Michel Lespinasse | 9826a51 | 2012-10-08 16:31:35 -0700 | [diff] [blame] | 1 | /* |
| 2 | Interval Trees |
| 3 | (C) 2012 Michel Lespinasse <walken@google.com> |
| 4 | |
| 5 | This program is free software; you can redistribute it and/or modify |
| 6 | it under the terms of the GNU General Public License as published by |
| 7 | the Free Software Foundation; either version 2 of the License, or |
| 8 | (at your option) any later version. |
| 9 | |
| 10 | This program is distributed in the hope that it will be useful, |
| 11 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 12 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 13 | GNU General Public License for more details. |
| 14 | |
| 15 | You should have received a copy of the GNU General Public License |
| 16 | along with this program; if not, write to the Free Software |
| 17 | Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
| 18 | |
| 19 | include/linux/interval_tree_generic.h |
| 20 | */ |
| 21 | |
| 22 | #include <linux/rbtree_augmented.h> |
| 23 | |
| 24 | /* |
| 25 | * Template for implementing interval trees |
| 26 | * |
| 27 | * ITSTRUCT: struct type of the interval tree nodes |
| 28 | * ITRB: name of struct rb_node field within ITSTRUCT |
| 29 | * ITTYPE: type of the interval endpoints |
| 30 | * ITSUBTREE: name of ITTYPE field within ITSTRUCT holding last-in-subtree |
| 31 | * ITSTART(n): start endpoint of ITSTRUCT node n |
| 32 | * ITLAST(n): last endpoint of ITSTRUCT node n |
| 33 | * ITSTATIC: 'static' or empty |
| 34 | * ITPREFIX: prefix to use for the inline tree definitions |
| 35 | * |
| 36 | * Note - before using this, please consider if non-generic version |
| 37 | * (interval_tree.h) would work for you... |
| 38 | */ |
| 39 | |
| 40 | #define INTERVAL_TREE_DEFINE(ITSTRUCT, ITRB, ITTYPE, ITSUBTREE, \ |
| 41 | ITSTART, ITLAST, ITSTATIC, ITPREFIX) \ |
| 42 | \ |
| 43 | /* Callbacks for augmented rbtree insert and remove */ \ |
| 44 | \ |
| 45 | static inline ITTYPE ITPREFIX ## _compute_subtree_last(ITSTRUCT *node) \ |
| 46 | { \ |
| 47 | ITTYPE max = ITLAST(node), subtree_last; \ |
| 48 | if (node->ITRB.rb_left) { \ |
| 49 | subtree_last = rb_entry(node->ITRB.rb_left, \ |
| 50 | ITSTRUCT, ITRB)->ITSUBTREE; \ |
| 51 | if (max < subtree_last) \ |
| 52 | max = subtree_last; \ |
| 53 | } \ |
| 54 | if (node->ITRB.rb_right) { \ |
| 55 | subtree_last = rb_entry(node->ITRB.rb_right, \ |
| 56 | ITSTRUCT, ITRB)->ITSUBTREE; \ |
| 57 | if (max < subtree_last) \ |
| 58 | max = subtree_last; \ |
| 59 | } \ |
| 60 | return max; \ |
| 61 | } \ |
| 62 | \ |
| 63 | RB_DECLARE_CALLBACKS(static, ITPREFIX ## _augment, ITSTRUCT, ITRB, \ |
| 64 | ITTYPE, ITSUBTREE, ITPREFIX ## _compute_subtree_last) \ |
| 65 | \ |
| 66 | /* Insert / remove interval nodes from the tree */ \ |
| 67 | \ |
| 68 | ITSTATIC void ITPREFIX ## _insert(ITSTRUCT *node, struct rb_root *root) \ |
| 69 | { \ |
| 70 | struct rb_node **link = &root->rb_node, *rb_parent = NULL; \ |
| 71 | ITTYPE start = ITSTART(node), last = ITLAST(node); \ |
| 72 | ITSTRUCT *parent; \ |
| 73 | \ |
| 74 | while (*link) { \ |
| 75 | rb_parent = *link; \ |
| 76 | parent = rb_entry(rb_parent, ITSTRUCT, ITRB); \ |
| 77 | if (parent->ITSUBTREE < last) \ |
| 78 | parent->ITSUBTREE = last; \ |
| 79 | if (start < ITSTART(parent)) \ |
| 80 | link = &parent->ITRB.rb_left; \ |
| 81 | else \ |
| 82 | link = &parent->ITRB.rb_right; \ |
| 83 | } \ |
| 84 | \ |
| 85 | node->ITSUBTREE = last; \ |
| 86 | rb_link_node(&node->ITRB, rb_parent, link); \ |
| 87 | rb_insert_augmented(&node->ITRB, root, &ITPREFIX ## _augment); \ |
| 88 | } \ |
| 89 | \ |
| 90 | ITSTATIC void ITPREFIX ## _remove(ITSTRUCT *node, struct rb_root *root) \ |
| 91 | { \ |
| 92 | rb_erase_augmented(&node->ITRB, root, &ITPREFIX ## _augment); \ |
| 93 | } \ |
| 94 | \ |
| 95 | /* \ |
| 96 | * Iterate over intervals intersecting [start;last] \ |
| 97 | * \ |
| 98 | * Note that a node's interval intersects [start;last] iff: \ |
| 99 | * Cond1: ITSTART(node) <= last \ |
| 100 | * and \ |
| 101 | * Cond2: start <= ITLAST(node) \ |
| 102 | */ \ |
| 103 | \ |
| 104 | static ITSTRUCT * \ |
| 105 | ITPREFIX ## _subtree_search(ITSTRUCT *node, ITTYPE start, ITTYPE last) \ |
| 106 | { \ |
| 107 | while (true) { \ |
| 108 | /* \ |
| 109 | * Loop invariant: start <= node->ITSUBTREE \ |
| 110 | * (Cond2 is satisfied by one of the subtree nodes) \ |
| 111 | */ \ |
| 112 | if (node->ITRB.rb_left) { \ |
| 113 | ITSTRUCT *left = rb_entry(node->ITRB.rb_left, \ |
| 114 | ITSTRUCT, ITRB); \ |
| 115 | if (start <= left->ITSUBTREE) { \ |
| 116 | /* \ |
| 117 | * Some nodes in left subtree satisfy Cond2. \ |
| 118 | * Iterate to find the leftmost such node N. \ |
| 119 | * If it also satisfies Cond1, that's the \ |
| 120 | * match we are looking for. Otherwise, there \ |
| 121 | * is no matching interval as nodes to the \ |
| 122 | * right of N can't satisfy Cond1 either. \ |
| 123 | */ \ |
| 124 | node = left; \ |
| 125 | continue; \ |
| 126 | } \ |
| 127 | } \ |
| 128 | if (ITSTART(node) <= last) { /* Cond1 */ \ |
| 129 | if (start <= ITLAST(node)) /* Cond2 */ \ |
| 130 | return node; /* node is leftmost match */ \ |
| 131 | if (node->ITRB.rb_right) { \ |
| 132 | node = rb_entry(node->ITRB.rb_right, \ |
| 133 | ITSTRUCT, ITRB); \ |
| 134 | if (start <= node->ITSUBTREE) \ |
| 135 | continue; \ |
| 136 | } \ |
| 137 | } \ |
| 138 | return NULL; /* No match */ \ |
| 139 | } \ |
| 140 | } \ |
| 141 | \ |
| 142 | ITSTATIC ITSTRUCT * \ |
| 143 | ITPREFIX ## _iter_first(struct rb_root *root, ITTYPE start, ITTYPE last) \ |
| 144 | { \ |
| 145 | ITSTRUCT *node; \ |
| 146 | \ |
| 147 | if (!root->rb_node) \ |
| 148 | return NULL; \ |
| 149 | node = rb_entry(root->rb_node, ITSTRUCT, ITRB); \ |
| 150 | if (node->ITSUBTREE < start) \ |
| 151 | return NULL; \ |
| 152 | return ITPREFIX ## _subtree_search(node, start, last); \ |
| 153 | } \ |
| 154 | \ |
| 155 | ITSTATIC ITSTRUCT * \ |
| 156 | ITPREFIX ## _iter_next(ITSTRUCT *node, ITTYPE start, ITTYPE last) \ |
| 157 | { \ |
| 158 | struct rb_node *rb = node->ITRB.rb_right, *prev; \ |
| 159 | \ |
| 160 | while (true) { \ |
| 161 | /* \ |
| 162 | * Loop invariants: \ |
| 163 | * Cond1: ITSTART(node) <= last \ |
| 164 | * rb == node->ITRB.rb_right \ |
| 165 | * \ |
| 166 | * First, search right subtree if suitable \ |
| 167 | */ \ |
| 168 | if (rb) { \ |
| 169 | ITSTRUCT *right = rb_entry(rb, ITSTRUCT, ITRB); \ |
| 170 | if (start <= right->ITSUBTREE) \ |
| 171 | return ITPREFIX ## _subtree_search(right, \ |
| 172 | start, last); \ |
| 173 | } \ |
| 174 | \ |
| 175 | /* Move up the tree until we come from a node's left child */ \ |
| 176 | do { \ |
| 177 | rb = rb_parent(&node->ITRB); \ |
| 178 | if (!rb) \ |
| 179 | return NULL; \ |
| 180 | prev = &node->ITRB; \ |
| 181 | node = rb_entry(rb, ITSTRUCT, ITRB); \ |
| 182 | rb = node->ITRB.rb_right; \ |
| 183 | } while (prev == rb); \ |
| 184 | \ |
| 185 | /* Check if the node intersects [start;last] */ \ |
| 186 | if (last < ITSTART(node)) /* !Cond1 */ \ |
| 187 | return NULL; \ |
| 188 | else if (start <= ITLAST(node)) /* Cond2 */ \ |
| 189 | return node; \ |
| 190 | } \ |
| 191 | } |