CFA_offset:
368 reg = DW_CFA_operand(insn);
369 count = dwarf_read_uleb128(current_insn, &offset);
370 current_insn += count;
371 offset *= cie->data_alignment_factor;
372 dwarf_frame_alloc_regs(frame, reg);
373 frame->regs[reg].addr = offset;
374 frame->regs[reg].flags |= DWARF_REG_OFFSET;
375 continue;
376 /* NOTREACHED */
377 case DW_CFA_restore:
378 reg = DW_CFA_operand(insn);
379 continue;
380 /* NOTREACHED */
381 }
382
383 /*
384 * Secondly, handle the opcodes that don't embed their
385 * operands in the instruction.
386 */
387 switch (insn) {
388 case DW_CFA_nop:
389 continue;
390 case DW_CFA_advance_loc1:
391 delta = *current_insn++;
392 frame->pc += delta * cie->code_alignment_factor;
393 break;
394 case DW_CFA_advance_loc2:
Paul Mundt34974472009-08-14 02:10:59 +0900395 delta = get_unaligned((u16 *)current_insn);
Matt Flemingbd353862009-08-14 01:58:43 +0900396 current_insn += 2;
397 frame->pc += delta * cie->code_alignment_factor;
398 break;
399 case DW_CFA_advance_loc4:
Paul Mundt34974472009-08-14 02:10:59 +0900400 delta = get_unaligned((u32 *)current_insn);
Matt Flemingbd353862009-08-14 01:58:43 +0900401 current_insn += 4;
402 frame->pc += delta * cie->code_alignment_factor;
403 break;
404 case DW_CFA_offset_extended:
405 count = dwarf_read_uleb128(current_insn, &reg);
406 current_insn += count;
407 count = dwarf_read_uleb128(current_insn, &offset);
408 current_insn += count;
409 offset *= cie->data_alignment_factor;
410 break;
411 case DW_CFA_restore_extended:
412 count = dwarf_read_uleb128(current_insn, &reg);
413 current_insn += count;
414 break;
415 case DW_CFA_undefined:
416 count = dwarf_read_uleb128(current_insn, &reg);
417 current_insn += count;
418 break;
419 case DW_CFA_def_cfa:
420 count = dwarf_read_uleb128(current_insn,
421 &frame->cfa_register);
422 current_insn += count;
423 count = dwarf_read_uleb128(current_insn,
424 &frame->cfa_offset);
425 current_insn += count;
426
427 frame->flags |= DWARF_FRAME_CFA_REG_OFFSET;
428 break;
429 case DW_CFA_def_cfa_register:
430 count = dwarf_read_uleb128(current_insn,
431 &frame->cfa_register);
432 current_insn += count;
433 frame->flags |= DWARF_FRAME_CFA_REG_OFFSET;
434 break;
435 case DW_CFA_def_cfa_offset:
436 count = dwarf_read_uleb128(current_insn, &offset);
437 current_insn += count;
438 frame->cfa_offset = offset;
439 break;
440 case DW_CFA_def_cfa_expression:
441 count = dwarf_read_uleb128(current_insn, &expr_len);
442 current_insn += count;
443
444 frame->cfa_expr = current_insn;
445 frame->cfa_expr_len = expr_len;
446 current_insn += expr_len;
447
448 frame->flags |= DWARF_FRAME_CFA_REG_EXP;
449 break;
450 case DW_CFA_offset_extended_sf:
451 count = dwarf_read_uleb128(current_insn, &reg);
452 current_insn += count;
453 count = dwarf_read_leb128(current_insn, &offset);
454 current_insn += count;
455 offset *= cie->data_alignment_factor;
456 dwarf_frame_alloc_regs(frame, reg);
457 frame->regs[reg].flags |= DWARF_REG_OFFSET;
458 frame->regs[reg].addr = offset;
459 break;
460 case DW_CFA_val_offset:
461 count = dwarf_read_uleb128(current_insn, &reg);
462 current_insn += count;
463 count = dwarf_read_leb128(current_insn, &offset);
464 offset *= cie->data_alignment_factor;
465 frame->regs[reg].flags |= DWARF_REG_OFFSET;
466 frame->regs[reg].addr = offset;
467 break;
Matt Flemingcd7246f2009-08-16 01:44:33 +0100468 case DW_CFA_GNU_args_size:
469 count = dwarf_read_uleb128(current_insn, &offset);
470 current_insn += count;
471 break;
472 case DW_CFA_GNU_negative_offset_extended:
473 count = dwarf_read_uleb128(current_insn, &reg);
474 current_insn += count;
475 count = dwarf_read_uleb128(current_insn, &offset);
476 offset *= cie->data_alignment_factor;
477 dwarf_frame_alloc_regs(frame, reg);
478 frame->regs[reg].flags |= DWARF_REG_OFFSET;
479 frame->regs[reg].addr = -offset;
480 break;
Matt Flemingbd353862009-08-14 01:58:43 +0900481 default:
482 pr_debug("unhandled DWARF instruction 0x%x\n", insn);
483 break;
484 }
485 }
486
487 return 0;
488}
489
490/**
491 * dwarf_unwind_stack - recursively unwind the stack
492 * @pc: address of the function to unwind
493 * @prev: struct dwarf_frame of the previous stackframe on the callstack
494 *
495 * Return a struct dwarf_frame representing the most recent frame
496 * on the callstack. Each of the lower (older) stack frames are
497 * linked via the "prev" member.
498 */
499struct dwarf_frame *dwarf_unwind_stack(unsigned long pc,
500 struct dwarf_frame *prev)
501{
502 struct dwarf_frame *frame;
503 struct dwarf_cie *cie;
504 struct dwarf_fde *fde;
505 unsigned long addr;
506 int i, offset;
507
508 /*
509 * If this is the first invocation of this recursive function we
510 * need get the contents of a physical register to get the CFA
511 * in order to begin the virtual unwinding of the stack.
512 *
Matt Flemingf8264662009-08-13 20:41:31 +0100513 * NOTE: the return address is guaranteed to be setup by the
514 * time this function makes its first function call.
Matt Flemingbd353862009-08-14 01:58:43 +0900515 */
Matt Flemingb9558732009-08-15 23:10:57 +0100516 if (!pc && !prev)
517 pc = (unsigned long)current_text_addr();
Matt Flemingbd353862009-08-14 01:58:43 +0900518
Paul Mundt0fc11e32009-08-14 23:58:37 +0900519 frame = kzalloc(sizeof(*frame), GFP_ATOMIC);
Matt Flemingbd353862009-08-14 01:58:43 +0900520 if (!frame)
521 return NULL;
522
523 frame->prev = prev;
524
525 fde = dwarf_lookup_fde(pc);
526 if (!fde) {
527 /*
528 * This is our normal exit path - the one that stops the
529 * recursion. There's two reasons why we might exit
530 * here,
531 *
532 * a) pc has no asscociated DWARF frame info and so
533 * we don't know how to unwind this frame. This is
534 * usually the case when we're trying to unwind a
535 * frame that was called from some assembly code
536 * that has no DWARF info, e.g. syscalls.
537 *
538 * b) the DEBUG info for pc is bogus. There's
539 * really no way to distinguish this case from the
540 * case above, which sucks because we could print a
541 * warning here.
542 */
543 return NULL;
544 }
545
546 cie = dwarf_lookup_cie(fde->cie_pointer);
547
548 frame->pc = fde->initial_location;
549
550 /* CIE initial instructions */
551 dwarf_cfa_execute_insns(cie->initial_instructions,
Matt Flemingf8264662009-08-13 20:41:31 +0100552 cie->instructions_end, cie, fde,
Matt Flemingb9558732009-08-15 23:10:57 +0100553 frame, pc);
Matt Flemingbd353862009-08-14 01:58:43 +0900554
555 /* FDE instructions */
556 dwarf_cfa_execute_insns(fde->instructions, fde->end, cie,
Matt Flemingb9558732009-08-15 23:10:57 +0100557 fde, frame, pc);
Matt Flemingbd353862009-08-14 01:58:43 +0900558
559 /* Calculate the CFA */
560 switch (frame->flags) {
561 case DWARF_FRAME_CFA_REG_OFFSET:
562 if (prev) {
563 BUG_ON(!prev->regs[frame->cfa_register].flags);
564
565 addr = prev->cfa;
566 addr += prev->regs[frame->cfa_register].addr;
567 frame->cfa = __raw_readl(addr);
568
569 } else {
570 /*
571 * Again, this is the first invocation of this
572 * recurisve function. We need to physically
573 * read the contents of a register in order to
574 * get the Canonical Frame Address for this
575 * function.
576 */
577 frame->cfa = dwarf_read_arch_reg(frame->cfa_register);
578 }
579
580 frame->cfa += frame->cfa_offset;
581 break;
582 default:
583 BUG();
584 }
585
586 /* If we haven't seen the return address reg, we're screwed. */
587 BUG_ON(!frame->regs[DWARF_ARCH_RA_REG].flags);
588
589 for (i = 0; i <= frame->num_regs; i++) {
590 struct dwarf_reg *reg = &frame->regs[i];
591
592 if (!reg->flags)
593 continue;
594
595 offset = reg->addr;
596 offset += frame->cfa;
597 }
598
599 addr = frame->cfa + frame->regs[DWARF_ARCH_RA_REG].addr;
600 frame->return_addr = __raw_readl(addr);
601
602 frame->next = dwarf_unwind_stack(frame->return_addr, frame);
603 return frame;
604}
605
606static int dwarf_parse_cie(void *entry, void *p, unsigned long len,
607 unsigned char *end)
608{
609 struct dwarf_cie *cie;
610 unsigned long flags;
611 int count;
612
613 cie = kzalloc(sizeof(*cie), GFP_KERNEL);
614 if (!cie)
615 return -ENOMEM;
616
617 cie->length = len;
618
619 /*
620 * Record the offset into the .eh_frame section
621 * for this CIE. It allows this CIE to be
622 * quickly and easily looked up from the
623 * corresponding FDE.
624 */
625 cie->cie_pointer = (unsigned long)entry;
626
627 cie->version = *(char *)p++;
628 BUG_ON(cie->version != 1);
629
630 cie->augmentation = p;
631 p += strlen(cie->augmentation) + 1;
632
633 count = dwarf_read_uleb128(p, &cie->code_alignment_factor);
634 p += count;
635
636 count = dwarf_read_leb128(p, &cie->data_alignment_factor);
637 p += count;
638
639 /*
640 * Which column in the rule table contains the
641 * return address?
642 */
643 if (cie->version == 1) {
644 cie->return_address_reg = __raw_readb(p);
645 p++;
646 } else {
647 count = dwarf_read_uleb128(p, &cie->return_address_reg);
648 p += count;
649 }
650
651 if (cie->augmentation[0] == 'z') {
652 unsigned int length, count;
653 cie->flags |= DWARF_CIE_Z_AUGMENTATION;
654
655 count = dwarf_read_uleb128(p, &length);
656 p += count;
657
658 BUG_ON((unsigned char *)p > end);
659
660 cie->initial_instructions = p + length;
661 cie->augmentation++;
662 }
663
664 while (*cie->augmentation) {
665 /*
666 * "L" indicates a byte showing how the
667 * LSDA pointer is encoded. Skip it.
668 */
669 if (*cie->augmentation == 'L') {
670 p++;
671 cie->augmentation++;
672 } else if (*cie->augmentation == 'R') {
673 /*
674 * "R" indicates a byte showing
675 * how FDE addresses are
676 * encoded.
677 */
678 cie->encoding = *(char *)p++;
679 cie->augmentation++;
680 } else if (*cie->augmentation == 'P') {
681 /*
682 * "R" indicates a personality
683 * routine in the CIE
684 * augmentation.
685 */
686 BUG();
687 } else if (*cie->augmentation == 'S') {
688 BUG();
689 } else {
690 /*
691 * Unknown augmentation. Assume
692 * 'z' augmentation.
693 */
694 p = cie->initial_instructions;
695 BUG_ON(!p);
696 break;
697 }
698 }
699
700 cie->initial_instructions = p;
701 cie->instructions_end = end;
702
703 /* Add to list */
704 spin_lock_irqsave(&dwarf_cie_lock, flags);
705 list_add_tail(&cie->link, &dwarf_cie_list);
706 spin_unlock_irqrestore(&dwarf_cie_lock, flags);
707
708 return 0;
709}
710
711static int dwarf_parse_fde(void *entry, u32 entry_type,
712 void *start, unsigned long len)
713{
714 struct dwarf_fde *fde;
715 struct dwarf_cie *cie;
716 unsigned long flags;
717 int count;
718 void *p = start;
719
720 fde = kzalloc(sizeof(*fde), GFP_KERNEL);
721 if (!fde)
722 return -ENOMEM;
723
724 fde->length = len;
725
726 /*
727 * In a .eh_frame section the CIE pointer is the
728 * delta between the address within the FDE
729 */
730 fde->cie_pointer = (unsigned long)(p - entry_type - 4);
731
732 cie = dwarf_lookup_cie(fde->cie_pointer);
733 fde->cie = cie;
734
735 if (cie->encoding)
736 count = dwarf_read_encoded_value(p, &fde->initial_location,
737 cie->encoding);
738 else
739 count = dwarf_read_addr(p, &fde->initial_location);
740
741 p += count;
742
743 if (cie->encoding)
744 count = dwarf_read_encoded_value(p, &fde->address_range,
745 cie->encoding & 0x0f);
746 else
747 count = dwarf_read_addr(p, &fde->address_range);
748
749 p += count;
750
751 if (fde->cie->flags & DWARF_CIE_Z_AUGMENTATION) {
752 unsigned int length;
753 count = dwarf_read_uleb128(p, &length);
754 p += count + length;
755 }
756
757 /* Call frame instructions. */
758 fde->instructions = p;
759 fde->end = start + len;
760
761 /* Add to list. */
762 spin_lock_irqsave(&dwarf_fde_lock, flags);
763 list_add_tail(&fde->link, &dwarf_fde_list);
764 spin_unlock_irqrestore(&dwarf_fde_lock, flags);
765
766 return 0;
767}
768
769static void dwarf_unwinder_dump(struct task_struct *task, struct pt_regs *regs,
770 unsigned long *sp,
771 const struct stacktrace_ops *ops, void *data)
772{
773 struct dwarf_frame *frame;
774
775 frame = dwarf_unwind_stack(0, NULL);
776
777 while (frame && frame->return_addr) {
778 ops->address(data, frame->return_addr, 1);
779 frame = frame->next;
780 }
781}
782
783static struct unwinder dwarf_unwinder = {
784 .name = "dwarf-unwinder",
785 .dump = dwarf_unwinder_dump,
786 .rating = 150,
787};
788
789static void dwarf_unwinder_cleanup(void)
790{
Paul Mundt97f361e2009-08-17 05:07:38 +0900791 struct dwarf_cie *cie;
792 struct dwarf_fde *fde;
Matt Flemingbd353862009-08-14 01:58:43 +0900793
794 /*
795 * Deallocate all the memory allocated for the DWARF unwinder.
796 * Traverse all the FDE/CIE lists and remove and free all the
797 * memory associated with those data structures.
798 */
Paul Mundt97f361e2009-08-17 05:07:38 +0900799 list_for_each_entry(cie, &dwarf_cie_list, link)
Matt Flemingbd353862009-08-14 01:58:43 +0900800 kfree(cie);
Matt Flemingbd353862009-08-14 01:58:43 +0900801
Paul Mundt97f361e2009-08-17 05:07:38 +0900802 list_for_each_entry(fde, &dwarf_fde_list, link)
Matt Flemingbd353862009-08-14 01:58:43 +0900803 kfree(fde);
Matt Flemingbd353862009-08-14 01:58:43 +0900804}
805
806/**
807 * dwarf_unwinder_init - initialise the dwarf unwinder
808 *
809 * Build the data structures describing the .dwarf_frame section to
810 * make it easier to lookup CIE and FDE entries. Because the
811 * .eh_frame section is packed as tightly as possible it is not
812 * easy to lookup the FDE for a given PC, so we build a list of FDE
813 * and CIE entries that make it easier.
814 */
Paul Mundt97f361e2009-08-17 05:07:38 +0900815static int __init dwarf_unwinder_init(void)
Matt Flemingbd353862009-08-14 01:58:43 +0900816{
817 u32 entry_type;
818 void *p, *entry;
819 int count, err;
820 unsigned long len;
821 unsigned int c_entries, f_entries;
822 unsigned char *end;
823 INIT_LIST_HEAD(&dwarf_cie_list);
824 INIT_LIST_HEAD(&dwarf_fde_list);
825
826 c_entries = 0;
827 f_entries = 0;
828 entry = &__start_eh_frame;
829
830 while ((char *)entry < __stop_eh_frame) {
831 p = entry;
832
833 count = dwarf_entry_len(p, &len);
834 if (count == 0) {
835 /*
836 * We read a bogus length field value. There is
837 * nothing we can do here apart from disabling
838 * the DWARF unwinder. We can't even skip this
839 * entry and move to the next one because 'len'
840 * tells us where our next entry is.
841 */
842 goto out;
843 } else
844 p += count;
845
846 /* initial length does not include itself */
847 end = p + len;
848
Paul Mundt34974472009-08-14 02:10:59 +0900849 entry_type = get_unaligned((u32 *)p);
Matt Flemingbd353862009-08-14 01:58:43 +0900850 p += 4;
851
852 if (entry_type == DW_EH_FRAME_CIE) {
853 err = dwarf_parse_cie(entry, p, len, end);
854 if (err < 0)
855 goto out;
856 else
857 c_entries++;
858 } else {
859 err = dwarf_parse_fde(entry, entry_type, p, len);
860 if (err < 0)
861 goto out;
862 else
863 f_entries++;
864 }
865
866 entry = (char *)entry + len + 4;
867 }
868
869 printk(KERN_INFO "DWARF unwinder initialised: read %u CIEs, %u FDEs\n",
870 c_entries, f_entries);
871
872 err = unwinder_register(&dwarf_unwinder);
873 if (err)
874 goto out;
875
Paul Mundt97f361e2009-08-17 05:07:38 +0900876 return 0;
Matt Flemingbd353862009-08-14 01:58:43 +0900877
878out:
879 printk(KERN_ERR "Failed to initialise DWARF unwinder: %d\n", err);
880 dwarf_unwinder_cleanup();
Paul Mundt97f361e2009-08-17 05:07:38 +0900881 return -EINVAL;
Matt Flemingbd353862009-08-14 01:58:43 +0900882}
Paul Mundt97f361e2009-08-17 05:07:38 +0900883early_initcall(dwarf_unwinder_init);